Ganesh Goudar 7f177f9810 powerpc/pseries: hwpoison the pages upon hitting UE
Add support to hwpoison the pages upon hitting machine check
exception.

This patch queues the address where UE is hit to percpu array
and schedules work to plumb it into memory poison infrastructure.

Reviewed-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Ganesh Goudar <ganeshgr@linux.ibm.com>
[mpe: Combine #ifdefs, drop PPC_BIT8(), and empty inline stub]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2019-04-20 22:02:35 +10:00

900 lines
24 KiB
C

/*
* Copyright (C) 2001 Dave Engebretsen IBM Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/sched.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/of.h>
#include <linux/fs.h>
#include <linux/reboot.h>
#include <linux/irq_work.h>
#include <asm/machdep.h>
#include <asm/rtas.h>
#include <asm/firmware.h>
#include <asm/mce.h>
#include "pseries.h"
static unsigned char ras_log_buf[RTAS_ERROR_LOG_MAX];
static DEFINE_SPINLOCK(ras_log_buf_lock);
static int ras_check_exception_token;
static void mce_process_errlog_event(struct irq_work *work);
static struct irq_work mce_errlog_process_work = {
.func = mce_process_errlog_event,
};
#define EPOW_SENSOR_TOKEN 9
#define EPOW_SENSOR_INDEX 0
/* EPOW events counter variable */
static int num_epow_events;
static irqreturn_t ras_hotplug_interrupt(int irq, void *dev_id);
static irqreturn_t ras_epow_interrupt(int irq, void *dev_id);
static irqreturn_t ras_error_interrupt(int irq, void *dev_id);
/* RTAS pseries MCE errorlog section. */
struct pseries_mc_errorlog {
__be32 fru_id;
__be32 proc_id;
u8 error_type;
/*
* sub_err_type (1 byte). Bit fields depends on error_type
*
* MSB0
* |
* V
* 01234567
* XXXXXXXX
*
* For error_type == MC_ERROR_TYPE_UE
* XXXXXXXX
* X 1: Permanent or Transient UE.
* X 1: Effective address provided.
* X 1: Logical address provided.
* XX 2: Reserved.
* XXX 3: Type of UE error.
*
* For error_type != MC_ERROR_TYPE_UE
* XXXXXXXX
* X 1: Effective address provided.
* XXXXX 5: Reserved.
* XX 2: Type of SLB/ERAT/TLB error.
*/
u8 sub_err_type;
u8 reserved_1[6];
__be64 effective_address;
__be64 logical_address;
} __packed;
/* RTAS pseries MCE error types */
#define MC_ERROR_TYPE_UE 0x00
#define MC_ERROR_TYPE_SLB 0x01
#define MC_ERROR_TYPE_ERAT 0x02
#define MC_ERROR_TYPE_TLB 0x04
#define MC_ERROR_TYPE_D_CACHE 0x05
#define MC_ERROR_TYPE_I_CACHE 0x07
/* RTAS pseries MCE error sub types */
#define MC_ERROR_UE_INDETERMINATE 0
#define MC_ERROR_UE_IFETCH 1
#define MC_ERROR_UE_PAGE_TABLE_WALK_IFETCH 2
#define MC_ERROR_UE_LOAD_STORE 3
#define MC_ERROR_UE_PAGE_TABLE_WALK_LOAD_STORE 4
#define MC_ERROR_SLB_PARITY 0
#define MC_ERROR_SLB_MULTIHIT 1
#define MC_ERROR_SLB_INDETERMINATE 2
#define MC_ERROR_ERAT_PARITY 1
#define MC_ERROR_ERAT_MULTIHIT 2
#define MC_ERROR_ERAT_INDETERMINATE 3
#define MC_ERROR_TLB_PARITY 1
#define MC_ERROR_TLB_MULTIHIT 2
#define MC_ERROR_TLB_INDETERMINATE 3
static inline u8 rtas_mc_error_sub_type(const struct pseries_mc_errorlog *mlog)
{
switch (mlog->error_type) {
case MC_ERROR_TYPE_UE:
return (mlog->sub_err_type & 0x07);
case MC_ERROR_TYPE_SLB:
case MC_ERROR_TYPE_ERAT:
case MC_ERROR_TYPE_TLB:
return (mlog->sub_err_type & 0x03);
default:
return 0;
}
}
static
inline u64 rtas_mc_get_effective_addr(const struct pseries_mc_errorlog *mlog)
{
__be64 addr = 0;
switch (mlog->error_type) {
case MC_ERROR_TYPE_UE:
if (mlog->sub_err_type & 0x40)
addr = mlog->effective_address;
break;
case MC_ERROR_TYPE_SLB:
case MC_ERROR_TYPE_ERAT:
case MC_ERROR_TYPE_TLB:
if (mlog->sub_err_type & 0x80)
addr = mlog->effective_address;
default:
break;
}
return be64_to_cpu(addr);
}
/*
* Enable the hotplug interrupt late because processing them may touch other
* devices or systems (e.g. hugepages) that have not been initialized at the
* subsys stage.
*/
int __init init_ras_hotplug_IRQ(void)
{
struct device_node *np;
/* Hotplug Events */
np = of_find_node_by_path("/event-sources/hot-plug-events");
if (np != NULL) {
if (dlpar_workqueue_init() == 0)
request_event_sources_irqs(np, ras_hotplug_interrupt,
"RAS_HOTPLUG");
of_node_put(np);
}
return 0;
}
machine_late_initcall(pseries, init_ras_hotplug_IRQ);
/*
* Initialize handlers for the set of interrupts caused by hardware errors
* and power system events.
*/
static int __init init_ras_IRQ(void)
{
struct device_node *np;
ras_check_exception_token = rtas_token("check-exception");
/* Internal Errors */
np = of_find_node_by_path("/event-sources/internal-errors");
if (np != NULL) {
request_event_sources_irqs(np, ras_error_interrupt,
"RAS_ERROR");
of_node_put(np);
}
/* EPOW Events */
np = of_find_node_by_path("/event-sources/epow-events");
if (np != NULL) {
request_event_sources_irqs(np, ras_epow_interrupt, "RAS_EPOW");
of_node_put(np);
}
return 0;
}
machine_subsys_initcall(pseries, init_ras_IRQ);
#define EPOW_SHUTDOWN_NORMAL 1
#define EPOW_SHUTDOWN_ON_UPS 2
#define EPOW_SHUTDOWN_LOSS_OF_CRITICAL_FUNCTIONS 3
#define EPOW_SHUTDOWN_AMBIENT_TEMPERATURE_TOO_HIGH 4
static void handle_system_shutdown(char event_modifier)
{
switch (event_modifier) {
case EPOW_SHUTDOWN_NORMAL:
pr_emerg("Power off requested\n");
orderly_poweroff(true);
break;
case EPOW_SHUTDOWN_ON_UPS:
pr_emerg("Loss of system power detected. System is running on"
" UPS/battery. Check RTAS error log for details\n");
orderly_poweroff(true);
break;
case EPOW_SHUTDOWN_LOSS_OF_CRITICAL_FUNCTIONS:
pr_emerg("Loss of system critical functions detected. Check"
" RTAS error log for details\n");
orderly_poweroff(true);
break;
case EPOW_SHUTDOWN_AMBIENT_TEMPERATURE_TOO_HIGH:
pr_emerg("High ambient temperature detected. Check RTAS"
" error log for details\n");
orderly_poweroff(true);
break;
default:
pr_err("Unknown power/cooling shutdown event (modifier = %d)\n",
event_modifier);
}
}
struct epow_errorlog {
unsigned char sensor_value;
unsigned char event_modifier;
unsigned char extended_modifier;
unsigned char reserved;
unsigned char platform_reason;
};
#define EPOW_RESET 0
#define EPOW_WARN_COOLING 1
#define EPOW_WARN_POWER 2
#define EPOW_SYSTEM_SHUTDOWN 3
#define EPOW_SYSTEM_HALT 4
#define EPOW_MAIN_ENCLOSURE 5
#define EPOW_POWER_OFF 7
static void rtas_parse_epow_errlog(struct rtas_error_log *log)
{
struct pseries_errorlog *pseries_log;
struct epow_errorlog *epow_log;
char action_code;
char modifier;
pseries_log = get_pseries_errorlog(log, PSERIES_ELOG_SECT_ID_EPOW);
if (pseries_log == NULL)
return;
epow_log = (struct epow_errorlog *)pseries_log->data;
action_code = epow_log->sensor_value & 0xF; /* bottom 4 bits */
modifier = epow_log->event_modifier & 0xF; /* bottom 4 bits */
switch (action_code) {
case EPOW_RESET:
if (num_epow_events) {
pr_info("Non critical power/cooling issue cleared\n");
num_epow_events--;
}
break;
case EPOW_WARN_COOLING:
pr_info("Non-critical cooling issue detected. Check RTAS error"
" log for details\n");
break;
case EPOW_WARN_POWER:
pr_info("Non-critical power issue detected. Check RTAS error"
" log for details\n");
break;
case EPOW_SYSTEM_SHUTDOWN:
handle_system_shutdown(epow_log->event_modifier);
break;
case EPOW_SYSTEM_HALT:
pr_emerg("Critical power/cooling issue detected. Check RTAS"
" error log for details. Powering off.\n");
orderly_poweroff(true);
break;
case EPOW_MAIN_ENCLOSURE:
case EPOW_POWER_OFF:
pr_emerg("System about to lose power. Check RTAS error log "
" for details. Powering off immediately.\n");
emergency_sync();
kernel_power_off();
break;
default:
pr_err("Unknown power/cooling event (action code = %d)\n",
action_code);
}
/* Increment epow events counter variable */
if (action_code != EPOW_RESET)
num_epow_events++;
}
static irqreturn_t ras_hotplug_interrupt(int irq, void *dev_id)
{
struct pseries_errorlog *pseries_log;
struct pseries_hp_errorlog *hp_elog;
spin_lock(&ras_log_buf_lock);
rtas_call(ras_check_exception_token, 6, 1, NULL,
RTAS_VECTOR_EXTERNAL_INTERRUPT, virq_to_hw(irq),
RTAS_HOTPLUG_EVENTS, 0, __pa(&ras_log_buf),
rtas_get_error_log_max());
pseries_log = get_pseries_errorlog((struct rtas_error_log *)ras_log_buf,
PSERIES_ELOG_SECT_ID_HOTPLUG);
hp_elog = (struct pseries_hp_errorlog *)pseries_log->data;
/*
* Since PCI hotplug is not currently supported on pseries, put PCI
* hotplug events on the ras_log_buf to be handled by rtas_errd.
*/
if (hp_elog->resource == PSERIES_HP_ELOG_RESOURCE_MEM ||
hp_elog->resource == PSERIES_HP_ELOG_RESOURCE_CPU ||
hp_elog->resource == PSERIES_HP_ELOG_RESOURCE_PMEM)
queue_hotplug_event(hp_elog);
else
log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, 0);
spin_unlock(&ras_log_buf_lock);
return IRQ_HANDLED;
}
/* Handle environmental and power warning (EPOW) interrupts. */
static irqreturn_t ras_epow_interrupt(int irq, void *dev_id)
{
int status;
int state;
int critical;
status = rtas_get_sensor_fast(EPOW_SENSOR_TOKEN, EPOW_SENSOR_INDEX,
&state);
if (state > 3)
critical = 1; /* Time Critical */
else
critical = 0;
spin_lock(&ras_log_buf_lock);
status = rtas_call(ras_check_exception_token, 6, 1, NULL,
RTAS_VECTOR_EXTERNAL_INTERRUPT,
virq_to_hw(irq),
RTAS_EPOW_WARNING,
critical, __pa(&ras_log_buf),
rtas_get_error_log_max());
log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, 0);
rtas_parse_epow_errlog((struct rtas_error_log *)ras_log_buf);
spin_unlock(&ras_log_buf_lock);
return IRQ_HANDLED;
}
/*
* Handle hardware error interrupts.
*
* RTAS check-exception is called to collect data on the exception. If
* the error is deemed recoverable, we log a warning and return.
* For nonrecoverable errors, an error is logged and we stop all processing
* as quickly as possible in order to prevent propagation of the failure.
*/
static irqreturn_t ras_error_interrupt(int irq, void *dev_id)
{
struct rtas_error_log *rtas_elog;
int status;
int fatal;
spin_lock(&ras_log_buf_lock);
status = rtas_call(ras_check_exception_token, 6, 1, NULL,
RTAS_VECTOR_EXTERNAL_INTERRUPT,
virq_to_hw(irq),
RTAS_INTERNAL_ERROR, 1 /* Time Critical */,
__pa(&ras_log_buf),
rtas_get_error_log_max());
rtas_elog = (struct rtas_error_log *)ras_log_buf;
if (status == 0 &&
rtas_error_severity(rtas_elog) >= RTAS_SEVERITY_ERROR_SYNC)
fatal = 1;
else
fatal = 0;
/* format and print the extended information */
log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, fatal);
if (fatal) {
pr_emerg("Fatal hardware error detected. Check RTAS error"
" log for details. Powering off immediately\n");
emergency_sync();
kernel_power_off();
} else {
pr_err("Recoverable hardware error detected\n");
}
spin_unlock(&ras_log_buf_lock);
return IRQ_HANDLED;
}
/*
* Some versions of FWNMI place the buffer inside the 4kB page starting at
* 0x7000. Other versions place it inside the rtas buffer. We check both.
*/
#define VALID_FWNMI_BUFFER(A) \
((((A) >= 0x7000) && ((A) < 0x7ff0)) || \
(((A) >= rtas.base) && ((A) < (rtas.base + rtas.size - 16))))
static inline struct rtas_error_log *fwnmi_get_errlog(void)
{
return (struct rtas_error_log *)local_paca->mce_data_buf;
}
/*
* Get the error information for errors coming through the
* FWNMI vectors. The pt_regs' r3 will be updated to reflect
* the actual r3 if possible, and a ptr to the error log entry
* will be returned if found.
*
* Use one buffer mce_data_buf per cpu to store RTAS error.
*
* The mce_data_buf does not have any locks or protection around it,
* if a second machine check comes in, or a system reset is done
* before we have logged the error, then we will get corruption in the
* error log. This is preferable over holding off on calling
* ibm,nmi-interlock which would result in us checkstopping if a
* second machine check did come in.
*/
static struct rtas_error_log *fwnmi_get_errinfo(struct pt_regs *regs)
{
unsigned long *savep;
struct rtas_error_log *h;
/* Mask top two bits */
regs->gpr[3] &= ~(0x3UL << 62);
if (!VALID_FWNMI_BUFFER(regs->gpr[3])) {
printk(KERN_ERR "FWNMI: corrupt r3 0x%016lx\n", regs->gpr[3]);
return NULL;
}
savep = __va(regs->gpr[3]);
regs->gpr[3] = be64_to_cpu(savep[0]); /* restore original r3 */
h = (struct rtas_error_log *)&savep[1];
/* Use the per cpu buffer from paca to store rtas error log */
memset(local_paca->mce_data_buf, 0, RTAS_ERROR_LOG_MAX);
if (!rtas_error_extended(h)) {
memcpy(local_paca->mce_data_buf, h, sizeof(__u64));
} else {
int len, error_log_length;
error_log_length = 8 + rtas_error_extended_log_length(h);
len = min_t(int, error_log_length, RTAS_ERROR_LOG_MAX);
memcpy(local_paca->mce_data_buf, h, len);
}
return (struct rtas_error_log *)local_paca->mce_data_buf;
}
/* Call this when done with the data returned by FWNMI_get_errinfo.
* It will release the saved data area for other CPUs in the
* partition to receive FWNMI errors.
*/
static void fwnmi_release_errinfo(void)
{
int ret = rtas_call(rtas_token("ibm,nmi-interlock"), 0, 1, NULL);
if (ret != 0)
printk(KERN_ERR "FWNMI: nmi-interlock failed: %d\n", ret);
}
int pSeries_system_reset_exception(struct pt_regs *regs)
{
#ifdef __LITTLE_ENDIAN__
/*
* Some firmware byteswaps SRR registers and gives incorrect SRR1. Try
* to detect the bad SRR1 pattern here. Flip the NIP back to correct
* endian for reporting purposes. Unfortunately the MSR can't be fixed,
* so clear it. It will be missing MSR_RI so we won't try to recover.
*/
if ((be64_to_cpu(regs->msr) &
(MSR_LE|MSR_RI|MSR_DR|MSR_IR|MSR_ME|MSR_PR|
MSR_ILE|MSR_HV|MSR_SF)) == (MSR_DR|MSR_SF)) {
regs->nip = be64_to_cpu((__be64)regs->nip);
regs->msr = 0;
}
#endif
if (fwnmi_active) {
struct rtas_error_log *errhdr = fwnmi_get_errinfo(regs);
if (errhdr) {
/* XXX Should look at FWNMI information */
}
fwnmi_release_errinfo();
}
if (smp_handle_nmi_ipi(regs))
return 1;
return 0; /* need to perform reset */
}
#define VAL_TO_STRING(ar, val) \
(((val) < ARRAY_SIZE(ar)) ? ar[(val)] : "Unknown")
static void pseries_print_mce_info(struct pt_regs *regs,
struct rtas_error_log *errp)
{
const char *level, *sevstr;
struct pseries_errorlog *pseries_log;
struct pseries_mc_errorlog *mce_log;
u8 error_type, err_sub_type;
u64 addr;
u8 initiator = rtas_error_initiator(errp);
int disposition = rtas_error_disposition(errp);
static const char * const initiators[] = {
[0] = "Unknown",
[1] = "CPU",
[2] = "PCI",
[3] = "ISA",
[4] = "Memory",
[5] = "Power Mgmt",
};
static const char * const mc_err_types[] = {
[0] = "UE",
[1] = "SLB",
[2] = "ERAT",
[3] = "Unknown",
[4] = "TLB",
[5] = "D-Cache",
[6] = "Unknown",
[7] = "I-Cache",
};
static const char * const mc_ue_types[] = {
[0] = "Indeterminate",
[1] = "Instruction fetch",
[2] = "Page table walk ifetch",
[3] = "Load/Store",
[4] = "Page table walk Load/Store",
};
/* SLB sub errors valid values are 0x0, 0x1, 0x2 */
static const char * const mc_slb_types[] = {
[0] = "Parity",
[1] = "Multihit",
[2] = "Indeterminate",
};
/* TLB and ERAT sub errors valid values are 0x1, 0x2, 0x3 */
static const char * const mc_soft_types[] = {
[0] = "Unknown",
[1] = "Parity",
[2] = "Multihit",
[3] = "Indeterminate",
};
if (!rtas_error_extended(errp)) {
pr_err("Machine check interrupt: Missing extended error log\n");
return;
}
pseries_log = get_pseries_errorlog(errp, PSERIES_ELOG_SECT_ID_MCE);
if (pseries_log == NULL)
return;
mce_log = (struct pseries_mc_errorlog *)pseries_log->data;
error_type = mce_log->error_type;
err_sub_type = rtas_mc_error_sub_type(mce_log);
switch (rtas_error_severity(errp)) {
case RTAS_SEVERITY_NO_ERROR:
level = KERN_INFO;
sevstr = "Harmless";
break;
case RTAS_SEVERITY_WARNING:
level = KERN_WARNING;
sevstr = "";
break;
case RTAS_SEVERITY_ERROR:
case RTAS_SEVERITY_ERROR_SYNC:
level = KERN_ERR;
sevstr = "Severe";
break;
case RTAS_SEVERITY_FATAL:
default:
level = KERN_ERR;
sevstr = "Fatal";
break;
}
#ifdef CONFIG_PPC_BOOK3S_64
/* Display faulty slb contents for SLB errors. */
if (error_type == MC_ERROR_TYPE_SLB)
slb_dump_contents(local_paca->mce_faulty_slbs);
#endif
printk("%s%s Machine check interrupt [%s]\n", level, sevstr,
disposition == RTAS_DISP_FULLY_RECOVERED ?
"Recovered" : "Not recovered");
if (user_mode(regs)) {
printk("%s NIP: [%016lx] PID: %d Comm: %s\n", level,
regs->nip, current->pid, current->comm);
} else {
printk("%s NIP [%016lx]: %pS\n", level, regs->nip,
(void *)regs->nip);
}
printk("%s Initiator: %s\n", level,
VAL_TO_STRING(initiators, initiator));
switch (error_type) {
case MC_ERROR_TYPE_UE:
printk("%s Error type: %s [%s]\n", level,
VAL_TO_STRING(mc_err_types, error_type),
VAL_TO_STRING(mc_ue_types, err_sub_type));
break;
case MC_ERROR_TYPE_SLB:
printk("%s Error type: %s [%s]\n", level,
VAL_TO_STRING(mc_err_types, error_type),
VAL_TO_STRING(mc_slb_types, err_sub_type));
break;
case MC_ERROR_TYPE_ERAT:
case MC_ERROR_TYPE_TLB:
printk("%s Error type: %s [%s]\n", level,
VAL_TO_STRING(mc_err_types, error_type),
VAL_TO_STRING(mc_soft_types, err_sub_type));
break;
default:
printk("%s Error type: %s\n", level,
VAL_TO_STRING(mc_err_types, error_type));
break;
}
addr = rtas_mc_get_effective_addr(mce_log);
if (addr)
printk("%s Effective address: %016llx\n", level, addr);
}
static int mce_handle_error(struct rtas_error_log *errp)
{
struct pseries_errorlog *pseries_log;
struct pseries_mc_errorlog *mce_log;
int disposition = rtas_error_disposition(errp);
u8 error_type;
if (!rtas_error_extended(errp))
goto out;
pseries_log = get_pseries_errorlog(errp, PSERIES_ELOG_SECT_ID_MCE);
if (pseries_log == NULL)
goto out;
mce_log = (struct pseries_mc_errorlog *)pseries_log->data;
error_type = mce_log->error_type;
#ifdef CONFIG_PPC_BOOK3S_64
if (disposition == RTAS_DISP_NOT_RECOVERED) {
switch (error_type) {
case MC_ERROR_TYPE_SLB:
case MC_ERROR_TYPE_ERAT:
/*
* Store the old slb content in paca before flushing.
* Print this when we go to virtual mode.
* There are chances that we may hit MCE again if there
* is a parity error on the SLB entry we trying to read
* for saving. Hence limit the slb saving to single
* level of recursion.
*/
if (local_paca->in_mce == 1)
slb_save_contents(local_paca->mce_faulty_slbs);
flush_and_reload_slb();
disposition = RTAS_DISP_FULLY_RECOVERED;
rtas_set_disposition_recovered(errp);
break;
default:
break;
}
}
#endif
out:
return disposition;
}
#ifdef CONFIG_MEMORY_FAILURE
static DEFINE_PER_CPU(int, rtas_ue_count);
static DEFINE_PER_CPU(unsigned long, rtas_ue_paddr[MAX_MC_EVT]);
#define UE_EFFECTIVE_ADDR_PROVIDED 0x40
#define UE_LOGICAL_ADDR_PROVIDED 0x20
static void pseries_hwpoison_work_fn(struct work_struct *work)
{
unsigned long paddr;
int index;
while (__this_cpu_read(rtas_ue_count) > 0) {
index = __this_cpu_read(rtas_ue_count) - 1;
paddr = __this_cpu_read(rtas_ue_paddr[index]);
memory_failure(paddr >> PAGE_SHIFT, 0);
__this_cpu_dec(rtas_ue_count);
}
}
static DECLARE_WORK(hwpoison_work, pseries_hwpoison_work_fn);
static void queue_ue_paddr(unsigned long paddr)
{
int index;
index = __this_cpu_inc_return(rtas_ue_count) - 1;
if (index >= MAX_MC_EVT) {
__this_cpu_dec(rtas_ue_count);
return;
}
this_cpu_write(rtas_ue_paddr[index], paddr);
schedule_work(&hwpoison_work);
}
static void pseries_do_memory_failure(struct pt_regs *regs,
struct pseries_mc_errorlog *mce_log)
{
unsigned long paddr;
if (mce_log->sub_err_type & UE_LOGICAL_ADDR_PROVIDED) {
paddr = be64_to_cpu(mce_log->logical_address);
} else if (mce_log->sub_err_type & UE_EFFECTIVE_ADDR_PROVIDED) {
unsigned long pfn;
pfn = addr_to_pfn(regs,
be64_to_cpu(mce_log->effective_address));
if (pfn == ULONG_MAX)
return;
paddr = pfn << PAGE_SHIFT;
} else {
return;
}
queue_ue_paddr(paddr);
}
static void pseries_process_ue(struct pt_regs *regs,
struct rtas_error_log *errp)
{
struct pseries_errorlog *pseries_log;
struct pseries_mc_errorlog *mce_log;
if (!rtas_error_extended(errp))
return;
pseries_log = get_pseries_errorlog(errp, PSERIES_ELOG_SECT_ID_MCE);
if (!pseries_log)
return;
mce_log = (struct pseries_mc_errorlog *)pseries_log->data;
if (mce_log->error_type == MC_ERROR_TYPE_UE)
pseries_do_memory_failure(regs, mce_log);
}
#else
static inline void pseries_process_ue(struct pt_regs *regs,
struct rtas_error_log *errp) { }
#endif /*CONFIG_MEMORY_FAILURE */
/*
* Process MCE rtas errlog event.
*/
static void mce_process_errlog_event(struct irq_work *work)
{
struct rtas_error_log *err;
err = fwnmi_get_errlog();
log_error((char *)err, ERR_TYPE_RTAS_LOG, 0);
}
/*
* See if we can recover from a machine check exception.
* This is only called on power4 (or above) and only via
* the Firmware Non-Maskable Interrupts (fwnmi) handler
* which provides the error analysis for us.
*
* Return 1 if corrected (or delivered a signal).
* Return 0 if there is nothing we can do.
*/
static int recover_mce(struct pt_regs *regs, struct rtas_error_log *err)
{
int recovered = 0;
int disposition = rtas_error_disposition(err);
pseries_print_mce_info(regs, err);
if (!(regs->msr & MSR_RI)) {
/* If MSR_RI isn't set, we cannot recover */
pr_err("Machine check interrupt unrecoverable: MSR(RI=0)\n");
recovered = 0;
} else if (disposition == RTAS_DISP_FULLY_RECOVERED) {
/* Platform corrected itself */
recovered = 1;
} else if (disposition == RTAS_DISP_LIMITED_RECOVERY) {
/* Platform corrected itself but could be degraded */
printk(KERN_ERR "MCE: limited recovery, system may "
"be degraded\n");
recovered = 1;
} else if (user_mode(regs) && !is_global_init(current) &&
rtas_error_severity(err) == RTAS_SEVERITY_ERROR_SYNC) {
/*
* If we received a synchronous error when in userspace
* kill the task. Firmware may report details of the fail
* asynchronously, so we can't rely on the target and type
* fields being valid here.
*/
printk(KERN_ERR "MCE: uncorrectable error, killing task "
"%s:%d\n", current->comm, current->pid);
_exception(SIGBUS, regs, BUS_MCEERR_AR, regs->nip);
recovered = 1;
}
pseries_process_ue(regs, err);
/* Queue irq work to log this rtas event later. */
irq_work_queue(&mce_errlog_process_work);
return recovered;
}
/*
* Handle a machine check.
*
* Note that on Power 4 and beyond Firmware Non-Maskable Interrupts (fwnmi)
* should be present. If so the handler which called us tells us if the
* error was recovered (never true if RI=0).
*
* On hardware prior to Power 4 these exceptions were asynchronous which
* means we can't tell exactly where it occurred and so we can't recover.
*/
int pSeries_machine_check_exception(struct pt_regs *regs)
{
struct rtas_error_log *errp;
if (fwnmi_active) {
fwnmi_release_errinfo();
errp = fwnmi_get_errlog();
if (errp && recover_mce(regs, errp))
return 1;
}
return 0;
}
long pseries_machine_check_realmode(struct pt_regs *regs)
{
struct rtas_error_log *errp;
int disposition;
if (fwnmi_active) {
errp = fwnmi_get_errinfo(regs);
/*
* Call to fwnmi_release_errinfo() in real mode causes kernel
* to panic. Hence we will call it as soon as we go into
* virtual mode.
*/
disposition = mce_handle_error(errp);
if (disposition == RTAS_DISP_FULLY_RECOVERED)
return 1;
}
return 0;
}