7fa8a8ee94
switching from a user process to a kernel thread. - More folio conversions from Kefeng Wang, Zhang Peng and Pankaj Raghav. - zsmalloc performance improvements from Sergey Senozhatsky. - Yue Zhao has found and fixed some data race issues around the alteration of memcg userspace tunables. - VFS rationalizations from Christoph Hellwig: - removal of most of the callers of write_one_page(). - make __filemap_get_folio()'s return value more useful - Luis Chamberlain has changed tmpfs so it no longer requires swap backing. Use `mount -o noswap'. - Qi Zheng has made the slab shrinkers operate locklessly, providing some scalability benefits. - Keith Busch has improved dmapool's performance, making part of its operations O(1) rather than O(n). - Peter Xu adds the UFFD_FEATURE_WP_UNPOPULATED feature to userfaultd, permitting userspace to wr-protect anon memory unpopulated ptes. - Kirill Shutemov has changed MAX_ORDER's meaning to be inclusive rather than exclusive, and has fixed a bunch of errors which were caused by its unintuitive meaning. - Axel Rasmussen give userfaultfd the UFFDIO_CONTINUE_MODE_WP feature, which causes minor faults to install a write-protected pte. - Vlastimil Babka has done some maintenance work on vma_merge(): cleanups to the kernel code and improvements to our userspace test harness. - Cleanups to do_fault_around() by Lorenzo Stoakes. - Mike Rapoport has moved a lot of initialization code out of various mm/ files and into mm/mm_init.c. - Lorenzo Stoakes removd vmf_insert_mixed_prot(), which was added for DRM, but DRM doesn't use it any more. - Lorenzo has also coverted read_kcore() and vread() to use iterators and has thereby removed the use of bounce buffers in some cases. - Lorenzo has also contributed further cleanups of vma_merge(). - Chaitanya Prakash provides some fixes to the mmap selftesting code. - Matthew Wilcox changes xfs and afs so they no longer take sleeping locks in ->map_page(), a step towards RCUification of pagefaults. - Suren Baghdasaryan has improved mmap_lock scalability by switching to per-VMA locking. - Frederic Weisbecker has reworked the percpu cache draining so that it no longer causes latency glitches on cpu isolated workloads. - Mike Rapoport cleans up and corrects the ARCH_FORCE_MAX_ORDER Kconfig logic. - Liu Shixin has changed zswap's initialization so we no longer waste a chunk of memory if zswap is not being used. - Yosry Ahmed has improved the performance of memcg statistics flushing. - David Stevens has fixed several issues involving khugepaged, userfaultfd and shmem. - Christoph Hellwig has provided some cleanup work to zram's IO-related code paths. - David Hildenbrand has fixed up some issues in the selftest code's testing of our pte state changing. - Pankaj Raghav has made page_endio() unneeded and has removed it. - Peter Xu contributed some rationalizations of the userfaultfd selftests. - Yosry Ahmed has fixed an issue around memcg's page recalim accounting. - Chaitanya Prakash has fixed some arm-related issues in the selftests/mm code. - Longlong Xia has improved the way in which KSM handles hwpoisoned pages. - Peter Xu fixes a few issues with uffd-wp at fork() time. - Stefan Roesch has changed KSM so that it may now be used on a per-process and per-cgroup basis. -----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZEr3zQAKCRDdBJ7gKXxA jlLoAP0fpQBipwFxED0Us4SKQfupV6z4caXNJGPeay7Aj11/kQD/aMRC2uPfgr96 eMG3kwn2pqkB9ST2QpkaRbxA//eMbQY= =J+Dj -----END PGP SIGNATURE----- Merge tag 'mm-stable-2023-04-27-15-30' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: - Nick Piggin's "shoot lazy tlbs" series, to improve the peformance of switching from a user process to a kernel thread. - More folio conversions from Kefeng Wang, Zhang Peng and Pankaj Raghav. - zsmalloc performance improvements from Sergey Senozhatsky. - Yue Zhao has found and fixed some data race issues around the alteration of memcg userspace tunables. - VFS rationalizations from Christoph Hellwig: - removal of most of the callers of write_one_page() - make __filemap_get_folio()'s return value more useful - Luis Chamberlain has changed tmpfs so it no longer requires swap backing. Use `mount -o noswap'. - Qi Zheng has made the slab shrinkers operate locklessly, providing some scalability benefits. - Keith Busch has improved dmapool's performance, making part of its operations O(1) rather than O(n). - Peter Xu adds the UFFD_FEATURE_WP_UNPOPULATED feature to userfaultd, permitting userspace to wr-protect anon memory unpopulated ptes. - Kirill Shutemov has changed MAX_ORDER's meaning to be inclusive rather than exclusive, and has fixed a bunch of errors which were caused by its unintuitive meaning. - Axel Rasmussen give userfaultfd the UFFDIO_CONTINUE_MODE_WP feature, which causes minor faults to install a write-protected pte. - Vlastimil Babka has done some maintenance work on vma_merge(): cleanups to the kernel code and improvements to our userspace test harness. - Cleanups to do_fault_around() by Lorenzo Stoakes. - Mike Rapoport has moved a lot of initialization code out of various mm/ files and into mm/mm_init.c. - Lorenzo Stoakes removd vmf_insert_mixed_prot(), which was added for DRM, but DRM doesn't use it any more. - Lorenzo has also coverted read_kcore() and vread() to use iterators and has thereby removed the use of bounce buffers in some cases. - Lorenzo has also contributed further cleanups of vma_merge(). - Chaitanya Prakash provides some fixes to the mmap selftesting code. - Matthew Wilcox changes xfs and afs so they no longer take sleeping locks in ->map_page(), a step towards RCUification of pagefaults. - Suren Baghdasaryan has improved mmap_lock scalability by switching to per-VMA locking. - Frederic Weisbecker has reworked the percpu cache draining so that it no longer causes latency glitches on cpu isolated workloads. - Mike Rapoport cleans up and corrects the ARCH_FORCE_MAX_ORDER Kconfig logic. - Liu Shixin has changed zswap's initialization so we no longer waste a chunk of memory if zswap is not being used. - Yosry Ahmed has improved the performance of memcg statistics flushing. - David Stevens has fixed several issues involving khugepaged, userfaultfd and shmem. - Christoph Hellwig has provided some cleanup work to zram's IO-related code paths. - David Hildenbrand has fixed up some issues in the selftest code's testing of our pte state changing. - Pankaj Raghav has made page_endio() unneeded and has removed it. - Peter Xu contributed some rationalizations of the userfaultfd selftests. - Yosry Ahmed has fixed an issue around memcg's page recalim accounting. - Chaitanya Prakash has fixed some arm-related issues in the selftests/mm code. - Longlong Xia has improved the way in which KSM handles hwpoisoned pages. - Peter Xu fixes a few issues with uffd-wp at fork() time. - Stefan Roesch has changed KSM so that it may now be used on a per-process and per-cgroup basis. * tag 'mm-stable-2023-04-27-15-30' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (369 commits) mm,unmap: avoid flushing TLB in batch if PTE is inaccessible shmem: restrict noswap option to initial user namespace mm/khugepaged: fix conflicting mods to collapse_file() sparse: remove unnecessary 0 values from rc mm: move 'mmap_min_addr' logic from callers into vm_unmapped_area() hugetlb: pte_alloc_huge() to replace huge pte_alloc_map() maple_tree: fix allocation in mas_sparse_area() mm: do not increment pgfault stats when page fault handler retries zsmalloc: allow only one active pool compaction context selftests/mm: add new selftests for KSM mm: add new KSM process and sysfs knobs mm: add new api to enable ksm per process mm: shrinkers: fix debugfs file permissions mm: don't check VMA write permissions if the PTE/PMD indicates write permissions migrate_pages_batch: fix statistics for longterm pin retry userfaultfd: use helper function range_in_vma() lib/show_mem.c: use for_each_populated_zone() simplify code mm: correct arg in reclaim_pages()/reclaim_clean_pages_from_list() fs/buffer: convert create_page_buffers to folio_create_buffers fs/buffer: add folio_create_empty_buffers helper ...
442 lines
10 KiB
C
442 lines
10 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* DMABUF System heap exporter
|
|
*
|
|
* Copyright (C) 2011 Google, Inc.
|
|
* Copyright (C) 2019, 2020 Linaro Ltd.
|
|
*
|
|
* Portions based off of Andrew Davis' SRAM heap:
|
|
* Copyright (C) 2019 Texas Instruments Incorporated - http://www.ti.com/
|
|
* Andrew F. Davis <afd@ti.com>
|
|
*/
|
|
|
|
#include <linux/dma-buf.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/dma-heap.h>
|
|
#include <linux/dma-resv.h>
|
|
#include <linux/err.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/module.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/vmalloc.h>
|
|
|
|
static struct dma_heap *sys_heap;
|
|
|
|
struct system_heap_buffer {
|
|
struct dma_heap *heap;
|
|
struct list_head attachments;
|
|
struct mutex lock;
|
|
unsigned long len;
|
|
struct sg_table sg_table;
|
|
int vmap_cnt;
|
|
void *vaddr;
|
|
};
|
|
|
|
struct dma_heap_attachment {
|
|
struct device *dev;
|
|
struct sg_table *table;
|
|
struct list_head list;
|
|
bool mapped;
|
|
};
|
|
|
|
#define LOW_ORDER_GFP (GFP_HIGHUSER | __GFP_ZERO)
|
|
#define HIGH_ORDER_GFP (((GFP_HIGHUSER | __GFP_ZERO | __GFP_NOWARN \
|
|
| __GFP_NORETRY) & ~__GFP_RECLAIM) \
|
|
| __GFP_COMP)
|
|
static gfp_t order_flags[] = {HIGH_ORDER_GFP, HIGH_ORDER_GFP, LOW_ORDER_GFP};
|
|
/*
|
|
* The selection of the orders used for allocation (1MB, 64K, 4K) is designed
|
|
* to match with the sizes often found in IOMMUs. Using order 4 pages instead
|
|
* of order 0 pages can significantly improve the performance of many IOMMUs
|
|
* by reducing TLB pressure and time spent updating page tables.
|
|
*/
|
|
static const unsigned int orders[] = {8, 4, 0};
|
|
#define NUM_ORDERS ARRAY_SIZE(orders)
|
|
|
|
static struct sg_table *dup_sg_table(struct sg_table *table)
|
|
{
|
|
struct sg_table *new_table;
|
|
int ret, i;
|
|
struct scatterlist *sg, *new_sg;
|
|
|
|
new_table = kzalloc(sizeof(*new_table), GFP_KERNEL);
|
|
if (!new_table)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
ret = sg_alloc_table(new_table, table->orig_nents, GFP_KERNEL);
|
|
if (ret) {
|
|
kfree(new_table);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
new_sg = new_table->sgl;
|
|
for_each_sgtable_sg(table, sg, i) {
|
|
sg_set_page(new_sg, sg_page(sg), sg->length, sg->offset);
|
|
new_sg = sg_next(new_sg);
|
|
}
|
|
|
|
return new_table;
|
|
}
|
|
|
|
static int system_heap_attach(struct dma_buf *dmabuf,
|
|
struct dma_buf_attachment *attachment)
|
|
{
|
|
struct system_heap_buffer *buffer = dmabuf->priv;
|
|
struct dma_heap_attachment *a;
|
|
struct sg_table *table;
|
|
|
|
a = kzalloc(sizeof(*a), GFP_KERNEL);
|
|
if (!a)
|
|
return -ENOMEM;
|
|
|
|
table = dup_sg_table(&buffer->sg_table);
|
|
if (IS_ERR(table)) {
|
|
kfree(a);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
a->table = table;
|
|
a->dev = attachment->dev;
|
|
INIT_LIST_HEAD(&a->list);
|
|
a->mapped = false;
|
|
|
|
attachment->priv = a;
|
|
|
|
mutex_lock(&buffer->lock);
|
|
list_add(&a->list, &buffer->attachments);
|
|
mutex_unlock(&buffer->lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void system_heap_detach(struct dma_buf *dmabuf,
|
|
struct dma_buf_attachment *attachment)
|
|
{
|
|
struct system_heap_buffer *buffer = dmabuf->priv;
|
|
struct dma_heap_attachment *a = attachment->priv;
|
|
|
|
mutex_lock(&buffer->lock);
|
|
list_del(&a->list);
|
|
mutex_unlock(&buffer->lock);
|
|
|
|
sg_free_table(a->table);
|
|
kfree(a->table);
|
|
kfree(a);
|
|
}
|
|
|
|
static struct sg_table *system_heap_map_dma_buf(struct dma_buf_attachment *attachment,
|
|
enum dma_data_direction direction)
|
|
{
|
|
struct dma_heap_attachment *a = attachment->priv;
|
|
struct sg_table *table = a->table;
|
|
int ret;
|
|
|
|
ret = dma_map_sgtable(attachment->dev, table, direction, 0);
|
|
if (ret)
|
|
return ERR_PTR(ret);
|
|
|
|
a->mapped = true;
|
|
return table;
|
|
}
|
|
|
|
static void system_heap_unmap_dma_buf(struct dma_buf_attachment *attachment,
|
|
struct sg_table *table,
|
|
enum dma_data_direction direction)
|
|
{
|
|
struct dma_heap_attachment *a = attachment->priv;
|
|
|
|
a->mapped = false;
|
|
dma_unmap_sgtable(attachment->dev, table, direction, 0);
|
|
}
|
|
|
|
static int system_heap_dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
|
|
enum dma_data_direction direction)
|
|
{
|
|
struct system_heap_buffer *buffer = dmabuf->priv;
|
|
struct dma_heap_attachment *a;
|
|
|
|
mutex_lock(&buffer->lock);
|
|
|
|
if (buffer->vmap_cnt)
|
|
invalidate_kernel_vmap_range(buffer->vaddr, buffer->len);
|
|
|
|
list_for_each_entry(a, &buffer->attachments, list) {
|
|
if (!a->mapped)
|
|
continue;
|
|
dma_sync_sgtable_for_cpu(a->dev, a->table, direction);
|
|
}
|
|
mutex_unlock(&buffer->lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int system_heap_dma_buf_end_cpu_access(struct dma_buf *dmabuf,
|
|
enum dma_data_direction direction)
|
|
{
|
|
struct system_heap_buffer *buffer = dmabuf->priv;
|
|
struct dma_heap_attachment *a;
|
|
|
|
mutex_lock(&buffer->lock);
|
|
|
|
if (buffer->vmap_cnt)
|
|
flush_kernel_vmap_range(buffer->vaddr, buffer->len);
|
|
|
|
list_for_each_entry(a, &buffer->attachments, list) {
|
|
if (!a->mapped)
|
|
continue;
|
|
dma_sync_sgtable_for_device(a->dev, a->table, direction);
|
|
}
|
|
mutex_unlock(&buffer->lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int system_heap_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma)
|
|
{
|
|
struct system_heap_buffer *buffer = dmabuf->priv;
|
|
struct sg_table *table = &buffer->sg_table;
|
|
unsigned long addr = vma->vm_start;
|
|
struct sg_page_iter piter;
|
|
int ret;
|
|
|
|
dma_resv_assert_held(dmabuf->resv);
|
|
|
|
for_each_sgtable_page(table, &piter, vma->vm_pgoff) {
|
|
struct page *page = sg_page_iter_page(&piter);
|
|
|
|
ret = remap_pfn_range(vma, addr, page_to_pfn(page), PAGE_SIZE,
|
|
vma->vm_page_prot);
|
|
if (ret)
|
|
return ret;
|
|
addr += PAGE_SIZE;
|
|
if (addr >= vma->vm_end)
|
|
return 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void *system_heap_do_vmap(struct system_heap_buffer *buffer)
|
|
{
|
|
struct sg_table *table = &buffer->sg_table;
|
|
int npages = PAGE_ALIGN(buffer->len) / PAGE_SIZE;
|
|
struct page **pages = vmalloc(sizeof(struct page *) * npages);
|
|
struct page **tmp = pages;
|
|
struct sg_page_iter piter;
|
|
void *vaddr;
|
|
|
|
if (!pages)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
for_each_sgtable_page(table, &piter, 0) {
|
|
WARN_ON(tmp - pages >= npages);
|
|
*tmp++ = sg_page_iter_page(&piter);
|
|
}
|
|
|
|
vaddr = vmap(pages, npages, VM_MAP, PAGE_KERNEL);
|
|
vfree(pages);
|
|
|
|
if (!vaddr)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
return vaddr;
|
|
}
|
|
|
|
static int system_heap_vmap(struct dma_buf *dmabuf, struct iosys_map *map)
|
|
{
|
|
struct system_heap_buffer *buffer = dmabuf->priv;
|
|
void *vaddr;
|
|
int ret = 0;
|
|
|
|
mutex_lock(&buffer->lock);
|
|
if (buffer->vmap_cnt) {
|
|
buffer->vmap_cnt++;
|
|
iosys_map_set_vaddr(map, buffer->vaddr);
|
|
goto out;
|
|
}
|
|
|
|
vaddr = system_heap_do_vmap(buffer);
|
|
if (IS_ERR(vaddr)) {
|
|
ret = PTR_ERR(vaddr);
|
|
goto out;
|
|
}
|
|
|
|
buffer->vaddr = vaddr;
|
|
buffer->vmap_cnt++;
|
|
iosys_map_set_vaddr(map, buffer->vaddr);
|
|
out:
|
|
mutex_unlock(&buffer->lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void system_heap_vunmap(struct dma_buf *dmabuf, struct iosys_map *map)
|
|
{
|
|
struct system_heap_buffer *buffer = dmabuf->priv;
|
|
|
|
mutex_lock(&buffer->lock);
|
|
if (!--buffer->vmap_cnt) {
|
|
vunmap(buffer->vaddr);
|
|
buffer->vaddr = NULL;
|
|
}
|
|
mutex_unlock(&buffer->lock);
|
|
iosys_map_clear(map);
|
|
}
|
|
|
|
static void system_heap_dma_buf_release(struct dma_buf *dmabuf)
|
|
{
|
|
struct system_heap_buffer *buffer = dmabuf->priv;
|
|
struct sg_table *table;
|
|
struct scatterlist *sg;
|
|
int i;
|
|
|
|
table = &buffer->sg_table;
|
|
for_each_sgtable_sg(table, sg, i) {
|
|
struct page *page = sg_page(sg);
|
|
|
|
__free_pages(page, compound_order(page));
|
|
}
|
|
sg_free_table(table);
|
|
kfree(buffer);
|
|
}
|
|
|
|
static const struct dma_buf_ops system_heap_buf_ops = {
|
|
.attach = system_heap_attach,
|
|
.detach = system_heap_detach,
|
|
.map_dma_buf = system_heap_map_dma_buf,
|
|
.unmap_dma_buf = system_heap_unmap_dma_buf,
|
|
.begin_cpu_access = system_heap_dma_buf_begin_cpu_access,
|
|
.end_cpu_access = system_heap_dma_buf_end_cpu_access,
|
|
.mmap = system_heap_mmap,
|
|
.vmap = system_heap_vmap,
|
|
.vunmap = system_heap_vunmap,
|
|
.release = system_heap_dma_buf_release,
|
|
};
|
|
|
|
static struct page *alloc_largest_available(unsigned long size,
|
|
unsigned int max_order)
|
|
{
|
|
struct page *page;
|
|
int i;
|
|
|
|
for (i = 0; i < NUM_ORDERS; i++) {
|
|
if (size < (PAGE_SIZE << orders[i]))
|
|
continue;
|
|
if (max_order < orders[i])
|
|
continue;
|
|
|
|
page = alloc_pages(order_flags[i], orders[i]);
|
|
if (!page)
|
|
continue;
|
|
return page;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static struct dma_buf *system_heap_allocate(struct dma_heap *heap,
|
|
unsigned long len,
|
|
unsigned long fd_flags,
|
|
unsigned long heap_flags)
|
|
{
|
|
struct system_heap_buffer *buffer;
|
|
DEFINE_DMA_BUF_EXPORT_INFO(exp_info);
|
|
unsigned long size_remaining = len;
|
|
unsigned int max_order = orders[0];
|
|
struct dma_buf *dmabuf;
|
|
struct sg_table *table;
|
|
struct scatterlist *sg;
|
|
struct list_head pages;
|
|
struct page *page, *tmp_page;
|
|
int i, ret = -ENOMEM;
|
|
|
|
buffer = kzalloc(sizeof(*buffer), GFP_KERNEL);
|
|
if (!buffer)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
INIT_LIST_HEAD(&buffer->attachments);
|
|
mutex_init(&buffer->lock);
|
|
buffer->heap = heap;
|
|
buffer->len = len;
|
|
|
|
INIT_LIST_HEAD(&pages);
|
|
i = 0;
|
|
while (size_remaining > 0) {
|
|
/*
|
|
* Avoid trying to allocate memory if the process
|
|
* has been killed by SIGKILL
|
|
*/
|
|
if (fatal_signal_pending(current)) {
|
|
ret = -EINTR;
|
|
goto free_buffer;
|
|
}
|
|
|
|
page = alloc_largest_available(size_remaining, max_order);
|
|
if (!page)
|
|
goto free_buffer;
|
|
|
|
list_add_tail(&page->lru, &pages);
|
|
size_remaining -= page_size(page);
|
|
max_order = compound_order(page);
|
|
i++;
|
|
}
|
|
|
|
table = &buffer->sg_table;
|
|
if (sg_alloc_table(table, i, GFP_KERNEL))
|
|
goto free_buffer;
|
|
|
|
sg = table->sgl;
|
|
list_for_each_entry_safe(page, tmp_page, &pages, lru) {
|
|
sg_set_page(sg, page, page_size(page), 0);
|
|
sg = sg_next(sg);
|
|
list_del(&page->lru);
|
|
}
|
|
|
|
/* create the dmabuf */
|
|
exp_info.exp_name = dma_heap_get_name(heap);
|
|
exp_info.ops = &system_heap_buf_ops;
|
|
exp_info.size = buffer->len;
|
|
exp_info.flags = fd_flags;
|
|
exp_info.priv = buffer;
|
|
dmabuf = dma_buf_export(&exp_info);
|
|
if (IS_ERR(dmabuf)) {
|
|
ret = PTR_ERR(dmabuf);
|
|
goto free_pages;
|
|
}
|
|
return dmabuf;
|
|
|
|
free_pages:
|
|
for_each_sgtable_sg(table, sg, i) {
|
|
struct page *p = sg_page(sg);
|
|
|
|
__free_pages(p, compound_order(p));
|
|
}
|
|
sg_free_table(table);
|
|
free_buffer:
|
|
list_for_each_entry_safe(page, tmp_page, &pages, lru)
|
|
__free_pages(page, compound_order(page));
|
|
kfree(buffer);
|
|
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
static const struct dma_heap_ops system_heap_ops = {
|
|
.allocate = system_heap_allocate,
|
|
};
|
|
|
|
static int system_heap_create(void)
|
|
{
|
|
struct dma_heap_export_info exp_info;
|
|
|
|
exp_info.name = "system";
|
|
exp_info.ops = &system_heap_ops;
|
|
exp_info.priv = NULL;
|
|
|
|
sys_heap = dma_heap_add(&exp_info);
|
|
if (IS_ERR(sys_heap))
|
|
return PTR_ERR(sys_heap);
|
|
|
|
return 0;
|
|
}
|
|
module_init(system_heap_create);
|