Christoph Hellwig 7fd8930f26 nvme: add a common helper to read Identify Controller data
And add the 64-bit register read operation for it.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2015-12-01 10:59:39 -07:00

843 lines
21 KiB
C

/*
* NVM Express device driver
* Copyright (c) 2011-2014, Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*/
#include <linux/blkdev.h>
#include <linux/blk-mq.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/hdreg.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/pr.h>
#include <linux/ptrace.h>
#include <linux/nvme_ioctl.h>
#include <linux/t10-pi.h>
#include <scsi/sg.h>
#include <asm/unaligned.h>
#include "nvme.h"
DEFINE_SPINLOCK(dev_list_lock);
static void nvme_free_ns(struct kref *kref)
{
struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
if (ns->type == NVME_NS_LIGHTNVM)
nvme_nvm_unregister(ns->queue, ns->disk->disk_name);
spin_lock(&dev_list_lock);
ns->disk->private_data = NULL;
spin_unlock(&dev_list_lock);
nvme_put_ctrl(ns->ctrl);
put_disk(ns->disk);
kfree(ns);
}
void nvme_put_ns(struct nvme_ns *ns)
{
kref_put(&ns->kref, nvme_free_ns);
}
static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk)
{
struct nvme_ns *ns;
spin_lock(&dev_list_lock);
ns = disk->private_data;
if (ns && !kref_get_unless_zero(&ns->kref))
ns = NULL;
spin_unlock(&dev_list_lock);
return ns;
}
struct request *nvme_alloc_request(struct request_queue *q,
struct nvme_command *cmd, unsigned int flags)
{
bool write = cmd->common.opcode & 1;
struct request *req;
req = blk_mq_alloc_request(q, write, flags);
if (IS_ERR(req))
return req;
req->cmd_type = REQ_TYPE_DRV_PRIV;
req->cmd_flags |= REQ_FAILFAST_DRIVER;
req->__data_len = 0;
req->__sector = (sector_t) -1;
req->bio = req->biotail = NULL;
req->cmd = (unsigned char *)cmd;
req->cmd_len = sizeof(struct nvme_command);
req->special = (void *)0;
return req;
}
/*
* Returns 0 on success. If the result is negative, it's a Linux error code;
* if the result is positive, it's an NVM Express status code
*/
int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
void *buffer, unsigned bufflen, u32 *result, unsigned timeout)
{
struct request *req;
int ret;
req = nvme_alloc_request(q, cmd, 0);
if (IS_ERR(req))
return PTR_ERR(req);
req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
if (buffer && bufflen) {
ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
if (ret)
goto out;
}
blk_execute_rq(req->q, NULL, req, 0);
if (result)
*result = (u32)(uintptr_t)req->special;
ret = req->errors;
out:
blk_mq_free_request(req);
return ret;
}
int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
void *buffer, unsigned bufflen)
{
return __nvme_submit_sync_cmd(q, cmd, buffer, bufflen, NULL, 0);
}
int __nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
void __user *ubuffer, unsigned bufflen,
void __user *meta_buffer, unsigned meta_len, u32 meta_seed,
u32 *result, unsigned timeout)
{
bool write = cmd->common.opcode & 1;
struct nvme_ns *ns = q->queuedata;
struct gendisk *disk = ns ? ns->disk : NULL;
struct request *req;
struct bio *bio = NULL;
void *meta = NULL;
int ret;
req = nvme_alloc_request(q, cmd, 0);
if (IS_ERR(req))
return PTR_ERR(req);
req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
if (ubuffer && bufflen) {
ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
GFP_KERNEL);
if (ret)
goto out;
bio = req->bio;
if (!disk)
goto submit;
bio->bi_bdev = bdget_disk(disk, 0);
if (!bio->bi_bdev) {
ret = -ENODEV;
goto out_unmap;
}
if (meta_buffer) {
struct bio_integrity_payload *bip;
meta = kmalloc(meta_len, GFP_KERNEL);
if (!meta) {
ret = -ENOMEM;
goto out_unmap;
}
if (write) {
if (copy_from_user(meta, meta_buffer,
meta_len)) {
ret = -EFAULT;
goto out_free_meta;
}
}
bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
if (!bip) {
ret = -ENOMEM;
goto out_free_meta;
}
bip->bip_iter.bi_size = meta_len;
bip->bip_iter.bi_sector = meta_seed;
ret = bio_integrity_add_page(bio, virt_to_page(meta),
meta_len, offset_in_page(meta));
if (ret != meta_len) {
ret = -ENOMEM;
goto out_free_meta;
}
}
}
submit:
blk_execute_rq(req->q, disk, req, 0);
ret = req->errors;
if (result)
*result = (u32)(uintptr_t)req->special;
if (meta && !ret && !write) {
if (copy_to_user(meta_buffer, meta, meta_len))
ret = -EFAULT;
}
out_free_meta:
kfree(meta);
out_unmap:
if (bio) {
if (disk && bio->bi_bdev)
bdput(bio->bi_bdev);
blk_rq_unmap_user(bio);
}
out:
blk_mq_free_request(req);
return ret;
}
int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
void __user *ubuffer, unsigned bufflen, u32 *result,
unsigned timeout)
{
return __nvme_submit_user_cmd(q, cmd, ubuffer, bufflen, NULL, 0, 0,
result, timeout);
}
int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
{
struct nvme_command c = { };
int error;
/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
c.identify.opcode = nvme_admin_identify;
c.identify.cns = cpu_to_le32(1);
*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
if (!*id)
return -ENOMEM;
error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
sizeof(struct nvme_id_ctrl));
if (error)
kfree(*id);
return error;
}
int nvme_identify_ns(struct nvme_ctrl *dev, unsigned nsid,
struct nvme_id_ns **id)
{
struct nvme_command c = { };
int error;
/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
c.identify.opcode = nvme_admin_identify,
c.identify.nsid = cpu_to_le32(nsid),
*id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
if (!*id)
return -ENOMEM;
error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
sizeof(struct nvme_id_ns));
if (error)
kfree(*id);
return error;
}
int nvme_get_features(struct nvme_ctrl *dev, unsigned fid, unsigned nsid,
dma_addr_t dma_addr, u32 *result)
{
struct nvme_command c;
memset(&c, 0, sizeof(c));
c.features.opcode = nvme_admin_get_features;
c.features.nsid = cpu_to_le32(nsid);
c.features.prp1 = cpu_to_le64(dma_addr);
c.features.fid = cpu_to_le32(fid);
return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0, result, 0);
}
int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
dma_addr_t dma_addr, u32 *result)
{
struct nvme_command c;
memset(&c, 0, sizeof(c));
c.features.opcode = nvme_admin_set_features;
c.features.prp1 = cpu_to_le64(dma_addr);
c.features.fid = cpu_to_le32(fid);
c.features.dword11 = cpu_to_le32(dword11);
return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0, result, 0);
}
int nvme_get_log_page(struct nvme_ctrl *dev, struct nvme_smart_log **log)
{
struct nvme_command c = { };
int error;
c.common.opcode = nvme_admin_get_log_page,
c.common.nsid = cpu_to_le32(0xFFFFFFFF),
c.common.cdw10[0] = cpu_to_le32(
(((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
NVME_LOG_SMART),
*log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
if (!*log)
return -ENOMEM;
error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
sizeof(struct nvme_smart_log));
if (error)
kfree(*log);
return error;
}
static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
{
struct nvme_user_io io;
struct nvme_command c;
unsigned length, meta_len;
void __user *metadata;
if (copy_from_user(&io, uio, sizeof(io)))
return -EFAULT;
switch (io.opcode) {
case nvme_cmd_write:
case nvme_cmd_read:
case nvme_cmd_compare:
break;
default:
return -EINVAL;
}
length = (io.nblocks + 1) << ns->lba_shift;
meta_len = (io.nblocks + 1) * ns->ms;
metadata = (void __user *)(uintptr_t)io.metadata;
if (ns->ext) {
length += meta_len;
meta_len = 0;
} else if (meta_len) {
if ((io.metadata & 3) || !io.metadata)
return -EINVAL;
}
memset(&c, 0, sizeof(c));
c.rw.opcode = io.opcode;
c.rw.flags = io.flags;
c.rw.nsid = cpu_to_le32(ns->ns_id);
c.rw.slba = cpu_to_le64(io.slba);
c.rw.length = cpu_to_le16(io.nblocks);
c.rw.control = cpu_to_le16(io.control);
c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
c.rw.reftag = cpu_to_le32(io.reftag);
c.rw.apptag = cpu_to_le16(io.apptag);
c.rw.appmask = cpu_to_le16(io.appmask);
return __nvme_submit_user_cmd(ns->queue, &c,
(void __user *)(uintptr_t)io.addr, length,
metadata, meta_len, io.slba, NULL, 0);
}
int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
struct nvme_passthru_cmd __user *ucmd)
{
struct nvme_passthru_cmd cmd;
struct nvme_command c;
unsigned timeout = 0;
int status;
if (!capable(CAP_SYS_ADMIN))
return -EACCES;
if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
return -EFAULT;
memset(&c, 0, sizeof(c));
c.common.opcode = cmd.opcode;
c.common.flags = cmd.flags;
c.common.nsid = cpu_to_le32(cmd.nsid);
c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
if (cmd.timeout_ms)
timeout = msecs_to_jiffies(cmd.timeout_ms);
status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
(void __user *)cmd.addr, cmd.data_len,
&cmd.result, timeout);
if (status >= 0) {
if (put_user(cmd.result, &ucmd->result))
return -EFAULT;
}
return status;
}
static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
unsigned int cmd, unsigned long arg)
{
struct nvme_ns *ns = bdev->bd_disk->private_data;
switch (cmd) {
case NVME_IOCTL_ID:
force_successful_syscall_return();
return ns->ns_id;
case NVME_IOCTL_ADMIN_CMD:
return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
case NVME_IOCTL_IO_CMD:
return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
case NVME_IOCTL_SUBMIT_IO:
return nvme_submit_io(ns, (void __user *)arg);
case SG_GET_VERSION_NUM:
return nvme_sg_get_version_num((void __user *)arg);
case SG_IO:
return nvme_sg_io(ns, (void __user *)arg);
default:
return -ENOTTY;
}
}
#ifdef CONFIG_COMPAT
static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
unsigned int cmd, unsigned long arg)
{
switch (cmd) {
case SG_IO:
return -ENOIOCTLCMD;
}
return nvme_ioctl(bdev, mode, cmd, arg);
}
#else
#define nvme_compat_ioctl NULL
#endif
static int nvme_open(struct block_device *bdev, fmode_t mode)
{
return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO;
}
static void nvme_release(struct gendisk *disk, fmode_t mode)
{
nvme_put_ns(disk->private_data);
}
static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
{
/* some standard values */
geo->heads = 1 << 6;
geo->sectors = 1 << 5;
geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
return 0;
}
#ifdef CONFIG_BLK_DEV_INTEGRITY
static void nvme_init_integrity(struct nvme_ns *ns)
{
struct blk_integrity integrity;
switch (ns->pi_type) {
case NVME_NS_DPS_PI_TYPE3:
integrity.profile = &t10_pi_type3_crc;
break;
case NVME_NS_DPS_PI_TYPE1:
case NVME_NS_DPS_PI_TYPE2:
integrity.profile = &t10_pi_type1_crc;
break;
default:
integrity.profile = NULL;
break;
}
integrity.tuple_size = ns->ms;
blk_integrity_register(ns->disk, &integrity);
blk_queue_max_integrity_segments(ns->queue, 1);
}
#else
static void nvme_init_integrity(struct nvme_ns *ns)
{
}
#endif /* CONFIG_BLK_DEV_INTEGRITY */
static void nvme_config_discard(struct nvme_ns *ns)
{
u32 logical_block_size = queue_logical_block_size(ns->queue);
ns->queue->limits.discard_zeroes_data = 0;
ns->queue->limits.discard_alignment = logical_block_size;
ns->queue->limits.discard_granularity = logical_block_size;
blk_queue_max_discard_sectors(ns->queue, 0xffffffff);
queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
}
int nvme_revalidate_disk(struct gendisk *disk)
{
struct nvme_ns *ns = disk->private_data;
struct nvme_id_ns *id;
u8 lbaf, pi_type;
u16 old_ms;
unsigned short bs;
if (nvme_identify_ns(ns->ctrl, ns->ns_id, &id)) {
dev_warn(ns->ctrl->dev, "%s: Identify failure nvme%dn%d\n",
__func__, ns->ctrl->instance, ns->ns_id);
return -ENODEV;
}
if (id->ncap == 0) {
kfree(id);
return -ENODEV;
}
if (nvme_nvm_ns_supported(ns, id) && ns->type != NVME_NS_LIGHTNVM) {
if (nvme_nvm_register(ns->queue, disk->disk_name)) {
dev_warn(ns->ctrl->dev,
"%s: LightNVM init failure\n", __func__);
kfree(id);
return -ENODEV;
}
ns->type = NVME_NS_LIGHTNVM;
}
old_ms = ns->ms;
lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
ns->lba_shift = id->lbaf[lbaf].ds;
ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
/*
* If identify namespace failed, use default 512 byte block size so
* block layer can use before failing read/write for 0 capacity.
*/
if (ns->lba_shift == 0)
ns->lba_shift = 9;
bs = 1 << ns->lba_shift;
/* XXX: PI implementation requires metadata equal t10 pi tuple size */
pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
id->dps & NVME_NS_DPS_PI_MASK : 0;
blk_mq_freeze_queue(disk->queue);
if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
ns->ms != old_ms ||
bs != queue_logical_block_size(disk->queue) ||
(ns->ms && ns->ext)))
blk_integrity_unregister(disk);
ns->pi_type = pi_type;
blk_queue_logical_block_size(ns->queue, bs);
if (ns->ms && !ns->ext)
nvme_init_integrity(ns);
if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
set_capacity(disk, 0);
else
set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)
nvme_config_discard(ns);
blk_mq_unfreeze_queue(disk->queue);
kfree(id);
return 0;
}
static char nvme_pr_type(enum pr_type type)
{
switch (type) {
case PR_WRITE_EXCLUSIVE:
return 1;
case PR_EXCLUSIVE_ACCESS:
return 2;
case PR_WRITE_EXCLUSIVE_REG_ONLY:
return 3;
case PR_EXCLUSIVE_ACCESS_REG_ONLY:
return 4;
case PR_WRITE_EXCLUSIVE_ALL_REGS:
return 5;
case PR_EXCLUSIVE_ACCESS_ALL_REGS:
return 6;
default:
return 0;
}
};
static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
u64 key, u64 sa_key, u8 op)
{
struct nvme_ns *ns = bdev->bd_disk->private_data;
struct nvme_command c;
u8 data[16] = { 0, };
put_unaligned_le64(key, &data[0]);
put_unaligned_le64(sa_key, &data[8]);
memset(&c, 0, sizeof(c));
c.common.opcode = op;
c.common.nsid = cpu_to_le32(ns->ns_id);
c.common.cdw10[0] = cpu_to_le32(cdw10);
return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
}
static int nvme_pr_register(struct block_device *bdev, u64 old,
u64 new, unsigned flags)
{
u32 cdw10;
if (flags & ~PR_FL_IGNORE_KEY)
return -EOPNOTSUPP;
cdw10 = old ? 2 : 0;
cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
}
static int nvme_pr_reserve(struct block_device *bdev, u64 key,
enum pr_type type, unsigned flags)
{
u32 cdw10;
if (flags & ~PR_FL_IGNORE_KEY)
return -EOPNOTSUPP;
cdw10 = nvme_pr_type(type) << 8;
cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
}
static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
enum pr_type type, bool abort)
{
u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
}
static int nvme_pr_clear(struct block_device *bdev, u64 key)
{
u32 cdw10 = 1 | key ? 1 << 3 : 0;
return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
}
static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
{
u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
}
static const struct pr_ops nvme_pr_ops = {
.pr_register = nvme_pr_register,
.pr_reserve = nvme_pr_reserve,
.pr_release = nvme_pr_release,
.pr_preempt = nvme_pr_preempt,
.pr_clear = nvme_pr_clear,
};
const struct block_device_operations nvme_fops = {
.owner = THIS_MODULE,
.ioctl = nvme_ioctl,
.compat_ioctl = nvme_compat_ioctl,
.open = nvme_open,
.release = nvme_release,
.getgeo = nvme_getgeo,
.revalidate_disk= nvme_revalidate_disk,
.pr_ops = &nvme_pr_ops,
};
static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
{
unsigned long timeout =
((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
int ret;
while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
if ((csts & NVME_CSTS_RDY) == bit)
break;
msleep(100);
if (fatal_signal_pending(current))
return -EINTR;
if (time_after(jiffies, timeout)) {
dev_err(ctrl->dev,
"Device not ready; aborting %s\n", enabled ?
"initialisation" : "reset");
return -ENODEV;
}
}
return ret;
}
/*
* If the device has been passed off to us in an enabled state, just clear
* the enabled bit. The spec says we should set the 'shutdown notification
* bits', but doing so may cause the device to complete commands to the
* admin queue ... and we don't know what memory that might be pointing at!
*/
int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
{
int ret;
ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
ctrl->ctrl_config &= ~NVME_CC_ENABLE;
ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
if (ret)
return ret;
return nvme_wait_ready(ctrl, cap, false);
}
int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
{
/*
* Default to a 4K page size, with the intention to update this
* path in the future to accomodate architectures with differing
* kernel and IO page sizes.
*/
unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
int ret;
if (page_shift < dev_page_min) {
dev_err(ctrl->dev,
"Minimum device page size %u too large for host (%u)\n",
1 << dev_page_min, 1 << page_shift);
return -ENODEV;
}
ctrl->page_size = 1 << page_shift;
ctrl->ctrl_config = NVME_CC_CSS_NVM;
ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
ctrl->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
ctrl->ctrl_config |= NVME_CC_ENABLE;
ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
if (ret)
return ret;
return nvme_wait_ready(ctrl, cap, true);
}
int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
{
unsigned long timeout = SHUTDOWN_TIMEOUT + jiffies;
u32 csts;
int ret;
ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
if (ret)
return ret;
while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
break;
msleep(100);
if (fatal_signal_pending(current))
return -EINTR;
if (time_after(jiffies, timeout)) {
dev_err(ctrl->dev,
"Device shutdown incomplete; abort shutdown\n");
return -ENODEV;
}
}
return ret;
}
/*
* Initialize the cached copies of the Identify data and various controller
* register in our nvme_ctrl structure. This should be called as soon as
* the admin queue is fully up and running.
*/
int nvme_init_identify(struct nvme_ctrl *ctrl)
{
struct nvme_id_ctrl *id;
u64 cap;
int ret, page_shift;
ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
if (ret) {
dev_err(ctrl->dev, "Reading CAP failed (%d)\n", ret);
return ret;
}
page_shift = NVME_CAP_MPSMIN(cap) + 12;
ret = nvme_identify_ctrl(ctrl, &id);
if (ret) {
dev_err(ctrl->dev, "Identify Controller failed (%d)\n", ret);
return -EIO;
}
ctrl->oncs = le16_to_cpup(&id->oncs);
ctrl->abort_limit = id->acl + 1;
ctrl->vwc = id->vwc;
memcpy(ctrl->serial, id->sn, sizeof(id->sn));
memcpy(ctrl->model, id->mn, sizeof(id->mn));
memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr));
if (id->mdts)
ctrl->max_hw_sectors = 1 << (id->mdts + page_shift - 9);
else
ctrl->max_hw_sectors = UINT_MAX;
if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && id->vs[3]) {
unsigned int max_hw_sectors;
ctrl->stripe_size = 1 << (id->vs[3] + page_shift);
max_hw_sectors = ctrl->stripe_size >> (page_shift - 9);
if (ctrl->max_hw_sectors) {
ctrl->max_hw_sectors = min(max_hw_sectors,
ctrl->max_hw_sectors);
} else {
ctrl->max_hw_sectors = max_hw_sectors;
}
}
kfree(id);
return 0;
}
static void nvme_free_ctrl(struct kref *kref)
{
struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref);
ctrl->ops->free_ctrl(ctrl);
}
void nvme_put_ctrl(struct nvme_ctrl *ctrl)
{
kref_put(&ctrl->kref, nvme_free_ctrl);
}