87bbaf1a4b
Intel Advanced Performance Extensions (APX) extends the EVEX prefix to support: - extended general purpose registers (EGPRs) i.e. r16 to r31 - Push-Pop Acceleration (PPX) hints - new data destination (NDD) register - suppress status flags writes (NF) of common instructions - new instructions Refer to the Intel Advanced Performance Extensions (Intel APX) Architecture Specification for details. The extended EVEX prefix does not need amended instruction decoder logic, except in one area. Some instructions are defined as SCALABLE which means the EVEX.W bit and EVEX.pp bits are used to determine operand size. Specifically, if an instruction is SCALABLE and EVEX.W is zero, then EVEX.pp value 0 (representing no prefix NP) means default operand size, whereas EVEX.pp value 1 (representing 66 prefix) means operand size override i.e. 16 bits Add an attribute (INAT_EVEX_SCALABLE) to identify such instructions, and amend the logic appropriately. Amend the awk script that generates the attribute tables from the opcode map, to recognise "(es)" as attribute INAT_EVEX_SCALABLE. Signed-off-by: Adrian Hunter <adrian.hunter@intel.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20240502105853.5338-8-adrian.hunter@intel.com
771 lines
18 KiB
C
771 lines
18 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* x86 instruction analysis
|
|
*
|
|
* Copyright (C) IBM Corporation, 2002, 2004, 2009
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#ifdef __KERNEL__
|
|
#include <linux/string.h>
|
|
#else
|
|
#include <string.h>
|
|
#endif
|
|
#include <asm/inat.h> /*__ignore_sync_check__ */
|
|
#include <asm/insn.h> /* __ignore_sync_check__ */
|
|
#include <asm/unaligned.h> /* __ignore_sync_check__ */
|
|
|
|
#include <linux/errno.h>
|
|
#include <linux/kconfig.h>
|
|
|
|
#include <asm/emulate_prefix.h> /* __ignore_sync_check__ */
|
|
|
|
#define leXX_to_cpu(t, r) \
|
|
({ \
|
|
__typeof__(t) v; \
|
|
switch (sizeof(t)) { \
|
|
case 4: v = le32_to_cpu(r); break; \
|
|
case 2: v = le16_to_cpu(r); break; \
|
|
case 1: v = r; break; \
|
|
default: \
|
|
BUILD_BUG(); break; \
|
|
} \
|
|
v; \
|
|
})
|
|
|
|
/* Verify next sizeof(t) bytes can be on the same instruction */
|
|
#define validate_next(t, insn, n) \
|
|
((insn)->next_byte + sizeof(t) + n <= (insn)->end_kaddr)
|
|
|
|
#define __get_next(t, insn) \
|
|
({ t r = get_unaligned((t *)(insn)->next_byte); (insn)->next_byte += sizeof(t); leXX_to_cpu(t, r); })
|
|
|
|
#define __peek_nbyte_next(t, insn, n) \
|
|
({ t r = get_unaligned((t *)(insn)->next_byte + n); leXX_to_cpu(t, r); })
|
|
|
|
#define get_next(t, insn) \
|
|
({ if (unlikely(!validate_next(t, insn, 0))) goto err_out; __get_next(t, insn); })
|
|
|
|
#define peek_nbyte_next(t, insn, n) \
|
|
({ if (unlikely(!validate_next(t, insn, n))) goto err_out; __peek_nbyte_next(t, insn, n); })
|
|
|
|
#define peek_next(t, insn) peek_nbyte_next(t, insn, 0)
|
|
|
|
/**
|
|
* insn_init() - initialize struct insn
|
|
* @insn: &struct insn to be initialized
|
|
* @kaddr: address (in kernel memory) of instruction (or copy thereof)
|
|
* @buf_len: length of the insn buffer at @kaddr
|
|
* @x86_64: !0 for 64-bit kernel or 64-bit app
|
|
*/
|
|
void insn_init(struct insn *insn, const void *kaddr, int buf_len, int x86_64)
|
|
{
|
|
/*
|
|
* Instructions longer than MAX_INSN_SIZE (15 bytes) are invalid
|
|
* even if the input buffer is long enough to hold them.
|
|
*/
|
|
if (buf_len > MAX_INSN_SIZE)
|
|
buf_len = MAX_INSN_SIZE;
|
|
|
|
memset(insn, 0, sizeof(*insn));
|
|
insn->kaddr = kaddr;
|
|
insn->end_kaddr = kaddr + buf_len;
|
|
insn->next_byte = kaddr;
|
|
insn->x86_64 = x86_64;
|
|
insn->opnd_bytes = 4;
|
|
if (x86_64)
|
|
insn->addr_bytes = 8;
|
|
else
|
|
insn->addr_bytes = 4;
|
|
}
|
|
|
|
static const insn_byte_t xen_prefix[] = { __XEN_EMULATE_PREFIX };
|
|
static const insn_byte_t kvm_prefix[] = { __KVM_EMULATE_PREFIX };
|
|
|
|
static int __insn_get_emulate_prefix(struct insn *insn,
|
|
const insn_byte_t *prefix, size_t len)
|
|
{
|
|
size_t i;
|
|
|
|
for (i = 0; i < len; i++) {
|
|
if (peek_nbyte_next(insn_byte_t, insn, i) != prefix[i])
|
|
goto err_out;
|
|
}
|
|
|
|
insn->emulate_prefix_size = len;
|
|
insn->next_byte += len;
|
|
|
|
return 1;
|
|
|
|
err_out:
|
|
return 0;
|
|
}
|
|
|
|
static void insn_get_emulate_prefix(struct insn *insn)
|
|
{
|
|
if (__insn_get_emulate_prefix(insn, xen_prefix, sizeof(xen_prefix)))
|
|
return;
|
|
|
|
__insn_get_emulate_prefix(insn, kvm_prefix, sizeof(kvm_prefix));
|
|
}
|
|
|
|
/**
|
|
* insn_get_prefixes - scan x86 instruction prefix bytes
|
|
* @insn: &struct insn containing instruction
|
|
*
|
|
* Populates the @insn->prefixes bitmap, and updates @insn->next_byte
|
|
* to point to the (first) opcode. No effect if @insn->prefixes.got
|
|
* is already set.
|
|
*
|
|
* * Returns:
|
|
* 0: on success
|
|
* < 0: on error
|
|
*/
|
|
int insn_get_prefixes(struct insn *insn)
|
|
{
|
|
struct insn_field *prefixes = &insn->prefixes;
|
|
insn_attr_t attr;
|
|
insn_byte_t b, lb;
|
|
int i, nb;
|
|
|
|
if (prefixes->got)
|
|
return 0;
|
|
|
|
insn_get_emulate_prefix(insn);
|
|
|
|
nb = 0;
|
|
lb = 0;
|
|
b = peek_next(insn_byte_t, insn);
|
|
attr = inat_get_opcode_attribute(b);
|
|
while (inat_is_legacy_prefix(attr)) {
|
|
/* Skip if same prefix */
|
|
for (i = 0; i < nb; i++)
|
|
if (prefixes->bytes[i] == b)
|
|
goto found;
|
|
if (nb == 4)
|
|
/* Invalid instruction */
|
|
break;
|
|
prefixes->bytes[nb++] = b;
|
|
if (inat_is_address_size_prefix(attr)) {
|
|
/* address size switches 2/4 or 4/8 */
|
|
if (insn->x86_64)
|
|
insn->addr_bytes ^= 12;
|
|
else
|
|
insn->addr_bytes ^= 6;
|
|
} else if (inat_is_operand_size_prefix(attr)) {
|
|
/* oprand size switches 2/4 */
|
|
insn->opnd_bytes ^= 6;
|
|
}
|
|
found:
|
|
prefixes->nbytes++;
|
|
insn->next_byte++;
|
|
lb = b;
|
|
b = peek_next(insn_byte_t, insn);
|
|
attr = inat_get_opcode_attribute(b);
|
|
}
|
|
/* Set the last prefix */
|
|
if (lb && lb != insn->prefixes.bytes[3]) {
|
|
if (unlikely(insn->prefixes.bytes[3])) {
|
|
/* Swap the last prefix */
|
|
b = insn->prefixes.bytes[3];
|
|
for (i = 0; i < nb; i++)
|
|
if (prefixes->bytes[i] == lb)
|
|
insn_set_byte(prefixes, i, b);
|
|
}
|
|
insn_set_byte(&insn->prefixes, 3, lb);
|
|
}
|
|
|
|
/* Decode REX prefix */
|
|
if (insn->x86_64) {
|
|
b = peek_next(insn_byte_t, insn);
|
|
attr = inat_get_opcode_attribute(b);
|
|
if (inat_is_rex_prefix(attr)) {
|
|
insn_field_set(&insn->rex_prefix, b, 1);
|
|
insn->next_byte++;
|
|
if (X86_REX_W(b))
|
|
/* REX.W overrides opnd_size */
|
|
insn->opnd_bytes = 8;
|
|
} else if (inat_is_rex2_prefix(attr)) {
|
|
insn_set_byte(&insn->rex_prefix, 0, b);
|
|
b = peek_nbyte_next(insn_byte_t, insn, 1);
|
|
insn_set_byte(&insn->rex_prefix, 1, b);
|
|
insn->rex_prefix.nbytes = 2;
|
|
insn->next_byte += 2;
|
|
if (X86_REX_W(b))
|
|
/* REX.W overrides opnd_size */
|
|
insn->opnd_bytes = 8;
|
|
insn->rex_prefix.got = 1;
|
|
goto vex_end;
|
|
}
|
|
}
|
|
insn->rex_prefix.got = 1;
|
|
|
|
/* Decode VEX prefix */
|
|
b = peek_next(insn_byte_t, insn);
|
|
attr = inat_get_opcode_attribute(b);
|
|
if (inat_is_vex_prefix(attr)) {
|
|
insn_byte_t b2 = peek_nbyte_next(insn_byte_t, insn, 1);
|
|
if (!insn->x86_64) {
|
|
/*
|
|
* In 32-bits mode, if the [7:6] bits (mod bits of
|
|
* ModRM) on the second byte are not 11b, it is
|
|
* LDS or LES or BOUND.
|
|
*/
|
|
if (X86_MODRM_MOD(b2) != 3)
|
|
goto vex_end;
|
|
}
|
|
insn_set_byte(&insn->vex_prefix, 0, b);
|
|
insn_set_byte(&insn->vex_prefix, 1, b2);
|
|
if (inat_is_evex_prefix(attr)) {
|
|
b2 = peek_nbyte_next(insn_byte_t, insn, 2);
|
|
insn_set_byte(&insn->vex_prefix, 2, b2);
|
|
b2 = peek_nbyte_next(insn_byte_t, insn, 3);
|
|
insn_set_byte(&insn->vex_prefix, 3, b2);
|
|
insn->vex_prefix.nbytes = 4;
|
|
insn->next_byte += 4;
|
|
if (insn->x86_64 && X86_VEX_W(b2))
|
|
/* VEX.W overrides opnd_size */
|
|
insn->opnd_bytes = 8;
|
|
} else if (inat_is_vex3_prefix(attr)) {
|
|
b2 = peek_nbyte_next(insn_byte_t, insn, 2);
|
|
insn_set_byte(&insn->vex_prefix, 2, b2);
|
|
insn->vex_prefix.nbytes = 3;
|
|
insn->next_byte += 3;
|
|
if (insn->x86_64 && X86_VEX_W(b2))
|
|
/* VEX.W overrides opnd_size */
|
|
insn->opnd_bytes = 8;
|
|
} else {
|
|
/*
|
|
* For VEX2, fake VEX3-like byte#2.
|
|
* Makes it easier to decode vex.W, vex.vvvv,
|
|
* vex.L and vex.pp. Masking with 0x7f sets vex.W == 0.
|
|
*/
|
|
insn_set_byte(&insn->vex_prefix, 2, b2 & 0x7f);
|
|
insn->vex_prefix.nbytes = 2;
|
|
insn->next_byte += 2;
|
|
}
|
|
}
|
|
vex_end:
|
|
insn->vex_prefix.got = 1;
|
|
|
|
prefixes->got = 1;
|
|
|
|
return 0;
|
|
|
|
err_out:
|
|
return -ENODATA;
|
|
}
|
|
|
|
/**
|
|
* insn_get_opcode - collect opcode(s)
|
|
* @insn: &struct insn containing instruction
|
|
*
|
|
* Populates @insn->opcode, updates @insn->next_byte to point past the
|
|
* opcode byte(s), and set @insn->attr (except for groups).
|
|
* If necessary, first collects any preceding (prefix) bytes.
|
|
* Sets @insn->opcode.value = opcode1. No effect if @insn->opcode.got
|
|
* is already 1.
|
|
*
|
|
* Returns:
|
|
* 0: on success
|
|
* < 0: on error
|
|
*/
|
|
int insn_get_opcode(struct insn *insn)
|
|
{
|
|
struct insn_field *opcode = &insn->opcode;
|
|
int pfx_id, ret;
|
|
insn_byte_t op;
|
|
|
|
if (opcode->got)
|
|
return 0;
|
|
|
|
ret = insn_get_prefixes(insn);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Get first opcode */
|
|
op = get_next(insn_byte_t, insn);
|
|
insn_set_byte(opcode, 0, op);
|
|
opcode->nbytes = 1;
|
|
|
|
/* Check if there is VEX prefix or not */
|
|
if (insn_is_avx(insn)) {
|
|
insn_byte_t m, p;
|
|
m = insn_vex_m_bits(insn);
|
|
p = insn_vex_p_bits(insn);
|
|
insn->attr = inat_get_avx_attribute(op, m, p);
|
|
/* SCALABLE EVEX uses p bits to encode operand size */
|
|
if (inat_evex_scalable(insn->attr) && !insn_vex_w_bit(insn) &&
|
|
p == INAT_PFX_OPNDSZ)
|
|
insn->opnd_bytes = 2;
|
|
if ((inat_must_evex(insn->attr) && !insn_is_evex(insn)) ||
|
|
(!inat_accept_vex(insn->attr) &&
|
|
!inat_is_group(insn->attr))) {
|
|
/* This instruction is bad */
|
|
insn->attr = 0;
|
|
return -EINVAL;
|
|
}
|
|
/* VEX has only 1 byte for opcode */
|
|
goto end;
|
|
}
|
|
|
|
/* Check if there is REX2 prefix or not */
|
|
if (insn_is_rex2(insn)) {
|
|
if (insn_rex2_m_bit(insn)) {
|
|
/* map 1 is escape 0x0f */
|
|
insn_attr_t esc_attr = inat_get_opcode_attribute(0x0f);
|
|
|
|
pfx_id = insn_last_prefix_id(insn);
|
|
insn->attr = inat_get_escape_attribute(op, pfx_id, esc_attr);
|
|
} else {
|
|
insn->attr = inat_get_opcode_attribute(op);
|
|
}
|
|
goto end;
|
|
}
|
|
|
|
insn->attr = inat_get_opcode_attribute(op);
|
|
while (inat_is_escape(insn->attr)) {
|
|
/* Get escaped opcode */
|
|
op = get_next(insn_byte_t, insn);
|
|
opcode->bytes[opcode->nbytes++] = op;
|
|
pfx_id = insn_last_prefix_id(insn);
|
|
insn->attr = inat_get_escape_attribute(op, pfx_id, insn->attr);
|
|
}
|
|
|
|
if (inat_must_vex(insn->attr)) {
|
|
/* This instruction is bad */
|
|
insn->attr = 0;
|
|
return -EINVAL;
|
|
}
|
|
end:
|
|
opcode->got = 1;
|
|
return 0;
|
|
|
|
err_out:
|
|
return -ENODATA;
|
|
}
|
|
|
|
/**
|
|
* insn_get_modrm - collect ModRM byte, if any
|
|
* @insn: &struct insn containing instruction
|
|
*
|
|
* Populates @insn->modrm and updates @insn->next_byte to point past the
|
|
* ModRM byte, if any. If necessary, first collects the preceding bytes
|
|
* (prefixes and opcode(s)). No effect if @insn->modrm.got is already 1.
|
|
*
|
|
* Returns:
|
|
* 0: on success
|
|
* < 0: on error
|
|
*/
|
|
int insn_get_modrm(struct insn *insn)
|
|
{
|
|
struct insn_field *modrm = &insn->modrm;
|
|
insn_byte_t pfx_id, mod;
|
|
int ret;
|
|
|
|
if (modrm->got)
|
|
return 0;
|
|
|
|
ret = insn_get_opcode(insn);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (inat_has_modrm(insn->attr)) {
|
|
mod = get_next(insn_byte_t, insn);
|
|
insn_field_set(modrm, mod, 1);
|
|
if (inat_is_group(insn->attr)) {
|
|
pfx_id = insn_last_prefix_id(insn);
|
|
insn->attr = inat_get_group_attribute(mod, pfx_id,
|
|
insn->attr);
|
|
if (insn_is_avx(insn) && !inat_accept_vex(insn->attr)) {
|
|
/* Bad insn */
|
|
insn->attr = 0;
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (insn->x86_64 && inat_is_force64(insn->attr))
|
|
insn->opnd_bytes = 8;
|
|
|
|
modrm->got = 1;
|
|
return 0;
|
|
|
|
err_out:
|
|
return -ENODATA;
|
|
}
|
|
|
|
|
|
/**
|
|
* insn_rip_relative() - Does instruction use RIP-relative addressing mode?
|
|
* @insn: &struct insn containing instruction
|
|
*
|
|
* If necessary, first collects the instruction up to and including the
|
|
* ModRM byte. No effect if @insn->x86_64 is 0.
|
|
*/
|
|
int insn_rip_relative(struct insn *insn)
|
|
{
|
|
struct insn_field *modrm = &insn->modrm;
|
|
int ret;
|
|
|
|
if (!insn->x86_64)
|
|
return 0;
|
|
|
|
ret = insn_get_modrm(insn);
|
|
if (ret)
|
|
return 0;
|
|
/*
|
|
* For rip-relative instructions, the mod field (top 2 bits)
|
|
* is zero and the r/m field (bottom 3 bits) is 0x5.
|
|
*/
|
|
return (modrm->nbytes && (modrm->bytes[0] & 0xc7) == 0x5);
|
|
}
|
|
|
|
/**
|
|
* insn_get_sib() - Get the SIB byte of instruction
|
|
* @insn: &struct insn containing instruction
|
|
*
|
|
* If necessary, first collects the instruction up to and including the
|
|
* ModRM byte.
|
|
*
|
|
* Returns:
|
|
* 0: if decoding succeeded
|
|
* < 0: otherwise.
|
|
*/
|
|
int insn_get_sib(struct insn *insn)
|
|
{
|
|
insn_byte_t modrm;
|
|
int ret;
|
|
|
|
if (insn->sib.got)
|
|
return 0;
|
|
|
|
ret = insn_get_modrm(insn);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (insn->modrm.nbytes) {
|
|
modrm = insn->modrm.bytes[0];
|
|
if (insn->addr_bytes != 2 &&
|
|
X86_MODRM_MOD(modrm) != 3 && X86_MODRM_RM(modrm) == 4) {
|
|
insn_field_set(&insn->sib,
|
|
get_next(insn_byte_t, insn), 1);
|
|
}
|
|
}
|
|
insn->sib.got = 1;
|
|
|
|
return 0;
|
|
|
|
err_out:
|
|
return -ENODATA;
|
|
}
|
|
|
|
|
|
/**
|
|
* insn_get_displacement() - Get the displacement of instruction
|
|
* @insn: &struct insn containing instruction
|
|
*
|
|
* If necessary, first collects the instruction up to and including the
|
|
* SIB byte.
|
|
* Displacement value is sign-expanded.
|
|
*
|
|
* * Returns:
|
|
* 0: if decoding succeeded
|
|
* < 0: otherwise.
|
|
*/
|
|
int insn_get_displacement(struct insn *insn)
|
|
{
|
|
insn_byte_t mod, rm, base;
|
|
int ret;
|
|
|
|
if (insn->displacement.got)
|
|
return 0;
|
|
|
|
ret = insn_get_sib(insn);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (insn->modrm.nbytes) {
|
|
/*
|
|
* Interpreting the modrm byte:
|
|
* mod = 00 - no displacement fields (exceptions below)
|
|
* mod = 01 - 1-byte displacement field
|
|
* mod = 10 - displacement field is 4 bytes, or 2 bytes if
|
|
* address size = 2 (0x67 prefix in 32-bit mode)
|
|
* mod = 11 - no memory operand
|
|
*
|
|
* If address size = 2...
|
|
* mod = 00, r/m = 110 - displacement field is 2 bytes
|
|
*
|
|
* If address size != 2...
|
|
* mod != 11, r/m = 100 - SIB byte exists
|
|
* mod = 00, SIB base = 101 - displacement field is 4 bytes
|
|
* mod = 00, r/m = 101 - rip-relative addressing, displacement
|
|
* field is 4 bytes
|
|
*/
|
|
mod = X86_MODRM_MOD(insn->modrm.value);
|
|
rm = X86_MODRM_RM(insn->modrm.value);
|
|
base = X86_SIB_BASE(insn->sib.value);
|
|
if (mod == 3)
|
|
goto out;
|
|
if (mod == 1) {
|
|
insn_field_set(&insn->displacement,
|
|
get_next(signed char, insn), 1);
|
|
} else if (insn->addr_bytes == 2) {
|
|
if ((mod == 0 && rm == 6) || mod == 2) {
|
|
insn_field_set(&insn->displacement,
|
|
get_next(short, insn), 2);
|
|
}
|
|
} else {
|
|
if ((mod == 0 && rm == 5) || mod == 2 ||
|
|
(mod == 0 && base == 5)) {
|
|
insn_field_set(&insn->displacement,
|
|
get_next(int, insn), 4);
|
|
}
|
|
}
|
|
}
|
|
out:
|
|
insn->displacement.got = 1;
|
|
return 0;
|
|
|
|
err_out:
|
|
return -ENODATA;
|
|
}
|
|
|
|
/* Decode moffset16/32/64. Return 0 if failed */
|
|
static int __get_moffset(struct insn *insn)
|
|
{
|
|
switch (insn->addr_bytes) {
|
|
case 2:
|
|
insn_field_set(&insn->moffset1, get_next(short, insn), 2);
|
|
break;
|
|
case 4:
|
|
insn_field_set(&insn->moffset1, get_next(int, insn), 4);
|
|
break;
|
|
case 8:
|
|
insn_field_set(&insn->moffset1, get_next(int, insn), 4);
|
|
insn_field_set(&insn->moffset2, get_next(int, insn), 4);
|
|
break;
|
|
default: /* opnd_bytes must be modified manually */
|
|
goto err_out;
|
|
}
|
|
insn->moffset1.got = insn->moffset2.got = 1;
|
|
|
|
return 1;
|
|
|
|
err_out:
|
|
return 0;
|
|
}
|
|
|
|
/* Decode imm v32(Iz). Return 0 if failed */
|
|
static int __get_immv32(struct insn *insn)
|
|
{
|
|
switch (insn->opnd_bytes) {
|
|
case 2:
|
|
insn_field_set(&insn->immediate, get_next(short, insn), 2);
|
|
break;
|
|
case 4:
|
|
case 8:
|
|
insn_field_set(&insn->immediate, get_next(int, insn), 4);
|
|
break;
|
|
default: /* opnd_bytes must be modified manually */
|
|
goto err_out;
|
|
}
|
|
|
|
return 1;
|
|
|
|
err_out:
|
|
return 0;
|
|
}
|
|
|
|
/* Decode imm v64(Iv/Ov), Return 0 if failed */
|
|
static int __get_immv(struct insn *insn)
|
|
{
|
|
switch (insn->opnd_bytes) {
|
|
case 2:
|
|
insn_field_set(&insn->immediate1, get_next(short, insn), 2);
|
|
break;
|
|
case 4:
|
|
insn_field_set(&insn->immediate1, get_next(int, insn), 4);
|
|
insn->immediate1.nbytes = 4;
|
|
break;
|
|
case 8:
|
|
insn_field_set(&insn->immediate1, get_next(int, insn), 4);
|
|
insn_field_set(&insn->immediate2, get_next(int, insn), 4);
|
|
break;
|
|
default: /* opnd_bytes must be modified manually */
|
|
goto err_out;
|
|
}
|
|
insn->immediate1.got = insn->immediate2.got = 1;
|
|
|
|
return 1;
|
|
err_out:
|
|
return 0;
|
|
}
|
|
|
|
/* Decode ptr16:16/32(Ap) */
|
|
static int __get_immptr(struct insn *insn)
|
|
{
|
|
switch (insn->opnd_bytes) {
|
|
case 2:
|
|
insn_field_set(&insn->immediate1, get_next(short, insn), 2);
|
|
break;
|
|
case 4:
|
|
insn_field_set(&insn->immediate1, get_next(int, insn), 4);
|
|
break;
|
|
case 8:
|
|
/* ptr16:64 is not exist (no segment) */
|
|
return 0;
|
|
default: /* opnd_bytes must be modified manually */
|
|
goto err_out;
|
|
}
|
|
insn_field_set(&insn->immediate2, get_next(unsigned short, insn), 2);
|
|
insn->immediate1.got = insn->immediate2.got = 1;
|
|
|
|
return 1;
|
|
err_out:
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* insn_get_immediate() - Get the immediate in an instruction
|
|
* @insn: &struct insn containing instruction
|
|
*
|
|
* If necessary, first collects the instruction up to and including the
|
|
* displacement bytes.
|
|
* Basically, most of immediates are sign-expanded. Unsigned-value can be
|
|
* computed by bit masking with ((1 << (nbytes * 8)) - 1)
|
|
*
|
|
* Returns:
|
|
* 0: on success
|
|
* < 0: on error
|
|
*/
|
|
int insn_get_immediate(struct insn *insn)
|
|
{
|
|
int ret;
|
|
|
|
if (insn->immediate.got)
|
|
return 0;
|
|
|
|
ret = insn_get_displacement(insn);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (inat_has_moffset(insn->attr)) {
|
|
if (!__get_moffset(insn))
|
|
goto err_out;
|
|
goto done;
|
|
}
|
|
|
|
if (!inat_has_immediate(insn->attr))
|
|
/* no immediates */
|
|
goto done;
|
|
|
|
switch (inat_immediate_size(insn->attr)) {
|
|
case INAT_IMM_BYTE:
|
|
insn_field_set(&insn->immediate, get_next(signed char, insn), 1);
|
|
break;
|
|
case INAT_IMM_WORD:
|
|
insn_field_set(&insn->immediate, get_next(short, insn), 2);
|
|
break;
|
|
case INAT_IMM_DWORD:
|
|
insn_field_set(&insn->immediate, get_next(int, insn), 4);
|
|
break;
|
|
case INAT_IMM_QWORD:
|
|
insn_field_set(&insn->immediate1, get_next(int, insn), 4);
|
|
insn_field_set(&insn->immediate2, get_next(int, insn), 4);
|
|
break;
|
|
case INAT_IMM_PTR:
|
|
if (!__get_immptr(insn))
|
|
goto err_out;
|
|
break;
|
|
case INAT_IMM_VWORD32:
|
|
if (!__get_immv32(insn))
|
|
goto err_out;
|
|
break;
|
|
case INAT_IMM_VWORD:
|
|
if (!__get_immv(insn))
|
|
goto err_out;
|
|
break;
|
|
default:
|
|
/* Here, insn must have an immediate, but failed */
|
|
goto err_out;
|
|
}
|
|
if (inat_has_second_immediate(insn->attr)) {
|
|
insn_field_set(&insn->immediate2, get_next(signed char, insn), 1);
|
|
}
|
|
done:
|
|
insn->immediate.got = 1;
|
|
return 0;
|
|
|
|
err_out:
|
|
return -ENODATA;
|
|
}
|
|
|
|
/**
|
|
* insn_get_length() - Get the length of instruction
|
|
* @insn: &struct insn containing instruction
|
|
*
|
|
* If necessary, first collects the instruction up to and including the
|
|
* immediates bytes.
|
|
*
|
|
* Returns:
|
|
* - 0 on success
|
|
* - < 0 on error
|
|
*/
|
|
int insn_get_length(struct insn *insn)
|
|
{
|
|
int ret;
|
|
|
|
if (insn->length)
|
|
return 0;
|
|
|
|
ret = insn_get_immediate(insn);
|
|
if (ret)
|
|
return ret;
|
|
|
|
insn->length = (unsigned char)((unsigned long)insn->next_byte
|
|
- (unsigned long)insn->kaddr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Ensure this instruction is decoded completely */
|
|
static inline int insn_complete(struct insn *insn)
|
|
{
|
|
return insn->opcode.got && insn->modrm.got && insn->sib.got &&
|
|
insn->displacement.got && insn->immediate.got;
|
|
}
|
|
|
|
/**
|
|
* insn_decode() - Decode an x86 instruction
|
|
* @insn: &struct insn to be initialized
|
|
* @kaddr: address (in kernel memory) of instruction (or copy thereof)
|
|
* @buf_len: length of the insn buffer at @kaddr
|
|
* @m: insn mode, see enum insn_mode
|
|
*
|
|
* Returns:
|
|
* 0: if decoding succeeded
|
|
* < 0: otherwise.
|
|
*/
|
|
int insn_decode(struct insn *insn, const void *kaddr, int buf_len, enum insn_mode m)
|
|
{
|
|
int ret;
|
|
|
|
/* #define INSN_MODE_KERN -1 __ignore_sync_check__ mode is only valid in the kernel */
|
|
|
|
if (m == INSN_MODE_KERN)
|
|
insn_init(insn, kaddr, buf_len, IS_ENABLED(CONFIG_X86_64));
|
|
else
|
|
insn_init(insn, kaddr, buf_len, m == INSN_MODE_64);
|
|
|
|
ret = insn_get_length(insn);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (insn_complete(insn))
|
|
return 0;
|
|
|
|
return -EINVAL;
|
|
}
|