linux/drivers/gpu/drm/i915/gt/intel_engine_cs.c
Chris Wilson b3786b2937 drm/i915/gt: Distinguish the virtual breadcrumbs from the irq breadcrumbs
On the virtual engines, we only use the intel_breadcrumbs for tracking
signaling of stale breadcrumbs from the irq_workers. They do not have
any associated interrupt handling, active requests are passed to a
physical engine and associated breadcrumb interrupt handler. This causes
issues for us as we need to ensure that we do not actually try and
enable interrupts and the powermanagement required for them on the
virtual engine, as they will never be disabled. Instead, let's
specify the physical engine used for interrupt handler on a particular
breadcrumb.

v2: Drop b->irq_armed = true mocking for no interrupt HW

Fixes: 4fe6abb8f513 ("drm/i915/gt: Ignore irq enabling on the virtual engines")
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200731154834.8378-4-chris@chris-wilson.co.uk
Signed-off-by: Rodrigo Vivi <rodrigo.vivi@intel.com>
Signed-off-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
2020-09-07 14:23:55 +03:00

1800 lines
48 KiB
C

/*
* Copyright © 2016 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#include <drm/drm_print.h>
#include "gem/i915_gem_context.h"
#include "i915_drv.h"
#include "intel_breadcrumbs.h"
#include "intel_context.h"
#include "intel_engine.h"
#include "intel_engine_pm.h"
#include "intel_engine_user.h"
#include "intel_gt.h"
#include "intel_gt_requests.h"
#include "intel_gt_pm.h"
#include "intel_lrc.h"
#include "intel_reset.h"
#include "intel_ring.h"
/* Haswell does have the CXT_SIZE register however it does not appear to be
* valid. Now, docs explain in dwords what is in the context object. The full
* size is 70720 bytes, however, the power context and execlist context will
* never be saved (power context is stored elsewhere, and execlists don't work
* on HSW) - so the final size, including the extra state required for the
* Resource Streamer, is 66944 bytes, which rounds to 17 pages.
*/
#define HSW_CXT_TOTAL_SIZE (17 * PAGE_SIZE)
#define DEFAULT_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
#define GEN10_LR_CONTEXT_RENDER_SIZE (18 * PAGE_SIZE)
#define GEN11_LR_CONTEXT_RENDER_SIZE (14 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE ( 2 * PAGE_SIZE)
#define MAX_MMIO_BASES 3
struct engine_info {
unsigned int hw_id;
u8 class;
u8 instance;
/* mmio bases table *must* be sorted in reverse gen order */
struct engine_mmio_base {
u32 gen : 8;
u32 base : 24;
} mmio_bases[MAX_MMIO_BASES];
};
static const struct engine_info intel_engines[] = {
[RCS0] = {
.hw_id = RCS0_HW,
.class = RENDER_CLASS,
.instance = 0,
.mmio_bases = {
{ .gen = 1, .base = RENDER_RING_BASE }
},
},
[BCS0] = {
.hw_id = BCS0_HW,
.class = COPY_ENGINE_CLASS,
.instance = 0,
.mmio_bases = {
{ .gen = 6, .base = BLT_RING_BASE }
},
},
[VCS0] = {
.hw_id = VCS0_HW,
.class = VIDEO_DECODE_CLASS,
.instance = 0,
.mmio_bases = {
{ .gen = 11, .base = GEN11_BSD_RING_BASE },
{ .gen = 6, .base = GEN6_BSD_RING_BASE },
{ .gen = 4, .base = BSD_RING_BASE }
},
},
[VCS1] = {
.hw_id = VCS1_HW,
.class = VIDEO_DECODE_CLASS,
.instance = 1,
.mmio_bases = {
{ .gen = 11, .base = GEN11_BSD2_RING_BASE },
{ .gen = 8, .base = GEN8_BSD2_RING_BASE }
},
},
[VCS2] = {
.hw_id = VCS2_HW,
.class = VIDEO_DECODE_CLASS,
.instance = 2,
.mmio_bases = {
{ .gen = 11, .base = GEN11_BSD3_RING_BASE }
},
},
[VCS3] = {
.hw_id = VCS3_HW,
.class = VIDEO_DECODE_CLASS,
.instance = 3,
.mmio_bases = {
{ .gen = 11, .base = GEN11_BSD4_RING_BASE }
},
},
[VECS0] = {
.hw_id = VECS0_HW,
.class = VIDEO_ENHANCEMENT_CLASS,
.instance = 0,
.mmio_bases = {
{ .gen = 11, .base = GEN11_VEBOX_RING_BASE },
{ .gen = 7, .base = VEBOX_RING_BASE }
},
},
[VECS1] = {
.hw_id = VECS1_HW,
.class = VIDEO_ENHANCEMENT_CLASS,
.instance = 1,
.mmio_bases = {
{ .gen = 11, .base = GEN11_VEBOX2_RING_BASE }
},
},
};
/**
* intel_engine_context_size() - return the size of the context for an engine
* @gt: the gt
* @class: engine class
*
* Each engine class may require a different amount of space for a context
* image.
*
* Return: size (in bytes) of an engine class specific context image
*
* Note: this size includes the HWSP, which is part of the context image
* in LRC mode, but does not include the "shared data page" used with
* GuC submission. The caller should account for this if using the GuC.
*/
u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
{
struct intel_uncore *uncore = gt->uncore;
u32 cxt_size;
BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);
switch (class) {
case RENDER_CLASS:
switch (INTEL_GEN(gt->i915)) {
default:
MISSING_CASE(INTEL_GEN(gt->i915));
return DEFAULT_LR_CONTEXT_RENDER_SIZE;
case 12:
case 11:
return GEN11_LR_CONTEXT_RENDER_SIZE;
case 10:
return GEN10_LR_CONTEXT_RENDER_SIZE;
case 9:
return GEN9_LR_CONTEXT_RENDER_SIZE;
case 8:
return GEN8_LR_CONTEXT_RENDER_SIZE;
case 7:
if (IS_HASWELL(gt->i915))
return HSW_CXT_TOTAL_SIZE;
cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
PAGE_SIZE);
case 6:
cxt_size = intel_uncore_read(uncore, CXT_SIZE);
return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
PAGE_SIZE);
case 5:
case 4:
/*
* There is a discrepancy here between the size reported
* by the register and the size of the context layout
* in the docs. Both are described as authorative!
*
* The discrepancy is on the order of a few cachelines,
* but the total is under one page (4k), which is our
* minimum allocation anyway so it should all come
* out in the wash.
*/
cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
drm_dbg(&gt->i915->drm,
"gen%d CXT_SIZE = %d bytes [0x%08x]\n",
INTEL_GEN(gt->i915), cxt_size * 64,
cxt_size - 1);
return round_up(cxt_size * 64, PAGE_SIZE);
case 3:
case 2:
/* For the special day when i810 gets merged. */
case 1:
return 0;
}
break;
default:
MISSING_CASE(class);
/* fall through */
case VIDEO_DECODE_CLASS:
case VIDEO_ENHANCEMENT_CLASS:
case COPY_ENGINE_CLASS:
if (INTEL_GEN(gt->i915) < 8)
return 0;
return GEN8_LR_CONTEXT_OTHER_SIZE;
}
}
static u32 __engine_mmio_base(struct drm_i915_private *i915,
const struct engine_mmio_base *bases)
{
int i;
for (i = 0; i < MAX_MMIO_BASES; i++)
if (INTEL_GEN(i915) >= bases[i].gen)
break;
GEM_BUG_ON(i == MAX_MMIO_BASES);
GEM_BUG_ON(!bases[i].base);
return bases[i].base;
}
static void __sprint_engine_name(struct intel_engine_cs *engine)
{
/*
* Before we know what the uABI name for this engine will be,
* we still would like to keep track of this engine in the debug logs.
* We throw in a ' here as a reminder that this isn't its final name.
*/
GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
intel_engine_class_repr(engine->class),
engine->instance) >= sizeof(engine->name));
}
void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
{
/*
* Though they added more rings on g4x/ilk, they did not add
* per-engine HWSTAM until gen6.
*/
if (INTEL_GEN(engine->i915) < 6 && engine->class != RENDER_CLASS)
return;
if (INTEL_GEN(engine->i915) >= 3)
ENGINE_WRITE(engine, RING_HWSTAM, mask);
else
ENGINE_WRITE16(engine, RING_HWSTAM, mask);
}
static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
{
/* Mask off all writes into the unknown HWSP */
intel_engine_set_hwsp_writemask(engine, ~0u);
}
static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id)
{
const struct engine_info *info = &intel_engines[id];
struct drm_i915_private *i915 = gt->i915;
struct intel_engine_cs *engine;
BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));
if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
return -EINVAL;
if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
return -EINVAL;
if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
return -EINVAL;
if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
return -EINVAL;
engine = kzalloc(sizeof(*engine), GFP_KERNEL);
if (!engine)
return -ENOMEM;
BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);
engine->id = id;
engine->legacy_idx = INVALID_ENGINE;
engine->mask = BIT(id);
engine->i915 = i915;
engine->gt = gt;
engine->uncore = gt->uncore;
engine->hw_id = engine->guc_id = info->hw_id;
engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
engine->class = info->class;
engine->instance = info->instance;
__sprint_engine_name(engine);
engine->props.heartbeat_interval_ms =
CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
engine->props.max_busywait_duration_ns =
CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
engine->props.preempt_timeout_ms =
CONFIG_DRM_I915_PREEMPT_TIMEOUT;
engine->props.stop_timeout_ms =
CONFIG_DRM_I915_STOP_TIMEOUT;
engine->props.timeslice_duration_ms =
CONFIG_DRM_I915_TIMESLICE_DURATION;
/* Override to uninterruptible for OpenCL workloads. */
if (INTEL_GEN(i915) == 12 && engine->class == RENDER_CLASS)
engine->props.preempt_timeout_ms = 0;
engine->defaults = engine->props; /* never to change again */
engine->context_size = intel_engine_context_size(gt, engine->class);
if (WARN_ON(engine->context_size > BIT(20)))
engine->context_size = 0;
if (engine->context_size)
DRIVER_CAPS(i915)->has_logical_contexts = true;
/* Nothing to do here, execute in order of dependencies */
engine->schedule = NULL;
ewma__engine_latency_init(&engine->latency);
seqlock_init(&engine->stats.lock);
ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);
/* Scrub mmio state on takeover */
intel_engine_sanitize_mmio(engine);
gt->engine_class[info->class][info->instance] = engine;
gt->engine[id] = engine;
return 0;
}
static void __setup_engine_capabilities(struct intel_engine_cs *engine)
{
struct drm_i915_private *i915 = engine->i915;
if (engine->class == VIDEO_DECODE_CLASS) {
/*
* HEVC support is present on first engine instance
* before Gen11 and on all instances afterwards.
*/
if (INTEL_GEN(i915) >= 11 ||
(INTEL_GEN(i915) >= 9 && engine->instance == 0))
engine->uabi_capabilities |=
I915_VIDEO_CLASS_CAPABILITY_HEVC;
/*
* SFC block is present only on even logical engine
* instances.
*/
if ((INTEL_GEN(i915) >= 11 &&
engine->gt->info.vdbox_sfc_access & engine->mask) ||
(INTEL_GEN(i915) >= 9 && engine->instance == 0))
engine->uabi_capabilities |=
I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
if (INTEL_GEN(i915) >= 9)
engine->uabi_capabilities |=
I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
}
}
static void intel_setup_engine_capabilities(struct intel_gt *gt)
{
struct intel_engine_cs *engine;
enum intel_engine_id id;
for_each_engine(engine, gt, id)
__setup_engine_capabilities(engine);
}
/**
* intel_engines_release() - free the resources allocated for Command Streamers
* @gt: pointer to struct intel_gt
*/
void intel_engines_release(struct intel_gt *gt)
{
struct intel_engine_cs *engine;
enum intel_engine_id id;
/*
* Before we release the resources held by engine, we must be certain
* that the HW is no longer accessing them -- having the GPU scribble
* to or read from a page being used for something else causes no end
* of fun.
*
* The GPU should be reset by this point, but assume the worst just
* in case we aborted before completely initialising the engines.
*/
GEM_BUG_ON(intel_gt_pm_is_awake(gt));
if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
__intel_gt_reset(gt, ALL_ENGINES);
/* Decouple the backend; but keep the layout for late GPU resets */
for_each_engine(engine, gt, id) {
if (!engine->release)
continue;
intel_wakeref_wait_for_idle(&engine->wakeref);
GEM_BUG_ON(intel_engine_pm_is_awake(engine));
engine->release(engine);
engine->release = NULL;
memset(&engine->reset, 0, sizeof(engine->reset));
}
}
void intel_engine_free_request_pool(struct intel_engine_cs *engine)
{
if (!engine->request_pool)
return;
kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
}
void intel_engines_free(struct intel_gt *gt)
{
struct intel_engine_cs *engine;
enum intel_engine_id id;
/* Free the requests! dma-resv keeps fences around for an eternity */
rcu_barrier();
for_each_engine(engine, gt, id) {
intel_engine_free_request_pool(engine);
kfree(engine);
gt->engine[id] = NULL;
}
}
/*
* Determine which engines are fused off in our particular hardware.
* Note that we have a catch-22 situation where we need to be able to access
* the blitter forcewake domain to read the engine fuses, but at the same time
* we need to know which engines are available on the system to know which
* forcewake domains are present. We solve this by intializing the forcewake
* domains based on the full engine mask in the platform capabilities before
* calling this function and pruning the domains for fused-off engines
* afterwards.
*/
static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
{
struct drm_i915_private *i915 = gt->i915;
struct intel_gt_info *info = &gt->info;
struct intel_uncore *uncore = gt->uncore;
unsigned int logical_vdbox = 0;
unsigned int i;
u32 media_fuse;
u16 vdbox_mask;
u16 vebox_mask;
info->engine_mask = INTEL_INFO(i915)->platform_engine_mask;
if (INTEL_GEN(i915) < 11)
return info->engine_mask;
media_fuse = ~intel_uncore_read(uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);
vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
GEN11_GT_VEBOX_DISABLE_SHIFT;
for (i = 0; i < I915_MAX_VCS; i++) {
if (!HAS_ENGINE(gt, _VCS(i))) {
vdbox_mask &= ~BIT(i);
continue;
}
if (!(BIT(i) & vdbox_mask)) {
info->engine_mask &= ~BIT(_VCS(i));
drm_dbg(&i915->drm, "vcs%u fused off\n", i);
continue;
}
/*
* In Gen11, only even numbered logical VDBOXes are
* hooked up to an SFC (Scaler & Format Converter) unit.
* In TGL each VDBOX has access to an SFC.
*/
if (INTEL_GEN(i915) >= 12 || logical_vdbox++ % 2 == 0)
gt->info.vdbox_sfc_access |= BIT(i);
}
drm_dbg(&i915->drm, "vdbox enable: %04x, instances: %04lx\n",
vdbox_mask, VDBOX_MASK(gt));
GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));
for (i = 0; i < I915_MAX_VECS; i++) {
if (!HAS_ENGINE(gt, _VECS(i))) {
vebox_mask &= ~BIT(i);
continue;
}
if (!(BIT(i) & vebox_mask)) {
info->engine_mask &= ~BIT(_VECS(i));
drm_dbg(&i915->drm, "vecs%u fused off\n", i);
}
}
drm_dbg(&i915->drm, "vebox enable: %04x, instances: %04lx\n",
vebox_mask, VEBOX_MASK(gt));
GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));
return info->engine_mask;
}
/**
* intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
* @gt: pointer to struct intel_gt
*
* Return: non-zero if the initialization failed.
*/
int intel_engines_init_mmio(struct intel_gt *gt)
{
struct drm_i915_private *i915 = gt->i915;
const unsigned int engine_mask = init_engine_mask(gt);
unsigned int mask = 0;
unsigned int i;
int err;
drm_WARN_ON(&i915->drm, engine_mask == 0);
drm_WARN_ON(&i915->drm, engine_mask &
GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
if (i915_inject_probe_failure(i915))
return -ENODEV;
for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
if (!HAS_ENGINE(gt, i))
continue;
err = intel_engine_setup(gt, i);
if (err)
goto cleanup;
mask |= BIT(i);
}
/*
* Catch failures to update intel_engines table when the new engines
* are added to the driver by a warning and disabling the forgotten
* engines.
*/
if (drm_WARN_ON(&i915->drm, mask != engine_mask))
gt->info.engine_mask = mask;
gt->info.num_engines = hweight32(mask);
intel_gt_check_and_clear_faults(gt);
intel_setup_engine_capabilities(gt);
intel_uncore_prune_engine_fw_domains(gt->uncore, gt);
return 0;
cleanup:
intel_engines_free(gt);
return err;
}
void intel_engine_init_execlists(struct intel_engine_cs *engine)
{
struct intel_engine_execlists * const execlists = &engine->execlists;
execlists->port_mask = 1;
GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);
memset(execlists->pending, 0, sizeof(execlists->pending));
execlists->active =
memset(execlists->inflight, 0, sizeof(execlists->inflight));
execlists->queue_priority_hint = INT_MIN;
execlists->queue = RB_ROOT_CACHED;
}
static void cleanup_status_page(struct intel_engine_cs *engine)
{
struct i915_vma *vma;
/* Prevent writes into HWSP after returning the page to the system */
intel_engine_set_hwsp_writemask(engine, ~0u);
vma = fetch_and_zero(&engine->status_page.vma);
if (!vma)
return;
if (!HWS_NEEDS_PHYSICAL(engine->i915))
i915_vma_unpin(vma);
i915_gem_object_unpin_map(vma->obj);
i915_gem_object_put(vma->obj);
}
static int pin_ggtt_status_page(struct intel_engine_cs *engine,
struct i915_vma *vma)
{
unsigned int flags;
if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
/*
* On g33, we cannot place HWS above 256MiB, so
* restrict its pinning to the low mappable arena.
* Though this restriction is not documented for
* gen4, gen5, or byt, they also behave similarly
* and hang if the HWS is placed at the top of the
* GTT. To generalise, it appears that all !llc
* platforms have issues with us placing the HWS
* above the mappable region (even though we never
* actually map it).
*/
flags = PIN_MAPPABLE;
else
flags = PIN_HIGH;
return i915_ggtt_pin(vma, 0, flags);
}
static int init_status_page(struct intel_engine_cs *engine)
{
struct drm_i915_gem_object *obj;
struct i915_vma *vma;
void *vaddr;
int ret;
/*
* Though the HWS register does support 36bit addresses, historically
* we have had hangs and corruption reported due to wild writes if
* the HWS is placed above 4G. We only allow objects to be allocated
* in GFP_DMA32 for i965, and no earlier physical address users had
* access to more than 4G.
*/
obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
if (IS_ERR(obj)) {
drm_err(&engine->i915->drm,
"Failed to allocate status page\n");
return PTR_ERR(obj);
}
i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
if (IS_ERR(vma)) {
ret = PTR_ERR(vma);
goto err;
}
vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
if (IS_ERR(vaddr)) {
ret = PTR_ERR(vaddr);
goto err;
}
engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
engine->status_page.vma = vma;
if (!HWS_NEEDS_PHYSICAL(engine->i915)) {
ret = pin_ggtt_status_page(engine, vma);
if (ret)
goto err_unpin;
}
return 0;
err_unpin:
i915_gem_object_unpin_map(obj);
err:
i915_gem_object_put(obj);
return ret;
}
static int engine_setup_common(struct intel_engine_cs *engine)
{
int err;
init_llist_head(&engine->barrier_tasks);
err = init_status_page(engine);
if (err)
return err;
engine->breadcrumbs = intel_breadcrumbs_create(engine);
if (!engine->breadcrumbs) {
err = -ENOMEM;
goto err_status;
}
intel_engine_init_active(engine, ENGINE_PHYSICAL);
intel_engine_init_execlists(engine);
intel_engine_init_cmd_parser(engine);
intel_engine_init__pm(engine);
intel_engine_init_retire(engine);
/* Use the whole device by default */
engine->sseu =
intel_sseu_from_device_info(&engine->gt->info.sseu);
intel_engine_init_workarounds(engine);
intel_engine_init_whitelist(engine);
intel_engine_init_ctx_wa(engine);
return 0;
err_status:
cleanup_status_page(engine);
return err;
}
struct measure_breadcrumb {
struct i915_request rq;
struct intel_ring ring;
u32 cs[2048];
};
static int measure_breadcrumb_dw(struct intel_context *ce)
{
struct intel_engine_cs *engine = ce->engine;
struct measure_breadcrumb *frame;
int dw;
GEM_BUG_ON(!engine->gt->scratch);
frame = kzalloc(sizeof(*frame), GFP_KERNEL);
if (!frame)
return -ENOMEM;
frame->rq.engine = engine;
frame->rq.context = ce;
rcu_assign_pointer(frame->rq.timeline, ce->timeline);
frame->ring.vaddr = frame->cs;
frame->ring.size = sizeof(frame->cs);
frame->ring.wrap =
BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
frame->ring.effective_size = frame->ring.size;
intel_ring_update_space(&frame->ring);
frame->rq.ring = &frame->ring;
mutex_lock(&ce->timeline->mutex);
spin_lock_irq(&engine->active.lock);
dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
spin_unlock_irq(&engine->active.lock);
mutex_unlock(&ce->timeline->mutex);
GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
kfree(frame);
return dw;
}
void
intel_engine_init_active(struct intel_engine_cs *engine, unsigned int subclass)
{
INIT_LIST_HEAD(&engine->active.requests);
INIT_LIST_HEAD(&engine->active.hold);
spin_lock_init(&engine->active.lock);
lockdep_set_subclass(&engine->active.lock, subclass);
/*
* Due to an interesting quirk in lockdep's internal debug tracking,
* after setting a subclass we must ensure the lock is used. Otherwise,
* nr_unused_locks is incremented once too often.
*/
#ifdef CONFIG_DEBUG_LOCK_ALLOC
local_irq_disable();
lock_map_acquire(&engine->active.lock.dep_map);
lock_map_release(&engine->active.lock.dep_map);
local_irq_enable();
#endif
}
static struct intel_context *
create_pinned_context(struct intel_engine_cs *engine,
unsigned int hwsp,
struct lock_class_key *key,
const char *name)
{
struct intel_context *ce;
int err;
ce = intel_context_create(engine);
if (IS_ERR(ce))
return ce;
__set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
ce->timeline = page_pack_bits(NULL, hwsp);
err = intel_context_pin(ce); /* perma-pin so it is always available */
if (err) {
intel_context_put(ce);
return ERR_PTR(err);
}
/*
* Give our perma-pinned kernel timelines a separate lockdep class,
* so that we can use them from within the normal user timelines
* should we need to inject GPU operations during their request
* construction.
*/
lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
return ce;
}
static struct intel_context *
create_kernel_context(struct intel_engine_cs *engine)
{
static struct lock_class_key kernel;
return create_pinned_context(engine, I915_GEM_HWS_SEQNO_ADDR,
&kernel, "kernel_context");
}
/**
* intel_engines_init_common - initialize cengine state which might require hw access
* @engine: Engine to initialize.
*
* Initializes @engine@ structure members shared between legacy and execlists
* submission modes which do require hardware access.
*
* Typcally done at later stages of submission mode specific engine setup.
*
* Returns zero on success or an error code on failure.
*/
static int engine_init_common(struct intel_engine_cs *engine)
{
struct intel_context *ce;
int ret;
engine->set_default_submission(engine);
/*
* We may need to do things with the shrinker which
* require us to immediately switch back to the default
* context. This can cause a problem as pinning the
* default context also requires GTT space which may not
* be available. To avoid this we always pin the default
* context.
*/
ce = create_kernel_context(engine);
if (IS_ERR(ce))
return PTR_ERR(ce);
ret = measure_breadcrumb_dw(ce);
if (ret < 0)
goto err_context;
engine->emit_fini_breadcrumb_dw = ret;
engine->kernel_context = ce;
return 0;
err_context:
intel_context_put(ce);
return ret;
}
int intel_engines_init(struct intel_gt *gt)
{
int (*setup)(struct intel_engine_cs *engine);
struct intel_engine_cs *engine;
enum intel_engine_id id;
int err;
if (HAS_EXECLISTS(gt->i915))
setup = intel_execlists_submission_setup;
else
setup = intel_ring_submission_setup;
for_each_engine(engine, gt, id) {
err = engine_setup_common(engine);
if (err)
return err;
err = setup(engine);
if (err)
return err;
err = engine_init_common(engine);
if (err)
return err;
intel_engine_add_user(engine);
}
return 0;
}
/**
* intel_engines_cleanup_common - cleans up the engine state created by
* the common initiailizers.
* @engine: Engine to cleanup.
*
* This cleans up everything created by the common helpers.
*/
void intel_engine_cleanup_common(struct intel_engine_cs *engine)
{
GEM_BUG_ON(!list_empty(&engine->active.requests));
tasklet_kill(&engine->execlists.tasklet); /* flush the callback */
cleanup_status_page(engine);
intel_breadcrumbs_free(engine->breadcrumbs);
intel_engine_fini_retire(engine);
intel_engine_cleanup_cmd_parser(engine);
if (engine->default_state)
fput(engine->default_state);
if (engine->kernel_context) {
intel_context_unpin(engine->kernel_context);
intel_context_put(engine->kernel_context);
}
GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
intel_wa_list_free(&engine->ctx_wa_list);
intel_wa_list_free(&engine->wa_list);
intel_wa_list_free(&engine->whitelist);
}
/**
* intel_engine_resume - re-initializes the HW state of the engine
* @engine: Engine to resume.
*
* Returns zero on success or an error code on failure.
*/
int intel_engine_resume(struct intel_engine_cs *engine)
{
intel_engine_apply_workarounds(engine);
intel_engine_apply_whitelist(engine);
return engine->resume(engine);
}
u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
{
struct drm_i915_private *i915 = engine->i915;
u64 acthd;
if (INTEL_GEN(i915) >= 8)
acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
else if (INTEL_GEN(i915) >= 4)
acthd = ENGINE_READ(engine, RING_ACTHD);
else
acthd = ENGINE_READ(engine, ACTHD);
return acthd;
}
u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
{
u64 bbaddr;
if (INTEL_GEN(engine->i915) >= 8)
bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
else
bbaddr = ENGINE_READ(engine, RING_BBADDR);
return bbaddr;
}
static unsigned long stop_timeout(const struct intel_engine_cs *engine)
{
if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
return 0;
/*
* If we are doing a normal GPU reset, we can take our time and allow
* the engine to quiesce. We've stopped submission to the engine, and
* if we wait long enough an innocent context should complete and
* leave the engine idle. So they should not be caught unaware by
* the forthcoming GPU reset (which usually follows the stop_cs)!
*/
return READ_ONCE(engine->props.stop_timeout_ms);
}
int intel_engine_stop_cs(struct intel_engine_cs *engine)
{
struct intel_uncore *uncore = engine->uncore;
const u32 base = engine->mmio_base;
const i915_reg_t mode = RING_MI_MODE(base);
int err;
if (INTEL_GEN(engine->i915) < 3)
return -ENODEV;
ENGINE_TRACE(engine, "\n");
intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
err = 0;
if (__intel_wait_for_register_fw(uncore,
mode, MODE_IDLE, MODE_IDLE,
1000, stop_timeout(engine),
NULL)) {
ENGINE_TRACE(engine, "timed out on STOP_RING -> IDLE\n");
err = -ETIMEDOUT;
}
/* A final mmio read to let GPU writes be hopefully flushed to memory */
intel_uncore_posting_read_fw(uncore, mode);
return err;
}
void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
{
ENGINE_TRACE(engine, "\n");
ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
}
const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
{
switch (type) {
case I915_CACHE_NONE: return " uncached";
case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
case I915_CACHE_L3_LLC: return " L3+LLC";
case I915_CACHE_WT: return " WT";
default: return "";
}
}
static u32
read_subslice_reg(const struct intel_engine_cs *engine,
int slice, int subslice, i915_reg_t reg)
{
struct drm_i915_private *i915 = engine->i915;
struct intel_uncore *uncore = engine->uncore;
u32 mcr_mask, mcr_ss, mcr, old_mcr, val;
enum forcewake_domains fw_domains;
if (INTEL_GEN(i915) >= 11) {
mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
mcr_ss = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
} else {
mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
mcr_ss = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
}
fw_domains = intel_uncore_forcewake_for_reg(uncore, reg,
FW_REG_READ);
fw_domains |= intel_uncore_forcewake_for_reg(uncore,
GEN8_MCR_SELECTOR,
FW_REG_READ | FW_REG_WRITE);
spin_lock_irq(&uncore->lock);
intel_uncore_forcewake_get__locked(uncore, fw_domains);
old_mcr = mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
mcr &= ~mcr_mask;
mcr |= mcr_ss;
intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
val = intel_uncore_read_fw(uncore, reg);
mcr &= ~mcr_mask;
mcr |= old_mcr & mcr_mask;
intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
intel_uncore_forcewake_put__locked(uncore, fw_domains);
spin_unlock_irq(&uncore->lock);
return val;
}
/* NB: please notice the memset */
void intel_engine_get_instdone(const struct intel_engine_cs *engine,
struct intel_instdone *instdone)
{
struct drm_i915_private *i915 = engine->i915;
const struct sseu_dev_info *sseu = &engine->gt->info.sseu;
struct intel_uncore *uncore = engine->uncore;
u32 mmio_base = engine->mmio_base;
int slice;
int subslice;
memset(instdone, 0, sizeof(*instdone));
switch (INTEL_GEN(i915)) {
default:
instdone->instdone =
intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
if (engine->id != RCS0)
break;
instdone->slice_common =
intel_uncore_read(uncore, GEN7_SC_INSTDONE);
if (INTEL_GEN(i915) >= 12) {
instdone->slice_common_extra[0] =
intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
instdone->slice_common_extra[1] =
intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
}
for_each_instdone_slice_subslice(i915, sseu, slice, subslice) {
instdone->sampler[slice][subslice] =
read_subslice_reg(engine, slice, subslice,
GEN7_SAMPLER_INSTDONE);
instdone->row[slice][subslice] =
read_subslice_reg(engine, slice, subslice,
GEN7_ROW_INSTDONE);
}
break;
case 7:
instdone->instdone =
intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
if (engine->id != RCS0)
break;
instdone->slice_common =
intel_uncore_read(uncore, GEN7_SC_INSTDONE);
instdone->sampler[0][0] =
intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
instdone->row[0][0] =
intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
break;
case 6:
case 5:
case 4:
instdone->instdone =
intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
if (engine->id == RCS0)
/* HACK: Using the wrong struct member */
instdone->slice_common =
intel_uncore_read(uncore, GEN4_INSTDONE1);
break;
case 3:
case 2:
instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
break;
}
}
static bool ring_is_idle(struct intel_engine_cs *engine)
{
bool idle = true;
if (I915_SELFTEST_ONLY(!engine->mmio_base))
return true;
if (!intel_engine_pm_get_if_awake(engine))
return true;
/* First check that no commands are left in the ring */
if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
(ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
idle = false;
/* No bit for gen2, so assume the CS parser is idle */
if (INTEL_GEN(engine->i915) > 2 &&
!(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
idle = false;
intel_engine_pm_put(engine);
return idle;
}
void intel_engine_flush_submission(struct intel_engine_cs *engine)
{
struct tasklet_struct *t = &engine->execlists.tasklet;
if (!t->func)
return;
/* Synchronise and wait for the tasklet on another CPU */
tasklet_kill(t);
/* Having cancelled the tasklet, ensure that is run */
local_bh_disable();
if (tasklet_trylock(t)) {
/* Must wait for any GPU reset in progress. */
if (__tasklet_is_enabled(t))
t->func(t->data);
tasklet_unlock(t);
}
local_bh_enable();
}
/**
* intel_engine_is_idle() - Report if the engine has finished process all work
* @engine: the intel_engine_cs
*
* Return true if there are no requests pending, nothing left to be submitted
* to hardware, and that the engine is idle.
*/
bool intel_engine_is_idle(struct intel_engine_cs *engine)
{
/* More white lies, if wedged, hw state is inconsistent */
if (intel_gt_is_wedged(engine->gt))
return true;
if (!intel_engine_pm_is_awake(engine))
return true;
/* Waiting to drain ELSP? */
if (execlists_active(&engine->execlists)) {
synchronize_hardirq(engine->i915->drm.pdev->irq);
intel_engine_flush_submission(engine);
if (execlists_active(&engine->execlists))
return false;
}
/* ELSP is empty, but there are ready requests? E.g. after reset */
if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root))
return false;
/* Ring stopped? */
return ring_is_idle(engine);
}
bool intel_engines_are_idle(struct intel_gt *gt)
{
struct intel_engine_cs *engine;
enum intel_engine_id id;
/*
* If the driver is wedged, HW state may be very inconsistent and
* report that it is still busy, even though we have stopped using it.
*/
if (intel_gt_is_wedged(gt))
return true;
/* Already parked (and passed an idleness test); must still be idle */
if (!READ_ONCE(gt->awake))
return true;
for_each_engine(engine, gt, id) {
if (!intel_engine_is_idle(engine))
return false;
}
return true;
}
void intel_engines_reset_default_submission(struct intel_gt *gt)
{
struct intel_engine_cs *engine;
enum intel_engine_id id;
for_each_engine(engine, gt, id)
engine->set_default_submission(engine);
}
bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
{
switch (INTEL_GEN(engine->i915)) {
case 2:
return false; /* uses physical not virtual addresses */
case 3:
/* maybe only uses physical not virtual addresses */
return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
case 4:
return !IS_I965G(engine->i915); /* who knows! */
case 6:
return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
default:
return true;
}
}
static int print_sched_attr(const struct i915_sched_attr *attr,
char *buf, int x, int len)
{
if (attr->priority == I915_PRIORITY_INVALID)
return x;
x += snprintf(buf + x, len - x,
" prio=%d", attr->priority);
return x;
}
static void print_request(struct drm_printer *m,
struct i915_request *rq,
const char *prefix)
{
const char *name = rq->fence.ops->get_timeline_name(&rq->fence);
char buf[80] = "";
int x = 0;
x = print_sched_attr(&rq->sched.attr, buf, x, sizeof(buf));
drm_printf(m, "%s %llx:%llx%s%s %s @ %dms: %s\n",
prefix,
rq->fence.context, rq->fence.seqno,
i915_request_completed(rq) ? "!" :
i915_request_started(rq) ? "*" :
"",
test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
&rq->fence.flags) ? "+" :
test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
&rq->fence.flags) ? "-" :
"",
buf,
jiffies_to_msecs(jiffies - rq->emitted_jiffies),
name);
}
static struct intel_timeline *get_timeline(struct i915_request *rq)
{
struct intel_timeline *tl;
/*
* Even though we are holding the engine->active.lock here, there
* is no control over the submission queue per-se and we are
* inspecting the active state at a random point in time, with an
* unknown queue. Play safe and make sure the timeline remains valid.
* (Only being used for pretty printing, one extra kref shouldn't
* cause a camel stampede!)
*/
rcu_read_lock();
tl = rcu_dereference(rq->timeline);
if (!kref_get_unless_zero(&tl->kref))
tl = NULL;
rcu_read_unlock();
return tl;
}
static int print_ring(char *buf, int sz, struct i915_request *rq)
{
int len = 0;
if (!i915_request_signaled(rq)) {
struct intel_timeline *tl = get_timeline(rq);
len = scnprintf(buf, sz,
"ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
i915_ggtt_offset(rq->ring->vma),
tl ? tl->hwsp_offset : 0,
hwsp_seqno(rq),
DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
1000 * 1000));
if (tl)
intel_timeline_put(tl);
}
return len;
}
static void hexdump(struct drm_printer *m, const void *buf, size_t len)
{
const size_t rowsize = 8 * sizeof(u32);
const void *prev = NULL;
bool skip = false;
size_t pos;
for (pos = 0; pos < len; pos += rowsize) {
char line[128];
if (prev && !memcmp(prev, buf + pos, rowsize)) {
if (!skip) {
drm_printf(m, "*\n");
skip = true;
}
continue;
}
WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
rowsize, sizeof(u32),
line, sizeof(line),
false) >= sizeof(line));
drm_printf(m, "[%04zx] %s\n", pos, line);
prev = buf + pos;
skip = false;
}
}
static const char *repr_timer(const struct timer_list *t)
{
if (!READ_ONCE(t->expires))
return "inactive";
if (timer_pending(t))
return "active";
return "expired";
}
static void intel_engine_print_registers(struct intel_engine_cs *engine,
struct drm_printer *m)
{
struct drm_i915_private *dev_priv = engine->i915;
struct intel_engine_execlists * const execlists = &engine->execlists;
u64 addr;
if (engine->id == RENDER_CLASS && IS_GEN_RANGE(dev_priv, 4, 7))
drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
if (HAS_EXECLISTS(dev_priv)) {
drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
}
drm_printf(m, "\tRING_START: 0x%08x\n",
ENGINE_READ(engine, RING_START));
drm_printf(m, "\tRING_HEAD: 0x%08x\n",
ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
drm_printf(m, "\tRING_TAIL: 0x%08x\n",
ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
drm_printf(m, "\tRING_CTL: 0x%08x%s\n",
ENGINE_READ(engine, RING_CTL),
ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
if (INTEL_GEN(engine->i915) > 2) {
drm_printf(m, "\tRING_MODE: 0x%08x%s\n",
ENGINE_READ(engine, RING_MI_MODE),
ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
}
if (INTEL_GEN(dev_priv) >= 6) {
drm_printf(m, "\tRING_IMR: 0x%08x\n",
ENGINE_READ(engine, RING_IMR));
drm_printf(m, "\tRING_ESR: 0x%08x\n",
ENGINE_READ(engine, RING_ESR));
drm_printf(m, "\tRING_EMR: 0x%08x\n",
ENGINE_READ(engine, RING_EMR));
drm_printf(m, "\tRING_EIR: 0x%08x\n",
ENGINE_READ(engine, RING_EIR));
}
addr = intel_engine_get_active_head(engine);
drm_printf(m, "\tACTHD: 0x%08x_%08x\n",
upper_32_bits(addr), lower_32_bits(addr));
addr = intel_engine_get_last_batch_head(engine);
drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
upper_32_bits(addr), lower_32_bits(addr));
if (INTEL_GEN(dev_priv) >= 8)
addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
else if (INTEL_GEN(dev_priv) >= 4)
addr = ENGINE_READ(engine, RING_DMA_FADD);
else
addr = ENGINE_READ(engine, DMA_FADD_I8XX);
drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
upper_32_bits(addr), lower_32_bits(addr));
if (INTEL_GEN(dev_priv) >= 4) {
drm_printf(m, "\tIPEIR: 0x%08x\n",
ENGINE_READ(engine, RING_IPEIR));
drm_printf(m, "\tIPEHR: 0x%08x\n",
ENGINE_READ(engine, RING_IPEHR));
} else {
drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
}
if (HAS_EXECLISTS(dev_priv)) {
struct i915_request * const *port, *rq;
const u32 *hws =
&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
const u8 num_entries = execlists->csb_size;
unsigned int idx;
u8 read, write;
drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
yesno(test_bit(TASKLET_STATE_SCHED,
&engine->execlists.tasklet.state)),
enableddisabled(!atomic_read(&engine->execlists.tasklet.count)),
repr_timer(&engine->execlists.preempt),
repr_timer(&engine->execlists.timer));
read = execlists->csb_head;
write = READ_ONCE(*execlists->csb_write);
drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
read, write, num_entries);
if (read >= num_entries)
read = 0;
if (write >= num_entries)
write = 0;
if (read > write)
write += num_entries;
while (read < write) {
idx = ++read % num_entries;
drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
idx, hws[idx * 2], hws[idx * 2 + 1]);
}
execlists_active_lock_bh(execlists);
rcu_read_lock();
for (port = execlists->active; (rq = *port); port++) {
char hdr[160];
int len;
len = scnprintf(hdr, sizeof(hdr),
"\t\tActive[%d]: ccid:%08x%s%s, ",
(int)(port - execlists->active),
rq->context->lrc.ccid,
intel_context_is_closed(rq->context) ? "!" : "",
intel_context_is_banned(rq->context) ? "*" : "");
len += print_ring(hdr + len, sizeof(hdr) - len, rq);
scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
print_request(m, rq, hdr);
}
for (port = execlists->pending; (rq = *port); port++) {
char hdr[160];
int len;
len = scnprintf(hdr, sizeof(hdr),
"\t\tPending[%d]: ccid:%08x%s%s, ",
(int)(port - execlists->pending),
rq->context->lrc.ccid,
intel_context_is_closed(rq->context) ? "!" : "",
intel_context_is_banned(rq->context) ? "*" : "");
len += print_ring(hdr + len, sizeof(hdr) - len, rq);
scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
print_request(m, rq, hdr);
}
rcu_read_unlock();
execlists_active_unlock_bh(execlists);
} else if (INTEL_GEN(dev_priv) > 6) {
drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
ENGINE_READ(engine, RING_PP_DIR_BASE));
drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
ENGINE_READ(engine, RING_PP_DIR_DCLV));
}
}
static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
{
void *ring;
int size;
drm_printf(m,
"[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
rq->head, rq->postfix, rq->tail,
rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);
size = rq->tail - rq->head;
if (rq->tail < rq->head)
size += rq->ring->size;
ring = kmalloc(size, GFP_ATOMIC);
if (ring) {
const void *vaddr = rq->ring->vaddr;
unsigned int head = rq->head;
unsigned int len = 0;
if (rq->tail < head) {
len = rq->ring->size - head;
memcpy(ring, vaddr + head, len);
head = 0;
}
memcpy(ring + len, vaddr + head, size - len);
hexdump(m, ring, size);
kfree(ring);
}
}
static unsigned long list_count(struct list_head *list)
{
struct list_head *pos;
unsigned long count = 0;
list_for_each(pos, list)
count++;
return count;
}
void intel_engine_dump(struct intel_engine_cs *engine,
struct drm_printer *m,
const char *header, ...)
{
struct i915_gpu_error * const error = &engine->i915->gpu_error;
struct i915_request *rq;
intel_wakeref_t wakeref;
unsigned long flags;
ktime_t dummy;
if (header) {
va_list ap;
va_start(ap, header);
drm_vprintf(m, header, &ap);
va_end(ap);
}
if (intel_gt_is_wedged(engine->gt))
drm_printf(m, "*** WEDGED ***\n");
drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
drm_printf(m, "\tBarriers?: %s\n",
yesno(!llist_empty(&engine->barrier_tasks)));
drm_printf(m, "\tLatency: %luus\n",
ewma__engine_latency_read(&engine->latency));
if (intel_engine_supports_stats(engine))
drm_printf(m, "\tRuntime: %llums\n",
ktime_to_ms(intel_engine_get_busy_time(engine,
&dummy)));
drm_printf(m, "\tForcewake: %x domains, %d active\n",
engine->fw_domain, atomic_read(&engine->fw_active));
rcu_read_lock();
rq = READ_ONCE(engine->heartbeat.systole);
if (rq)
drm_printf(m, "\tHeartbeat: %d ms ago\n",
jiffies_to_msecs(jiffies - rq->emitted_jiffies));
rcu_read_unlock();
drm_printf(m, "\tReset count: %d (global %d)\n",
i915_reset_engine_count(error, engine),
i915_reset_count(error));
drm_printf(m, "\tRequests:\n");
spin_lock_irqsave(&engine->active.lock, flags);
rq = intel_engine_find_active_request(engine);
if (rq) {
struct intel_timeline *tl = get_timeline(rq);
print_request(m, rq, "\t\tactive ");
drm_printf(m, "\t\tring->start: 0x%08x\n",
i915_ggtt_offset(rq->ring->vma));
drm_printf(m, "\t\tring->head: 0x%08x\n",
rq->ring->head);
drm_printf(m, "\t\tring->tail: 0x%08x\n",
rq->ring->tail);
drm_printf(m, "\t\tring->emit: 0x%08x\n",
rq->ring->emit);
drm_printf(m, "\t\tring->space: 0x%08x\n",
rq->ring->space);
if (tl) {
drm_printf(m, "\t\tring->hwsp: 0x%08x\n",
tl->hwsp_offset);
intel_timeline_put(tl);
}
print_request_ring(m, rq);
if (rq->context->lrc_reg_state) {
drm_printf(m, "Logical Ring Context:\n");
hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
}
}
drm_printf(m, "\tOn hold?: %lu\n", list_count(&engine->active.hold));
spin_unlock_irqrestore(&engine->active.lock, flags);
drm_printf(m, "\tMMIO base: 0x%08x\n", engine->mmio_base);
wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
if (wakeref) {
intel_engine_print_registers(engine, m);
intel_runtime_pm_put(engine->uncore->rpm, wakeref);
} else {
drm_printf(m, "\tDevice is asleep; skipping register dump\n");
}
intel_execlists_show_requests(engine, m, print_request, 8);
drm_printf(m, "HWSP:\n");
hexdump(m, engine->status_page.addr, PAGE_SIZE);
drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
intel_engine_print_breadcrumbs(engine, m);
}
static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine,
ktime_t *now)
{
ktime_t total = engine->stats.total;
/*
* If the engine is executing something at the moment
* add it to the total.
*/
*now = ktime_get();
if (atomic_read(&engine->stats.active))
total = ktime_add(total, ktime_sub(*now, engine->stats.start));
return total;
}
/**
* intel_engine_get_busy_time() - Return current accumulated engine busyness
* @engine: engine to report on
* @now: monotonic timestamp of sampling
*
* Returns accumulated time @engine was busy since engine stats were enabled.
*/
ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
{
unsigned int seq;
ktime_t total;
do {
seq = read_seqbegin(&engine->stats.lock);
total = __intel_engine_get_busy_time(engine, now);
} while (read_seqretry(&engine->stats.lock, seq));
return total;
}
static bool match_ring(struct i915_request *rq)
{
u32 ring = ENGINE_READ(rq->engine, RING_START);
return ring == i915_ggtt_offset(rq->ring->vma);
}
struct i915_request *
intel_engine_find_active_request(struct intel_engine_cs *engine)
{
struct i915_request *request, *active = NULL;
/*
* We are called by the error capture, reset and to dump engine
* state at random points in time. In particular, note that neither is
* crucially ordered with an interrupt. After a hang, the GPU is dead
* and we assume that no more writes can happen (we waited long enough
* for all writes that were in transaction to be flushed) - adding an
* extra delay for a recent interrupt is pointless. Hence, we do
* not need an engine->irq_seqno_barrier() before the seqno reads.
* At all other times, we must assume the GPU is still running, but
* we only care about the snapshot of this moment.
*/
lockdep_assert_held(&engine->active.lock);
rcu_read_lock();
request = execlists_active(&engine->execlists);
if (request) {
struct intel_timeline *tl = request->context->timeline;
list_for_each_entry_from_reverse(request, &tl->requests, link) {
if (i915_request_completed(request))
break;
active = request;
}
}
rcu_read_unlock();
if (active)
return active;
list_for_each_entry(request, &engine->active.requests, sched.link) {
if (i915_request_completed(request))
continue;
if (!i915_request_started(request))
continue;
/* More than one preemptible request may match! */
if (!match_ring(request))
continue;
active = request;
break;
}
return active;
}
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "mock_engine.c"
#include "selftest_engine.c"
#include "selftest_engine_cs.c"
#endif