linux/fs/btrfs/ctree.c
Filipe Manana dbcc7d57bf btrfs: fix race when cloning extent buffer during rewind of an old root
While resolving backreferences, as part of a logical ino ioctl call or
fiemap, we can end up hitting a BUG_ON() when replaying tree mod log
operations of a root, triggering a stack trace like the following:

  ------------[ cut here ]------------
  kernel BUG at fs/btrfs/ctree.c:1210!
  invalid opcode: 0000 [#1] SMP KASAN PTI
  CPU: 1 PID: 19054 Comm: crawl_335 Tainted: G        W         5.11.0-2d11c0084b02-misc-next+ #89
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-1 04/01/2014
  RIP: 0010:__tree_mod_log_rewind+0x3b1/0x3c0
  Code: 05 48 8d 74 10 (...)
  RSP: 0018:ffffc90001eb70b8 EFLAGS: 00010297
  RAX: 0000000000000000 RBX: ffff88812344e400 RCX: ffffffffb28933b6
  RDX: 0000000000000007 RSI: dffffc0000000000 RDI: ffff88812344e42c
  RBP: ffffc90001eb7108 R08: 1ffff11020b60a20 R09: ffffed1020b60a20
  R10: ffff888105b050f9 R11: ffffed1020b60a1f R12: 00000000000000ee
  R13: ffff8880195520c0 R14: ffff8881bc958500 R15: ffff88812344e42c
  FS:  00007fd1955e8700(0000) GS:ffff8881f5600000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 00007efdb7928718 CR3: 000000010103a006 CR4: 0000000000170ee0
  Call Trace:
   btrfs_search_old_slot+0x265/0x10d0
   ? lock_acquired+0xbb/0x600
   ? btrfs_search_slot+0x1090/0x1090
   ? free_extent_buffer.part.61+0xd7/0x140
   ? free_extent_buffer+0x13/0x20
   resolve_indirect_refs+0x3e9/0xfc0
   ? lock_downgrade+0x3d0/0x3d0
   ? __kasan_check_read+0x11/0x20
   ? add_prelim_ref.part.11+0x150/0x150
   ? lock_downgrade+0x3d0/0x3d0
   ? __kasan_check_read+0x11/0x20
   ? lock_acquired+0xbb/0x600
   ? __kasan_check_write+0x14/0x20
   ? do_raw_spin_unlock+0xa8/0x140
   ? rb_insert_color+0x30/0x360
   ? prelim_ref_insert+0x12d/0x430
   find_parent_nodes+0x5c3/0x1830
   ? resolve_indirect_refs+0xfc0/0xfc0
   ? lock_release+0xc8/0x620
   ? fs_reclaim_acquire+0x67/0xf0
   ? lock_acquire+0xc7/0x510
   ? lock_downgrade+0x3d0/0x3d0
   ? lockdep_hardirqs_on_prepare+0x160/0x210
   ? lock_release+0xc8/0x620
   ? fs_reclaim_acquire+0x67/0xf0
   ? lock_acquire+0xc7/0x510
   ? poison_range+0x38/0x40
   ? unpoison_range+0x14/0x40
   ? trace_hardirqs_on+0x55/0x120
   btrfs_find_all_roots_safe+0x142/0x1e0
   ? find_parent_nodes+0x1830/0x1830
   ? btrfs_inode_flags_to_xflags+0x50/0x50
   iterate_extent_inodes+0x20e/0x580
   ? tree_backref_for_extent+0x230/0x230
   ? lock_downgrade+0x3d0/0x3d0
   ? read_extent_buffer+0xdd/0x110
   ? lock_downgrade+0x3d0/0x3d0
   ? __kasan_check_read+0x11/0x20
   ? lock_acquired+0xbb/0x600
   ? __kasan_check_write+0x14/0x20
   ? _raw_spin_unlock+0x22/0x30
   ? __kasan_check_write+0x14/0x20
   iterate_inodes_from_logical+0x129/0x170
   ? iterate_inodes_from_logical+0x129/0x170
   ? btrfs_inode_flags_to_xflags+0x50/0x50
   ? iterate_extent_inodes+0x580/0x580
   ? __vmalloc_node+0x92/0xb0
   ? init_data_container+0x34/0xb0
   ? init_data_container+0x34/0xb0
   ? kvmalloc_node+0x60/0x80
   btrfs_ioctl_logical_to_ino+0x158/0x230
   btrfs_ioctl+0x205e/0x4040
   ? __might_sleep+0x71/0xe0
   ? btrfs_ioctl_get_supported_features+0x30/0x30
   ? getrusage+0x4b6/0x9c0
   ? __kasan_check_read+0x11/0x20
   ? lock_release+0xc8/0x620
   ? __might_fault+0x64/0xd0
   ? lock_acquire+0xc7/0x510
   ? lock_downgrade+0x3d0/0x3d0
   ? lockdep_hardirqs_on_prepare+0x210/0x210
   ? lockdep_hardirqs_on_prepare+0x210/0x210
   ? __kasan_check_read+0x11/0x20
   ? do_vfs_ioctl+0xfc/0x9d0
   ? ioctl_file_clone+0xe0/0xe0
   ? lock_downgrade+0x3d0/0x3d0
   ? lockdep_hardirqs_on_prepare+0x210/0x210
   ? __kasan_check_read+0x11/0x20
   ? lock_release+0xc8/0x620
   ? __task_pid_nr_ns+0xd3/0x250
   ? lock_acquire+0xc7/0x510
   ? __fget_files+0x160/0x230
   ? __fget_light+0xf2/0x110
   __x64_sys_ioctl+0xc3/0x100
   do_syscall_64+0x37/0x80
   entry_SYSCALL_64_after_hwframe+0x44/0xa9
  RIP: 0033:0x7fd1976e2427
  Code: 00 00 90 48 8b 05 (...)
  RSP: 002b:00007fd1955e5cf8 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
  RAX: ffffffffffffffda RBX: 00007fd1955e5f40 RCX: 00007fd1976e2427
  RDX: 00007fd1955e5f48 RSI: 00000000c038943b RDI: 0000000000000004
  RBP: 0000000001000000 R08: 0000000000000000 R09: 00007fd1955e6120
  R10: 0000557835366b00 R11: 0000000000000246 R12: 0000000000000004
  R13: 00007fd1955e5f48 R14: 00007fd1955e5f40 R15: 00007fd1955e5ef8
  Modules linked in:
  ---[ end trace ec8931a1c36e57be ]---

  (gdb) l *(__tree_mod_log_rewind+0x3b1)
  0xffffffff81893521 is in __tree_mod_log_rewind (fs/btrfs/ctree.c:1210).
  1205                     * the modification. as we're going backwards, we do the
  1206                     * opposite of each operation here.
  1207                     */
  1208                    switch (tm->op) {
  1209                    case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
  1210                            BUG_ON(tm->slot < n);
  1211                            fallthrough;
  1212                    case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
  1213                    case MOD_LOG_KEY_REMOVE:
  1214                            btrfs_set_node_key(eb, &tm->key, tm->slot);

Here's what happens to hit that BUG_ON():

1) We have one tree mod log user (through fiemap or the logical ino ioctl),
   with a sequence number of 1, so we have fs_info->tree_mod_seq == 1;

2) Another task is at ctree.c:balance_level() and we have eb X currently as
   the root of the tree, and we promote its single child, eb Y, as the new
   root.

   Then, at ctree.c:balance_level(), we call:

      tree_mod_log_insert_root(eb X, eb Y, 1);

3) At tree_mod_log_insert_root() we create tree mod log elements for each
   slot of eb X, of operation type MOD_LOG_KEY_REMOVE_WHILE_FREEING each
   with a ->logical pointing to ebX->start. These are placed in an array
   named tm_list.
   Lets assume there are N elements (N pointers in eb X);

4) Then, still at tree_mod_log_insert_root(), we create a tree mod log
   element of operation type MOD_LOG_ROOT_REPLACE, ->logical set to
   ebY->start, ->old_root.logical set to ebX->start, ->old_root.level set
   to the level of eb X and ->generation set to the generation of eb X;

5) Then tree_mod_log_insert_root() calls tree_mod_log_free_eb() with
   tm_list as argument. After that, tree_mod_log_free_eb() calls
   __tree_mod_log_insert() for each member of tm_list in reverse order,
   from highest slot in eb X, slot N - 1, to slot 0 of eb X;

6) __tree_mod_log_insert() sets the sequence number of each given tree mod
   log operation - it increments fs_info->tree_mod_seq and sets
   fs_info->tree_mod_seq as the sequence number of the given tree mod log
   operation.

   This means that for the tm_list created at tree_mod_log_insert_root(),
   the element corresponding to slot 0 of eb X has the highest sequence
   number (1 + N), and the element corresponding to the last slot has the
   lowest sequence number (2);

7) Then, after inserting tm_list's elements into the tree mod log rbtree,
   the MOD_LOG_ROOT_REPLACE element is inserted, which gets the highest
   sequence number, which is N + 2;

8) Back to ctree.c:balance_level(), we free eb X by calling
   btrfs_free_tree_block() on it. Because eb X was created in the current
   transaction, has no other references and writeback did not happen for
   it, we add it back to the free space cache/tree;

9) Later some other task T allocates the metadata extent from eb X, since
   it is marked as free space in the space cache/tree, and uses it as a
   node for some other btree;

10) The tree mod log user task calls btrfs_search_old_slot(), which calls
    get_old_root(), and finally that calls __tree_mod_log_oldest_root()
    with time_seq == 1 and eb_root == eb Y;

11) First iteration of the while loop finds the tree mod log element with
    sequence number N + 2, for the logical address of eb Y and of type
    MOD_LOG_ROOT_REPLACE;

12) Because the operation type is MOD_LOG_ROOT_REPLACE, we don't break out
    of the loop, and set root_logical to point to tm->old_root.logical
    which corresponds to the logical address of eb X;

13) On the next iteration of the while loop, the call to
    tree_mod_log_search_oldest() returns the smallest tree mod log element
    for the logical address of eb X, which has a sequence number of 2, an
    operation type of MOD_LOG_KEY_REMOVE_WHILE_FREEING and corresponds to
    the old slot N - 1 of eb X (eb X had N items in it before being freed);

14) We then break out of the while loop and return the tree mod log operation
    of type MOD_LOG_ROOT_REPLACE (eb Y), and not the one for slot N - 1 of
    eb X, to get_old_root();

15) At get_old_root(), we process the MOD_LOG_ROOT_REPLACE operation
    and set "logical" to the logical address of eb X, which was the old
    root. We then call tree_mod_log_search() passing it the logical
    address of eb X and time_seq == 1;

16) Then before calling tree_mod_log_search(), task T adds a key to eb X,
    which results in adding a tree mod log operation of type
    MOD_LOG_KEY_ADD to the tree mod log - this is done at
    ctree.c:insert_ptr() - but after adding the tree mod log operation
    and before updating the number of items in eb X from 0 to 1...

17) The task at get_old_root() calls tree_mod_log_search() and gets the
    tree mod log operation of type MOD_LOG_KEY_ADD just added by task T.
    Then it enters the following if branch:

    if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
       (...)
    } (...)

    Calls read_tree_block() for eb X, which gets a reference on eb X but
    does not lock it - task T has it locked.
    Then it clones eb X while it has nritems set to 0 in its header, before
    task T sets nritems to 1 in eb X's header. From hereupon we use the
    clone of eb X which no other task has access to;

18) Then we call __tree_mod_log_rewind(), passing it the MOD_LOG_KEY_ADD
    mod log operation we just got from tree_mod_log_search() in the
    previous step and the cloned version of eb X;

19) At __tree_mod_log_rewind(), we set the local variable "n" to the number
    of items set in eb X's clone, which is 0. Then we enter the while loop,
    and in its first iteration we process the MOD_LOG_KEY_ADD operation,
    which just decrements "n" from 0 to (u32)-1, since "n" is declared with
    a type of u32. At the end of this iteration we call rb_next() to find the
    next tree mod log operation for eb X, that gives us the mod log operation
    of type MOD_LOG_KEY_REMOVE_WHILE_FREEING, for slot 0, with a sequence
    number of N + 1 (steps 3 to 6);

20) Then we go back to the top of the while loop and trigger the following
    BUG_ON():

        (...)
        switch (tm->op) {
        case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
                 BUG_ON(tm->slot < n);
                 fallthrough;
        (...)

    Because "n" has a value of (u32)-1 (4294967295) and tm->slot is 0.

Fix this by taking a read lock on the extent buffer before cloning it at
ctree.c:get_old_root(). This should be done regardless of the extent
buffer having been freed and reused, as a concurrent task might be
modifying it (while holding a write lock on it).

Reported-by: Zygo Blaxell <ce3g8jdj@umail.furryterror.org>
Link: https://lore.kernel.org/linux-btrfs/20210227155037.GN28049@hungrycats.org/
Fixes: 834328a8493079 ("Btrfs: tree mod log's old roots could still be part of the tree")
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-03-16 20:32:17 +01:00

5518 lines
142 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2007,2008 Oracle. All rights reserved.
*/
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/rbtree.h>
#include <linux/mm.h>
#include "ctree.h"
#include "disk-io.h"
#include "transaction.h"
#include "print-tree.h"
#include "locking.h"
#include "volumes.h"
#include "qgroup.h"
static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
*root, struct btrfs_path *path, int level);
static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
const struct btrfs_key *ins_key, struct btrfs_path *path,
int data_size, int extend);
static int push_node_left(struct btrfs_trans_handle *trans,
struct extent_buffer *dst,
struct extent_buffer *src, int empty);
static int balance_node_right(struct btrfs_trans_handle *trans,
struct extent_buffer *dst_buf,
struct extent_buffer *src_buf);
static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
int level, int slot);
static const struct btrfs_csums {
u16 size;
const char name[10];
const char driver[12];
} btrfs_csums[] = {
[BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
[BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
[BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
[BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
.driver = "blake2b-256" },
};
int btrfs_super_csum_size(const struct btrfs_super_block *s)
{
u16 t = btrfs_super_csum_type(s);
/*
* csum type is validated at mount time
*/
return btrfs_csums[t].size;
}
const char *btrfs_super_csum_name(u16 csum_type)
{
/* csum type is validated at mount time */
return btrfs_csums[csum_type].name;
}
/*
* Return driver name if defined, otherwise the name that's also a valid driver
* name
*/
const char *btrfs_super_csum_driver(u16 csum_type)
{
/* csum type is validated at mount time */
return btrfs_csums[csum_type].driver[0] ?
btrfs_csums[csum_type].driver :
btrfs_csums[csum_type].name;
}
size_t __attribute_const__ btrfs_get_num_csums(void)
{
return ARRAY_SIZE(btrfs_csums);
}
struct btrfs_path *btrfs_alloc_path(void)
{
return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
}
/* this also releases the path */
void btrfs_free_path(struct btrfs_path *p)
{
if (!p)
return;
btrfs_release_path(p);
kmem_cache_free(btrfs_path_cachep, p);
}
/*
* path release drops references on the extent buffers in the path
* and it drops any locks held by this path
*
* It is safe to call this on paths that no locks or extent buffers held.
*/
noinline void btrfs_release_path(struct btrfs_path *p)
{
int i;
for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
p->slots[i] = 0;
if (!p->nodes[i])
continue;
if (p->locks[i]) {
btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
p->locks[i] = 0;
}
free_extent_buffer(p->nodes[i]);
p->nodes[i] = NULL;
}
}
/*
* safely gets a reference on the root node of a tree. A lock
* is not taken, so a concurrent writer may put a different node
* at the root of the tree. See btrfs_lock_root_node for the
* looping required.
*
* The extent buffer returned by this has a reference taken, so
* it won't disappear. It may stop being the root of the tree
* at any time because there are no locks held.
*/
struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
{
struct extent_buffer *eb;
while (1) {
rcu_read_lock();
eb = rcu_dereference(root->node);
/*
* RCU really hurts here, we could free up the root node because
* it was COWed but we may not get the new root node yet so do
* the inc_not_zero dance and if it doesn't work then
* synchronize_rcu and try again.
*/
if (atomic_inc_not_zero(&eb->refs)) {
rcu_read_unlock();
break;
}
rcu_read_unlock();
synchronize_rcu();
}
return eb;
}
/*
* Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
* just get put onto a simple dirty list. Transaction walks this list to make
* sure they get properly updated on disk.
*/
static void add_root_to_dirty_list(struct btrfs_root *root)
{
struct btrfs_fs_info *fs_info = root->fs_info;
if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
!test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
return;
spin_lock(&fs_info->trans_lock);
if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
/* Want the extent tree to be the last on the list */
if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
list_move_tail(&root->dirty_list,
&fs_info->dirty_cowonly_roots);
else
list_move(&root->dirty_list,
&fs_info->dirty_cowonly_roots);
}
spin_unlock(&fs_info->trans_lock);
}
/*
* used by snapshot creation to make a copy of a root for a tree with
* a given objectid. The buffer with the new root node is returned in
* cow_ret, and this func returns zero on success or a negative error code.
*/
int btrfs_copy_root(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct extent_buffer *buf,
struct extent_buffer **cow_ret, u64 new_root_objectid)
{
struct btrfs_fs_info *fs_info = root->fs_info;
struct extent_buffer *cow;
int ret = 0;
int level;
struct btrfs_disk_key disk_key;
WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
trans->transid != fs_info->running_transaction->transid);
WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
trans->transid != root->last_trans);
level = btrfs_header_level(buf);
if (level == 0)
btrfs_item_key(buf, &disk_key, 0);
else
btrfs_node_key(buf, &disk_key, 0);
cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
&disk_key, level, buf->start, 0,
BTRFS_NESTING_NEW_ROOT);
if (IS_ERR(cow))
return PTR_ERR(cow);
copy_extent_buffer_full(cow, buf);
btrfs_set_header_bytenr(cow, cow->start);
btrfs_set_header_generation(cow, trans->transid);
btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
BTRFS_HEADER_FLAG_RELOC);
if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
else
btrfs_set_header_owner(cow, new_root_objectid);
write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
WARN_ON(btrfs_header_generation(buf) > trans->transid);
if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
ret = btrfs_inc_ref(trans, root, cow, 1);
else
ret = btrfs_inc_ref(trans, root, cow, 0);
if (ret) {
btrfs_tree_unlock(cow);
free_extent_buffer(cow);
btrfs_abort_transaction(trans, ret);
return ret;
}
btrfs_mark_buffer_dirty(cow);
*cow_ret = cow;
return 0;
}
enum mod_log_op {
MOD_LOG_KEY_REPLACE,
MOD_LOG_KEY_ADD,
MOD_LOG_KEY_REMOVE,
MOD_LOG_KEY_REMOVE_WHILE_FREEING,
MOD_LOG_KEY_REMOVE_WHILE_MOVING,
MOD_LOG_MOVE_KEYS,
MOD_LOG_ROOT_REPLACE,
};
struct tree_mod_root {
u64 logical;
u8 level;
};
struct tree_mod_elem {
struct rb_node node;
u64 logical;
u64 seq;
enum mod_log_op op;
/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
int slot;
/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
u64 generation;
/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
struct btrfs_disk_key key;
u64 blockptr;
/* this is used for op == MOD_LOG_MOVE_KEYS */
struct {
int dst_slot;
int nr_items;
} move;
/* this is used for op == MOD_LOG_ROOT_REPLACE */
struct tree_mod_root old_root;
};
/*
* Pull a new tree mod seq number for our operation.
*/
static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
{
return atomic64_inc_return(&fs_info->tree_mod_seq);
}
/*
* This adds a new blocker to the tree mod log's blocker list if the @elem
* passed does not already have a sequence number set. So when a caller expects
* to record tree modifications, it should ensure to set elem->seq to zero
* before calling btrfs_get_tree_mod_seq.
* Returns a fresh, unused tree log modification sequence number, even if no new
* blocker was added.
*/
u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
struct seq_list *elem)
{
write_lock(&fs_info->tree_mod_log_lock);
if (!elem->seq) {
elem->seq = btrfs_inc_tree_mod_seq(fs_info);
list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
}
write_unlock(&fs_info->tree_mod_log_lock);
return elem->seq;
}
void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
struct seq_list *elem)
{
struct rb_root *tm_root;
struct rb_node *node;
struct rb_node *next;
struct tree_mod_elem *tm;
u64 min_seq = (u64)-1;
u64 seq_putting = elem->seq;
if (!seq_putting)
return;
write_lock(&fs_info->tree_mod_log_lock);
list_del(&elem->list);
elem->seq = 0;
if (!list_empty(&fs_info->tree_mod_seq_list)) {
struct seq_list *first;
first = list_first_entry(&fs_info->tree_mod_seq_list,
struct seq_list, list);
if (seq_putting > first->seq) {
/*
* Blocker with lower sequence number exists, we
* cannot remove anything from the log.
*/
write_unlock(&fs_info->tree_mod_log_lock);
return;
}
min_seq = first->seq;
}
/*
* anything that's lower than the lowest existing (read: blocked)
* sequence number can be removed from the tree.
*/
tm_root = &fs_info->tree_mod_log;
for (node = rb_first(tm_root); node; node = next) {
next = rb_next(node);
tm = rb_entry(node, struct tree_mod_elem, node);
if (tm->seq >= min_seq)
continue;
rb_erase(node, tm_root);
kfree(tm);
}
write_unlock(&fs_info->tree_mod_log_lock);
}
/*
* key order of the log:
* node/leaf start address -> sequence
*
* The 'start address' is the logical address of the *new* root node
* for root replace operations, or the logical address of the affected
* block for all other operations.
*/
static noinline int
__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
{
struct rb_root *tm_root;
struct rb_node **new;
struct rb_node *parent = NULL;
struct tree_mod_elem *cur;
lockdep_assert_held_write(&fs_info->tree_mod_log_lock);
tm->seq = btrfs_inc_tree_mod_seq(fs_info);
tm_root = &fs_info->tree_mod_log;
new = &tm_root->rb_node;
while (*new) {
cur = rb_entry(*new, struct tree_mod_elem, node);
parent = *new;
if (cur->logical < tm->logical)
new = &((*new)->rb_left);
else if (cur->logical > tm->logical)
new = &((*new)->rb_right);
else if (cur->seq < tm->seq)
new = &((*new)->rb_left);
else if (cur->seq > tm->seq)
new = &((*new)->rb_right);
else
return -EEXIST;
}
rb_link_node(&tm->node, parent, new);
rb_insert_color(&tm->node, tm_root);
return 0;
}
/*
* Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
* returns zero with the tree_mod_log_lock acquired. The caller must hold
* this until all tree mod log insertions are recorded in the rb tree and then
* write unlock fs_info::tree_mod_log_lock.
*/
static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
struct extent_buffer *eb) {
smp_mb();
if (list_empty(&(fs_info)->tree_mod_seq_list))
return 1;
if (eb && btrfs_header_level(eb) == 0)
return 1;
write_lock(&fs_info->tree_mod_log_lock);
if (list_empty(&(fs_info)->tree_mod_seq_list)) {
write_unlock(&fs_info->tree_mod_log_lock);
return 1;
}
return 0;
}
/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
struct extent_buffer *eb)
{
smp_mb();
if (list_empty(&(fs_info)->tree_mod_seq_list))
return 0;
if (eb && btrfs_header_level(eb) == 0)
return 0;
return 1;
}
static struct tree_mod_elem *
alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
enum mod_log_op op, gfp_t flags)
{
struct tree_mod_elem *tm;
tm = kzalloc(sizeof(*tm), flags);
if (!tm)
return NULL;
tm->logical = eb->start;
if (op != MOD_LOG_KEY_ADD) {
btrfs_node_key(eb, &tm->key, slot);
tm->blockptr = btrfs_node_blockptr(eb, slot);
}
tm->op = op;
tm->slot = slot;
tm->generation = btrfs_node_ptr_generation(eb, slot);
RB_CLEAR_NODE(&tm->node);
return tm;
}
static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
enum mod_log_op op, gfp_t flags)
{
struct tree_mod_elem *tm;
int ret;
if (!tree_mod_need_log(eb->fs_info, eb))
return 0;
tm = alloc_tree_mod_elem(eb, slot, op, flags);
if (!tm)
return -ENOMEM;
if (tree_mod_dont_log(eb->fs_info, eb)) {
kfree(tm);
return 0;
}
ret = __tree_mod_log_insert(eb->fs_info, tm);
write_unlock(&eb->fs_info->tree_mod_log_lock);
if (ret)
kfree(tm);
return ret;
}
static noinline int tree_mod_log_insert_move(struct extent_buffer *eb,
int dst_slot, int src_slot, int nr_items)
{
struct tree_mod_elem *tm = NULL;
struct tree_mod_elem **tm_list = NULL;
int ret = 0;
int i;
int locked = 0;
if (!tree_mod_need_log(eb->fs_info, eb))
return 0;
tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
if (!tm_list)
return -ENOMEM;
tm = kzalloc(sizeof(*tm), GFP_NOFS);
if (!tm) {
ret = -ENOMEM;
goto free_tms;
}
tm->logical = eb->start;
tm->slot = src_slot;
tm->move.dst_slot = dst_slot;
tm->move.nr_items = nr_items;
tm->op = MOD_LOG_MOVE_KEYS;
for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
if (!tm_list[i]) {
ret = -ENOMEM;
goto free_tms;
}
}
if (tree_mod_dont_log(eb->fs_info, eb))
goto free_tms;
locked = 1;
/*
* When we override something during the move, we log these removals.
* This can only happen when we move towards the beginning of the
* buffer, i.e. dst_slot < src_slot.
*/
for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]);
if (ret)
goto free_tms;
}
ret = __tree_mod_log_insert(eb->fs_info, tm);
if (ret)
goto free_tms;
write_unlock(&eb->fs_info->tree_mod_log_lock);
kfree(tm_list);
return 0;
free_tms:
for (i = 0; i < nr_items; i++) {
if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
kfree(tm_list[i]);
}
if (locked)
write_unlock(&eb->fs_info->tree_mod_log_lock);
kfree(tm_list);
kfree(tm);
return ret;
}
static inline int
__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
struct tree_mod_elem **tm_list,
int nritems)
{
int i, j;
int ret;
for (i = nritems - 1; i >= 0; i--) {
ret = __tree_mod_log_insert(fs_info, tm_list[i]);
if (ret) {
for (j = nritems - 1; j > i; j--)
rb_erase(&tm_list[j]->node,
&fs_info->tree_mod_log);
return ret;
}
}
return 0;
}
static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root,
struct extent_buffer *new_root, int log_removal)
{
struct btrfs_fs_info *fs_info = old_root->fs_info;
struct tree_mod_elem *tm = NULL;
struct tree_mod_elem **tm_list = NULL;
int nritems = 0;
int ret = 0;
int i;
if (!tree_mod_need_log(fs_info, NULL))
return 0;
if (log_removal && btrfs_header_level(old_root) > 0) {
nritems = btrfs_header_nritems(old_root);
tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
GFP_NOFS);
if (!tm_list) {
ret = -ENOMEM;
goto free_tms;
}
for (i = 0; i < nritems; i++) {
tm_list[i] = alloc_tree_mod_elem(old_root, i,
MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
if (!tm_list[i]) {
ret = -ENOMEM;
goto free_tms;
}
}
}
tm = kzalloc(sizeof(*tm), GFP_NOFS);
if (!tm) {
ret = -ENOMEM;
goto free_tms;
}
tm->logical = new_root->start;
tm->old_root.logical = old_root->start;
tm->old_root.level = btrfs_header_level(old_root);
tm->generation = btrfs_header_generation(old_root);
tm->op = MOD_LOG_ROOT_REPLACE;
if (tree_mod_dont_log(fs_info, NULL))
goto free_tms;
if (tm_list)
ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
if (!ret)
ret = __tree_mod_log_insert(fs_info, tm);
write_unlock(&fs_info->tree_mod_log_lock);
if (ret)
goto free_tms;
kfree(tm_list);
return ret;
free_tms:
if (tm_list) {
for (i = 0; i < nritems; i++)
kfree(tm_list[i]);
kfree(tm_list);
}
kfree(tm);
return ret;
}
static struct tree_mod_elem *
__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
int smallest)
{
struct rb_root *tm_root;
struct rb_node *node;
struct tree_mod_elem *cur = NULL;
struct tree_mod_elem *found = NULL;
read_lock(&fs_info->tree_mod_log_lock);
tm_root = &fs_info->tree_mod_log;
node = tm_root->rb_node;
while (node) {
cur = rb_entry(node, struct tree_mod_elem, node);
if (cur->logical < start) {
node = node->rb_left;
} else if (cur->logical > start) {
node = node->rb_right;
} else if (cur->seq < min_seq) {
node = node->rb_left;
} else if (!smallest) {
/* we want the node with the highest seq */
if (found)
BUG_ON(found->seq > cur->seq);
found = cur;
node = node->rb_left;
} else if (cur->seq > min_seq) {
/* we want the node with the smallest seq */
if (found)
BUG_ON(found->seq < cur->seq);
found = cur;
node = node->rb_right;
} else {
found = cur;
break;
}
}
read_unlock(&fs_info->tree_mod_log_lock);
return found;
}
/*
* this returns the element from the log with the smallest time sequence
* value that's in the log (the oldest log item). any element with a time
* sequence lower than min_seq will be ignored.
*/
static struct tree_mod_elem *
tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
u64 min_seq)
{
return __tree_mod_log_search(fs_info, start, min_seq, 1);
}
/*
* this returns the element from the log with the largest time sequence
* value that's in the log (the most recent log item). any element with
* a time sequence lower than min_seq will be ignored.
*/
static struct tree_mod_elem *
tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
{
return __tree_mod_log_search(fs_info, start, min_seq, 0);
}
static noinline int tree_mod_log_eb_copy(struct extent_buffer *dst,
struct extent_buffer *src, unsigned long dst_offset,
unsigned long src_offset, int nr_items)
{
struct btrfs_fs_info *fs_info = dst->fs_info;
int ret = 0;
struct tree_mod_elem **tm_list = NULL;
struct tree_mod_elem **tm_list_add, **tm_list_rem;
int i;
int locked = 0;
if (!tree_mod_need_log(fs_info, NULL))
return 0;
if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
return 0;
tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
GFP_NOFS);
if (!tm_list)
return -ENOMEM;
tm_list_add = tm_list;
tm_list_rem = tm_list + nr_items;
for (i = 0; i < nr_items; i++) {
tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
MOD_LOG_KEY_REMOVE, GFP_NOFS);
if (!tm_list_rem[i]) {
ret = -ENOMEM;
goto free_tms;
}
tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
MOD_LOG_KEY_ADD, GFP_NOFS);
if (!tm_list_add[i]) {
ret = -ENOMEM;
goto free_tms;
}
}
if (tree_mod_dont_log(fs_info, NULL))
goto free_tms;
locked = 1;
for (i = 0; i < nr_items; i++) {
ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
if (ret)
goto free_tms;
ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
if (ret)
goto free_tms;
}
write_unlock(&fs_info->tree_mod_log_lock);
kfree(tm_list);
return 0;
free_tms:
for (i = 0; i < nr_items * 2; i++) {
if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
kfree(tm_list[i]);
}
if (locked)
write_unlock(&fs_info->tree_mod_log_lock);
kfree(tm_list);
return ret;
}
static noinline int tree_mod_log_free_eb(struct extent_buffer *eb)
{
struct tree_mod_elem **tm_list = NULL;
int nritems = 0;
int i;
int ret = 0;
if (btrfs_header_level(eb) == 0)
return 0;
if (!tree_mod_need_log(eb->fs_info, NULL))
return 0;
nritems = btrfs_header_nritems(eb);
tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
if (!tm_list)
return -ENOMEM;
for (i = 0; i < nritems; i++) {
tm_list[i] = alloc_tree_mod_elem(eb, i,
MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
if (!tm_list[i]) {
ret = -ENOMEM;
goto free_tms;
}
}
if (tree_mod_dont_log(eb->fs_info, eb))
goto free_tms;
ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
write_unlock(&eb->fs_info->tree_mod_log_lock);
if (ret)
goto free_tms;
kfree(tm_list);
return 0;
free_tms:
for (i = 0; i < nritems; i++)
kfree(tm_list[i]);
kfree(tm_list);
return ret;
}
/*
* check if the tree block can be shared by multiple trees
*/
int btrfs_block_can_be_shared(struct btrfs_root *root,
struct extent_buffer *buf)
{
/*
* Tree blocks not in shareable trees and tree roots are never shared.
* If a block was allocated after the last snapshot and the block was
* not allocated by tree relocation, we know the block is not shared.
*/
if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
buf != root->node && buf != root->commit_root &&
(btrfs_header_generation(buf) <=
btrfs_root_last_snapshot(&root->root_item) ||
btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
return 1;
return 0;
}
static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct extent_buffer *buf,
struct extent_buffer *cow,
int *last_ref)
{
struct btrfs_fs_info *fs_info = root->fs_info;
u64 refs;
u64 owner;
u64 flags;
u64 new_flags = 0;
int ret;
/*
* Backrefs update rules:
*
* Always use full backrefs for extent pointers in tree block
* allocated by tree relocation.
*
* If a shared tree block is no longer referenced by its owner
* tree (btrfs_header_owner(buf) == root->root_key.objectid),
* use full backrefs for extent pointers in tree block.
*
* If a tree block is been relocating
* (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
* use full backrefs for extent pointers in tree block.
* The reason for this is some operations (such as drop tree)
* are only allowed for blocks use full backrefs.
*/
if (btrfs_block_can_be_shared(root, buf)) {
ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
btrfs_header_level(buf), 1,
&refs, &flags);
if (ret)
return ret;
if (refs == 0) {
ret = -EROFS;
btrfs_handle_fs_error(fs_info, ret, NULL);
return ret;
}
} else {
refs = 1;
if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
else
flags = 0;
}
owner = btrfs_header_owner(buf);
BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
if (refs > 1) {
if ((owner == root->root_key.objectid ||
root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
ret = btrfs_inc_ref(trans, root, buf, 1);
if (ret)
return ret;
if (root->root_key.objectid ==
BTRFS_TREE_RELOC_OBJECTID) {
ret = btrfs_dec_ref(trans, root, buf, 0);
if (ret)
return ret;
ret = btrfs_inc_ref(trans, root, cow, 1);
if (ret)
return ret;
}
new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
} else {
if (root->root_key.objectid ==
BTRFS_TREE_RELOC_OBJECTID)
ret = btrfs_inc_ref(trans, root, cow, 1);
else
ret = btrfs_inc_ref(trans, root, cow, 0);
if (ret)
return ret;
}
if (new_flags != 0) {
int level = btrfs_header_level(buf);
ret = btrfs_set_disk_extent_flags(trans, buf,
new_flags, level, 0);
if (ret)
return ret;
}
} else {
if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
if (root->root_key.objectid ==
BTRFS_TREE_RELOC_OBJECTID)
ret = btrfs_inc_ref(trans, root, cow, 1);
else
ret = btrfs_inc_ref(trans, root, cow, 0);
if (ret)
return ret;
ret = btrfs_dec_ref(trans, root, buf, 1);
if (ret)
return ret;
}
btrfs_clean_tree_block(buf);
*last_ref = 1;
}
return 0;
}
static struct extent_buffer *alloc_tree_block_no_bg_flush(
struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 parent_start,
const struct btrfs_disk_key *disk_key,
int level,
u64 hint,
u64 empty_size,
enum btrfs_lock_nesting nest)
{
struct btrfs_fs_info *fs_info = root->fs_info;
struct extent_buffer *ret;
/*
* If we are COWing a node/leaf from the extent, chunk, device or free
* space trees, make sure that we do not finish block group creation of
* pending block groups. We do this to avoid a deadlock.
* COWing can result in allocation of a new chunk, and flushing pending
* block groups (btrfs_create_pending_block_groups()) can be triggered
* when finishing allocation of a new chunk. Creation of a pending block
* group modifies the extent, chunk, device and free space trees,
* therefore we could deadlock with ourselves since we are holding a
* lock on an extent buffer that btrfs_create_pending_block_groups() may
* try to COW later.
* For similar reasons, we also need to delay flushing pending block
* groups when splitting a leaf or node, from one of those trees, since
* we are holding a write lock on it and its parent or when inserting a
* new root node for one of those trees.
*/
if (root == fs_info->extent_root ||
root == fs_info->chunk_root ||
root == fs_info->dev_root ||
root == fs_info->free_space_root)
trans->can_flush_pending_bgs = false;
ret = btrfs_alloc_tree_block(trans, root, parent_start,
root->root_key.objectid, disk_key, level,
hint, empty_size, nest);
trans->can_flush_pending_bgs = true;
return ret;
}
/*
* does the dirty work in cow of a single block. The parent block (if
* supplied) is updated to point to the new cow copy. The new buffer is marked
* dirty and returned locked. If you modify the block it needs to be marked
* dirty again.
*
* search_start -- an allocation hint for the new block
*
* empty_size -- a hint that you plan on doing more cow. This is the size in
* bytes the allocator should try to find free next to the block it returns.
* This is just a hint and may be ignored by the allocator.
*/
static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct extent_buffer *buf,
struct extent_buffer *parent, int parent_slot,
struct extent_buffer **cow_ret,
u64 search_start, u64 empty_size,
enum btrfs_lock_nesting nest)
{
struct btrfs_fs_info *fs_info = root->fs_info;
struct btrfs_disk_key disk_key;
struct extent_buffer *cow;
int level, ret;
int last_ref = 0;
int unlock_orig = 0;
u64 parent_start = 0;
if (*cow_ret == buf)
unlock_orig = 1;
btrfs_assert_tree_locked(buf);
WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
trans->transid != fs_info->running_transaction->transid);
WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
trans->transid != root->last_trans);
level = btrfs_header_level(buf);
if (level == 0)
btrfs_item_key(buf, &disk_key, 0);
else
btrfs_node_key(buf, &disk_key, 0);
if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
parent_start = parent->start;
cow = alloc_tree_block_no_bg_flush(trans, root, parent_start, &disk_key,
level, search_start, empty_size, nest);
if (IS_ERR(cow))
return PTR_ERR(cow);
/* cow is set to blocking by btrfs_init_new_buffer */
copy_extent_buffer_full(cow, buf);
btrfs_set_header_bytenr(cow, cow->start);
btrfs_set_header_generation(cow, trans->transid);
btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
BTRFS_HEADER_FLAG_RELOC);
if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
else
btrfs_set_header_owner(cow, root->root_key.objectid);
write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
if (ret) {
btrfs_tree_unlock(cow);
free_extent_buffer(cow);
btrfs_abort_transaction(trans, ret);
return ret;
}
if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
ret = btrfs_reloc_cow_block(trans, root, buf, cow);
if (ret) {
btrfs_tree_unlock(cow);
free_extent_buffer(cow);
btrfs_abort_transaction(trans, ret);
return ret;
}
}
if (buf == root->node) {
WARN_ON(parent && parent != buf);
if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
parent_start = buf->start;
atomic_inc(&cow->refs);
ret = tree_mod_log_insert_root(root->node, cow, 1);
BUG_ON(ret < 0);
rcu_assign_pointer(root->node, cow);
btrfs_free_tree_block(trans, root, buf, parent_start,
last_ref);
free_extent_buffer(buf);
add_root_to_dirty_list(root);
} else {
WARN_ON(trans->transid != btrfs_header_generation(parent));
tree_mod_log_insert_key(parent, parent_slot,
MOD_LOG_KEY_REPLACE, GFP_NOFS);
btrfs_set_node_blockptr(parent, parent_slot,
cow->start);
btrfs_set_node_ptr_generation(parent, parent_slot,
trans->transid);
btrfs_mark_buffer_dirty(parent);
if (last_ref) {
ret = tree_mod_log_free_eb(buf);
if (ret) {
btrfs_tree_unlock(cow);
free_extent_buffer(cow);
btrfs_abort_transaction(trans, ret);
return ret;
}
}
btrfs_free_tree_block(trans, root, buf, parent_start,
last_ref);
}
if (unlock_orig)
btrfs_tree_unlock(buf);
free_extent_buffer_stale(buf);
btrfs_mark_buffer_dirty(cow);
*cow_ret = cow;
return 0;
}
/*
* returns the logical address of the oldest predecessor of the given root.
* entries older than time_seq are ignored.
*/
static struct tree_mod_elem *__tree_mod_log_oldest_root(
struct extent_buffer *eb_root, u64 time_seq)
{
struct tree_mod_elem *tm;
struct tree_mod_elem *found = NULL;
u64 root_logical = eb_root->start;
int looped = 0;
if (!time_seq)
return NULL;
/*
* the very last operation that's logged for a root is the
* replacement operation (if it is replaced at all). this has
* the logical address of the *new* root, making it the very
* first operation that's logged for this root.
*/
while (1) {
tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
time_seq);
if (!looped && !tm)
return NULL;
/*
* if there are no tree operation for the oldest root, we simply
* return it. this should only happen if that (old) root is at
* level 0.
*/
if (!tm)
break;
/*
* if there's an operation that's not a root replacement, we
* found the oldest version of our root. normally, we'll find a
* MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
*/
if (tm->op != MOD_LOG_ROOT_REPLACE)
break;
found = tm;
root_logical = tm->old_root.logical;
looped = 1;
}
/* if there's no old root to return, return what we found instead */
if (!found)
found = tm;
return found;
}
/*
* tm is a pointer to the first operation to rewind within eb. then, all
* previous operations will be rewound (until we reach something older than
* time_seq).
*/
static void
__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
u64 time_seq, struct tree_mod_elem *first_tm)
{
u32 n;
struct rb_node *next;
struct tree_mod_elem *tm = first_tm;
unsigned long o_dst;
unsigned long o_src;
unsigned long p_size = sizeof(struct btrfs_key_ptr);
n = btrfs_header_nritems(eb);
read_lock(&fs_info->tree_mod_log_lock);
while (tm && tm->seq >= time_seq) {
/*
* all the operations are recorded with the operator used for
* the modification. as we're going backwards, we do the
* opposite of each operation here.
*/
switch (tm->op) {
case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
BUG_ON(tm->slot < n);
fallthrough;
case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
case MOD_LOG_KEY_REMOVE:
btrfs_set_node_key(eb, &tm->key, tm->slot);
btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
btrfs_set_node_ptr_generation(eb, tm->slot,
tm->generation);
n++;
break;
case MOD_LOG_KEY_REPLACE:
BUG_ON(tm->slot >= n);
btrfs_set_node_key(eb, &tm->key, tm->slot);
btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
btrfs_set_node_ptr_generation(eb, tm->slot,
tm->generation);
break;
case MOD_LOG_KEY_ADD:
/* if a move operation is needed it's in the log */
n--;
break;
case MOD_LOG_MOVE_KEYS:
o_dst = btrfs_node_key_ptr_offset(tm->slot);
o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
memmove_extent_buffer(eb, o_dst, o_src,
tm->move.nr_items * p_size);
break;
case MOD_LOG_ROOT_REPLACE:
/*
* this operation is special. for roots, this must be
* handled explicitly before rewinding.
* for non-roots, this operation may exist if the node
* was a root: root A -> child B; then A gets empty and
* B is promoted to the new root. in the mod log, we'll
* have a root-replace operation for B, a tree block
* that is no root. we simply ignore that operation.
*/
break;
}
next = rb_next(&tm->node);
if (!next)
break;
tm = rb_entry(next, struct tree_mod_elem, node);
if (tm->logical != first_tm->logical)
break;
}
read_unlock(&fs_info->tree_mod_log_lock);
btrfs_set_header_nritems(eb, n);
}
/*
* Called with eb read locked. If the buffer cannot be rewound, the same buffer
* is returned. If rewind operations happen, a fresh buffer is returned. The
* returned buffer is always read-locked. If the returned buffer is not the
* input buffer, the lock on the input buffer is released and the input buffer
* is freed (its refcount is decremented).
*/
static struct extent_buffer *
tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
struct extent_buffer *eb, u64 time_seq)
{
struct extent_buffer *eb_rewin;
struct tree_mod_elem *tm;
if (!time_seq)
return eb;
if (btrfs_header_level(eb) == 0)
return eb;
tm = tree_mod_log_search(fs_info, eb->start, time_seq);
if (!tm)
return eb;
if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
BUG_ON(tm->slot != 0);
eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
if (!eb_rewin) {
btrfs_tree_read_unlock(eb);
free_extent_buffer(eb);
return NULL;
}
btrfs_set_header_bytenr(eb_rewin, eb->start);
btrfs_set_header_backref_rev(eb_rewin,
btrfs_header_backref_rev(eb));
btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
} else {
eb_rewin = btrfs_clone_extent_buffer(eb);
if (!eb_rewin) {
btrfs_tree_read_unlock(eb);
free_extent_buffer(eb);
return NULL;
}
}
btrfs_tree_read_unlock(eb);
free_extent_buffer(eb);
btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb_rewin),
eb_rewin, btrfs_header_level(eb_rewin));
btrfs_tree_read_lock(eb_rewin);
__tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
WARN_ON(btrfs_header_nritems(eb_rewin) >
BTRFS_NODEPTRS_PER_BLOCK(fs_info));
return eb_rewin;
}
/*
* get_old_root() rewinds the state of @root's root node to the given @time_seq
* value. If there are no changes, the current root->root_node is returned. If
* anything changed in between, there's a fresh buffer allocated on which the
* rewind operations are done. In any case, the returned buffer is read locked.
* Returns NULL on error (with no locks held).
*/
static inline struct extent_buffer *
get_old_root(struct btrfs_root *root, u64 time_seq)
{
struct btrfs_fs_info *fs_info = root->fs_info;
struct tree_mod_elem *tm;
struct extent_buffer *eb = NULL;
struct extent_buffer *eb_root;
u64 eb_root_owner = 0;
struct extent_buffer *old;
struct tree_mod_root *old_root = NULL;
u64 old_generation = 0;
u64 logical;
int level;
eb_root = btrfs_read_lock_root_node(root);
tm = __tree_mod_log_oldest_root(eb_root, time_seq);
if (!tm)
return eb_root;
if (tm->op == MOD_LOG_ROOT_REPLACE) {
old_root = &tm->old_root;
old_generation = tm->generation;
logical = old_root->logical;
level = old_root->level;
} else {
logical = eb_root->start;
level = btrfs_header_level(eb_root);
}
tm = tree_mod_log_search(fs_info, logical, time_seq);
if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
btrfs_tree_read_unlock(eb_root);
free_extent_buffer(eb_root);
old = read_tree_block(fs_info, logical, root->root_key.objectid,
0, level, NULL);
if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
if (!IS_ERR(old))
free_extent_buffer(old);
btrfs_warn(fs_info,
"failed to read tree block %llu from get_old_root",
logical);
} else {
btrfs_tree_read_lock(old);
eb = btrfs_clone_extent_buffer(old);
btrfs_tree_read_unlock(old);
free_extent_buffer(old);
}
} else if (old_root) {
eb_root_owner = btrfs_header_owner(eb_root);
btrfs_tree_read_unlock(eb_root);
free_extent_buffer(eb_root);
eb = alloc_dummy_extent_buffer(fs_info, logical);
} else {
eb = btrfs_clone_extent_buffer(eb_root);
btrfs_tree_read_unlock(eb_root);
free_extent_buffer(eb_root);
}
if (!eb)
return NULL;
if (old_root) {
btrfs_set_header_bytenr(eb, eb->start);
btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
btrfs_set_header_owner(eb, eb_root_owner);
btrfs_set_header_level(eb, old_root->level);
btrfs_set_header_generation(eb, old_generation);
}
btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), eb,
btrfs_header_level(eb));
btrfs_tree_read_lock(eb);
if (tm)
__tree_mod_log_rewind(fs_info, eb, time_seq, tm);
else
WARN_ON(btrfs_header_level(eb) != 0);
WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
return eb;
}
int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
{
struct tree_mod_elem *tm;
int level;
struct extent_buffer *eb_root = btrfs_root_node(root);
tm = __tree_mod_log_oldest_root(eb_root, time_seq);
if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
level = tm->old_root.level;
} else {
level = btrfs_header_level(eb_root);
}
free_extent_buffer(eb_root);
return level;
}
static inline int should_cow_block(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct extent_buffer *buf)
{
if (btrfs_is_testing(root->fs_info))
return 0;
/* Ensure we can see the FORCE_COW bit */
smp_mb__before_atomic();
/*
* We do not need to cow a block if
* 1) this block is not created or changed in this transaction;
* 2) this block does not belong to TREE_RELOC tree;
* 3) the root is not forced COW.
*
* What is forced COW:
* when we create snapshot during committing the transaction,
* after we've finished copying src root, we must COW the shared
* block to ensure the metadata consistency.
*/
if (btrfs_header_generation(buf) == trans->transid &&
!btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
!(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
!test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
return 0;
return 1;
}
/*
* cows a single block, see __btrfs_cow_block for the real work.
* This version of it has extra checks so that a block isn't COWed more than
* once per transaction, as long as it hasn't been written yet
*/
noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
struct btrfs_root *root, struct extent_buffer *buf,
struct extent_buffer *parent, int parent_slot,
struct extent_buffer **cow_ret,
enum btrfs_lock_nesting nest)
{
struct btrfs_fs_info *fs_info = root->fs_info;
u64 search_start;
int ret;
if (test_bit(BTRFS_ROOT_DELETING, &root->state))
btrfs_err(fs_info,
"COW'ing blocks on a fs root that's being dropped");
if (trans->transaction != fs_info->running_transaction)
WARN(1, KERN_CRIT "trans %llu running %llu\n",
trans->transid,
fs_info->running_transaction->transid);
if (trans->transid != fs_info->generation)
WARN(1, KERN_CRIT "trans %llu running %llu\n",
trans->transid, fs_info->generation);
if (!should_cow_block(trans, root, buf)) {
trans->dirty = true;
*cow_ret = buf;
return 0;
}
search_start = buf->start & ~((u64)SZ_1G - 1);
/*
* Before CoWing this block for later modification, check if it's
* the subtree root and do the delayed subtree trace if needed.
*
* Also We don't care about the error, as it's handled internally.
*/
btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
ret = __btrfs_cow_block(trans, root, buf, parent,
parent_slot, cow_ret, search_start, 0, nest);
trace_btrfs_cow_block(root, buf, *cow_ret);
return ret;
}
ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO);
/*
* helper function for defrag to decide if two blocks pointed to by a
* node are actually close by
*/
static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
{
if (blocknr < other && other - (blocknr + blocksize) < 32768)
return 1;
if (blocknr > other && blocknr - (other + blocksize) < 32768)
return 1;
return 0;
}
#ifdef __LITTLE_ENDIAN
/*
* Compare two keys, on little-endian the disk order is same as CPU order and
* we can avoid the conversion.
*/
static int comp_keys(const struct btrfs_disk_key *disk_key,
const struct btrfs_key *k2)
{
const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
return btrfs_comp_cpu_keys(k1, k2);
}
#else
/*
* compare two keys in a memcmp fashion
*/
static int comp_keys(const struct btrfs_disk_key *disk,
const struct btrfs_key *k2)
{
struct btrfs_key k1;
btrfs_disk_key_to_cpu(&k1, disk);
return btrfs_comp_cpu_keys(&k1, k2);
}
#endif
/*
* same as comp_keys only with two btrfs_key's
*/
int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
{
if (k1->objectid > k2->objectid)
return 1;
if (k1->objectid < k2->objectid)
return -1;
if (k1->type > k2->type)
return 1;
if (k1->type < k2->type)
return -1;
if (k1->offset > k2->offset)
return 1;
if (k1->offset < k2->offset)
return -1;
return 0;
}
/*
* this is used by the defrag code to go through all the
* leaves pointed to by a node and reallocate them so that
* disk order is close to key order
*/
int btrfs_realloc_node(struct btrfs_trans_handle *trans,
struct btrfs_root *root, struct extent_buffer *parent,
int start_slot, u64 *last_ret,
struct btrfs_key *progress)
{
struct btrfs_fs_info *fs_info = root->fs_info;
struct extent_buffer *cur;
u64 blocknr;
u64 search_start = *last_ret;
u64 last_block = 0;
u64 other;
u32 parent_nritems;
int end_slot;
int i;
int err = 0;
u32 blocksize;
int progress_passed = 0;
struct btrfs_disk_key disk_key;
WARN_ON(trans->transaction != fs_info->running_transaction);
WARN_ON(trans->transid != fs_info->generation);
parent_nritems = btrfs_header_nritems(parent);
blocksize = fs_info->nodesize;
end_slot = parent_nritems - 1;
if (parent_nritems <= 1)
return 0;
for (i = start_slot; i <= end_slot; i++) {
int close = 1;
btrfs_node_key(parent, &disk_key, i);
if (!progress_passed && comp_keys(&disk_key, progress) < 0)
continue;
progress_passed = 1;
blocknr = btrfs_node_blockptr(parent, i);
if (last_block == 0)
last_block = blocknr;
if (i > 0) {
other = btrfs_node_blockptr(parent, i - 1);
close = close_blocks(blocknr, other, blocksize);
}
if (!close && i < end_slot) {
other = btrfs_node_blockptr(parent, i + 1);
close = close_blocks(blocknr, other, blocksize);
}
if (close) {
last_block = blocknr;
continue;
}
cur = btrfs_read_node_slot(parent, i);
if (IS_ERR(cur))
return PTR_ERR(cur);
if (search_start == 0)
search_start = last_block;
btrfs_tree_lock(cur);
err = __btrfs_cow_block(trans, root, cur, parent, i,
&cur, search_start,
min(16 * blocksize,
(end_slot - i) * blocksize),
BTRFS_NESTING_COW);
if (err) {
btrfs_tree_unlock(cur);
free_extent_buffer(cur);
break;
}
search_start = cur->start;
last_block = cur->start;
*last_ret = search_start;
btrfs_tree_unlock(cur);
free_extent_buffer(cur);
}
return err;
}
/*
* search for key in the extent_buffer. The items start at offset p,
* and they are item_size apart. There are 'max' items in p.
*
* the slot in the array is returned via slot, and it points to
* the place where you would insert key if it is not found in
* the array.
*
* slot may point to max if the key is bigger than all of the keys
*/
static noinline int generic_bin_search(struct extent_buffer *eb,
unsigned long p, int item_size,
const struct btrfs_key *key,
int max, int *slot)
{
int low = 0;
int high = max;
int ret;
const int key_size = sizeof(struct btrfs_disk_key);
if (low > high) {
btrfs_err(eb->fs_info,
"%s: low (%d) > high (%d) eb %llu owner %llu level %d",
__func__, low, high, eb->start,
btrfs_header_owner(eb), btrfs_header_level(eb));
return -EINVAL;
}
while (low < high) {
unsigned long oip;
unsigned long offset;
struct btrfs_disk_key *tmp;
struct btrfs_disk_key unaligned;
int mid;
mid = (low + high) / 2;
offset = p + mid * item_size;
oip = offset_in_page(offset);
if (oip + key_size <= PAGE_SIZE) {
const unsigned long idx = get_eb_page_index(offset);
char *kaddr = page_address(eb->pages[idx]);
oip = get_eb_offset_in_page(eb, offset);
tmp = (struct btrfs_disk_key *)(kaddr + oip);
} else {
read_extent_buffer(eb, &unaligned, offset, key_size);
tmp = &unaligned;
}
ret = comp_keys(tmp, key);
if (ret < 0)
low = mid + 1;
else if (ret > 0)
high = mid;
else {
*slot = mid;
return 0;
}
}
*slot = low;
return 1;
}
/*
* simple bin_search frontend that does the right thing for
* leaves vs nodes
*/
int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
int *slot)
{
if (btrfs_header_level(eb) == 0)
return generic_bin_search(eb,
offsetof(struct btrfs_leaf, items),
sizeof(struct btrfs_item),
key, btrfs_header_nritems(eb),
slot);
else
return generic_bin_search(eb,
offsetof(struct btrfs_node, ptrs),
sizeof(struct btrfs_key_ptr),
key, btrfs_header_nritems(eb),
slot);
}
static void root_add_used(struct btrfs_root *root, u32 size)
{
spin_lock(&root->accounting_lock);
btrfs_set_root_used(&root->root_item,
btrfs_root_used(&root->root_item) + size);
spin_unlock(&root->accounting_lock);
}
static void root_sub_used(struct btrfs_root *root, u32 size)
{
spin_lock(&root->accounting_lock);
btrfs_set_root_used(&root->root_item,
btrfs_root_used(&root->root_item) - size);
spin_unlock(&root->accounting_lock);
}
/* given a node and slot number, this reads the blocks it points to. The
* extent buffer is returned with a reference taken (but unlocked).
*/
struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
int slot)
{
int level = btrfs_header_level(parent);
struct extent_buffer *eb;
struct btrfs_key first_key;
if (slot < 0 || slot >= btrfs_header_nritems(parent))
return ERR_PTR(-ENOENT);
BUG_ON(level == 0);
btrfs_node_key_to_cpu(parent, &first_key, slot);
eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
btrfs_header_owner(parent),
btrfs_node_ptr_generation(parent, slot),
level - 1, &first_key);
if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
free_extent_buffer(eb);
eb = ERR_PTR(-EIO);
}
return eb;
}
/*
* node level balancing, used to make sure nodes are in proper order for
* item deletion. We balance from the top down, so we have to make sure
* that a deletion won't leave an node completely empty later on.
*/
static noinline int balance_level(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path, int level)
{
struct btrfs_fs_info *fs_info = root->fs_info;
struct extent_buffer *right = NULL;
struct extent_buffer *mid;
struct extent_buffer *left = NULL;
struct extent_buffer *parent = NULL;
int ret = 0;
int wret;
int pslot;
int orig_slot = path->slots[level];
u64 orig_ptr;
ASSERT(level > 0);
mid = path->nodes[level];
WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
WARN_ON(btrfs_header_generation(mid) != trans->transid);
orig_ptr = btrfs_node_blockptr(mid, orig_slot);
if (level < BTRFS_MAX_LEVEL - 1) {
parent = path->nodes[level + 1];
pslot = path->slots[level + 1];
}
/*
* deal with the case where there is only one pointer in the root
* by promoting the node below to a root
*/
if (!parent) {
struct extent_buffer *child;
if (btrfs_header_nritems(mid) != 1)
return 0;
/* promote the child to a root */
child = btrfs_read_node_slot(mid, 0);
if (IS_ERR(child)) {
ret = PTR_ERR(child);
btrfs_handle_fs_error(fs_info, ret, NULL);
goto enospc;
}
btrfs_tree_lock(child);
ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
BTRFS_NESTING_COW);
if (ret) {
btrfs_tree_unlock(child);
free_extent_buffer(child);
goto enospc;
}
ret = tree_mod_log_insert_root(root->node, child, 1);
BUG_ON(ret < 0);
rcu_assign_pointer(root->node, child);
add_root_to_dirty_list(root);
btrfs_tree_unlock(child);
path->locks[level] = 0;
path->nodes[level] = NULL;
btrfs_clean_tree_block(mid);
btrfs_tree_unlock(mid);
/* once for the path */
free_extent_buffer(mid);
root_sub_used(root, mid->len);
btrfs_free_tree_block(trans, root, mid, 0, 1);
/* once for the root ptr */
free_extent_buffer_stale(mid);
return 0;
}
if (btrfs_header_nritems(mid) >
BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
return 0;
left = btrfs_read_node_slot(parent, pslot - 1);
if (IS_ERR(left))
left = NULL;
if (left) {
__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
wret = btrfs_cow_block(trans, root, left,
parent, pslot - 1, &left,
BTRFS_NESTING_LEFT_COW);
if (wret) {
ret = wret;
goto enospc;
}
}
right = btrfs_read_node_slot(parent, pslot + 1);
if (IS_ERR(right))
right = NULL;
if (right) {
__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
wret = btrfs_cow_block(trans, root, right,
parent, pslot + 1, &right,
BTRFS_NESTING_RIGHT_COW);
if (wret) {
ret = wret;
goto enospc;
}
}
/* first, try to make some room in the middle buffer */
if (left) {
orig_slot += btrfs_header_nritems(left);
wret = push_node_left(trans, left, mid, 1);
if (wret < 0)
ret = wret;
}
/*
* then try to empty the right most buffer into the middle
*/
if (right) {
wret = push_node_left(trans, mid, right, 1);
if (wret < 0 && wret != -ENOSPC)
ret = wret;
if (btrfs_header_nritems(right) == 0) {
btrfs_clean_tree_block(right);
btrfs_tree_unlock(right);
del_ptr(root, path, level + 1, pslot + 1);
root_sub_used(root, right->len);
btrfs_free_tree_block(trans, root, right, 0, 1);
free_extent_buffer_stale(right);
right = NULL;
} else {
struct btrfs_disk_key right_key;
btrfs_node_key(right, &right_key, 0);
ret = tree_mod_log_insert_key(parent, pslot + 1,
MOD_LOG_KEY_REPLACE, GFP_NOFS);
BUG_ON(ret < 0);
btrfs_set_node_key(parent, &right_key, pslot + 1);
btrfs_mark_buffer_dirty(parent);
}
}
if (btrfs_header_nritems(mid) == 1) {
/*
* we're not allowed to leave a node with one item in the
* tree during a delete. A deletion from lower in the tree
* could try to delete the only pointer in this node.
* So, pull some keys from the left.
* There has to be a left pointer at this point because
* otherwise we would have pulled some pointers from the
* right
*/
if (!left) {
ret = -EROFS;
btrfs_handle_fs_error(fs_info, ret, NULL);
goto enospc;
}
wret = balance_node_right(trans, mid, left);
if (wret < 0) {
ret = wret;
goto enospc;
}
if (wret == 1) {
wret = push_node_left(trans, left, mid, 1);
if (wret < 0)
ret = wret;
}
BUG_ON(wret == 1);
}
if (btrfs_header_nritems(mid) == 0) {
btrfs_clean_tree_block(mid);
btrfs_tree_unlock(mid);
del_ptr(root, path, level + 1, pslot);
root_sub_used(root, mid->len);
btrfs_free_tree_block(trans, root, mid, 0, 1);
free_extent_buffer_stale(mid);
mid = NULL;
} else {
/* update the parent key to reflect our changes */
struct btrfs_disk_key mid_key;
btrfs_node_key(mid, &mid_key, 0);
ret = tree_mod_log_insert_key(parent, pslot,
MOD_LOG_KEY_REPLACE, GFP_NOFS);
BUG_ON(ret < 0);
btrfs_set_node_key(parent, &mid_key, pslot);
btrfs_mark_buffer_dirty(parent);
}
/* update the path */
if (left) {
if (btrfs_header_nritems(left) > orig_slot) {
atomic_inc(&left->refs);
/* left was locked after cow */
path->nodes[level] = left;
path->slots[level + 1] -= 1;
path->slots[level] = orig_slot;
if (mid) {
btrfs_tree_unlock(mid);
free_extent_buffer(mid);
}
} else {
orig_slot -= btrfs_header_nritems(left);
path->slots[level] = orig_slot;
}
}
/* double check we haven't messed things up */
if (orig_ptr !=
btrfs_node_blockptr(path->nodes[level], path->slots[level]))
BUG();
enospc:
if (right) {
btrfs_tree_unlock(right);
free_extent_buffer(right);
}
if (left) {
if (path->nodes[level] != left)
btrfs_tree_unlock(left);
free_extent_buffer(left);
}
return ret;
}
/* Node balancing for insertion. Here we only split or push nodes around
* when they are completely full. This is also done top down, so we
* have to be pessimistic.
*/
static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path, int level)
{
struct btrfs_fs_info *fs_info = root->fs_info;
struct extent_buffer *right = NULL;
struct extent_buffer *mid;
struct extent_buffer *left = NULL;
struct extent_buffer *parent = NULL;
int ret = 0;
int wret;
int pslot;
int orig_slot = path->slots[level];
if (level == 0)
return 1;
mid = path->nodes[level];
WARN_ON(btrfs_header_generation(mid) != trans->transid);
if (level < BTRFS_MAX_LEVEL - 1) {
parent = path->nodes[level + 1];
pslot = path->slots[level + 1];
}
if (!parent)
return 1;
left = btrfs_read_node_slot(parent, pslot - 1);
if (IS_ERR(left))
left = NULL;
/* first, try to make some room in the middle buffer */
if (left) {
u32 left_nr;
__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
left_nr = btrfs_header_nritems(left);
if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
wret = 1;
} else {
ret = btrfs_cow_block(trans, root, left, parent,
pslot - 1, &left,
BTRFS_NESTING_LEFT_COW);
if (ret)
wret = 1;
else {
wret = push_node_left(trans, left, mid, 0);
}
}
if (wret < 0)
ret = wret;
if (wret == 0) {
struct btrfs_disk_key disk_key;
orig_slot += left_nr;
btrfs_node_key(mid, &disk_key, 0);
ret = tree_mod_log_insert_key(parent, pslot,
MOD_LOG_KEY_REPLACE, GFP_NOFS);
BUG_ON(ret < 0);
btrfs_set_node_key(parent, &disk_key, pslot);
btrfs_mark_buffer_dirty(parent);
if (btrfs_header_nritems(left) > orig_slot) {
path->nodes[level] = left;
path->slots[level + 1] -= 1;
path->slots[level] = orig_slot;
btrfs_tree_unlock(mid);
free_extent_buffer(mid);
} else {
orig_slot -=
btrfs_header_nritems(left);
path->slots[level] = orig_slot;
btrfs_tree_unlock(left);
free_extent_buffer(left);
}
return 0;
}
btrfs_tree_unlock(left);
free_extent_buffer(left);
}
right = btrfs_read_node_slot(parent, pslot + 1);
if (IS_ERR(right))
right = NULL;
/*
* then try to empty the right most buffer into the middle
*/
if (right) {
u32 right_nr;
__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
right_nr = btrfs_header_nritems(right);
if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
wret = 1;
} else {
ret = btrfs_cow_block(trans, root, right,
parent, pslot + 1,
&right, BTRFS_NESTING_RIGHT_COW);
if (ret)
wret = 1;
else {
wret = balance_node_right(trans, right, mid);
}
}
if (wret < 0)
ret = wret;
if (wret == 0) {
struct btrfs_disk_key disk_key;
btrfs_node_key(right, &disk_key, 0);
ret = tree_mod_log_insert_key(parent, pslot + 1,
MOD_LOG_KEY_REPLACE, GFP_NOFS);
BUG_ON(ret < 0);
btrfs_set_node_key(parent, &disk_key, pslot + 1);
btrfs_mark_buffer_dirty(parent);
if (btrfs_header_nritems(mid) <= orig_slot) {
path->nodes[level] = right;
path->slots[level + 1] += 1;
path->slots[level] = orig_slot -
btrfs_header_nritems(mid);
btrfs_tree_unlock(mid);
free_extent_buffer(mid);
} else {
btrfs_tree_unlock(right);
free_extent_buffer(right);
}
return 0;
}
btrfs_tree_unlock(right);
free_extent_buffer(right);
}
return 1;
}
/*
* readahead one full node of leaves, finding things that are close
* to the block in 'slot', and triggering ra on them.
*/
static void reada_for_search(struct btrfs_fs_info *fs_info,
struct btrfs_path *path,
int level, int slot, u64 objectid)
{
struct extent_buffer *node;
struct btrfs_disk_key disk_key;
u32 nritems;
u64 search;
u64 target;
u64 nread = 0;
struct extent_buffer *eb;
u32 nr;
u32 blocksize;
u32 nscan = 0;
if (level != 1)
return;
if (!path->nodes[level])
return;
node = path->nodes[level];
search = btrfs_node_blockptr(node, slot);
blocksize = fs_info->nodesize;
eb = find_extent_buffer(fs_info, search);
if (eb) {
free_extent_buffer(eb);
return;
}
target = search;
nritems = btrfs_header_nritems(node);
nr = slot;
while (1) {
if (path->reada == READA_BACK) {
if (nr == 0)
break;
nr--;
} else if (path->reada == READA_FORWARD) {
nr++;
if (nr >= nritems)
break;
}
if (path->reada == READA_BACK && objectid) {
btrfs_node_key(node, &disk_key, nr);
if (btrfs_disk_key_objectid(&disk_key) != objectid)
break;
}
search = btrfs_node_blockptr(node, nr);
if ((search <= target && target - search <= 65536) ||
(search > target && search - target <= 65536)) {
btrfs_readahead_node_child(node, nr);
nread += blocksize;
}
nscan++;
if ((nread > 65536 || nscan > 32))
break;
}
}
static noinline void reada_for_balance(struct btrfs_path *path, int level)
{
struct extent_buffer *parent;
int slot;
int nritems;
parent = path->nodes[level + 1];
if (!parent)
return;
nritems = btrfs_header_nritems(parent);
slot = path->slots[level + 1];
if (slot > 0)
btrfs_readahead_node_child(parent, slot - 1);
if (slot + 1 < nritems)
btrfs_readahead_node_child(parent, slot + 1);
}
/*
* when we walk down the tree, it is usually safe to unlock the higher layers
* in the tree. The exceptions are when our path goes through slot 0, because
* operations on the tree might require changing key pointers higher up in the
* tree.
*
* callers might also have set path->keep_locks, which tells this code to keep
* the lock if the path points to the last slot in the block. This is part of
* walking through the tree, and selecting the next slot in the higher block.
*
* lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
* if lowest_unlock is 1, level 0 won't be unlocked
*/
static noinline void unlock_up(struct btrfs_path *path, int level,
int lowest_unlock, int min_write_lock_level,
int *write_lock_level)
{
int i;
int skip_level = level;
int no_skips = 0;
struct extent_buffer *t;
for (i = level; i < BTRFS_MAX_LEVEL; i++) {
if (!path->nodes[i])
break;
if (!path->locks[i])
break;
if (!no_skips && path->slots[i] == 0) {
skip_level = i + 1;
continue;
}
if (!no_skips && path->keep_locks) {
u32 nritems;
t = path->nodes[i];
nritems = btrfs_header_nritems(t);
if (nritems < 1 || path->slots[i] >= nritems - 1) {
skip_level = i + 1;
continue;
}
}
if (skip_level < i && i >= lowest_unlock)
no_skips = 1;
t = path->nodes[i];
if (i >= lowest_unlock && i > skip_level) {
btrfs_tree_unlock_rw(t, path->locks[i]);
path->locks[i] = 0;
if (write_lock_level &&
i > min_write_lock_level &&
i <= *write_lock_level) {
*write_lock_level = i - 1;
}
}
}
}
/*
* helper function for btrfs_search_slot. The goal is to find a block
* in cache without setting the path to blocking. If we find the block
* we return zero and the path is unchanged.
*
* If we can't find the block, we set the path blocking and do some
* reada. -EAGAIN is returned and the search must be repeated.
*/
static int
read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
struct extent_buffer **eb_ret, int level, int slot,
const struct btrfs_key *key)
{
struct btrfs_fs_info *fs_info = root->fs_info;
u64 blocknr;
u64 gen;
struct extent_buffer *tmp;
struct btrfs_key first_key;
int ret;
int parent_level;
blocknr = btrfs_node_blockptr(*eb_ret, slot);
gen = btrfs_node_ptr_generation(*eb_ret, slot);
parent_level = btrfs_header_level(*eb_ret);
btrfs_node_key_to_cpu(*eb_ret, &first_key, slot);
tmp = find_extent_buffer(fs_info, blocknr);
if (tmp) {
/* first we do an atomic uptodate check */
if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
/*
* Do extra check for first_key, eb can be stale due to
* being cached, read from scrub, or have multiple
* parents (shared tree blocks).
*/
if (btrfs_verify_level_key(tmp,
parent_level - 1, &first_key, gen)) {
free_extent_buffer(tmp);
return -EUCLEAN;
}
*eb_ret = tmp;
return 0;
}
/* now we're allowed to do a blocking uptodate check */
ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
if (!ret) {
*eb_ret = tmp;
return 0;
}
free_extent_buffer(tmp);
btrfs_release_path(p);
return -EIO;
}
/*
* reduce lock contention at high levels
* of the btree by dropping locks before
* we read. Don't release the lock on the current
* level because we need to walk this node to figure
* out which blocks to read.
*/
btrfs_unlock_up_safe(p, level + 1);
if (p->reada != READA_NONE)
reada_for_search(fs_info, p, level, slot, key->objectid);
ret = -EAGAIN;
tmp = read_tree_block(fs_info, blocknr, root->root_key.objectid,
gen, parent_level - 1, &first_key);
if (!IS_ERR(tmp)) {
/*
* If the read above didn't mark this buffer up to date,
* it will never end up being up to date. Set ret to EIO now
* and give up so that our caller doesn't loop forever
* on our EAGAINs.
*/
if (!extent_buffer_uptodate(tmp))
ret = -EIO;
free_extent_buffer(tmp);
} else {
ret = PTR_ERR(tmp);
}
btrfs_release_path(p);
return ret;
}
/*
* helper function for btrfs_search_slot. This does all of the checks
* for node-level blocks and does any balancing required based on
* the ins_len.
*
* If no extra work was required, zero is returned. If we had to
* drop the path, -EAGAIN is returned and btrfs_search_slot must
* start over
*/
static int
setup_nodes_for_search(struct btrfs_trans_handle *trans,
struct btrfs_root *root, struct btrfs_path *p,
struct extent_buffer *b, int level, int ins_len,
int *write_lock_level)
{
struct btrfs_fs_info *fs_info = root->fs_info;
int ret = 0;
if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
if (*write_lock_level < level + 1) {
*write_lock_level = level + 1;
btrfs_release_path(p);
return -EAGAIN;
}
reada_for_balance(p, level);
ret = split_node(trans, root, p, level);
b = p->nodes[level];
} else if (ins_len < 0 && btrfs_header_nritems(b) <
BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
if (*write_lock_level < level + 1) {
*write_lock_level = level + 1;
btrfs_release_path(p);
return -EAGAIN;
}
reada_for_balance(p, level);
ret = balance_level(trans, root, p, level);
if (ret)
return ret;
b = p->nodes[level];
if (!b) {
btrfs_release_path(p);
return -EAGAIN;
}
BUG_ON(btrfs_header_nritems(b) == 1);
}
return ret;
}
int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
u64 iobjectid, u64 ioff, u8 key_type,
struct btrfs_key *found_key)
{
int ret;
struct btrfs_key key;
struct extent_buffer *eb;
ASSERT(path);
ASSERT(found_key);
key.type = key_type;
key.objectid = iobjectid;
key.offset = ioff;
ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
if (ret < 0)
return ret;
eb = path->nodes[0];
if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
ret = btrfs_next_leaf(fs_root, path);
if (ret)
return ret;
eb = path->nodes[0];
}
btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
if (found_key->type != key.type ||
found_key->objectid != key.objectid)
return 1;
return 0;
}
static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
struct btrfs_path *p,
int write_lock_level)
{
struct btrfs_fs_info *fs_info = root->fs_info;
struct extent_buffer *b;
int root_lock;
int level = 0;
/* We try very hard to do read locks on the root */
root_lock = BTRFS_READ_LOCK;
if (p->search_commit_root) {
/*
* The commit roots are read only so we always do read locks,
* and we always must hold the commit_root_sem when doing
* searches on them, the only exception is send where we don't
* want to block transaction commits for a long time, so
* we need to clone the commit root in order to avoid races
* with transaction commits that create a snapshot of one of
* the roots used by a send operation.
*/
if (p->need_commit_sem) {
down_read(&fs_info->commit_root_sem);
b = btrfs_clone_extent_buffer(root->commit_root);
up_read(&fs_info->commit_root_sem);
if (!b)
return ERR_PTR(-ENOMEM);
} else {
b = root->commit_root;
atomic_inc(&b->refs);
}
level = btrfs_header_level(b);
/*
* Ensure that all callers have set skip_locking when
* p->search_commit_root = 1.
*/
ASSERT(p->skip_locking == 1);
goto out;
}
if (p->skip_locking) {
b = btrfs_root_node(root);
level = btrfs_header_level(b);
goto out;
}
/*
* If the level is set to maximum, we can skip trying to get the read
* lock.
*/
if (write_lock_level < BTRFS_MAX_LEVEL) {
/*
* We don't know the level of the root node until we actually
* have it read locked
*/
b = btrfs_read_lock_root_node(root);
level = btrfs_header_level(b);
if (level > write_lock_level)
goto out;
/* Whoops, must trade for write lock */
btrfs_tree_read_unlock(b);
free_extent_buffer(b);
}
b = btrfs_lock_root_node(root);
root_lock = BTRFS_WRITE_LOCK;
/* The level might have changed, check again */
level = btrfs_header_level(b);
out:
p->nodes[level] = b;
if (!p->skip_locking)
p->locks[level] = root_lock;
/*
* Callers are responsible for dropping b's references.
*/
return b;
}
/*
* btrfs_search_slot - look for a key in a tree and perform necessary
* modifications to preserve tree invariants.
*
* @trans: Handle of transaction, used when modifying the tree
* @p: Holds all btree nodes along the search path
* @root: The root node of the tree
* @key: The key we are looking for
* @ins_len: Indicates purpose of search:
* >0 for inserts it's size of item inserted (*)
* <0 for deletions
* 0 for plain searches, not modifying the tree
*
* (*) If size of item inserted doesn't include
* sizeof(struct btrfs_item), then p->search_for_extension must
* be set.
* @cow: boolean should CoW operations be performed. Must always be 1
* when modifying the tree.
*
* If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
* If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
*
* If @key is found, 0 is returned and you can find the item in the leaf level
* of the path (level 0)
*
* If @key isn't found, 1 is returned and the leaf level of the path (level 0)
* points to the slot where it should be inserted
*
* If an error is encountered while searching the tree a negative error number
* is returned
*/
int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
const struct btrfs_key *key, struct btrfs_path *p,
int ins_len, int cow)
{
struct extent_buffer *b;
int slot;
int ret;
int err;
int level;
int lowest_unlock = 1;
/* everything at write_lock_level or lower must be write locked */
int write_lock_level = 0;
u8 lowest_level = 0;
int min_write_lock_level;
int prev_cmp;
lowest_level = p->lowest_level;
WARN_ON(lowest_level && ins_len > 0);
WARN_ON(p->nodes[0] != NULL);
BUG_ON(!cow && ins_len);
if (ins_len < 0) {
lowest_unlock = 2;
/* when we are removing items, we might have to go up to level
* two as we update tree pointers Make sure we keep write
* for those levels as well
*/
write_lock_level = 2;
} else if (ins_len > 0) {
/*
* for inserting items, make sure we have a write lock on
* level 1 so we can update keys
*/
write_lock_level = 1;
}
if (!cow)
write_lock_level = -1;
if (cow && (p->keep_locks || p->lowest_level))
write_lock_level = BTRFS_MAX_LEVEL;
min_write_lock_level = write_lock_level;
again:
prev_cmp = -1;
b = btrfs_search_slot_get_root(root, p, write_lock_level);
if (IS_ERR(b)) {
ret = PTR_ERR(b);
goto done;
}
while (b) {
int dec = 0;
level = btrfs_header_level(b);
if (cow) {
bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
/*
* if we don't really need to cow this block
* then we don't want to set the path blocking,
* so we test it here
*/
if (!should_cow_block(trans, root, b)) {
trans->dirty = true;
goto cow_done;
}
/*
* must have write locks on this node and the
* parent
*/
if (level > write_lock_level ||
(level + 1 > write_lock_level &&
level + 1 < BTRFS_MAX_LEVEL &&
p->nodes[level + 1])) {
write_lock_level = level + 1;
btrfs_release_path(p);
goto again;
}
if (last_level)
err = btrfs_cow_block(trans, root, b, NULL, 0,
&b,
BTRFS_NESTING_COW);
else
err = btrfs_cow_block(trans, root, b,
p->nodes[level + 1],
p->slots[level + 1], &b,
BTRFS_NESTING_COW);
if (err) {
ret = err;
goto done;
}
}
cow_done:
p->nodes[level] = b;
/*
* Leave path with blocking locks to avoid massive
* lock context switch, this is made on purpose.
*/
/*
* we have a lock on b and as long as we aren't changing
* the tree, there is no way to for the items in b to change.
* It is safe to drop the lock on our parent before we
* go through the expensive btree search on b.
*
* If we're inserting or deleting (ins_len != 0), then we might
* be changing slot zero, which may require changing the parent.
* So, we can't drop the lock until after we know which slot
* we're operating on.
*/
if (!ins_len && !p->keep_locks) {
int u = level + 1;
if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
p->locks[u] = 0;
}
}
/*
* If btrfs_bin_search returns an exact match (prev_cmp == 0)
* we can safely assume the target key will always be in slot 0
* on lower levels due to the invariants BTRFS' btree provides,
* namely that a btrfs_key_ptr entry always points to the
* lowest key in the child node, thus we can skip searching
* lower levels
*/
if (prev_cmp == 0) {
slot = 0;
ret = 0;
} else {
ret = btrfs_bin_search(b, key, &slot);
prev_cmp = ret;
if (ret < 0)
goto done;
}
if (level == 0) {
p->slots[level] = slot;
/*
* Item key already exists. In this case, if we are
* allowed to insert the item (for example, in dir_item
* case, item key collision is allowed), it will be
* merged with the original item. Only the item size
* grows, no new btrfs item will be added. If
* search_for_extension is not set, ins_len already
* accounts the size btrfs_item, deduct it here so leaf
* space check will be correct.
*/
if (ret == 0 && ins_len > 0 && !p->search_for_extension) {
ASSERT(ins_len >= sizeof(struct btrfs_item));
ins_len -= sizeof(struct btrfs_item);
}
if (ins_len > 0 &&
btrfs_leaf_free_space(b) < ins_len) {
if (write_lock_level < 1) {
write_lock_level = 1;
btrfs_release_path(p);
goto again;
}
err = split_leaf(trans, root, key,
p, ins_len, ret == 0);
BUG_ON(err > 0);
if (err) {
ret = err;
goto done;
}
}
if (!p->search_for_split)
unlock_up(p, level, lowest_unlock,
min_write_lock_level, NULL);
goto done;
}
if (ret && slot > 0) {
dec = 1;
slot--;
}
p->slots[level] = slot;
err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
&write_lock_level);
if (err == -EAGAIN)
goto again;
if (err) {
ret = err;
goto done;
}
b = p->nodes[level];
slot = p->slots[level];
/*
* Slot 0 is special, if we change the key we have to update
* the parent pointer which means we must have a write lock on
* the parent
*/
if (slot == 0 && ins_len && write_lock_level < level + 1) {
write_lock_level = level + 1;
btrfs_release_path(p);
goto again;
}
unlock_up(p, level, lowest_unlock, min_write_lock_level,
&write_lock_level);
if (level == lowest_level) {
if (dec)
p->slots[level]++;
goto done;
}
err = read_block_for_search(root, p, &b, level, slot, key);
if (err == -EAGAIN)
goto again;
if (err) {
ret = err;
goto done;
}
if (!p->skip_locking) {
level = btrfs_header_level(b);
if (level <= write_lock_level) {
btrfs_tree_lock(b);
p->locks[level] = BTRFS_WRITE_LOCK;
} else {
btrfs_tree_read_lock(b);
p->locks[level] = BTRFS_READ_LOCK;
}
p->nodes[level] = b;
}
}
ret = 1;
done:
if (ret < 0 && !p->skip_release_on_error)
btrfs_release_path(p);
return ret;
}
ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO);
/*
* Like btrfs_search_slot, this looks for a key in the given tree. It uses the
* current state of the tree together with the operations recorded in the tree
* modification log to search for the key in a previous version of this tree, as
* denoted by the time_seq parameter.
*
* Naturally, there is no support for insert, delete or cow operations.
*
* The resulting path and return value will be set up as if we called
* btrfs_search_slot at that point in time with ins_len and cow both set to 0.
*/
int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
struct btrfs_path *p, u64 time_seq)
{
struct btrfs_fs_info *fs_info = root->fs_info;
struct extent_buffer *b;
int slot;
int ret;
int err;
int level;
int lowest_unlock = 1;
u8 lowest_level = 0;
lowest_level = p->lowest_level;
WARN_ON(p->nodes[0] != NULL);
if (p->search_commit_root) {
BUG_ON(time_seq);
return btrfs_search_slot(NULL, root, key, p, 0, 0);
}
again:
b = get_old_root(root, time_seq);
if (!b) {
ret = -EIO;
goto done;
}
level = btrfs_header_level(b);
p->locks[level] = BTRFS_READ_LOCK;
while (b) {
int dec = 0;
level = btrfs_header_level(b);
p->nodes[level] = b;
/*
* we have a lock on b and as long as we aren't changing
* the tree, there is no way to for the items in b to change.
* It is safe to drop the lock on our parent before we
* go through the expensive btree search on b.
*/
btrfs_unlock_up_safe(p, level + 1);
ret = btrfs_bin_search(b, key, &slot);
if (ret < 0)
goto done;
if (level == 0) {
p->slots[level] = slot;
unlock_up(p, level, lowest_unlock, 0, NULL);
goto done;
}
if (ret && slot > 0) {
dec = 1;
slot--;
}
p->slots[level] = slot;
unlock_up(p, level, lowest_unlock, 0, NULL);
if (level == lowest_level) {
if (dec)
p->slots[level]++;
goto done;
}
err = read_block_for_search(root, p, &b, level, slot, key);
if (err == -EAGAIN)
goto again;
if (err) {
ret = err;
goto done;
}
level = btrfs_header_level(b);
btrfs_tree_read_lock(b);
b = tree_mod_log_rewind(fs_info, p, b, time_seq);
if (!b) {
ret = -ENOMEM;
goto done;
}
p->locks[level] = BTRFS_READ_LOCK;
p->nodes[level] = b;
}
ret = 1;
done:
if (ret < 0)
btrfs_release_path(p);
return ret;
}
/*
* helper to use instead of search slot if no exact match is needed but
* instead the next or previous item should be returned.
* When find_higher is true, the next higher item is returned, the next lower
* otherwise.
* When return_any and find_higher are both true, and no higher item is found,
* return the next lower instead.
* When return_any is true and find_higher is false, and no lower item is found,
* return the next higher instead.
* It returns 0 if any item is found, 1 if none is found (tree empty), and
* < 0 on error
*/
int btrfs_search_slot_for_read(struct btrfs_root *root,
const struct btrfs_key *key,
struct btrfs_path *p, int find_higher,
int return_any)
{
int ret;
struct extent_buffer *leaf;
again:
ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
if (ret <= 0)
return ret;
/*
* a return value of 1 means the path is at the position where the
* item should be inserted. Normally this is the next bigger item,
* but in case the previous item is the last in a leaf, path points
* to the first free slot in the previous leaf, i.e. at an invalid
* item.
*/
leaf = p->nodes[0];
if (find_higher) {
if (p->slots[0] >= btrfs_header_nritems(leaf)) {
ret = btrfs_next_leaf(root, p);
if (ret <= 0)
return ret;
if (!return_any)
return 1;
/*
* no higher item found, return the next
* lower instead
*/
return_any = 0;
find_higher = 0;
btrfs_release_path(p);
goto again;
}
} else {
if (p->slots[0] == 0) {
ret = btrfs_prev_leaf(root, p);
if (ret < 0)
return ret;
if (!ret) {
leaf = p->nodes[0];
if (p->slots[0] == btrfs_header_nritems(leaf))
p->slots[0]--;
return 0;
}
if (!return_any)
return 1;
/*
* no lower item found, return the next
* higher instead
*/
return_any = 0;
find_higher = 1;
btrfs_release_path(p);
goto again;
} else {
--p->slots[0];
}
}
return 0;
}
/*
* adjust the pointers going up the tree, starting at level
* making sure the right key of each node is points to 'key'.
* This is used after shifting pointers to the left, so it stops
* fixing up pointers when a given leaf/node is not in slot 0 of the
* higher levels
*
*/
static void fixup_low_keys(struct btrfs_path *path,
struct btrfs_disk_key *key, int level)
{
int i;
struct extent_buffer *t;
int ret;
for (i = level; i < BTRFS_MAX_LEVEL; i++) {
int tslot = path->slots[i];
if (!path->nodes[i])
break;
t = path->nodes[i];
ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE,
GFP_ATOMIC);
BUG_ON(ret < 0);
btrfs_set_node_key(t, key, tslot);
btrfs_mark_buffer_dirty(path->nodes[i]);
if (tslot != 0)
break;
}
}
/*
* update item key.
*
* This function isn't completely safe. It's the caller's responsibility
* that the new key won't break the order
*/
void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
struct btrfs_path *path,
const struct btrfs_key *new_key)
{
struct btrfs_disk_key disk_key;
struct extent_buffer *eb;
int slot;
eb = path->nodes[0];
slot = path->slots[0];
if (slot > 0) {
btrfs_item_key(eb, &disk_key, slot - 1);
if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
btrfs_crit(fs_info,
"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
slot, btrfs_disk_key_objectid(&disk_key),
btrfs_disk_key_type(&disk_key),
btrfs_disk_key_offset(&disk_key),
new_key->objectid, new_key->type,
new_key->offset);
btrfs_print_leaf(eb);
BUG();
}
}
if (slot < btrfs_header_nritems(eb) - 1) {
btrfs_item_key(eb, &disk_key, slot + 1);
if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
btrfs_crit(fs_info,
"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
slot, btrfs_disk_key_objectid(&disk_key),
btrfs_disk_key_type(&disk_key),
btrfs_disk_key_offset(&disk_key),
new_key->objectid, new_key->type,
new_key->offset);
btrfs_print_leaf(eb);
BUG();
}
}
btrfs_cpu_key_to_disk(&disk_key, new_key);
btrfs_set_item_key(eb, &disk_key, slot);
btrfs_mark_buffer_dirty(eb);
if (slot == 0)
fixup_low_keys(path, &disk_key, 1);
}
/*
* Check key order of two sibling extent buffers.
*
* Return true if something is wrong.
* Return false if everything is fine.
*
* Tree-checker only works inside one tree block, thus the following
* corruption can not be detected by tree-checker:
*
* Leaf @left | Leaf @right
* --------------------------------------------------------------
* | 1 | 2 | 3 | 4 | 5 | f6 | | 7 | 8 |
*
* Key f6 in leaf @left itself is valid, but not valid when the next
* key in leaf @right is 7.
* This can only be checked at tree block merge time.
* And since tree checker has ensured all key order in each tree block
* is correct, we only need to bother the last key of @left and the first
* key of @right.
*/
static bool check_sibling_keys(struct extent_buffer *left,
struct extent_buffer *right)
{
struct btrfs_key left_last;
struct btrfs_key right_first;
int level = btrfs_header_level(left);
int nr_left = btrfs_header_nritems(left);
int nr_right = btrfs_header_nritems(right);
/* No key to check in one of the tree blocks */
if (!nr_left || !nr_right)
return false;
if (level) {
btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
btrfs_node_key_to_cpu(right, &right_first, 0);
} else {
btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
btrfs_item_key_to_cpu(right, &right_first, 0);
}
if (btrfs_comp_cpu_keys(&left_last, &right_first) >= 0) {
btrfs_crit(left->fs_info,
"bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
left_last.objectid, left_last.type,
left_last.offset, right_first.objectid,
right_first.type, right_first.offset);
return true;
}
return false;
}
/*
* try to push data from one node into the next node left in the
* tree.
*
* returns 0 if some ptrs were pushed left, < 0 if there was some horrible
* error, and > 0 if there was no room in the left hand block.
*/
static int push_node_left(struct btrfs_trans_handle *trans,
struct extent_buffer *dst,
struct extent_buffer *src, int empty)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
int push_items = 0;
int src_nritems;
int dst_nritems;
int ret = 0;
src_nritems = btrfs_header_nritems(src);
dst_nritems = btrfs_header_nritems(dst);
push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
WARN_ON(btrfs_header_generation(src) != trans->transid);
WARN_ON(btrfs_header_generation(dst) != trans->transid);
if (!empty && src_nritems <= 8)
return 1;
if (push_items <= 0)
return 1;
if (empty) {
push_items = min(src_nritems, push_items);
if (push_items < src_nritems) {
/* leave at least 8 pointers in the node if
* we aren't going to empty it
*/
if (src_nritems - push_items < 8) {
if (push_items <= 8)
return 1;
push_items -= 8;
}
}
} else
push_items = min(src_nritems - 8, push_items);
/* dst is the left eb, src is the middle eb */
if (check_sibling_keys(dst, src)) {
ret = -EUCLEAN;
btrfs_abort_transaction(trans, ret);
return ret;
}
ret = tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
if (ret) {
btrfs_abort_transaction(trans, ret);
return ret;
}
copy_extent_buffer(dst, src,
btrfs_node_key_ptr_offset(dst_nritems),
btrfs_node_key_ptr_offset(0),
push_items * sizeof(struct btrfs_key_ptr));
if (push_items < src_nritems) {
/*
* Don't call tree_mod_log_insert_move here, key removal was
* already fully logged by tree_mod_log_eb_copy above.
*/
memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
btrfs_node_key_ptr_offset(push_items),
(src_nritems - push_items) *
sizeof(struct btrfs_key_ptr));
}
btrfs_set_header_nritems(src, src_nritems - push_items);
btrfs_set_header_nritems(dst, dst_nritems + push_items);
btrfs_mark_buffer_dirty(src);
btrfs_mark_buffer_dirty(dst);
return ret;
}
/*
* try to push data from one node into the next node right in the
* tree.
*
* returns 0 if some ptrs were pushed, < 0 if there was some horrible
* error, and > 0 if there was no room in the right hand block.
*
* this will only push up to 1/2 the contents of the left node over
*/
static int balance_node_right(struct btrfs_trans_handle *trans,
struct extent_buffer *dst,
struct extent_buffer *src)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
int push_items = 0;
int max_push;
int src_nritems;
int dst_nritems;
int ret = 0;
WARN_ON(btrfs_header_generation(src) != trans->transid);
WARN_ON(btrfs_header_generation(dst) != trans->transid);
src_nritems = btrfs_header_nritems(src);
dst_nritems = btrfs_header_nritems(dst);
push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
if (push_items <= 0)
return 1;
if (src_nritems < 4)
return 1;
max_push = src_nritems / 2 + 1;
/* don't try to empty the node */
if (max_push >= src_nritems)
return 1;
if (max_push < push_items)
push_items = max_push;
/* dst is the right eb, src is the middle eb */
if (check_sibling_keys(src, dst)) {
ret = -EUCLEAN;
btrfs_abort_transaction(trans, ret);
return ret;
}
ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
BUG_ON(ret < 0);
memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
btrfs_node_key_ptr_offset(0),
(dst_nritems) *
sizeof(struct btrfs_key_ptr));
ret = tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
push_items);
if (ret) {
btrfs_abort_transaction(trans, ret);
return ret;
}
copy_extent_buffer(dst, src,
btrfs_node_key_ptr_offset(0),
btrfs_node_key_ptr_offset(src_nritems - push_items),
push_items * sizeof(struct btrfs_key_ptr));
btrfs_set_header_nritems(src, src_nritems - push_items);
btrfs_set_header_nritems(dst, dst_nritems + push_items);
btrfs_mark_buffer_dirty(src);
btrfs_mark_buffer_dirty(dst);
return ret;
}
/*
* helper function to insert a new root level in the tree.
* A new node is allocated, and a single item is inserted to
* point to the existing root
*
* returns zero on success or < 0 on failure.
*/
static noinline int insert_new_root(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path, int level)
{
struct btrfs_fs_info *fs_info = root->fs_info;
u64 lower_gen;
struct extent_buffer *lower;
struct extent_buffer *c;
struct extent_buffer *old;
struct btrfs_disk_key lower_key;
int ret;
BUG_ON(path->nodes[level]);
BUG_ON(path->nodes[level-1] != root->node);
lower = path->nodes[level-1];
if (level == 1)
btrfs_item_key(lower, &lower_key, 0);
else
btrfs_node_key(lower, &lower_key, 0);
c = alloc_tree_block_no_bg_flush(trans, root, 0, &lower_key, level,
root->node->start, 0,
BTRFS_NESTING_NEW_ROOT);
if (IS_ERR(c))
return PTR_ERR(c);
root_add_used(root, fs_info->nodesize);
btrfs_set_header_nritems(c, 1);
btrfs_set_node_key(c, &lower_key, 0);
btrfs_set_node_blockptr(c, 0, lower->start);
lower_gen = btrfs_header_generation(lower);
WARN_ON(lower_gen != trans->transid);
btrfs_set_node_ptr_generation(c, 0, lower_gen);
btrfs_mark_buffer_dirty(c);
old = root->node;
ret = tree_mod_log_insert_root(root->node, c, 0);
BUG_ON(ret < 0);
rcu_assign_pointer(root->node, c);
/* the super has an extra ref to root->node */
free_extent_buffer(old);
add_root_to_dirty_list(root);
atomic_inc(&c->refs);
path->nodes[level] = c;
path->locks[level] = BTRFS_WRITE_LOCK;
path->slots[level] = 0;
return 0;
}
/*
* worker function to insert a single pointer in a node.
* the node should have enough room for the pointer already
*
* slot and level indicate where you want the key to go, and
* blocknr is the block the key points to.
*/
static void insert_ptr(struct btrfs_trans_handle *trans,
struct btrfs_path *path,
struct btrfs_disk_key *key, u64 bytenr,
int slot, int level)
{
struct extent_buffer *lower;
int nritems;
int ret;
BUG_ON(!path->nodes[level]);
btrfs_assert_tree_locked(path->nodes[level]);
lower = path->nodes[level];
nritems = btrfs_header_nritems(lower);
BUG_ON(slot > nritems);
BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
if (slot != nritems) {
if (level) {
ret = tree_mod_log_insert_move(lower, slot + 1, slot,
nritems - slot);
BUG_ON(ret < 0);
}
memmove_extent_buffer(lower,
btrfs_node_key_ptr_offset(slot + 1),
btrfs_node_key_ptr_offset(slot),
(nritems - slot) * sizeof(struct btrfs_key_ptr));
}
if (level) {
ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD,
GFP_NOFS);
BUG_ON(ret < 0);
}
btrfs_set_node_key(lower, key, slot);
btrfs_set_node_blockptr(lower, slot, bytenr);
WARN_ON(trans->transid == 0);
btrfs_set_node_ptr_generation(lower, slot, trans->transid);
btrfs_set_header_nritems(lower, nritems + 1);
btrfs_mark_buffer_dirty(lower);
}
/*
* split the node at the specified level in path in two.
* The path is corrected to point to the appropriate node after the split
*
* Before splitting this tries to make some room in the node by pushing
* left and right, if either one works, it returns right away.
*
* returns 0 on success and < 0 on failure
*/
static noinline int split_node(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path, int level)
{
struct btrfs_fs_info *fs_info = root->fs_info;
struct extent_buffer *c;
struct extent_buffer *split;
struct btrfs_disk_key disk_key;
int mid;
int ret;
u32 c_nritems;
c = path->nodes[level];
WARN_ON(btrfs_header_generation(c) != trans->transid);
if (c == root->node) {
/*
* trying to split the root, lets make a new one
*
* tree mod log: We don't log_removal old root in
* insert_new_root, because that root buffer will be kept as a
* normal node. We are going to log removal of half of the
* elements below with tree_mod_log_eb_copy. We're holding a
* tree lock on the buffer, which is why we cannot race with
* other tree_mod_log users.
*/
ret = insert_new_root(trans, root, path, level + 1);
if (ret)
return ret;
} else {
ret = push_nodes_for_insert(trans, root, path, level);
c = path->nodes[level];
if (!ret && btrfs_header_nritems(c) <
BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
return 0;
if (ret < 0)
return ret;
}
c_nritems = btrfs_header_nritems(c);
mid = (c_nritems + 1) / 2;
btrfs_node_key(c, &disk_key, mid);
split = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, level,
c->start, 0, BTRFS_NESTING_SPLIT);
if (IS_ERR(split))
return PTR_ERR(split);
root_add_used(root, fs_info->nodesize);
ASSERT(btrfs_header_level(c) == level);
ret = tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
if (ret) {
btrfs_abort_transaction(trans, ret);
return ret;
}
copy_extent_buffer(split, c,
btrfs_node_key_ptr_offset(0),
btrfs_node_key_ptr_offset(mid),
(c_nritems - mid) * sizeof(struct btrfs_key_ptr));
btrfs_set_header_nritems(split, c_nritems - mid);
btrfs_set_header_nritems(c, mid);
btrfs_mark_buffer_dirty(c);
btrfs_mark_buffer_dirty(split);
insert_ptr(trans, path, &disk_key, split->start,
path->slots[level + 1] + 1, level + 1);
if (path->slots[level] >= mid) {
path->slots[level] -= mid;
btrfs_tree_unlock(c);
free_extent_buffer(c);
path->nodes[level] = split;
path->slots[level + 1] += 1;
} else {
btrfs_tree_unlock(split);
free_extent_buffer(split);
}
return 0;
}
/*
* how many bytes are required to store the items in a leaf. start
* and nr indicate which items in the leaf to check. This totals up the
* space used both by the item structs and the item data
*/
static int leaf_space_used(struct extent_buffer *l, int start, int nr)
{
struct btrfs_item *start_item;
struct btrfs_item *end_item;
int data_len;
int nritems = btrfs_header_nritems(l);
int end = min(nritems, start + nr) - 1;
if (!nr)
return 0;
start_item = btrfs_item_nr(start);
end_item = btrfs_item_nr(end);
data_len = btrfs_item_offset(l, start_item) +
btrfs_item_size(l, start_item);
data_len = data_len - btrfs_item_offset(l, end_item);
data_len += sizeof(struct btrfs_item) * nr;
WARN_ON(data_len < 0);
return data_len;
}
/*
* The space between the end of the leaf items and
* the start of the leaf data. IOW, how much room
* the leaf has left for both items and data
*/
noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
{
struct btrfs_fs_info *fs_info = leaf->fs_info;
int nritems = btrfs_header_nritems(leaf);
int ret;
ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
if (ret < 0) {
btrfs_crit(fs_info,
"leaf free space ret %d, leaf data size %lu, used %d nritems %d",
ret,
(unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
leaf_space_used(leaf, 0, nritems), nritems);
}
return ret;
}
/*
* min slot controls the lowest index we're willing to push to the
* right. We'll push up to and including min_slot, but no lower
*/
static noinline int __push_leaf_right(struct btrfs_path *path,
int data_size, int empty,
struct extent_buffer *right,
int free_space, u32 left_nritems,
u32 min_slot)
{
struct btrfs_fs_info *fs_info = right->fs_info;
struct extent_buffer *left = path->nodes[0];
struct extent_buffer *upper = path->nodes[1];
struct btrfs_map_token token;
struct btrfs_disk_key disk_key;
int slot;
u32 i;
int push_space = 0;
int push_items = 0;
struct btrfs_item *item;
u32 nr;
u32 right_nritems;
u32 data_end;
u32 this_item_size;
if (empty)
nr = 0;
else
nr = max_t(u32, 1, min_slot);
if (path->slots[0] >= left_nritems)
push_space += data_size;
slot = path->slots[1];
i = left_nritems - 1;
while (i >= nr) {
item = btrfs_item_nr(i);
if (!empty && push_items > 0) {
if (path->slots[0] > i)
break;
if (path->slots[0] == i) {
int space = btrfs_leaf_free_space(left);
if (space + push_space * 2 > free_space)
break;
}
}
if (path->slots[0] == i)
push_space += data_size;
this_item_size = btrfs_item_size(left, item);
if (this_item_size + sizeof(*item) + push_space > free_space)
break;
push_items++;
push_space += this_item_size + sizeof(*item);
if (i == 0)
break;
i--;
}
if (push_items == 0)
goto out_unlock;
WARN_ON(!empty && push_items == left_nritems);
/* push left to right */
right_nritems = btrfs_header_nritems(right);
push_space = btrfs_item_end_nr(left, left_nritems - push_items);
push_space -= leaf_data_end(left);
/* make room in the right data area */
data_end = leaf_data_end(right);
memmove_extent_buffer(right,
BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
BTRFS_LEAF_DATA_OFFSET + data_end,
BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
/* copy from the left data area */
copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left),
push_space);
memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
btrfs_item_nr_offset(0),
right_nritems * sizeof(struct btrfs_item));
/* copy the items from left to right */
copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
btrfs_item_nr_offset(left_nritems - push_items),
push_items * sizeof(struct btrfs_item));
/* update the item pointers */
btrfs_init_map_token(&token, right);
right_nritems += push_items;
btrfs_set_header_nritems(right, right_nritems);
push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
for (i = 0; i < right_nritems; i++) {
item = btrfs_item_nr(i);
push_space -= btrfs_token_item_size(&token, item);
btrfs_set_token_item_offset(&token, item, push_space);
}
left_nritems -= push_items;
btrfs_set_header_nritems(left, left_nritems);
if (left_nritems)
btrfs_mark_buffer_dirty(left);
else
btrfs_clean_tree_block(left);
btrfs_mark_buffer_dirty(right);
btrfs_item_key(right, &disk_key, 0);
btrfs_set_node_key(upper, &disk_key, slot + 1);
btrfs_mark_buffer_dirty(upper);
/* then fixup the leaf pointer in the path */
if (path->slots[0] >= left_nritems) {
path->slots[0] -= left_nritems;
if (btrfs_header_nritems(path->nodes[0]) == 0)
btrfs_clean_tree_block(path->nodes[0]);
btrfs_tree_unlock(path->nodes[0]);
free_extent_buffer(path->nodes[0]);
path->nodes[0] = right;
path->slots[1] += 1;
} else {
btrfs_tree_unlock(right);
free_extent_buffer(right);
}
return 0;
out_unlock:
btrfs_tree_unlock(right);
free_extent_buffer(right);
return 1;
}
/*
* push some data in the path leaf to the right, trying to free up at
* least data_size bytes. returns zero if the push worked, nonzero otherwise
*
* returns 1 if the push failed because the other node didn't have enough
* room, 0 if everything worked out and < 0 if there were major errors.
*
* this will push starting from min_slot to the end of the leaf. It won't
* push any slot lower than min_slot
*/
static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
*root, struct btrfs_path *path,
int min_data_size, int data_size,
int empty, u32 min_slot)
{
struct extent_buffer *left = path->nodes[0];
struct extent_buffer *right;
struct extent_buffer *upper;
int slot;
int free_space;
u32 left_nritems;
int ret;
if (!path->nodes[1])
return 1;
slot = path->slots[1];
upper = path->nodes[1];
if (slot >= btrfs_header_nritems(upper) - 1)
return 1;
btrfs_assert_tree_locked(path->nodes[1]);
right = btrfs_read_node_slot(upper, slot + 1);
/*
* slot + 1 is not valid or we fail to read the right node,
* no big deal, just return.
*/
if (IS_ERR(right))
return 1;
__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
free_space = btrfs_leaf_free_space(right);
if (free_space < data_size)
goto out_unlock;
/* cow and double check */
ret = btrfs_cow_block(trans, root, right, upper,
slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
if (ret)
goto out_unlock;
free_space = btrfs_leaf_free_space(right);
if (free_space < data_size)
goto out_unlock;
left_nritems = btrfs_header_nritems(left);
if (left_nritems == 0)
goto out_unlock;
if (check_sibling_keys(left, right)) {
ret = -EUCLEAN;
btrfs_tree_unlock(right);
free_extent_buffer(right);
return ret;
}
if (path->slots[0] == left_nritems && !empty) {
/* Key greater than all keys in the leaf, right neighbor has
* enough room for it and we're not emptying our leaf to delete
* it, therefore use right neighbor to insert the new item and
* no need to touch/dirty our left leaf. */
btrfs_tree_unlock(left);
free_extent_buffer(left);
path->nodes[0] = right;
path->slots[0] = 0;
path->slots[1]++;
return 0;
}
return __push_leaf_right(path, min_data_size, empty,
right, free_space, left_nritems, min_slot);
out_unlock:
btrfs_tree_unlock(right);
free_extent_buffer(right);
return 1;
}
/*
* push some data in the path leaf to the left, trying to free up at
* least data_size bytes. returns zero if the push worked, nonzero otherwise
*
* max_slot can put a limit on how far into the leaf we'll push items. The
* item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
* items
*/
static noinline int __push_leaf_left(struct btrfs_path *path, int data_size,
int empty, struct extent_buffer *left,
int free_space, u32 right_nritems,
u32 max_slot)
{
struct btrfs_fs_info *fs_info = left->fs_info;
struct btrfs_disk_key disk_key;
struct extent_buffer *right = path->nodes[0];
int i;
int push_space = 0;
int push_items = 0;
struct btrfs_item *item;
u32 old_left_nritems;
u32 nr;
int ret = 0;
u32 this_item_size;
u32 old_left_item_size;
struct btrfs_map_token token;
if (empty)
nr = min(right_nritems, max_slot);
else
nr = min(right_nritems - 1, max_slot);
for (i = 0; i < nr; i++) {
item = btrfs_item_nr(i);
if (!empty && push_items > 0) {
if (path->slots[0] < i)
break;
if (path->slots[0] == i) {
int space = btrfs_leaf_free_space(right);
if (space + push_space * 2 > free_space)
break;
}
}
if (path->slots[0] == i)
push_space += data_size;
this_item_size = btrfs_item_size(right, item);
if (this_item_size + sizeof(*item) + push_space > free_space)
break;
push_items++;
push_space += this_item_size + sizeof(*item);
}
if (push_items == 0) {
ret = 1;
goto out;
}
WARN_ON(!empty && push_items == btrfs_header_nritems(right));
/* push data from right to left */
copy_extent_buffer(left, right,
btrfs_item_nr_offset(btrfs_header_nritems(left)),
btrfs_item_nr_offset(0),
push_items * sizeof(struct btrfs_item));
push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
btrfs_item_offset_nr(right, push_items - 1);
copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
leaf_data_end(left) - push_space,
BTRFS_LEAF_DATA_OFFSET +
btrfs_item_offset_nr(right, push_items - 1),
push_space);
old_left_nritems = btrfs_header_nritems(left);
BUG_ON(old_left_nritems <= 0);
btrfs_init_map_token(&token, left);
old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
u32 ioff;
item = btrfs_item_nr(i);
ioff = btrfs_token_item_offset(&token, item);
btrfs_set_token_item_offset(&token, item,
ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
}
btrfs_set_header_nritems(left, old_left_nritems + push_items);
/* fixup right node */
if (push_items > right_nritems)
WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
right_nritems);
if (push_items < right_nritems) {
push_space = btrfs_item_offset_nr(right, push_items - 1) -
leaf_data_end(right);
memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
BTRFS_LEAF_DATA_OFFSET +
leaf_data_end(right), push_space);
memmove_extent_buffer(right, btrfs_item_nr_offset(0),
btrfs_item_nr_offset(push_items),
(btrfs_header_nritems(right) - push_items) *
sizeof(struct btrfs_item));
}
btrfs_init_map_token(&token, right);
right_nritems -= push_items;
btrfs_set_header_nritems(right, right_nritems);
push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
for (i = 0; i < right_nritems; i++) {
item = btrfs_item_nr(i);
push_space = push_space - btrfs_token_item_size(&token, item);
btrfs_set_token_item_offset(&token, item, push_space);
}
btrfs_mark_buffer_dirty(left);
if (right_nritems)
btrfs_mark_buffer_dirty(right);
else
btrfs_clean_tree_block(right);
btrfs_item_key(right, &disk_key, 0);
fixup_low_keys(path, &disk_key, 1);
/* then fixup the leaf pointer in the path */
if (path->slots[0] < push_items) {
path->slots[0] += old_left_nritems;
btrfs_tree_unlock(path->nodes[0]);
free_extent_buffer(path->nodes[0]);
path->nodes[0] = left;
path->slots[1] -= 1;
} else {
btrfs_tree_unlock(left);
free_extent_buffer(left);
path->slots[0] -= push_items;
}
BUG_ON(path->slots[0] < 0);
return ret;
out:
btrfs_tree_unlock(left);
free_extent_buffer(left);
return ret;
}
/*
* push some data in the path leaf to the left, trying to free up at
* least data_size bytes. returns zero if the push worked, nonzero otherwise
*
* max_slot can put a limit on how far into the leaf we'll push items. The
* item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
* items
*/
static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
*root, struct btrfs_path *path, int min_data_size,
int data_size, int empty, u32 max_slot)
{
struct extent_buffer *right = path->nodes[0];
struct extent_buffer *left;
int slot;
int free_space;
u32 right_nritems;
int ret = 0;
slot = path->slots[1];
if (slot == 0)
return 1;
if (!path->nodes[1])
return 1;
right_nritems = btrfs_header_nritems(right);
if (right_nritems == 0)
return 1;
btrfs_assert_tree_locked(path->nodes[1]);
left = btrfs_read_node_slot(path->nodes[1], slot - 1);
/*
* slot - 1 is not valid or we fail to read the left node,
* no big deal, just return.
*/
if (IS_ERR(left))
return 1;
__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
free_space = btrfs_leaf_free_space(left);
if (free_space < data_size) {
ret = 1;
goto out;
}
/* cow and double check */
ret = btrfs_cow_block(trans, root, left,
path->nodes[1], slot - 1, &left,
BTRFS_NESTING_LEFT_COW);
if (ret) {
/* we hit -ENOSPC, but it isn't fatal here */
if (ret == -ENOSPC)
ret = 1;
goto out;
}
free_space = btrfs_leaf_free_space(left);
if (free_space < data_size) {
ret = 1;
goto out;
}
if (check_sibling_keys(left, right)) {
ret = -EUCLEAN;
goto out;
}
return __push_leaf_left(path, min_data_size,
empty, left, free_space, right_nritems,
max_slot);
out:
btrfs_tree_unlock(left);
free_extent_buffer(left);
return ret;
}
/*
* split the path's leaf in two, making sure there is at least data_size
* available for the resulting leaf level of the path.
*/
static noinline void copy_for_split(struct btrfs_trans_handle *trans,
struct btrfs_path *path,
struct extent_buffer *l,
struct extent_buffer *right,
int slot, int mid, int nritems)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
int data_copy_size;
int rt_data_off;
int i;
struct btrfs_disk_key disk_key;
struct btrfs_map_token token;
nritems = nritems - mid;
btrfs_set_header_nritems(right, nritems);
data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(l);
copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
btrfs_item_nr_offset(mid),
nritems * sizeof(struct btrfs_item));
copy_extent_buffer(right, l,
BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
data_copy_size, BTRFS_LEAF_DATA_OFFSET +
leaf_data_end(l), data_copy_size);
rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
btrfs_init_map_token(&token, right);
for (i = 0; i < nritems; i++) {
struct btrfs_item *item = btrfs_item_nr(i);
u32 ioff;
ioff = btrfs_token_item_offset(&token, item);
btrfs_set_token_item_offset(&token, item, ioff + rt_data_off);
}
btrfs_set_header_nritems(l, mid);
btrfs_item_key(right, &disk_key, 0);
insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
btrfs_mark_buffer_dirty(right);
btrfs_mark_buffer_dirty(l);
BUG_ON(path->slots[0] != slot);
if (mid <= slot) {
btrfs_tree_unlock(path->nodes[0]);
free_extent_buffer(path->nodes[0]);
path->nodes[0] = right;
path->slots[0] -= mid;
path->slots[1] += 1;
} else {
btrfs_tree_unlock(right);
free_extent_buffer(right);
}
BUG_ON(path->slots[0] < 0);
}
/*
* double splits happen when we need to insert a big item in the middle
* of a leaf. A double split can leave us with 3 mostly empty leaves:
* leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
* A B C
*
* We avoid this by trying to push the items on either side of our target
* into the adjacent leaves. If all goes well we can avoid the double split
* completely.
*/
static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
int data_size)
{
int ret;
int progress = 0;
int slot;
u32 nritems;
int space_needed = data_size;
slot = path->slots[0];
if (slot < btrfs_header_nritems(path->nodes[0]))
space_needed -= btrfs_leaf_free_space(path->nodes[0]);
/*
* try to push all the items after our slot into the
* right leaf
*/
ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
if (ret < 0)
return ret;
if (ret == 0)
progress++;
nritems = btrfs_header_nritems(path->nodes[0]);
/*
* our goal is to get our slot at the start or end of a leaf. If
* we've done so we're done
*/
if (path->slots[0] == 0 || path->slots[0] == nritems)
return 0;
if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
return 0;
/* try to push all the items before our slot into the next leaf */
slot = path->slots[0];
space_needed = data_size;
if (slot > 0)
space_needed -= btrfs_leaf_free_space(path->nodes[0]);
ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
if (ret < 0)
return ret;
if (ret == 0)
progress++;
if (progress)
return 0;
return 1;
}
/*
* split the path's leaf in two, making sure there is at least data_size
* available for the resulting leaf level of the path.
*
* returns 0 if all went well and < 0 on failure.
*/
static noinline int split_leaf(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
const struct btrfs_key *ins_key,
struct btrfs_path *path, int data_size,
int extend)
{
struct btrfs_disk_key disk_key;
struct extent_buffer *l;
u32 nritems;
int mid;
int slot;
struct extent_buffer *right;
struct btrfs_fs_info *fs_info = root->fs_info;
int ret = 0;
int wret;
int split;
int num_doubles = 0;
int tried_avoid_double = 0;
l = path->nodes[0];
slot = path->slots[0];
if (extend && data_size + btrfs_item_size_nr(l, slot) +
sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
return -EOVERFLOW;
/* first try to make some room by pushing left and right */
if (data_size && path->nodes[1]) {
int space_needed = data_size;
if (slot < btrfs_header_nritems(l))
space_needed -= btrfs_leaf_free_space(l);
wret = push_leaf_right(trans, root, path, space_needed,
space_needed, 0, 0);
if (wret < 0)
return wret;
if (wret) {
space_needed = data_size;
if (slot > 0)
space_needed -= btrfs_leaf_free_space(l);
wret = push_leaf_left(trans, root, path, space_needed,
space_needed, 0, (u32)-1);
if (wret < 0)
return wret;
}
l = path->nodes[0];
/* did the pushes work? */
if (btrfs_leaf_free_space(l) >= data_size)
return 0;
}
if (!path->nodes[1]) {
ret = insert_new_root(trans, root, path, 1);
if (ret)
return ret;
}
again:
split = 1;
l = path->nodes[0];
slot = path->slots[0];
nritems = btrfs_header_nritems(l);
mid = (nritems + 1) / 2;
if (mid <= slot) {
if (nritems == 1 ||
leaf_space_used(l, mid, nritems - mid) + data_size >
BTRFS_LEAF_DATA_SIZE(fs_info)) {
if (slot >= nritems) {
split = 0;
} else {
mid = slot;
if (mid != nritems &&
leaf_space_used(l, mid, nritems - mid) +
data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
if (data_size && !tried_avoid_double)
goto push_for_double;
split = 2;
}
}
}
} else {
if (leaf_space_used(l, 0, mid) + data_size >
BTRFS_LEAF_DATA_SIZE(fs_info)) {
if (!extend && data_size && slot == 0) {
split = 0;
} else if ((extend || !data_size) && slot == 0) {
mid = 1;
} else {
mid = slot;
if (mid != nritems &&
leaf_space_used(l, mid, nritems - mid) +
data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
if (data_size && !tried_avoid_double)
goto push_for_double;
split = 2;
}
}
}
}
if (split == 0)
btrfs_cpu_key_to_disk(&disk_key, ins_key);
else
btrfs_item_key(l, &disk_key, mid);
/*
* We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
* split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
* subclasses, which is 8 at the time of this patch, and we've maxed it
* out. In the future we could add a
* BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
* use BTRFS_NESTING_NEW_ROOT.
*/
right = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, 0,
l->start, 0, num_doubles ?
BTRFS_NESTING_NEW_ROOT :
BTRFS_NESTING_SPLIT);
if (IS_ERR(right))
return PTR_ERR(right);
root_add_used(root, fs_info->nodesize);
if (split == 0) {
if (mid <= slot) {
btrfs_set_header_nritems(right, 0);
insert_ptr(trans, path, &disk_key,
right->start, path->slots[1] + 1, 1);
btrfs_tree_unlock(path->nodes[0]);
free_extent_buffer(path->nodes[0]);
path->nodes[0] = right;
path->slots[0] = 0;
path->slots[1] += 1;
} else {
btrfs_set_header_nritems(right, 0);
insert_ptr(trans, path, &disk_key,
right->start, path->slots[1], 1);
btrfs_tree_unlock(path->nodes[0]);
free_extent_buffer(path->nodes[0]);
path->nodes[0] = right;
path->slots[0] = 0;
if (path->slots[1] == 0)
fixup_low_keys(path, &disk_key, 1);
}
/*
* We create a new leaf 'right' for the required ins_len and
* we'll do btrfs_mark_buffer_dirty() on this leaf after copying
* the content of ins_len to 'right'.
*/
return ret;
}
copy_for_split(trans, path, l, right, slot, mid, nritems);
if (split == 2) {
BUG_ON(num_doubles != 0);
num_doubles++;
goto again;
}
return 0;
push_for_double:
push_for_double_split(trans, root, path, data_size);
tried_avoid_double = 1;
if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
return 0;
goto again;
}
static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path, int ins_len)
{
struct btrfs_key key;
struct extent_buffer *leaf;
struct btrfs_file_extent_item *fi;
u64 extent_len = 0;
u32 item_size;
int ret;
leaf = path->nodes[0];
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
key.type != BTRFS_EXTENT_CSUM_KEY);
if (btrfs_leaf_free_space(leaf) >= ins_len)
return 0;
item_size = btrfs_item_size_nr(leaf, path->slots[0]);
if (key.type == BTRFS_EXTENT_DATA_KEY) {
fi = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_file_extent_item);
extent_len = btrfs_file_extent_num_bytes(leaf, fi);
}
btrfs_release_path(path);
path->keep_locks = 1;
path->search_for_split = 1;
ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
path->search_for_split = 0;
if (ret > 0)
ret = -EAGAIN;
if (ret < 0)
goto err;
ret = -EAGAIN;
leaf = path->nodes[0];
/* if our item isn't there, return now */
if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
goto err;
/* the leaf has changed, it now has room. return now */
if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
goto err;
if (key.type == BTRFS_EXTENT_DATA_KEY) {
fi = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_file_extent_item);
if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
goto err;
}
ret = split_leaf(trans, root, &key, path, ins_len, 1);
if (ret)
goto err;
path->keep_locks = 0;
btrfs_unlock_up_safe(path, 1);
return 0;
err:
path->keep_locks = 0;
return ret;
}
static noinline int split_item(struct btrfs_path *path,
const struct btrfs_key *new_key,
unsigned long split_offset)
{
struct extent_buffer *leaf;
struct btrfs_item *item;
struct btrfs_item *new_item;
int slot;
char *buf;
u32 nritems;
u32 item_size;
u32 orig_offset;
struct btrfs_disk_key disk_key;
leaf = path->nodes[0];
BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
item = btrfs_item_nr(path->slots[0]);
orig_offset = btrfs_item_offset(leaf, item);
item_size = btrfs_item_size(leaf, item);
buf = kmalloc(item_size, GFP_NOFS);
if (!buf)
return -ENOMEM;
read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
path->slots[0]), item_size);
slot = path->slots[0] + 1;
nritems = btrfs_header_nritems(leaf);
if (slot != nritems) {
/* shift the items */
memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
btrfs_item_nr_offset(slot),
(nritems - slot) * sizeof(struct btrfs_item));
}
btrfs_cpu_key_to_disk(&disk_key, new_key);
btrfs_set_item_key(leaf, &disk_key, slot);
new_item = btrfs_item_nr(slot);
btrfs_set_item_offset(leaf, new_item, orig_offset);
btrfs_set_item_size(leaf, new_item, item_size - split_offset);
btrfs_set_item_offset(leaf, item,
orig_offset + item_size - split_offset);
btrfs_set_item_size(leaf, item, split_offset);
btrfs_set_header_nritems(leaf, nritems + 1);
/* write the data for the start of the original item */
write_extent_buffer(leaf, buf,
btrfs_item_ptr_offset(leaf, path->slots[0]),
split_offset);
/* write the data for the new item */
write_extent_buffer(leaf, buf + split_offset,
btrfs_item_ptr_offset(leaf, slot),
item_size - split_offset);
btrfs_mark_buffer_dirty(leaf);
BUG_ON(btrfs_leaf_free_space(leaf) < 0);
kfree(buf);
return 0;
}
/*
* This function splits a single item into two items,
* giving 'new_key' to the new item and splitting the
* old one at split_offset (from the start of the item).
*
* The path may be released by this operation. After
* the split, the path is pointing to the old item. The
* new item is going to be in the same node as the old one.
*
* Note, the item being split must be smaller enough to live alone on
* a tree block with room for one extra struct btrfs_item
*
* This allows us to split the item in place, keeping a lock on the
* leaf the entire time.
*/
int btrfs_split_item(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
const struct btrfs_key *new_key,
unsigned long split_offset)
{
int ret;
ret = setup_leaf_for_split(trans, root, path,
sizeof(struct btrfs_item));
if (ret)
return ret;
ret = split_item(path, new_key, split_offset);
return ret;
}
/*
* This function duplicate a item, giving 'new_key' to the new item.
* It guarantees both items live in the same tree leaf and the new item
* is contiguous with the original item.
*
* This allows us to split file extent in place, keeping a lock on the
* leaf the entire time.
*/
int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
const struct btrfs_key *new_key)
{
struct extent_buffer *leaf;
int ret;
u32 item_size;
leaf = path->nodes[0];
item_size = btrfs_item_size_nr(leaf, path->slots[0]);
ret = setup_leaf_for_split(trans, root, path,
item_size + sizeof(struct btrfs_item));
if (ret)
return ret;
path->slots[0]++;
setup_items_for_insert(root, path, new_key, &item_size, 1);
leaf = path->nodes[0];
memcpy_extent_buffer(leaf,
btrfs_item_ptr_offset(leaf, path->slots[0]),
btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
item_size);
return 0;
}
/*
* make the item pointed to by the path smaller. new_size indicates
* how small to make it, and from_end tells us if we just chop bytes
* off the end of the item or if we shift the item to chop bytes off
* the front.
*/
void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
{
int slot;
struct extent_buffer *leaf;
struct btrfs_item *item;
u32 nritems;
unsigned int data_end;
unsigned int old_data_start;
unsigned int old_size;
unsigned int size_diff;
int i;
struct btrfs_map_token token;
leaf = path->nodes[0];
slot = path->slots[0];
old_size = btrfs_item_size_nr(leaf, slot);
if (old_size == new_size)
return;
nritems = btrfs_header_nritems(leaf);
data_end = leaf_data_end(leaf);
old_data_start = btrfs_item_offset_nr(leaf, slot);
size_diff = old_size - new_size;
BUG_ON(slot < 0);
BUG_ON(slot >= nritems);
/*
* item0..itemN ... dataN.offset..dataN.size .. data0.size
*/
/* first correct the data pointers */
btrfs_init_map_token(&token, leaf);
for (i = slot; i < nritems; i++) {
u32 ioff;
item = btrfs_item_nr(i);
ioff = btrfs_token_item_offset(&token, item);
btrfs_set_token_item_offset(&token, item, ioff + size_diff);
}
/* shift the data */
if (from_end) {
memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
data_end, old_data_start + new_size - data_end);
} else {
struct btrfs_disk_key disk_key;
u64 offset;
btrfs_item_key(leaf, &disk_key, slot);
if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
unsigned long ptr;
struct btrfs_file_extent_item *fi;
fi = btrfs_item_ptr(leaf, slot,
struct btrfs_file_extent_item);
fi = (struct btrfs_file_extent_item *)(
(unsigned long)fi - size_diff);
if (btrfs_file_extent_type(leaf, fi) ==
BTRFS_FILE_EXTENT_INLINE) {
ptr = btrfs_item_ptr_offset(leaf, slot);
memmove_extent_buffer(leaf, ptr,
(unsigned long)fi,
BTRFS_FILE_EXTENT_INLINE_DATA_START);
}
}
memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
data_end, old_data_start - data_end);
offset = btrfs_disk_key_offset(&disk_key);
btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
btrfs_set_item_key(leaf, &disk_key, slot);
if (slot == 0)
fixup_low_keys(path, &disk_key, 1);
}
item = btrfs_item_nr(slot);
btrfs_set_item_size(leaf, item, new_size);
btrfs_mark_buffer_dirty(leaf);
if (btrfs_leaf_free_space(leaf) < 0) {
btrfs_print_leaf(leaf);
BUG();
}
}
/*
* make the item pointed to by the path bigger, data_size is the added size.
*/
void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
{
int slot;
struct extent_buffer *leaf;
struct btrfs_item *item;
u32 nritems;
unsigned int data_end;
unsigned int old_data;
unsigned int old_size;
int i;
struct btrfs_map_token token;
leaf = path->nodes[0];
nritems = btrfs_header_nritems(leaf);
data_end = leaf_data_end(leaf);
if (btrfs_leaf_free_space(leaf) < data_size) {
btrfs_print_leaf(leaf);
BUG();
}
slot = path->slots[0];
old_data = btrfs_item_end_nr(leaf, slot);
BUG_ON(slot < 0);
if (slot >= nritems) {
btrfs_print_leaf(leaf);
btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
slot, nritems);
BUG();
}
/*
* item0..itemN ... dataN.offset..dataN.size .. data0.size
*/
/* first correct the data pointers */
btrfs_init_map_token(&token, leaf);
for (i = slot; i < nritems; i++) {
u32 ioff;
item = btrfs_item_nr(i);
ioff = btrfs_token_item_offset(&token, item);
btrfs_set_token_item_offset(&token, item, ioff - data_size);
}
/* shift the data */
memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
data_end, old_data - data_end);
data_end = old_data;
old_size = btrfs_item_size_nr(leaf, slot);
item = btrfs_item_nr(slot);
btrfs_set_item_size(leaf, item, old_size + data_size);
btrfs_mark_buffer_dirty(leaf);
if (btrfs_leaf_free_space(leaf) < 0) {
btrfs_print_leaf(leaf);
BUG();
}
}
/**
* setup_items_for_insert - Helper called before inserting one or more items
* to a leaf. Main purpose is to save stack depth by doing the bulk of the work
* in a function that doesn't call btrfs_search_slot
*
* @root: root we are inserting items to
* @path: points to the leaf/slot where we are going to insert new items
* @cpu_key: array of keys for items to be inserted
* @data_size: size of the body of each item we are going to insert
* @nr: size of @cpu_key/@data_size arrays
*/
void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
const struct btrfs_key *cpu_key, u32 *data_size,
int nr)
{
struct btrfs_fs_info *fs_info = root->fs_info;
struct btrfs_item *item;
int i;
u32 nritems;
unsigned int data_end;
struct btrfs_disk_key disk_key;
struct extent_buffer *leaf;
int slot;
struct btrfs_map_token token;
u32 total_size;
u32 total_data = 0;
for (i = 0; i < nr; i++)
total_data += data_size[i];
total_size = total_data + (nr * sizeof(struct btrfs_item));
if (path->slots[0] == 0) {
btrfs_cpu_key_to_disk(&disk_key, cpu_key);
fixup_low_keys(path, &disk_key, 1);
}
btrfs_unlock_up_safe(path, 1);
leaf = path->nodes[0];
slot = path->slots[0];
nritems = btrfs_header_nritems(leaf);
data_end = leaf_data_end(leaf);
if (btrfs_leaf_free_space(leaf) < total_size) {
btrfs_print_leaf(leaf);
btrfs_crit(fs_info, "not enough freespace need %u have %d",
total_size, btrfs_leaf_free_space(leaf));
BUG();
}
btrfs_init_map_token(&token, leaf);
if (slot != nritems) {
unsigned int old_data = btrfs_item_end_nr(leaf, slot);
if (old_data < data_end) {
btrfs_print_leaf(leaf);
btrfs_crit(fs_info,
"item at slot %d with data offset %u beyond data end of leaf %u",
slot, old_data, data_end);
BUG();
}
/*
* item0..itemN ... dataN.offset..dataN.size .. data0.size
*/
/* first correct the data pointers */
for (i = slot; i < nritems; i++) {
u32 ioff;
item = btrfs_item_nr(i);
ioff = btrfs_token_item_offset(&token, item);
btrfs_set_token_item_offset(&token, item,
ioff - total_data);
}
/* shift the items */
memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
btrfs_item_nr_offset(slot),
(nritems - slot) * sizeof(struct btrfs_item));
/* shift the data */
memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
data_end, old_data - data_end);
data_end = old_data;
}
/* setup the item for the new data */
for (i = 0; i < nr; i++) {
btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
btrfs_set_item_key(leaf, &disk_key, slot + i);
item = btrfs_item_nr(slot + i);
data_end -= data_size[i];
btrfs_set_token_item_offset(&token, item, data_end);
btrfs_set_token_item_size(&token, item, data_size[i]);
}
btrfs_set_header_nritems(leaf, nritems + nr);
btrfs_mark_buffer_dirty(leaf);
if (btrfs_leaf_free_space(leaf) < 0) {
btrfs_print_leaf(leaf);
BUG();
}
}
/*
* Given a key and some data, insert items into the tree.
* This does all the path init required, making room in the tree if needed.
*/
int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
const struct btrfs_key *cpu_key, u32 *data_size,
int nr)
{
int ret = 0;
int slot;
int i;
u32 total_size = 0;
u32 total_data = 0;
for (i = 0; i < nr; i++)
total_data += data_size[i];
total_size = total_data + (nr * sizeof(struct btrfs_item));
ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
if (ret == 0)
return -EEXIST;
if (ret < 0)
return ret;
slot = path->slots[0];
BUG_ON(slot < 0);
setup_items_for_insert(root, path, cpu_key, data_size, nr);
return 0;
}
/*
* Given a key and some data, insert an item into the tree.
* This does all the path init required, making room in the tree if needed.
*/
int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
const struct btrfs_key *cpu_key, void *data,
u32 data_size)
{
int ret = 0;
struct btrfs_path *path;
struct extent_buffer *leaf;
unsigned long ptr;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
if (!ret) {
leaf = path->nodes[0];
ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
write_extent_buffer(leaf, data, ptr, data_size);
btrfs_mark_buffer_dirty(leaf);
}
btrfs_free_path(path);
return ret;
}
/*
* delete the pointer from a given node.
*
* the tree should have been previously balanced so the deletion does not
* empty a node.
*/
static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
int level, int slot)
{
struct extent_buffer *parent = path->nodes[level];
u32 nritems;
int ret;
nritems = btrfs_header_nritems(parent);
if (slot != nritems - 1) {
if (level) {
ret = tree_mod_log_insert_move(parent, slot, slot + 1,
nritems - slot - 1);
BUG_ON(ret < 0);
}
memmove_extent_buffer(parent,
btrfs_node_key_ptr_offset(slot),
btrfs_node_key_ptr_offset(slot + 1),
sizeof(struct btrfs_key_ptr) *
(nritems - slot - 1));
} else if (level) {
ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE,
GFP_NOFS);
BUG_ON(ret < 0);
}
nritems--;
btrfs_set_header_nritems(parent, nritems);
if (nritems == 0 && parent == root->node) {
BUG_ON(btrfs_header_level(root->node) != 1);
/* just turn the root into a leaf and break */
btrfs_set_header_level(root->node, 0);
} else if (slot == 0) {
struct btrfs_disk_key disk_key;
btrfs_node_key(parent, &disk_key, 0);
fixup_low_keys(path, &disk_key, level + 1);
}
btrfs_mark_buffer_dirty(parent);
}
/*
* a helper function to delete the leaf pointed to by path->slots[1] and
* path->nodes[1].
*
* This deletes the pointer in path->nodes[1] and frees the leaf
* block extent. zero is returned if it all worked out, < 0 otherwise.
*
* The path must have already been setup for deleting the leaf, including
* all the proper balancing. path->nodes[1] must be locked.
*/
static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct extent_buffer *leaf)
{
WARN_ON(btrfs_header_generation(leaf) != trans->transid);
del_ptr(root, path, 1, path->slots[1]);
/*
* btrfs_free_extent is expensive, we want to make sure we
* aren't holding any locks when we call it
*/
btrfs_unlock_up_safe(path, 0);
root_sub_used(root, leaf->len);
atomic_inc(&leaf->refs);
btrfs_free_tree_block(trans, root, leaf, 0, 1);
free_extent_buffer_stale(leaf);
}
/*
* delete the item at the leaf level in path. If that empties
* the leaf, remove it from the tree
*/
int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
struct btrfs_path *path, int slot, int nr)
{
struct btrfs_fs_info *fs_info = root->fs_info;
struct extent_buffer *leaf;
struct btrfs_item *item;
u32 last_off;
u32 dsize = 0;
int ret = 0;
int wret;
int i;
u32 nritems;
leaf = path->nodes[0];
last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
for (i = 0; i < nr; i++)
dsize += btrfs_item_size_nr(leaf, slot + i);
nritems = btrfs_header_nritems(leaf);
if (slot + nr != nritems) {
int data_end = leaf_data_end(leaf);
struct btrfs_map_token token;
memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
data_end + dsize,
BTRFS_LEAF_DATA_OFFSET + data_end,
last_off - data_end);
btrfs_init_map_token(&token, leaf);
for (i = slot + nr; i < nritems; i++) {
u32 ioff;
item = btrfs_item_nr(i);
ioff = btrfs_token_item_offset(&token, item);
btrfs_set_token_item_offset(&token, item, ioff + dsize);
}
memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
btrfs_item_nr_offset(slot + nr),
sizeof(struct btrfs_item) *
(nritems - slot - nr));
}
btrfs_set_header_nritems(leaf, nritems - nr);
nritems -= nr;
/* delete the leaf if we've emptied it */
if (nritems == 0) {
if (leaf == root->node) {
btrfs_set_header_level(leaf, 0);
} else {
btrfs_clean_tree_block(leaf);
btrfs_del_leaf(trans, root, path, leaf);
}
} else {
int used = leaf_space_used(leaf, 0, nritems);
if (slot == 0) {
struct btrfs_disk_key disk_key;
btrfs_item_key(leaf, &disk_key, 0);
fixup_low_keys(path, &disk_key, 1);
}
/* delete the leaf if it is mostly empty */
if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
/* push_leaf_left fixes the path.
* make sure the path still points to our leaf
* for possible call to del_ptr below
*/
slot = path->slots[1];
atomic_inc(&leaf->refs);
wret = push_leaf_left(trans, root, path, 1, 1,
1, (u32)-1);
if (wret < 0 && wret != -ENOSPC)
ret = wret;
if (path->nodes[0] == leaf &&
btrfs_header_nritems(leaf)) {
wret = push_leaf_right(trans, root, path, 1,
1, 1, 0);
if (wret < 0 && wret != -ENOSPC)
ret = wret;
}
if (btrfs_header_nritems(leaf) == 0) {
path->slots[1] = slot;
btrfs_del_leaf(trans, root, path, leaf);
free_extent_buffer(leaf);
ret = 0;
} else {
/* if we're still in the path, make sure
* we're dirty. Otherwise, one of the
* push_leaf functions must have already
* dirtied this buffer
*/
if (path->nodes[0] == leaf)
btrfs_mark_buffer_dirty(leaf);
free_extent_buffer(leaf);
}
} else {
btrfs_mark_buffer_dirty(leaf);
}
}
return ret;
}
/*
* search the tree again to find a leaf with lesser keys
* returns 0 if it found something or 1 if there are no lesser leaves.
* returns < 0 on io errors.
*
* This may release the path, and so you may lose any locks held at the
* time you call it.
*/
int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
{
struct btrfs_key key;
struct btrfs_disk_key found_key;
int ret;
btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
if (key.offset > 0) {
key.offset--;
} else if (key.type > 0) {
key.type--;
key.offset = (u64)-1;
} else if (key.objectid > 0) {
key.objectid--;
key.type = (u8)-1;
key.offset = (u64)-1;
} else {
return 1;
}
btrfs_release_path(path);
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
if (ret < 0)
return ret;
btrfs_item_key(path->nodes[0], &found_key, 0);
ret = comp_keys(&found_key, &key);
/*
* We might have had an item with the previous key in the tree right
* before we released our path. And after we released our path, that
* item might have been pushed to the first slot (0) of the leaf we
* were holding due to a tree balance. Alternatively, an item with the
* previous key can exist as the only element of a leaf (big fat item).
* Therefore account for these 2 cases, so that our callers (like
* btrfs_previous_item) don't miss an existing item with a key matching
* the previous key we computed above.
*/
if (ret <= 0)
return 0;
return 1;
}
/*
* A helper function to walk down the tree starting at min_key, and looking
* for nodes or leaves that are have a minimum transaction id.
* This is used by the btree defrag code, and tree logging
*
* This does not cow, but it does stuff the starting key it finds back
* into min_key, so you can call btrfs_search_slot with cow=1 on the
* key and get a writable path.
*
* This honors path->lowest_level to prevent descent past a given level
* of the tree.
*
* min_trans indicates the oldest transaction that you are interested
* in walking through. Any nodes or leaves older than min_trans are
* skipped over (without reading them).
*
* returns zero if something useful was found, < 0 on error and 1 if there
* was nothing in the tree that matched the search criteria.
*/
int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
struct btrfs_path *path,
u64 min_trans)
{
struct extent_buffer *cur;
struct btrfs_key found_key;
int slot;
int sret;
u32 nritems;
int level;
int ret = 1;
int keep_locks = path->keep_locks;
path->keep_locks = 1;
again:
cur = btrfs_read_lock_root_node(root);
level = btrfs_header_level(cur);
WARN_ON(path->nodes[level]);
path->nodes[level] = cur;
path->locks[level] = BTRFS_READ_LOCK;
if (btrfs_header_generation(cur) < min_trans) {
ret = 1;
goto out;
}
while (1) {
nritems = btrfs_header_nritems(cur);
level = btrfs_header_level(cur);
sret = btrfs_bin_search(cur, min_key, &slot);
if (sret < 0) {
ret = sret;
goto out;
}
/* at the lowest level, we're done, setup the path and exit */
if (level == path->lowest_level) {
if (slot >= nritems)
goto find_next_key;
ret = 0;
path->slots[level] = slot;
btrfs_item_key_to_cpu(cur, &found_key, slot);
goto out;
}
if (sret && slot > 0)
slot--;
/*
* check this node pointer against the min_trans parameters.
* If it is too old, skip to the next one.
*/
while (slot < nritems) {
u64 gen;
gen = btrfs_node_ptr_generation(cur, slot);
if (gen < min_trans) {
slot++;
continue;
}
break;
}
find_next_key:
/*
* we didn't find a candidate key in this node, walk forward
* and find another one
*/
if (slot >= nritems) {
path->slots[level] = slot;
sret = btrfs_find_next_key(root, path, min_key, level,
min_trans);
if (sret == 0) {
btrfs_release_path(path);
goto again;
} else {
goto out;
}
}
/* save our key for returning back */
btrfs_node_key_to_cpu(cur, &found_key, slot);
path->slots[level] = slot;
if (level == path->lowest_level) {
ret = 0;
goto out;
}
cur = btrfs_read_node_slot(cur, slot);
if (IS_ERR(cur)) {
ret = PTR_ERR(cur);
goto out;
}
btrfs_tree_read_lock(cur);
path->locks[level - 1] = BTRFS_READ_LOCK;
path->nodes[level - 1] = cur;
unlock_up(path, level, 1, 0, NULL);
}
out:
path->keep_locks = keep_locks;
if (ret == 0) {
btrfs_unlock_up_safe(path, path->lowest_level + 1);
memcpy(min_key, &found_key, sizeof(found_key));
}
return ret;
}
/*
* this is similar to btrfs_next_leaf, but does not try to preserve
* and fixup the path. It looks for and returns the next key in the
* tree based on the current path and the min_trans parameters.
*
* 0 is returned if another key is found, < 0 if there are any errors
* and 1 is returned if there are no higher keys in the tree
*
* path->keep_locks should be set to 1 on the search made before
* calling this function.
*/
int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
struct btrfs_key *key, int level, u64 min_trans)
{
int slot;
struct extent_buffer *c;
WARN_ON(!path->keep_locks && !path->skip_locking);
while (level < BTRFS_MAX_LEVEL) {
if (!path->nodes[level])
return 1;
slot = path->slots[level] + 1;
c = path->nodes[level];
next:
if (slot >= btrfs_header_nritems(c)) {
int ret;
int orig_lowest;
struct btrfs_key cur_key;
if (level + 1 >= BTRFS_MAX_LEVEL ||
!path->nodes[level + 1])
return 1;
if (path->locks[level + 1] || path->skip_locking) {
level++;
continue;
}
slot = btrfs_header_nritems(c) - 1;
if (level == 0)
btrfs_item_key_to_cpu(c, &cur_key, slot);
else
btrfs_node_key_to_cpu(c, &cur_key, slot);
orig_lowest = path->lowest_level;
btrfs_release_path(path);
path->lowest_level = level;
ret = btrfs_search_slot(NULL, root, &cur_key, path,
0, 0);
path->lowest_level = orig_lowest;
if (ret < 0)
return ret;
c = path->nodes[level];
slot = path->slots[level];
if (ret == 0)
slot++;
goto next;
}
if (level == 0)
btrfs_item_key_to_cpu(c, key, slot);
else {
u64 gen = btrfs_node_ptr_generation(c, slot);
if (gen < min_trans) {
slot++;
goto next;
}
btrfs_node_key_to_cpu(c, key, slot);
}
return 0;
}
return 1;
}
/*
* search the tree again to find a leaf with greater keys
* returns 0 if it found something or 1 if there are no greater leaves.
* returns < 0 on io errors.
*/
int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
{
return btrfs_next_old_leaf(root, path, 0);
}
int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
u64 time_seq)
{
int slot;
int level;
struct extent_buffer *c;
struct extent_buffer *next;
struct btrfs_key key;
u32 nritems;
int ret;
int i;
nritems = btrfs_header_nritems(path->nodes[0]);
if (nritems == 0)
return 1;
btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
again:
level = 1;
next = NULL;
btrfs_release_path(path);
path->keep_locks = 1;
if (time_seq)
ret = btrfs_search_old_slot(root, &key, path, time_seq);
else
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
path->keep_locks = 0;
if (ret < 0)
return ret;
nritems = btrfs_header_nritems(path->nodes[0]);
/*
* by releasing the path above we dropped all our locks. A balance
* could have added more items next to the key that used to be
* at the very end of the block. So, check again here and
* advance the path if there are now more items available.
*/
if (nritems > 0 && path->slots[0] < nritems - 1) {
if (ret == 0)
path->slots[0]++;
ret = 0;
goto done;
}
/*
* So the above check misses one case:
* - after releasing the path above, someone has removed the item that
* used to be at the very end of the block, and balance between leafs
* gets another one with bigger key.offset to replace it.
*
* This one should be returned as well, or we can get leaf corruption
* later(esp. in __btrfs_drop_extents()).
*
* And a bit more explanation about this check,
* with ret > 0, the key isn't found, the path points to the slot
* where it should be inserted, so the path->slots[0] item must be the
* bigger one.
*/
if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
ret = 0;
goto done;
}
while (level < BTRFS_MAX_LEVEL) {
if (!path->nodes[level]) {
ret = 1;
goto done;
}
slot = path->slots[level] + 1;
c = path->nodes[level];
if (slot >= btrfs_header_nritems(c)) {
level++;
if (level == BTRFS_MAX_LEVEL) {
ret = 1;
goto done;
}
continue;
}
/*
* Our current level is where we're going to start from, and to
* make sure lockdep doesn't complain we need to drop our locks
* and nodes from 0 to our current level.
*/
for (i = 0; i < level; i++) {
if (path->locks[level]) {
btrfs_tree_read_unlock(path->nodes[i]);
path->locks[i] = 0;
}
free_extent_buffer(path->nodes[i]);
path->nodes[i] = NULL;
}
next = c;
ret = read_block_for_search(root, path, &next, level,
slot, &key);
if (ret == -EAGAIN)
goto again;
if (ret < 0) {
btrfs_release_path(path);
goto done;
}
if (!path->skip_locking) {
ret = btrfs_try_tree_read_lock(next);
if (!ret && time_seq) {
/*
* If we don't get the lock, we may be racing
* with push_leaf_left, holding that lock while
* itself waiting for the leaf we've currently
* locked. To solve this situation, we give up
* on our lock and cycle.
*/
free_extent_buffer(next);
btrfs_release_path(path);
cond_resched();
goto again;
}
if (!ret)
btrfs_tree_read_lock(next);
}
break;
}
path->slots[level] = slot;
while (1) {
level--;
path->nodes[level] = next;
path->slots[level] = 0;
if (!path->skip_locking)
path->locks[level] = BTRFS_READ_LOCK;
if (!level)
break;
ret = read_block_for_search(root, path, &next, level,
0, &key);
if (ret == -EAGAIN)
goto again;
if (ret < 0) {
btrfs_release_path(path);
goto done;
}
if (!path->skip_locking)
btrfs_tree_read_lock(next);
}
ret = 0;
done:
unlock_up(path, 0, 1, 0, NULL);
return ret;
}
/*
* this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
* searching until it gets past min_objectid or finds an item of 'type'
*
* returns 0 if something is found, 1 if nothing was found and < 0 on error
*/
int btrfs_previous_item(struct btrfs_root *root,
struct btrfs_path *path, u64 min_objectid,
int type)
{
struct btrfs_key found_key;
struct extent_buffer *leaf;
u32 nritems;
int ret;
while (1) {
if (path->slots[0] == 0) {
ret = btrfs_prev_leaf(root, path);
if (ret != 0)
return ret;
} else {
path->slots[0]--;
}
leaf = path->nodes[0];
nritems = btrfs_header_nritems(leaf);
if (nritems == 0)
return 1;
if (path->slots[0] == nritems)
path->slots[0]--;
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
if (found_key.objectid < min_objectid)
break;
if (found_key.type == type)
return 0;
if (found_key.objectid == min_objectid &&
found_key.type < type)
break;
}
return 1;
}
/*
* search in extent tree to find a previous Metadata/Data extent item with
* min objecitd.
*
* returns 0 if something is found, 1 if nothing was found and < 0 on error
*/
int btrfs_previous_extent_item(struct btrfs_root *root,
struct btrfs_path *path, u64 min_objectid)
{
struct btrfs_key found_key;
struct extent_buffer *leaf;
u32 nritems;
int ret;
while (1) {
if (path->slots[0] == 0) {
ret = btrfs_prev_leaf(root, path);
if (ret != 0)
return ret;
} else {
path->slots[0]--;
}
leaf = path->nodes[0];
nritems = btrfs_header_nritems(leaf);
if (nritems == 0)
return 1;
if (path->slots[0] == nritems)
path->slots[0]--;
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
if (found_key.objectid < min_objectid)
break;
if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
found_key.type == BTRFS_METADATA_ITEM_KEY)
return 0;
if (found_key.objectid == min_objectid &&
found_key.type < BTRFS_EXTENT_ITEM_KEY)
break;
}
return 1;
}