81d1cca0c0
Rename VM_MODE_FLAT48PG to be more descriptive of its config and add a new config that has the same parameters, except with 64K pages. Signed-off-by: Andrew Jones <drjones@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
1474 lines
38 KiB
C
1474 lines
38 KiB
C
/*
|
|
* tools/testing/selftests/kvm/lib/kvm_util.c
|
|
*
|
|
* Copyright (C) 2018, Google LLC.
|
|
*
|
|
* This work is licensed under the terms of the GNU GPL, version 2.
|
|
*/
|
|
|
|
#include "test_util.h"
|
|
#include "kvm_util.h"
|
|
#include "kvm_util_internal.h"
|
|
|
|
#include <assert.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/types.h>
|
|
#include <sys/stat.h>
|
|
#include <linux/kernel.h>
|
|
|
|
#define KVM_UTIL_PGS_PER_HUGEPG 512
|
|
#define KVM_UTIL_MIN_PFN 2
|
|
|
|
/* Aligns x up to the next multiple of size. Size must be a power of 2. */
|
|
static void *align(void *x, size_t size)
|
|
{
|
|
size_t mask = size - 1;
|
|
TEST_ASSERT(size != 0 && !(size & (size - 1)),
|
|
"size not a power of 2: %lu", size);
|
|
return (void *) (((size_t) x + mask) & ~mask);
|
|
}
|
|
|
|
/*
|
|
* Capability
|
|
*
|
|
* Input Args:
|
|
* cap - Capability
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Return:
|
|
* On success, the Value corresponding to the capability (KVM_CAP_*)
|
|
* specified by the value of cap. On failure a TEST_ASSERT failure
|
|
* is produced.
|
|
*
|
|
* Looks up and returns the value corresponding to the capability
|
|
* (KVM_CAP_*) given by cap.
|
|
*/
|
|
int kvm_check_cap(long cap)
|
|
{
|
|
int ret;
|
|
int kvm_fd;
|
|
|
|
kvm_fd = open(KVM_DEV_PATH, O_RDONLY);
|
|
if (kvm_fd < 0)
|
|
exit(KSFT_SKIP);
|
|
|
|
ret = ioctl(kvm_fd, KVM_CHECK_EXTENSION, cap);
|
|
TEST_ASSERT(ret != -1, "KVM_CHECK_EXTENSION IOCTL failed,\n"
|
|
" rc: %i errno: %i", ret, errno);
|
|
|
|
close(kvm_fd);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* VM Enable Capability
|
|
*
|
|
* Input Args:
|
|
* vm - Virtual Machine
|
|
* cap - Capability
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Return: On success, 0. On failure a TEST_ASSERT failure is produced.
|
|
*
|
|
* Enables a capability (KVM_CAP_*) on the VM.
|
|
*/
|
|
int vm_enable_cap(struct kvm_vm *vm, struct kvm_enable_cap *cap)
|
|
{
|
|
int ret;
|
|
|
|
ret = ioctl(vm->fd, KVM_ENABLE_CAP, cap);
|
|
TEST_ASSERT(ret == 0, "KVM_ENABLE_CAP IOCTL failed,\n"
|
|
" rc: %i errno: %i", ret, errno);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void vm_open(struct kvm_vm *vm, int perm)
|
|
{
|
|
vm->kvm_fd = open(KVM_DEV_PATH, perm);
|
|
if (vm->kvm_fd < 0)
|
|
exit(KSFT_SKIP);
|
|
|
|
vm->fd = ioctl(vm->kvm_fd, KVM_CREATE_VM, NULL);
|
|
TEST_ASSERT(vm->fd >= 0, "KVM_CREATE_VM ioctl failed, "
|
|
"rc: %i errno: %i", vm->fd, errno);
|
|
}
|
|
|
|
const char * const vm_guest_mode_string[] = {
|
|
"PA-bits:52, VA-bits:48, 4K pages",
|
|
"PA-bits:52, VA-bits:48, 64K pages",
|
|
};
|
|
|
|
/*
|
|
* VM Create
|
|
*
|
|
* Input Args:
|
|
* mode - VM Mode (e.g. VM_MODE_P52V48_4K)
|
|
* phy_pages - Physical memory pages
|
|
* perm - permission
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Return:
|
|
* Pointer to opaque structure that describes the created VM.
|
|
*
|
|
* Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K).
|
|
* When phy_pages is non-zero, a memory region of phy_pages physical pages
|
|
* is created and mapped starting at guest physical address 0. The file
|
|
* descriptor to control the created VM is created with the permissions
|
|
* given by perm (e.g. O_RDWR).
|
|
*/
|
|
struct kvm_vm *vm_create(enum vm_guest_mode mode, uint64_t phy_pages, int perm)
|
|
{
|
|
struct kvm_vm *vm;
|
|
int kvm_fd;
|
|
|
|
vm = calloc(1, sizeof(*vm));
|
|
TEST_ASSERT(vm != NULL, "Insufficent Memory");
|
|
|
|
vm->mode = mode;
|
|
vm_open(vm, perm);
|
|
|
|
/* Setup mode specific traits. */
|
|
switch (vm->mode) {
|
|
case VM_MODE_P52V48_4K:
|
|
vm->pgtable_levels = 4;
|
|
vm->page_size = 0x1000;
|
|
vm->page_shift = 12;
|
|
vm->va_bits = 48;
|
|
break;
|
|
case VM_MODE_P52V48_64K:
|
|
vm->pgtable_levels = 3;
|
|
vm->pa_bits = 52;
|
|
vm->page_size = 0x10000;
|
|
vm->page_shift = 16;
|
|
vm->va_bits = 48;
|
|
break;
|
|
default:
|
|
TEST_ASSERT(false, "Unknown guest mode, mode: 0x%x", mode);
|
|
}
|
|
|
|
/* Limit to VA-bit canonical virtual addresses. */
|
|
vm->vpages_valid = sparsebit_alloc();
|
|
sparsebit_set_num(vm->vpages_valid,
|
|
0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
|
|
sparsebit_set_num(vm->vpages_valid,
|
|
(~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift,
|
|
(1ULL << (vm->va_bits - 1)) >> vm->page_shift);
|
|
|
|
/* Limit physical addresses to PA-bits. */
|
|
vm->max_gfn = ((1ULL << vm->pa_bits) >> vm->page_shift) - 1;
|
|
|
|
/* Allocate and setup memory for guest. */
|
|
vm->vpages_mapped = sparsebit_alloc();
|
|
if (phy_pages != 0)
|
|
vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS,
|
|
0, 0, phy_pages, 0);
|
|
|
|
return vm;
|
|
}
|
|
|
|
/*
|
|
* VM Restart
|
|
*
|
|
* Input Args:
|
|
* vm - VM that has been released before
|
|
* perm - permission
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Reopens the file descriptors associated to the VM and reinstates the
|
|
* global state, such as the irqchip and the memory regions that are mapped
|
|
* into the guest.
|
|
*/
|
|
void kvm_vm_restart(struct kvm_vm *vmp, int perm)
|
|
{
|
|
struct userspace_mem_region *region;
|
|
|
|
vm_open(vmp, perm);
|
|
if (vmp->has_irqchip)
|
|
vm_create_irqchip(vmp);
|
|
|
|
for (region = vmp->userspace_mem_region_head; region;
|
|
region = region->next) {
|
|
int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region);
|
|
TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
|
|
" rc: %i errno: %i\n"
|
|
" slot: %u flags: 0x%x\n"
|
|
" guest_phys_addr: 0x%lx size: 0x%lx",
|
|
ret, errno, region->region.slot,
|
|
region->region.flags,
|
|
region->region.guest_phys_addr,
|
|
region->region.memory_size);
|
|
}
|
|
}
|
|
|
|
void kvm_vm_get_dirty_log(struct kvm_vm *vm, int slot, void *log)
|
|
{
|
|
struct kvm_dirty_log args = { .dirty_bitmap = log, .slot = slot };
|
|
int ret;
|
|
|
|
ret = ioctl(vm->fd, KVM_GET_DIRTY_LOG, &args);
|
|
TEST_ASSERT(ret == 0, "%s: KVM_GET_DIRTY_LOG failed: %s",
|
|
strerror(-ret));
|
|
}
|
|
|
|
/*
|
|
* Userspace Memory Region Find
|
|
*
|
|
* Input Args:
|
|
* vm - Virtual Machine
|
|
* start - Starting VM physical address
|
|
* end - Ending VM physical address, inclusive.
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Return:
|
|
* Pointer to overlapping region, NULL if no such region.
|
|
*
|
|
* Searches for a region with any physical memory that overlaps with
|
|
* any portion of the guest physical addresses from start to end
|
|
* inclusive. If multiple overlapping regions exist, a pointer to any
|
|
* of the regions is returned. Null is returned only when no overlapping
|
|
* region exists.
|
|
*/
|
|
static struct userspace_mem_region *
|
|
userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end)
|
|
{
|
|
struct userspace_mem_region *region;
|
|
|
|
for (region = vm->userspace_mem_region_head; region;
|
|
region = region->next) {
|
|
uint64_t existing_start = region->region.guest_phys_addr;
|
|
uint64_t existing_end = region->region.guest_phys_addr
|
|
+ region->region.memory_size - 1;
|
|
if (start <= existing_end && end >= existing_start)
|
|
return region;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* KVM Userspace Memory Region Find
|
|
*
|
|
* Input Args:
|
|
* vm - Virtual Machine
|
|
* start - Starting VM physical address
|
|
* end - Ending VM physical address, inclusive.
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Return:
|
|
* Pointer to overlapping region, NULL if no such region.
|
|
*
|
|
* Public interface to userspace_mem_region_find. Allows tests to look up
|
|
* the memslot datastructure for a given range of guest physical memory.
|
|
*/
|
|
struct kvm_userspace_memory_region *
|
|
kvm_userspace_memory_region_find(struct kvm_vm *vm, uint64_t start,
|
|
uint64_t end)
|
|
{
|
|
struct userspace_mem_region *region;
|
|
|
|
region = userspace_mem_region_find(vm, start, end);
|
|
if (!region)
|
|
return NULL;
|
|
|
|
return ®ion->region;
|
|
}
|
|
|
|
/*
|
|
* VCPU Find
|
|
*
|
|
* Input Args:
|
|
* vm - Virtual Machine
|
|
* vcpuid - VCPU ID
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Return:
|
|
* Pointer to VCPU structure
|
|
*
|
|
* Locates a vcpu structure that describes the VCPU specified by vcpuid and
|
|
* returns a pointer to it. Returns NULL if the VM doesn't contain a VCPU
|
|
* for the specified vcpuid.
|
|
*/
|
|
struct vcpu *vcpu_find(struct kvm_vm *vm, uint32_t vcpuid)
|
|
{
|
|
struct vcpu *vcpup;
|
|
|
|
for (vcpup = vm->vcpu_head; vcpup; vcpup = vcpup->next) {
|
|
if (vcpup->id == vcpuid)
|
|
return vcpup;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* VM VCPU Remove
|
|
*
|
|
* Input Args:
|
|
* vm - Virtual Machine
|
|
* vcpuid - VCPU ID
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Return: None, TEST_ASSERT failures for all error conditions
|
|
*
|
|
* Within the VM specified by vm, removes the VCPU given by vcpuid.
|
|
*/
|
|
static void vm_vcpu_rm(struct kvm_vm *vm, uint32_t vcpuid)
|
|
{
|
|
struct vcpu *vcpu = vcpu_find(vm, vcpuid);
|
|
int ret;
|
|
|
|
ret = munmap(vcpu->state, sizeof(*vcpu->state));
|
|
TEST_ASSERT(ret == 0, "munmap of VCPU fd failed, rc: %i "
|
|
"errno: %i", ret, errno);
|
|
close(vcpu->fd);
|
|
TEST_ASSERT(ret == 0, "Close of VCPU fd failed, rc: %i "
|
|
"errno: %i", ret, errno);
|
|
|
|
if (vcpu->next)
|
|
vcpu->next->prev = vcpu->prev;
|
|
if (vcpu->prev)
|
|
vcpu->prev->next = vcpu->next;
|
|
else
|
|
vm->vcpu_head = vcpu->next;
|
|
free(vcpu);
|
|
}
|
|
|
|
void kvm_vm_release(struct kvm_vm *vmp)
|
|
{
|
|
int ret;
|
|
|
|
while (vmp->vcpu_head)
|
|
vm_vcpu_rm(vmp, vmp->vcpu_head->id);
|
|
|
|
ret = close(vmp->fd);
|
|
TEST_ASSERT(ret == 0, "Close of vm fd failed,\n"
|
|
" vmp->fd: %i rc: %i errno: %i", vmp->fd, ret, errno);
|
|
|
|
close(vmp->kvm_fd);
|
|
TEST_ASSERT(ret == 0, "Close of /dev/kvm fd failed,\n"
|
|
" vmp->kvm_fd: %i rc: %i errno: %i", vmp->kvm_fd, ret, errno);
|
|
}
|
|
|
|
/*
|
|
* Destroys and frees the VM pointed to by vmp.
|
|
*/
|
|
void kvm_vm_free(struct kvm_vm *vmp)
|
|
{
|
|
int ret;
|
|
|
|
if (vmp == NULL)
|
|
return;
|
|
|
|
/* Free userspace_mem_regions. */
|
|
while (vmp->userspace_mem_region_head) {
|
|
struct userspace_mem_region *region
|
|
= vmp->userspace_mem_region_head;
|
|
|
|
region->region.memory_size = 0;
|
|
ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION,
|
|
®ion->region);
|
|
TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed, "
|
|
"rc: %i errno: %i", ret, errno);
|
|
|
|
vmp->userspace_mem_region_head = region->next;
|
|
sparsebit_free(®ion->unused_phy_pages);
|
|
ret = munmap(region->mmap_start, region->mmap_size);
|
|
TEST_ASSERT(ret == 0, "munmap failed, rc: %i errno: %i",
|
|
ret, errno);
|
|
|
|
free(region);
|
|
}
|
|
|
|
/* Free sparsebit arrays. */
|
|
sparsebit_free(&vmp->vpages_valid);
|
|
sparsebit_free(&vmp->vpages_mapped);
|
|
|
|
kvm_vm_release(vmp);
|
|
|
|
/* Free the structure describing the VM. */
|
|
free(vmp);
|
|
}
|
|
|
|
/*
|
|
* Memory Compare, host virtual to guest virtual
|
|
*
|
|
* Input Args:
|
|
* hva - Starting host virtual address
|
|
* vm - Virtual Machine
|
|
* gva - Starting guest virtual address
|
|
* len - number of bytes to compare
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Input/Output Args: None
|
|
*
|
|
* Return:
|
|
* Returns 0 if the bytes starting at hva for a length of len
|
|
* are equal the guest virtual bytes starting at gva. Returns
|
|
* a value < 0, if bytes at hva are less than those at gva.
|
|
* Otherwise a value > 0 is returned.
|
|
*
|
|
* Compares the bytes starting at the host virtual address hva, for
|
|
* a length of len, to the guest bytes starting at the guest virtual
|
|
* address given by gva.
|
|
*/
|
|
int kvm_memcmp_hva_gva(void *hva, struct kvm_vm *vm, vm_vaddr_t gva, size_t len)
|
|
{
|
|
size_t amt;
|
|
|
|
/*
|
|
* Compare a batch of bytes until either a match is found
|
|
* or all the bytes have been compared.
|
|
*/
|
|
for (uintptr_t offset = 0; offset < len; offset += amt) {
|
|
uintptr_t ptr1 = (uintptr_t)hva + offset;
|
|
|
|
/*
|
|
* Determine host address for guest virtual address
|
|
* at offset.
|
|
*/
|
|
uintptr_t ptr2 = (uintptr_t)addr_gva2hva(vm, gva + offset);
|
|
|
|
/*
|
|
* Determine amount to compare on this pass.
|
|
* Don't allow the comparsion to cross a page boundary.
|
|
*/
|
|
amt = len - offset;
|
|
if ((ptr1 >> vm->page_shift) != ((ptr1 + amt) >> vm->page_shift))
|
|
amt = vm->page_size - (ptr1 % vm->page_size);
|
|
if ((ptr2 >> vm->page_shift) != ((ptr2 + amt) >> vm->page_shift))
|
|
amt = vm->page_size - (ptr2 % vm->page_size);
|
|
|
|
assert((ptr1 >> vm->page_shift) == ((ptr1 + amt - 1) >> vm->page_shift));
|
|
assert((ptr2 >> vm->page_shift) == ((ptr2 + amt - 1) >> vm->page_shift));
|
|
|
|
/*
|
|
* Perform the comparison. If there is a difference
|
|
* return that result to the caller, otherwise need
|
|
* to continue on looking for a mismatch.
|
|
*/
|
|
int ret = memcmp((void *)ptr1, (void *)ptr2, amt);
|
|
if (ret != 0)
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* No mismatch found. Let the caller know the two memory
|
|
* areas are equal.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* VM Userspace Memory Region Add
|
|
*
|
|
* Input Args:
|
|
* vm - Virtual Machine
|
|
* backing_src - Storage source for this region.
|
|
* NULL to use anonymous memory.
|
|
* guest_paddr - Starting guest physical address
|
|
* slot - KVM region slot
|
|
* npages - Number of physical pages
|
|
* flags - KVM memory region flags (e.g. KVM_MEM_LOG_DIRTY_PAGES)
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Return: None
|
|
*
|
|
* Allocates a memory area of the number of pages specified by npages
|
|
* and maps it to the VM specified by vm, at a starting physical address
|
|
* given by guest_paddr. The region is created with a KVM region slot
|
|
* given by slot, which must be unique and < KVM_MEM_SLOTS_NUM. The
|
|
* region is created with the flags given by flags.
|
|
*/
|
|
void vm_userspace_mem_region_add(struct kvm_vm *vm,
|
|
enum vm_mem_backing_src_type src_type,
|
|
uint64_t guest_paddr, uint32_t slot, uint64_t npages,
|
|
uint32_t flags)
|
|
{
|
|
int ret;
|
|
unsigned long pmem_size = 0;
|
|
struct userspace_mem_region *region;
|
|
size_t huge_page_size = KVM_UTIL_PGS_PER_HUGEPG * vm->page_size;
|
|
|
|
TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical "
|
|
"address not on a page boundary.\n"
|
|
" guest_paddr: 0x%lx vm->page_size: 0x%x",
|
|
guest_paddr, vm->page_size);
|
|
TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1)
|
|
<= vm->max_gfn, "Physical range beyond maximum "
|
|
"supported physical address,\n"
|
|
" guest_paddr: 0x%lx npages: 0x%lx\n"
|
|
" vm->max_gfn: 0x%lx vm->page_size: 0x%x",
|
|
guest_paddr, npages, vm->max_gfn, vm->page_size);
|
|
|
|
/*
|
|
* Confirm a mem region with an overlapping address doesn't
|
|
* already exist.
|
|
*/
|
|
region = (struct userspace_mem_region *) userspace_mem_region_find(
|
|
vm, guest_paddr, guest_paddr + npages * vm->page_size);
|
|
if (region != NULL)
|
|
TEST_ASSERT(false, "overlapping userspace_mem_region already "
|
|
"exists\n"
|
|
" requested guest_paddr: 0x%lx npages: 0x%lx "
|
|
"page_size: 0x%x\n"
|
|
" existing guest_paddr: 0x%lx size: 0x%lx",
|
|
guest_paddr, npages, vm->page_size,
|
|
(uint64_t) region->region.guest_phys_addr,
|
|
(uint64_t) region->region.memory_size);
|
|
|
|
/* Confirm no region with the requested slot already exists. */
|
|
for (region = vm->userspace_mem_region_head; region;
|
|
region = region->next) {
|
|
if (region->region.slot == slot)
|
|
break;
|
|
if ((guest_paddr <= (region->region.guest_phys_addr
|
|
+ region->region.memory_size))
|
|
&& ((guest_paddr + npages * vm->page_size)
|
|
>= region->region.guest_phys_addr))
|
|
break;
|
|
}
|
|
if (region != NULL)
|
|
TEST_ASSERT(false, "A mem region with the requested slot "
|
|
"or overlapping physical memory range already exists.\n"
|
|
" requested slot: %u paddr: 0x%lx npages: 0x%lx\n"
|
|
" existing slot: %u paddr: 0x%lx size: 0x%lx",
|
|
slot, guest_paddr, npages,
|
|
region->region.slot,
|
|
(uint64_t) region->region.guest_phys_addr,
|
|
(uint64_t) region->region.memory_size);
|
|
|
|
/* Allocate and initialize new mem region structure. */
|
|
region = calloc(1, sizeof(*region));
|
|
TEST_ASSERT(region != NULL, "Insufficient Memory");
|
|
region->mmap_size = npages * vm->page_size;
|
|
|
|
/* Enough memory to align up to a huge page. */
|
|
if (src_type == VM_MEM_SRC_ANONYMOUS_THP)
|
|
region->mmap_size += huge_page_size;
|
|
region->mmap_start = mmap(NULL, region->mmap_size,
|
|
PROT_READ | PROT_WRITE,
|
|
MAP_PRIVATE | MAP_ANONYMOUS
|
|
| (src_type == VM_MEM_SRC_ANONYMOUS_HUGETLB ? MAP_HUGETLB : 0),
|
|
-1, 0);
|
|
TEST_ASSERT(region->mmap_start != MAP_FAILED,
|
|
"test_malloc failed, mmap_start: %p errno: %i",
|
|
region->mmap_start, errno);
|
|
|
|
/* Align THP allocation up to start of a huge page. */
|
|
region->host_mem = align(region->mmap_start,
|
|
src_type == VM_MEM_SRC_ANONYMOUS_THP ? huge_page_size : 1);
|
|
|
|
/* As needed perform madvise */
|
|
if (src_type == VM_MEM_SRC_ANONYMOUS || src_type == VM_MEM_SRC_ANONYMOUS_THP) {
|
|
ret = madvise(region->host_mem, npages * vm->page_size,
|
|
src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE);
|
|
TEST_ASSERT(ret == 0, "madvise failed,\n"
|
|
" addr: %p\n"
|
|
" length: 0x%lx\n"
|
|
" src_type: %x",
|
|
region->host_mem, npages * vm->page_size, src_type);
|
|
}
|
|
|
|
region->unused_phy_pages = sparsebit_alloc();
|
|
sparsebit_set_num(region->unused_phy_pages,
|
|
guest_paddr >> vm->page_shift, npages);
|
|
region->region.slot = slot;
|
|
region->region.flags = flags;
|
|
region->region.guest_phys_addr = guest_paddr;
|
|
region->region.memory_size = npages * vm->page_size;
|
|
region->region.userspace_addr = (uintptr_t) region->host_mem;
|
|
ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region);
|
|
TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
|
|
" rc: %i errno: %i\n"
|
|
" slot: %u flags: 0x%x\n"
|
|
" guest_phys_addr: 0x%lx size: 0x%lx",
|
|
ret, errno, slot, flags,
|
|
guest_paddr, (uint64_t) region->region.memory_size);
|
|
|
|
/* Add to linked-list of memory regions. */
|
|
if (vm->userspace_mem_region_head)
|
|
vm->userspace_mem_region_head->prev = region;
|
|
region->next = vm->userspace_mem_region_head;
|
|
vm->userspace_mem_region_head = region;
|
|
}
|
|
|
|
/*
|
|
* Memslot to region
|
|
*
|
|
* Input Args:
|
|
* vm - Virtual Machine
|
|
* memslot - KVM memory slot ID
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Return:
|
|
* Pointer to memory region structure that describe memory region
|
|
* using kvm memory slot ID given by memslot. TEST_ASSERT failure
|
|
* on error (e.g. currently no memory region using memslot as a KVM
|
|
* memory slot ID).
|
|
*/
|
|
static struct userspace_mem_region *
|
|
memslot2region(struct kvm_vm *vm, uint32_t memslot)
|
|
{
|
|
struct userspace_mem_region *region;
|
|
|
|
for (region = vm->userspace_mem_region_head; region;
|
|
region = region->next) {
|
|
if (region->region.slot == memslot)
|
|
break;
|
|
}
|
|
if (region == NULL) {
|
|
fprintf(stderr, "No mem region with the requested slot found,\n"
|
|
" requested slot: %u\n", memslot);
|
|
fputs("---- vm dump ----\n", stderr);
|
|
vm_dump(stderr, vm, 2);
|
|
TEST_ASSERT(false, "Mem region not found");
|
|
}
|
|
|
|
return region;
|
|
}
|
|
|
|
/*
|
|
* VM Memory Region Flags Set
|
|
*
|
|
* Input Args:
|
|
* vm - Virtual Machine
|
|
* flags - Starting guest physical address
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Return: None
|
|
*
|
|
* Sets the flags of the memory region specified by the value of slot,
|
|
* to the values given by flags.
|
|
*/
|
|
void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags)
|
|
{
|
|
int ret;
|
|
struct userspace_mem_region *region;
|
|
|
|
region = memslot2region(vm, slot);
|
|
|
|
region->region.flags = flags;
|
|
|
|
ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region);
|
|
|
|
TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
|
|
" rc: %i errno: %i slot: %u flags: 0x%x",
|
|
ret, errno, slot, flags);
|
|
}
|
|
|
|
/*
|
|
* VCPU mmap Size
|
|
*
|
|
* Input Args: None
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Return:
|
|
* Size of VCPU state
|
|
*
|
|
* Returns the size of the structure pointed to by the return value
|
|
* of vcpu_state().
|
|
*/
|
|
static int vcpu_mmap_sz(void)
|
|
{
|
|
int dev_fd, ret;
|
|
|
|
dev_fd = open(KVM_DEV_PATH, O_RDONLY);
|
|
if (dev_fd < 0)
|
|
exit(KSFT_SKIP);
|
|
|
|
ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL);
|
|
TEST_ASSERT(ret >= sizeof(struct kvm_run),
|
|
"%s KVM_GET_VCPU_MMAP_SIZE ioctl failed, rc: %i errno: %i",
|
|
__func__, ret, errno);
|
|
|
|
close(dev_fd);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* VM VCPU Add
|
|
*
|
|
* Input Args:
|
|
* vm - Virtual Machine
|
|
* vcpuid - VCPU ID
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Return: None
|
|
*
|
|
* Creates and adds to the VM specified by vm and virtual CPU with
|
|
* the ID given by vcpuid.
|
|
*/
|
|
void vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpuid, int pgd_memslot,
|
|
int gdt_memslot)
|
|
{
|
|
struct vcpu *vcpu;
|
|
|
|
/* Confirm a vcpu with the specified id doesn't already exist. */
|
|
vcpu = vcpu_find(vm, vcpuid);
|
|
if (vcpu != NULL)
|
|
TEST_ASSERT(false, "vcpu with the specified id "
|
|
"already exists,\n"
|
|
" requested vcpuid: %u\n"
|
|
" existing vcpuid: %u state: %p",
|
|
vcpuid, vcpu->id, vcpu->state);
|
|
|
|
/* Allocate and initialize new vcpu structure. */
|
|
vcpu = calloc(1, sizeof(*vcpu));
|
|
TEST_ASSERT(vcpu != NULL, "Insufficient Memory");
|
|
vcpu->id = vcpuid;
|
|
vcpu->fd = ioctl(vm->fd, KVM_CREATE_VCPU, vcpuid);
|
|
TEST_ASSERT(vcpu->fd >= 0, "KVM_CREATE_VCPU failed, rc: %i errno: %i",
|
|
vcpu->fd, errno);
|
|
|
|
TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->state), "vcpu mmap size "
|
|
"smaller than expected, vcpu_mmap_sz: %i expected_min: %zi",
|
|
vcpu_mmap_sz(), sizeof(*vcpu->state));
|
|
vcpu->state = (struct kvm_run *) mmap(NULL, sizeof(*vcpu->state),
|
|
PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0);
|
|
TEST_ASSERT(vcpu->state != MAP_FAILED, "mmap vcpu_state failed, "
|
|
"vcpu id: %u errno: %i", vcpuid, errno);
|
|
|
|
/* Add to linked-list of VCPUs. */
|
|
if (vm->vcpu_head)
|
|
vm->vcpu_head->prev = vcpu;
|
|
vcpu->next = vm->vcpu_head;
|
|
vm->vcpu_head = vcpu;
|
|
|
|
vcpu_setup(vm, vcpuid, pgd_memslot, gdt_memslot);
|
|
}
|
|
|
|
/*
|
|
* VM Virtual Address Unused Gap
|
|
*
|
|
* Input Args:
|
|
* vm - Virtual Machine
|
|
* sz - Size (bytes)
|
|
* vaddr_min - Minimum Virtual Address
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Return:
|
|
* Lowest virtual address at or below vaddr_min, with at least
|
|
* sz unused bytes. TEST_ASSERT failure if no area of at least
|
|
* size sz is available.
|
|
*
|
|
* Within the VM specified by vm, locates the lowest starting virtual
|
|
* address >= vaddr_min, that has at least sz unallocated bytes. A
|
|
* TEST_ASSERT failure occurs for invalid input or no area of at least
|
|
* sz unallocated bytes >= vaddr_min is available.
|
|
*/
|
|
static vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz,
|
|
vm_vaddr_t vaddr_min)
|
|
{
|
|
uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift;
|
|
|
|
/* Determine lowest permitted virtual page index. */
|
|
uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift;
|
|
if ((pgidx_start * vm->page_size) < vaddr_min)
|
|
goto no_va_found;
|
|
|
|
/* Loop over section with enough valid virtual page indexes. */
|
|
if (!sparsebit_is_set_num(vm->vpages_valid,
|
|
pgidx_start, pages))
|
|
pgidx_start = sparsebit_next_set_num(vm->vpages_valid,
|
|
pgidx_start, pages);
|
|
do {
|
|
/*
|
|
* Are there enough unused virtual pages available at
|
|
* the currently proposed starting virtual page index.
|
|
* If not, adjust proposed starting index to next
|
|
* possible.
|
|
*/
|
|
if (sparsebit_is_clear_num(vm->vpages_mapped,
|
|
pgidx_start, pages))
|
|
goto va_found;
|
|
pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped,
|
|
pgidx_start, pages);
|
|
if (pgidx_start == 0)
|
|
goto no_va_found;
|
|
|
|
/*
|
|
* If needed, adjust proposed starting virtual address,
|
|
* to next range of valid virtual addresses.
|
|
*/
|
|
if (!sparsebit_is_set_num(vm->vpages_valid,
|
|
pgidx_start, pages)) {
|
|
pgidx_start = sparsebit_next_set_num(
|
|
vm->vpages_valid, pgidx_start, pages);
|
|
if (pgidx_start == 0)
|
|
goto no_va_found;
|
|
}
|
|
} while (pgidx_start != 0);
|
|
|
|
no_va_found:
|
|
TEST_ASSERT(false, "No vaddr of specified pages available, "
|
|
"pages: 0x%lx", pages);
|
|
|
|
/* NOT REACHED */
|
|
return -1;
|
|
|
|
va_found:
|
|
TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid,
|
|
pgidx_start, pages),
|
|
"Unexpected, invalid virtual page index range,\n"
|
|
" pgidx_start: 0x%lx\n"
|
|
" pages: 0x%lx",
|
|
pgidx_start, pages);
|
|
TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped,
|
|
pgidx_start, pages),
|
|
"Unexpected, pages already mapped,\n"
|
|
" pgidx_start: 0x%lx\n"
|
|
" pages: 0x%lx",
|
|
pgidx_start, pages);
|
|
|
|
return pgidx_start * vm->page_size;
|
|
}
|
|
|
|
/*
|
|
* VM Virtual Address Allocate
|
|
*
|
|
* Input Args:
|
|
* vm - Virtual Machine
|
|
* sz - Size in bytes
|
|
* vaddr_min - Minimum starting virtual address
|
|
* data_memslot - Memory region slot for data pages
|
|
* pgd_memslot - Memory region slot for new virtual translation tables
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Return:
|
|
* Starting guest virtual address
|
|
*
|
|
* Allocates at least sz bytes within the virtual address space of the vm
|
|
* given by vm. The allocated bytes are mapped to a virtual address >=
|
|
* the address given by vaddr_min. Note that each allocation uses a
|
|
* a unique set of pages, with the minimum real allocation being at least
|
|
* a page.
|
|
*/
|
|
vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
|
|
uint32_t data_memslot, uint32_t pgd_memslot)
|
|
{
|
|
uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0);
|
|
|
|
virt_pgd_alloc(vm, pgd_memslot);
|
|
|
|
/*
|
|
* Find an unused range of virtual page addresses of at least
|
|
* pages in length.
|
|
*/
|
|
vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min);
|
|
|
|
/* Map the virtual pages. */
|
|
for (vm_vaddr_t vaddr = vaddr_start; pages > 0;
|
|
pages--, vaddr += vm->page_size) {
|
|
vm_paddr_t paddr;
|
|
|
|
paddr = vm_phy_page_alloc(vm,
|
|
KVM_UTIL_MIN_PFN * vm->page_size, data_memslot);
|
|
|
|
virt_pg_map(vm, vaddr, paddr, pgd_memslot);
|
|
|
|
sparsebit_set(vm->vpages_mapped,
|
|
vaddr >> vm->page_shift);
|
|
}
|
|
|
|
return vaddr_start;
|
|
}
|
|
|
|
/*
|
|
* Map a range of VM virtual address to the VM's physical address
|
|
*
|
|
* Input Args:
|
|
* vm - Virtual Machine
|
|
* vaddr - Virtuall address to map
|
|
* paddr - VM Physical Address
|
|
* size - The size of the range to map
|
|
* pgd_memslot - Memory region slot for new virtual translation tables
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Return: None
|
|
*
|
|
* Within the VM given by vm, creates a virtual translation for the
|
|
* page range starting at vaddr to the page range starting at paddr.
|
|
*/
|
|
void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
|
|
size_t size, uint32_t pgd_memslot)
|
|
{
|
|
size_t page_size = vm->page_size;
|
|
size_t npages = size / page_size;
|
|
|
|
TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow");
|
|
TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
|
|
|
|
while (npages--) {
|
|
virt_pg_map(vm, vaddr, paddr, pgd_memslot);
|
|
vaddr += page_size;
|
|
paddr += page_size;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Address VM Physical to Host Virtual
|
|
*
|
|
* Input Args:
|
|
* vm - Virtual Machine
|
|
* gpa - VM physical address
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Return:
|
|
* Equivalent host virtual address
|
|
*
|
|
* Locates the memory region containing the VM physical address given
|
|
* by gpa, within the VM given by vm. When found, the host virtual
|
|
* address providing the memory to the vm physical address is returned.
|
|
* A TEST_ASSERT failure occurs if no region containing gpa exists.
|
|
*/
|
|
void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa)
|
|
{
|
|
struct userspace_mem_region *region;
|
|
for (region = vm->userspace_mem_region_head; region;
|
|
region = region->next) {
|
|
if ((gpa >= region->region.guest_phys_addr)
|
|
&& (gpa <= (region->region.guest_phys_addr
|
|
+ region->region.memory_size - 1)))
|
|
return (void *) ((uintptr_t) region->host_mem
|
|
+ (gpa - region->region.guest_phys_addr));
|
|
}
|
|
|
|
TEST_ASSERT(false, "No vm physical memory at 0x%lx", gpa);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Address Host Virtual to VM Physical
|
|
*
|
|
* Input Args:
|
|
* vm - Virtual Machine
|
|
* hva - Host virtual address
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Return:
|
|
* Equivalent VM physical address
|
|
*
|
|
* Locates the memory region containing the host virtual address given
|
|
* by hva, within the VM given by vm. When found, the equivalent
|
|
* VM physical address is returned. A TEST_ASSERT failure occurs if no
|
|
* region containing hva exists.
|
|
*/
|
|
vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva)
|
|
{
|
|
struct userspace_mem_region *region;
|
|
for (region = vm->userspace_mem_region_head; region;
|
|
region = region->next) {
|
|
if ((hva >= region->host_mem)
|
|
&& (hva <= (region->host_mem
|
|
+ region->region.memory_size - 1)))
|
|
return (vm_paddr_t) ((uintptr_t)
|
|
region->region.guest_phys_addr
|
|
+ (hva - (uintptr_t) region->host_mem));
|
|
}
|
|
|
|
TEST_ASSERT(false, "No mapping to a guest physical address, "
|
|
"hva: %p", hva);
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* VM Create IRQ Chip
|
|
*
|
|
* Input Args:
|
|
* vm - Virtual Machine
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Return: None
|
|
*
|
|
* Creates an interrupt controller chip for the VM specified by vm.
|
|
*/
|
|
void vm_create_irqchip(struct kvm_vm *vm)
|
|
{
|
|
int ret;
|
|
|
|
ret = ioctl(vm->fd, KVM_CREATE_IRQCHIP, 0);
|
|
TEST_ASSERT(ret == 0, "KVM_CREATE_IRQCHIP IOCTL failed, "
|
|
"rc: %i errno: %i", ret, errno);
|
|
|
|
vm->has_irqchip = true;
|
|
}
|
|
|
|
/*
|
|
* VM VCPU State
|
|
*
|
|
* Input Args:
|
|
* vm - Virtual Machine
|
|
* vcpuid - VCPU ID
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Return:
|
|
* Pointer to structure that describes the state of the VCPU.
|
|
*
|
|
* Locates and returns a pointer to a structure that describes the
|
|
* state of the VCPU with the given vcpuid.
|
|
*/
|
|
struct kvm_run *vcpu_state(struct kvm_vm *vm, uint32_t vcpuid)
|
|
{
|
|
struct vcpu *vcpu = vcpu_find(vm, vcpuid);
|
|
TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
|
|
|
|
return vcpu->state;
|
|
}
|
|
|
|
/*
|
|
* VM VCPU Run
|
|
*
|
|
* Input Args:
|
|
* vm - Virtual Machine
|
|
* vcpuid - VCPU ID
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Return: None
|
|
*
|
|
* Switch to executing the code for the VCPU given by vcpuid, within the VM
|
|
* given by vm.
|
|
*/
|
|
void vcpu_run(struct kvm_vm *vm, uint32_t vcpuid)
|
|
{
|
|
int ret = _vcpu_run(vm, vcpuid);
|
|
TEST_ASSERT(ret == 0, "KVM_RUN IOCTL failed, "
|
|
"rc: %i errno: %i", ret, errno);
|
|
}
|
|
|
|
int _vcpu_run(struct kvm_vm *vm, uint32_t vcpuid)
|
|
{
|
|
struct vcpu *vcpu = vcpu_find(vm, vcpuid);
|
|
int rc;
|
|
|
|
TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
|
|
do {
|
|
rc = ioctl(vcpu->fd, KVM_RUN, NULL);
|
|
} while (rc == -1 && errno == EINTR);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* VM VCPU Set MP State
|
|
*
|
|
* Input Args:
|
|
* vm - Virtual Machine
|
|
* vcpuid - VCPU ID
|
|
* mp_state - mp_state to be set
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Return: None
|
|
*
|
|
* Sets the MP state of the VCPU given by vcpuid, to the state given
|
|
* by mp_state.
|
|
*/
|
|
void vcpu_set_mp_state(struct kvm_vm *vm, uint32_t vcpuid,
|
|
struct kvm_mp_state *mp_state)
|
|
{
|
|
struct vcpu *vcpu = vcpu_find(vm, vcpuid);
|
|
int ret;
|
|
|
|
TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
|
|
|
|
ret = ioctl(vcpu->fd, KVM_SET_MP_STATE, mp_state);
|
|
TEST_ASSERT(ret == 0, "KVM_SET_MP_STATE IOCTL failed, "
|
|
"rc: %i errno: %i", ret, errno);
|
|
}
|
|
|
|
/*
|
|
* VM VCPU Regs Get
|
|
*
|
|
* Input Args:
|
|
* vm - Virtual Machine
|
|
* vcpuid - VCPU ID
|
|
*
|
|
* Output Args:
|
|
* regs - current state of VCPU regs
|
|
*
|
|
* Return: None
|
|
*
|
|
* Obtains the current register state for the VCPU specified by vcpuid
|
|
* and stores it at the location given by regs.
|
|
*/
|
|
void vcpu_regs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs)
|
|
{
|
|
struct vcpu *vcpu = vcpu_find(vm, vcpuid);
|
|
int ret;
|
|
|
|
TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
|
|
|
|
ret = ioctl(vcpu->fd, KVM_GET_REGS, regs);
|
|
TEST_ASSERT(ret == 0, "KVM_GET_REGS failed, rc: %i errno: %i",
|
|
ret, errno);
|
|
}
|
|
|
|
/*
|
|
* VM VCPU Regs Set
|
|
*
|
|
* Input Args:
|
|
* vm - Virtual Machine
|
|
* vcpuid - VCPU ID
|
|
* regs - Values to set VCPU regs to
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Return: None
|
|
*
|
|
* Sets the regs of the VCPU specified by vcpuid to the values
|
|
* given by regs.
|
|
*/
|
|
void vcpu_regs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs)
|
|
{
|
|
struct vcpu *vcpu = vcpu_find(vm, vcpuid);
|
|
int ret;
|
|
|
|
TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
|
|
|
|
ret = ioctl(vcpu->fd, KVM_SET_REGS, regs);
|
|
TEST_ASSERT(ret == 0, "KVM_SET_REGS failed, rc: %i errno: %i",
|
|
ret, errno);
|
|
}
|
|
|
|
void vcpu_events_get(struct kvm_vm *vm, uint32_t vcpuid,
|
|
struct kvm_vcpu_events *events)
|
|
{
|
|
struct vcpu *vcpu = vcpu_find(vm, vcpuid);
|
|
int ret;
|
|
|
|
TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
|
|
|
|
ret = ioctl(vcpu->fd, KVM_GET_VCPU_EVENTS, events);
|
|
TEST_ASSERT(ret == 0, "KVM_GET_VCPU_EVENTS, failed, rc: %i errno: %i",
|
|
ret, errno);
|
|
}
|
|
|
|
void vcpu_events_set(struct kvm_vm *vm, uint32_t vcpuid,
|
|
struct kvm_vcpu_events *events)
|
|
{
|
|
struct vcpu *vcpu = vcpu_find(vm, vcpuid);
|
|
int ret;
|
|
|
|
TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
|
|
|
|
ret = ioctl(vcpu->fd, KVM_SET_VCPU_EVENTS, events);
|
|
TEST_ASSERT(ret == 0, "KVM_SET_VCPU_EVENTS, failed, rc: %i errno: %i",
|
|
ret, errno);
|
|
}
|
|
|
|
/*
|
|
* VM VCPU System Regs Get
|
|
*
|
|
* Input Args:
|
|
* vm - Virtual Machine
|
|
* vcpuid - VCPU ID
|
|
*
|
|
* Output Args:
|
|
* sregs - current state of VCPU system regs
|
|
*
|
|
* Return: None
|
|
*
|
|
* Obtains the current system register state for the VCPU specified by
|
|
* vcpuid and stores it at the location given by sregs.
|
|
*/
|
|
void vcpu_sregs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
|
|
{
|
|
struct vcpu *vcpu = vcpu_find(vm, vcpuid);
|
|
int ret;
|
|
|
|
TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
|
|
|
|
ret = ioctl(vcpu->fd, KVM_GET_SREGS, sregs);
|
|
TEST_ASSERT(ret == 0, "KVM_GET_SREGS failed, rc: %i errno: %i",
|
|
ret, errno);
|
|
}
|
|
|
|
/*
|
|
* VM VCPU System Regs Set
|
|
*
|
|
* Input Args:
|
|
* vm - Virtual Machine
|
|
* vcpuid - VCPU ID
|
|
* sregs - Values to set VCPU system regs to
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Return: None
|
|
*
|
|
* Sets the system regs of the VCPU specified by vcpuid to the values
|
|
* given by sregs.
|
|
*/
|
|
void vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
|
|
{
|
|
int ret = _vcpu_sregs_set(vm, vcpuid, sregs);
|
|
TEST_ASSERT(ret == 0, "KVM_RUN IOCTL failed, "
|
|
"rc: %i errno: %i", ret, errno);
|
|
}
|
|
|
|
int _vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
|
|
{
|
|
struct vcpu *vcpu = vcpu_find(vm, vcpuid);
|
|
int ret;
|
|
|
|
TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
|
|
|
|
return ioctl(vcpu->fd, KVM_SET_SREGS, sregs);
|
|
}
|
|
|
|
/*
|
|
* VCPU Ioctl
|
|
*
|
|
* Input Args:
|
|
* vm - Virtual Machine
|
|
* vcpuid - VCPU ID
|
|
* cmd - Ioctl number
|
|
* arg - Argument to pass to the ioctl
|
|
*
|
|
* Return: None
|
|
*
|
|
* Issues an arbitrary ioctl on a VCPU fd.
|
|
*/
|
|
void vcpu_ioctl(struct kvm_vm *vm, uint32_t vcpuid,
|
|
unsigned long cmd, void *arg)
|
|
{
|
|
struct vcpu *vcpu = vcpu_find(vm, vcpuid);
|
|
int ret;
|
|
|
|
TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
|
|
|
|
ret = ioctl(vcpu->fd, cmd, arg);
|
|
TEST_ASSERT(ret == 0, "vcpu ioctl %lu failed, rc: %i errno: %i (%s)",
|
|
cmd, ret, errno, strerror(errno));
|
|
}
|
|
|
|
/*
|
|
* VM Ioctl
|
|
*
|
|
* Input Args:
|
|
* vm - Virtual Machine
|
|
* cmd - Ioctl number
|
|
* arg - Argument to pass to the ioctl
|
|
*
|
|
* Return: None
|
|
*
|
|
* Issues an arbitrary ioctl on a VM fd.
|
|
*/
|
|
void vm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
|
|
{
|
|
int ret;
|
|
|
|
ret = ioctl(vm->fd, cmd, arg);
|
|
TEST_ASSERT(ret == 0, "vm ioctl %lu failed, rc: %i errno: %i (%s)",
|
|
cmd, ret, errno, strerror(errno));
|
|
}
|
|
|
|
/*
|
|
* VM Dump
|
|
*
|
|
* Input Args:
|
|
* vm - Virtual Machine
|
|
* indent - Left margin indent amount
|
|
*
|
|
* Output Args:
|
|
* stream - Output FILE stream
|
|
*
|
|
* Return: None
|
|
*
|
|
* Dumps the current state of the VM given by vm, to the FILE stream
|
|
* given by stream.
|
|
*/
|
|
void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
|
|
{
|
|
struct userspace_mem_region *region;
|
|
struct vcpu *vcpu;
|
|
|
|
fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode);
|
|
fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd);
|
|
fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size);
|
|
fprintf(stream, "%*sMem Regions:\n", indent, "");
|
|
for (region = vm->userspace_mem_region_head; region;
|
|
region = region->next) {
|
|
fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx "
|
|
"host_virt: %p\n", indent + 2, "",
|
|
(uint64_t) region->region.guest_phys_addr,
|
|
(uint64_t) region->region.memory_size,
|
|
region->host_mem);
|
|
fprintf(stream, "%*sunused_phy_pages: ", indent + 2, "");
|
|
sparsebit_dump(stream, region->unused_phy_pages, 0);
|
|
}
|
|
fprintf(stream, "%*sMapped Virtual Pages:\n", indent, "");
|
|
sparsebit_dump(stream, vm->vpages_mapped, indent + 2);
|
|
fprintf(stream, "%*spgd_created: %u\n", indent, "",
|
|
vm->pgd_created);
|
|
if (vm->pgd_created) {
|
|
fprintf(stream, "%*sVirtual Translation Tables:\n",
|
|
indent + 2, "");
|
|
virt_dump(stream, vm, indent + 4);
|
|
}
|
|
fprintf(stream, "%*sVCPUs:\n", indent, "");
|
|
for (vcpu = vm->vcpu_head; vcpu; vcpu = vcpu->next)
|
|
vcpu_dump(stream, vm, vcpu->id, indent + 2);
|
|
}
|
|
|
|
/* Known KVM exit reasons */
|
|
static struct exit_reason {
|
|
unsigned int reason;
|
|
const char *name;
|
|
} exit_reasons_known[] = {
|
|
{KVM_EXIT_UNKNOWN, "UNKNOWN"},
|
|
{KVM_EXIT_EXCEPTION, "EXCEPTION"},
|
|
{KVM_EXIT_IO, "IO"},
|
|
{KVM_EXIT_HYPERCALL, "HYPERCALL"},
|
|
{KVM_EXIT_DEBUG, "DEBUG"},
|
|
{KVM_EXIT_HLT, "HLT"},
|
|
{KVM_EXIT_MMIO, "MMIO"},
|
|
{KVM_EXIT_IRQ_WINDOW_OPEN, "IRQ_WINDOW_OPEN"},
|
|
{KVM_EXIT_SHUTDOWN, "SHUTDOWN"},
|
|
{KVM_EXIT_FAIL_ENTRY, "FAIL_ENTRY"},
|
|
{KVM_EXIT_INTR, "INTR"},
|
|
{KVM_EXIT_SET_TPR, "SET_TPR"},
|
|
{KVM_EXIT_TPR_ACCESS, "TPR_ACCESS"},
|
|
{KVM_EXIT_S390_SIEIC, "S390_SIEIC"},
|
|
{KVM_EXIT_S390_RESET, "S390_RESET"},
|
|
{KVM_EXIT_DCR, "DCR"},
|
|
{KVM_EXIT_NMI, "NMI"},
|
|
{KVM_EXIT_INTERNAL_ERROR, "INTERNAL_ERROR"},
|
|
{KVM_EXIT_OSI, "OSI"},
|
|
{KVM_EXIT_PAPR_HCALL, "PAPR_HCALL"},
|
|
#ifdef KVM_EXIT_MEMORY_NOT_PRESENT
|
|
{KVM_EXIT_MEMORY_NOT_PRESENT, "MEMORY_NOT_PRESENT"},
|
|
#endif
|
|
};
|
|
|
|
/*
|
|
* Exit Reason String
|
|
*
|
|
* Input Args:
|
|
* exit_reason - Exit reason
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Return:
|
|
* Constant string pointer describing the exit reason.
|
|
*
|
|
* Locates and returns a constant string that describes the KVM exit
|
|
* reason given by exit_reason. If no such string is found, a constant
|
|
* string of "Unknown" is returned.
|
|
*/
|
|
const char *exit_reason_str(unsigned int exit_reason)
|
|
{
|
|
unsigned int n1;
|
|
|
|
for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) {
|
|
if (exit_reason == exit_reasons_known[n1].reason)
|
|
return exit_reasons_known[n1].name;
|
|
}
|
|
|
|
return "Unknown";
|
|
}
|
|
|
|
/*
|
|
* Physical Contiguous Page Allocator
|
|
*
|
|
* Input Args:
|
|
* vm - Virtual Machine
|
|
* num - number of pages
|
|
* paddr_min - Physical address minimum
|
|
* memslot - Memory region to allocate page from
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Return:
|
|
* Starting physical address
|
|
*
|
|
* Within the VM specified by vm, locates a range of available physical
|
|
* pages at or above paddr_min. If found, the pages are marked as in use
|
|
* and thier base address is returned. A TEST_ASSERT failure occurs if
|
|
* not enough pages are available at or above paddr_min.
|
|
*/
|
|
vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
|
|
vm_paddr_t paddr_min, uint32_t memslot)
|
|
{
|
|
struct userspace_mem_region *region;
|
|
sparsebit_idx_t pg, base;
|
|
|
|
TEST_ASSERT(num > 0, "Must allocate at least one page");
|
|
|
|
TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address "
|
|
"not divisible by page size.\n"
|
|
" paddr_min: 0x%lx page_size: 0x%x",
|
|
paddr_min, vm->page_size);
|
|
|
|
region = memslot2region(vm, memslot);
|
|
base = pg = paddr_min >> vm->page_shift;
|
|
|
|
do {
|
|
for (; pg < base + num; ++pg) {
|
|
if (!sparsebit_is_set(region->unused_phy_pages, pg)) {
|
|
base = pg = sparsebit_next_set(region->unused_phy_pages, pg);
|
|
break;
|
|
}
|
|
}
|
|
} while (pg && pg != base + num);
|
|
|
|
if (pg == 0) {
|
|
fprintf(stderr, "No guest physical page available, "
|
|
"paddr_min: 0x%lx page_size: 0x%x memslot: %u\n",
|
|
paddr_min, vm->page_size, memslot);
|
|
fputs("---- vm dump ----\n", stderr);
|
|
vm_dump(stderr, vm, 2);
|
|
abort();
|
|
}
|
|
|
|
for (pg = base; pg < base + num; ++pg)
|
|
sparsebit_clear(region->unused_phy_pages, pg);
|
|
|
|
return base * vm->page_size;
|
|
}
|
|
|
|
vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
|
|
uint32_t memslot)
|
|
{
|
|
return vm_phy_pages_alloc(vm, 1, paddr_min, memslot);
|
|
}
|
|
|
|
/*
|
|
* Address Guest Virtual to Host Virtual
|
|
*
|
|
* Input Args:
|
|
* vm - Virtual Machine
|
|
* gva - VM virtual address
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Return:
|
|
* Equivalent host virtual address
|
|
*/
|
|
void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva)
|
|
{
|
|
return addr_gpa2hva(vm, addr_gva2gpa(vm, gva));
|
|
}
|