Paolo Bonzini 0d15bf966d Common KVM changes for 6.6:
- Wrap kvm_{gfn,hva}_range.pte in a union to allow mmu_notifier events to pass
    action specific data without needing to constantly update the main handlers.
 
  - Drop unused function declarations
 -----BEGIN PGP SIGNATURE-----
 
 iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmTudpYSHHNlYW5qY0Bn
 b29nbGUuY29tAAoJEGCRIgFNDBL5xJUQAKnMVEV+7gRtfV5KCJFRTNAMxo4zSIt/
 K6QX+x/SwUriXj4nTAlvAtju1xz4nwTYBABKj3bXEaLpVjIUIbnEzEGuTKKK6XY9
 UyJKVgafwLuKLWPYN/5Zv5SCO7DmVC9W3lVMtchgt7gFcRxtZhmEn53boHhrhan0
 /2L5XD6N9rd81Zmd/rQkJNRND7XY3HkvDSnfmsRI/rfFUglCUHBDp4c2Wkmz+Dnb
 ux7N37si5OTbRVp18VzbLg1jalstDEm36ZQ7tLkvIbNbZV6pV93/ZmcTmsOruTeN
 gHVr6/RXmKKwgO3wtZ9DKL6oMcoh20yoT+vqhbaihVssLPGPusk7S2cCQ7529u8/
 Oda+w67MMdbE46N9CmB56fkpwNvn9nLCoQFhMhXBWhPJVNmorpiR6drHKqLy5zCq
 lrsWGqXU/DXA2PwdsztfIIMVeALawzExHu9ayppcKwb4S8TLJhLma7dT+EvwUxuV
 hoswaIT7Tq2ptZ34Fo5/vEz+90u2wi7LynHrNdTs7NLsW+WI/jab7KxKc+mf5WYh
 KuMzqmmPXmWRFupFeDa61YY5PCvMddDeac/jCYL/2cr73RA8bUItivwt5mEg5nOW
 9NEU+cLbl1s8g2KfxwhvodVkbhiNGf8MkVpE5skHHh9OX8HYzZUa/s6uUZO1O0eh
 XOk+fa9KWabt
 =n819
 -----END PGP SIGNATURE-----

Merge tag 'kvm-x86-generic-6.6' of https://github.com/kvm-x86/linux into HEAD

Common KVM changes for 6.6:

 - Wrap kvm_{gfn,hva}_range.pte in a union to allow mmu_notifier events to pass
   action specific data without needing to constantly update the main handlers.

 - Drop unused function declarations
2023-08-31 13:19:55 -04:00

794 lines
19 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2019 Western Digital Corporation or its affiliates.
*
* Authors:
* Anup Patel <anup.patel@wdc.com>
*/
#include <linux/bitops.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/hugetlb.h>
#include <linux/module.h>
#include <linux/uaccess.h>
#include <linux/vmalloc.h>
#include <linux/kvm_host.h>
#include <linux/sched/signal.h>
#include <asm/csr.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#ifdef CONFIG_64BIT
static unsigned long gstage_mode __ro_after_init = (HGATP_MODE_SV39X4 << HGATP_MODE_SHIFT);
static unsigned long gstage_pgd_levels __ro_after_init = 3;
#define gstage_index_bits 9
#else
static unsigned long gstage_mode __ro_after_init = (HGATP_MODE_SV32X4 << HGATP_MODE_SHIFT);
static unsigned long gstage_pgd_levels __ro_after_init = 2;
#define gstage_index_bits 10
#endif
#define gstage_pgd_xbits 2
#define gstage_pgd_size (1UL << (HGATP_PAGE_SHIFT + gstage_pgd_xbits))
#define gstage_gpa_bits (HGATP_PAGE_SHIFT + \
(gstage_pgd_levels * gstage_index_bits) + \
gstage_pgd_xbits)
#define gstage_gpa_size ((gpa_t)(1ULL << gstage_gpa_bits))
#define gstage_pte_leaf(__ptep) \
(pte_val(*(__ptep)) & (_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC))
static inline unsigned long gstage_pte_index(gpa_t addr, u32 level)
{
unsigned long mask;
unsigned long shift = HGATP_PAGE_SHIFT + (gstage_index_bits * level);
if (level == (gstage_pgd_levels - 1))
mask = (PTRS_PER_PTE * (1UL << gstage_pgd_xbits)) - 1;
else
mask = PTRS_PER_PTE - 1;
return (addr >> shift) & mask;
}
static inline unsigned long gstage_pte_page_vaddr(pte_t pte)
{
return (unsigned long)pfn_to_virt(__page_val_to_pfn(pte_val(pte)));
}
static int gstage_page_size_to_level(unsigned long page_size, u32 *out_level)
{
u32 i;
unsigned long psz = 1UL << 12;
for (i = 0; i < gstage_pgd_levels; i++) {
if (page_size == (psz << (i * gstage_index_bits))) {
*out_level = i;
return 0;
}
}
return -EINVAL;
}
static int gstage_level_to_page_order(u32 level, unsigned long *out_pgorder)
{
if (gstage_pgd_levels < level)
return -EINVAL;
*out_pgorder = 12 + (level * gstage_index_bits);
return 0;
}
static int gstage_level_to_page_size(u32 level, unsigned long *out_pgsize)
{
int rc;
unsigned long page_order = PAGE_SHIFT;
rc = gstage_level_to_page_order(level, &page_order);
if (rc)
return rc;
*out_pgsize = BIT(page_order);
return 0;
}
static bool gstage_get_leaf_entry(struct kvm *kvm, gpa_t addr,
pte_t **ptepp, u32 *ptep_level)
{
pte_t *ptep;
u32 current_level = gstage_pgd_levels - 1;
*ptep_level = current_level;
ptep = (pte_t *)kvm->arch.pgd;
ptep = &ptep[gstage_pte_index(addr, current_level)];
while (ptep && pte_val(*ptep)) {
if (gstage_pte_leaf(ptep)) {
*ptep_level = current_level;
*ptepp = ptep;
return true;
}
if (current_level) {
current_level--;
*ptep_level = current_level;
ptep = (pte_t *)gstage_pte_page_vaddr(*ptep);
ptep = &ptep[gstage_pte_index(addr, current_level)];
} else {
ptep = NULL;
}
}
return false;
}
static void gstage_remote_tlb_flush(struct kvm *kvm, u32 level, gpa_t addr)
{
unsigned long order = PAGE_SHIFT;
if (gstage_level_to_page_order(level, &order))
return;
addr &= ~(BIT(order) - 1);
kvm_riscv_hfence_gvma_vmid_gpa(kvm, -1UL, 0, addr, BIT(order), order);
}
static int gstage_set_pte(struct kvm *kvm, u32 level,
struct kvm_mmu_memory_cache *pcache,
gpa_t addr, const pte_t *new_pte)
{
u32 current_level = gstage_pgd_levels - 1;
pte_t *next_ptep = (pte_t *)kvm->arch.pgd;
pte_t *ptep = &next_ptep[gstage_pte_index(addr, current_level)];
if (current_level < level)
return -EINVAL;
while (current_level != level) {
if (gstage_pte_leaf(ptep))
return -EEXIST;
if (!pte_val(*ptep)) {
if (!pcache)
return -ENOMEM;
next_ptep = kvm_mmu_memory_cache_alloc(pcache);
if (!next_ptep)
return -ENOMEM;
*ptep = pfn_pte(PFN_DOWN(__pa(next_ptep)),
__pgprot(_PAGE_TABLE));
} else {
if (gstage_pte_leaf(ptep))
return -EEXIST;
next_ptep = (pte_t *)gstage_pte_page_vaddr(*ptep);
}
current_level--;
ptep = &next_ptep[gstage_pte_index(addr, current_level)];
}
*ptep = *new_pte;
if (gstage_pte_leaf(ptep))
gstage_remote_tlb_flush(kvm, current_level, addr);
return 0;
}
static int gstage_map_page(struct kvm *kvm,
struct kvm_mmu_memory_cache *pcache,
gpa_t gpa, phys_addr_t hpa,
unsigned long page_size,
bool page_rdonly, bool page_exec)
{
int ret;
u32 level = 0;
pte_t new_pte;
pgprot_t prot;
ret = gstage_page_size_to_level(page_size, &level);
if (ret)
return ret;
/*
* A RISC-V implementation can choose to either:
* 1) Update 'A' and 'D' PTE bits in hardware
* 2) Generate page fault when 'A' and/or 'D' bits are not set
* PTE so that software can update these bits.
*
* We support both options mentioned above. To achieve this, we
* always set 'A' and 'D' PTE bits at time of creating G-stage
* mapping. To support KVM dirty page logging with both options
* mentioned above, we will write-protect G-stage PTEs to track
* dirty pages.
*/
if (page_exec) {
if (page_rdonly)
prot = PAGE_READ_EXEC;
else
prot = PAGE_WRITE_EXEC;
} else {
if (page_rdonly)
prot = PAGE_READ;
else
prot = PAGE_WRITE;
}
new_pte = pfn_pte(PFN_DOWN(hpa), prot);
new_pte = pte_mkdirty(new_pte);
return gstage_set_pte(kvm, level, pcache, gpa, &new_pte);
}
enum gstage_op {
GSTAGE_OP_NOP = 0, /* Nothing */
GSTAGE_OP_CLEAR, /* Clear/Unmap */
GSTAGE_OP_WP, /* Write-protect */
};
static void gstage_op_pte(struct kvm *kvm, gpa_t addr,
pte_t *ptep, u32 ptep_level, enum gstage_op op)
{
int i, ret;
pte_t *next_ptep;
u32 next_ptep_level;
unsigned long next_page_size, page_size;
ret = gstage_level_to_page_size(ptep_level, &page_size);
if (ret)
return;
BUG_ON(addr & (page_size - 1));
if (!pte_val(*ptep))
return;
if (ptep_level && !gstage_pte_leaf(ptep)) {
next_ptep = (pte_t *)gstage_pte_page_vaddr(*ptep);
next_ptep_level = ptep_level - 1;
ret = gstage_level_to_page_size(next_ptep_level,
&next_page_size);
if (ret)
return;
if (op == GSTAGE_OP_CLEAR)
set_pte(ptep, __pte(0));
for (i = 0; i < PTRS_PER_PTE; i++)
gstage_op_pte(kvm, addr + i * next_page_size,
&next_ptep[i], next_ptep_level, op);
if (op == GSTAGE_OP_CLEAR)
put_page(virt_to_page(next_ptep));
} else {
if (op == GSTAGE_OP_CLEAR)
set_pte(ptep, __pte(0));
else if (op == GSTAGE_OP_WP)
set_pte(ptep, __pte(pte_val(*ptep) & ~_PAGE_WRITE));
gstage_remote_tlb_flush(kvm, ptep_level, addr);
}
}
static void gstage_unmap_range(struct kvm *kvm, gpa_t start,
gpa_t size, bool may_block)
{
int ret;
pte_t *ptep;
u32 ptep_level;
bool found_leaf;
unsigned long page_size;
gpa_t addr = start, end = start + size;
while (addr < end) {
found_leaf = gstage_get_leaf_entry(kvm, addr,
&ptep, &ptep_level);
ret = gstage_level_to_page_size(ptep_level, &page_size);
if (ret)
break;
if (!found_leaf)
goto next;
if (!(addr & (page_size - 1)) && ((end - addr) >= page_size))
gstage_op_pte(kvm, addr, ptep,
ptep_level, GSTAGE_OP_CLEAR);
next:
addr += page_size;
/*
* If the range is too large, release the kvm->mmu_lock
* to prevent starvation and lockup detector warnings.
*/
if (may_block && addr < end)
cond_resched_lock(&kvm->mmu_lock);
}
}
static void gstage_wp_range(struct kvm *kvm, gpa_t start, gpa_t end)
{
int ret;
pte_t *ptep;
u32 ptep_level;
bool found_leaf;
gpa_t addr = start;
unsigned long page_size;
while (addr < end) {
found_leaf = gstage_get_leaf_entry(kvm, addr,
&ptep, &ptep_level);
ret = gstage_level_to_page_size(ptep_level, &page_size);
if (ret)
break;
if (!found_leaf)
goto next;
if (!(addr & (page_size - 1)) && ((end - addr) >= page_size))
gstage_op_pte(kvm, addr, ptep,
ptep_level, GSTAGE_OP_WP);
next:
addr += page_size;
}
}
static void gstage_wp_memory_region(struct kvm *kvm, int slot)
{
struct kvm_memslots *slots = kvm_memslots(kvm);
struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
spin_lock(&kvm->mmu_lock);
gstage_wp_range(kvm, start, end);
spin_unlock(&kvm->mmu_lock);
kvm_flush_remote_tlbs(kvm);
}
int kvm_riscv_gstage_ioremap(struct kvm *kvm, gpa_t gpa,
phys_addr_t hpa, unsigned long size,
bool writable, bool in_atomic)
{
pte_t pte;
int ret = 0;
unsigned long pfn;
phys_addr_t addr, end;
struct kvm_mmu_memory_cache pcache = {
.gfp_custom = (in_atomic) ? GFP_ATOMIC | __GFP_ACCOUNT : 0,
.gfp_zero = __GFP_ZERO,
};
end = (gpa + size + PAGE_SIZE - 1) & PAGE_MASK;
pfn = __phys_to_pfn(hpa);
for (addr = gpa; addr < end; addr += PAGE_SIZE) {
pte = pfn_pte(pfn, PAGE_KERNEL_IO);
if (!writable)
pte = pte_wrprotect(pte);
ret = kvm_mmu_topup_memory_cache(&pcache, gstage_pgd_levels);
if (ret)
goto out;
spin_lock(&kvm->mmu_lock);
ret = gstage_set_pte(kvm, 0, &pcache, addr, &pte);
spin_unlock(&kvm->mmu_lock);
if (ret)
goto out;
pfn++;
}
out:
kvm_mmu_free_memory_cache(&pcache);
return ret;
}
void kvm_riscv_gstage_iounmap(struct kvm *kvm, gpa_t gpa, unsigned long size)
{
spin_lock(&kvm->mmu_lock);
gstage_unmap_range(kvm, gpa, size, false);
spin_unlock(&kvm->mmu_lock);
}
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
struct kvm_memory_slot *slot,
gfn_t gfn_offset,
unsigned long mask)
{
phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT;
phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
gstage_wp_range(kvm, start, end);
}
void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
{
}
void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free)
{
}
void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
{
}
void kvm_arch_flush_shadow_all(struct kvm *kvm)
{
kvm_riscv_gstage_free_pgd(kvm);
}
void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
struct kvm_memory_slot *slot)
{
gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
phys_addr_t size = slot->npages << PAGE_SHIFT;
spin_lock(&kvm->mmu_lock);
gstage_unmap_range(kvm, gpa, size, false);
spin_unlock(&kvm->mmu_lock);
}
void kvm_arch_commit_memory_region(struct kvm *kvm,
struct kvm_memory_slot *old,
const struct kvm_memory_slot *new,
enum kvm_mr_change change)
{
/*
* At this point memslot has been committed and there is an
* allocated dirty_bitmap[], dirty pages will be tracked while
* the memory slot is write protected.
*/
if (change != KVM_MR_DELETE && new->flags & KVM_MEM_LOG_DIRTY_PAGES)
gstage_wp_memory_region(kvm, new->id);
}
int kvm_arch_prepare_memory_region(struct kvm *kvm,
const struct kvm_memory_slot *old,
struct kvm_memory_slot *new,
enum kvm_mr_change change)
{
hva_t hva, reg_end, size;
gpa_t base_gpa;
bool writable;
int ret = 0;
if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
change != KVM_MR_FLAGS_ONLY)
return 0;
/*
* Prevent userspace from creating a memory region outside of the GPA
* space addressable by the KVM guest GPA space.
*/
if ((new->base_gfn + new->npages) >=
(gstage_gpa_size >> PAGE_SHIFT))
return -EFAULT;
hva = new->userspace_addr;
size = new->npages << PAGE_SHIFT;
reg_end = hva + size;
base_gpa = new->base_gfn << PAGE_SHIFT;
writable = !(new->flags & KVM_MEM_READONLY);
mmap_read_lock(current->mm);
/*
* A memory region could potentially cover multiple VMAs, and
* any holes between them, so iterate over all of them to find
* out if we can map any of them right now.
*
* +--------------------------------------------+
* +---------------+----------------+ +----------------+
* | : VMA 1 | VMA 2 | | VMA 3 : |
* +---------------+----------------+ +----------------+
* | memory region |
* +--------------------------------------------+
*/
do {
struct vm_area_struct *vma = find_vma(current->mm, hva);
hva_t vm_start, vm_end;
if (!vma || vma->vm_start >= reg_end)
break;
/*
* Mapping a read-only VMA is only allowed if the
* memory region is configured as read-only.
*/
if (writable && !(vma->vm_flags & VM_WRITE)) {
ret = -EPERM;
break;
}
/* Take the intersection of this VMA with the memory region */
vm_start = max(hva, vma->vm_start);
vm_end = min(reg_end, vma->vm_end);
if (vma->vm_flags & VM_PFNMAP) {
gpa_t gpa = base_gpa + (vm_start - hva);
phys_addr_t pa;
pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
pa += vm_start - vma->vm_start;
/* IO region dirty page logging not allowed */
if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
ret = -EINVAL;
goto out;
}
ret = kvm_riscv_gstage_ioremap(kvm, gpa, pa,
vm_end - vm_start,
writable, false);
if (ret)
break;
}
hva = vm_end;
} while (hva < reg_end);
if (change == KVM_MR_FLAGS_ONLY)
goto out;
if (ret)
kvm_riscv_gstage_iounmap(kvm, base_gpa, size);
out:
mmap_read_unlock(current->mm);
return ret;
}
bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
{
if (!kvm->arch.pgd)
return false;
gstage_unmap_range(kvm, range->start << PAGE_SHIFT,
(range->end - range->start) << PAGE_SHIFT,
range->may_block);
return false;
}
bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
{
int ret;
kvm_pfn_t pfn = pte_pfn(range->arg.pte);
if (!kvm->arch.pgd)
return false;
WARN_ON(range->end - range->start != 1);
ret = gstage_map_page(kvm, NULL, range->start << PAGE_SHIFT,
__pfn_to_phys(pfn), PAGE_SIZE, true, true);
if (ret) {
kvm_debug("Failed to map G-stage page (error %d)\n", ret);
return true;
}
return false;
}
bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
{
pte_t *ptep;
u32 ptep_level = 0;
u64 size = (range->end - range->start) << PAGE_SHIFT;
if (!kvm->arch.pgd)
return false;
WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
if (!gstage_get_leaf_entry(kvm, range->start << PAGE_SHIFT,
&ptep, &ptep_level))
return false;
return ptep_test_and_clear_young(NULL, 0, ptep);
}
bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
{
pte_t *ptep;
u32 ptep_level = 0;
u64 size = (range->end - range->start) << PAGE_SHIFT;
if (!kvm->arch.pgd)
return false;
WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
if (!gstage_get_leaf_entry(kvm, range->start << PAGE_SHIFT,
&ptep, &ptep_level))
return false;
return pte_young(*ptep);
}
int kvm_riscv_gstage_map(struct kvm_vcpu *vcpu,
struct kvm_memory_slot *memslot,
gpa_t gpa, unsigned long hva, bool is_write)
{
int ret;
kvm_pfn_t hfn;
bool writable;
short vma_pageshift;
gfn_t gfn = gpa >> PAGE_SHIFT;
struct vm_area_struct *vma;
struct kvm *kvm = vcpu->kvm;
struct kvm_mmu_memory_cache *pcache = &vcpu->arch.mmu_page_cache;
bool logging = (memslot->dirty_bitmap &&
!(memslot->flags & KVM_MEM_READONLY)) ? true : false;
unsigned long vma_pagesize, mmu_seq;
/* We need minimum second+third level pages */
ret = kvm_mmu_topup_memory_cache(pcache, gstage_pgd_levels);
if (ret) {
kvm_err("Failed to topup G-stage cache\n");
return ret;
}
mmap_read_lock(current->mm);
vma = vma_lookup(current->mm, hva);
if (unlikely(!vma)) {
kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
mmap_read_unlock(current->mm);
return -EFAULT;
}
if (is_vm_hugetlb_page(vma))
vma_pageshift = huge_page_shift(hstate_vma(vma));
else
vma_pageshift = PAGE_SHIFT;
vma_pagesize = 1ULL << vma_pageshift;
if (logging || (vma->vm_flags & VM_PFNMAP))
vma_pagesize = PAGE_SIZE;
if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE)
gfn = (gpa & huge_page_mask(hstate_vma(vma))) >> PAGE_SHIFT;
/*
* Read mmu_invalidate_seq so that KVM can detect if the results of
* vma_lookup() or gfn_to_pfn_prot() become stale priort to acquiring
* kvm->mmu_lock.
*
* Rely on mmap_read_unlock() for an implicit smp_rmb(), which pairs
* with the smp_wmb() in kvm_mmu_invalidate_end().
*/
mmu_seq = kvm->mmu_invalidate_seq;
mmap_read_unlock(current->mm);
if (vma_pagesize != PUD_SIZE &&
vma_pagesize != PMD_SIZE &&
vma_pagesize != PAGE_SIZE) {
kvm_err("Invalid VMA page size 0x%lx\n", vma_pagesize);
return -EFAULT;
}
hfn = gfn_to_pfn_prot(kvm, gfn, is_write, &writable);
if (hfn == KVM_PFN_ERR_HWPOISON) {
send_sig_mceerr(BUS_MCEERR_AR, (void __user *)hva,
vma_pageshift, current);
return 0;
}
if (is_error_noslot_pfn(hfn))
return -EFAULT;
/*
* If logging is active then we allow writable pages only
* for write faults.
*/
if (logging && !is_write)
writable = false;
spin_lock(&kvm->mmu_lock);
if (mmu_invalidate_retry(kvm, mmu_seq))
goto out_unlock;
if (writable) {
kvm_set_pfn_dirty(hfn);
mark_page_dirty(kvm, gfn);
ret = gstage_map_page(kvm, pcache, gpa, hfn << PAGE_SHIFT,
vma_pagesize, false, true);
} else {
ret = gstage_map_page(kvm, pcache, gpa, hfn << PAGE_SHIFT,
vma_pagesize, true, true);
}
if (ret)
kvm_err("Failed to map in G-stage\n");
out_unlock:
spin_unlock(&kvm->mmu_lock);
kvm_set_pfn_accessed(hfn);
kvm_release_pfn_clean(hfn);
return ret;
}
int kvm_riscv_gstage_alloc_pgd(struct kvm *kvm)
{
struct page *pgd_page;
if (kvm->arch.pgd != NULL) {
kvm_err("kvm_arch already initialized?\n");
return -EINVAL;
}
pgd_page = alloc_pages(GFP_KERNEL | __GFP_ZERO,
get_order(gstage_pgd_size));
if (!pgd_page)
return -ENOMEM;
kvm->arch.pgd = page_to_virt(pgd_page);
kvm->arch.pgd_phys = page_to_phys(pgd_page);
return 0;
}
void kvm_riscv_gstage_free_pgd(struct kvm *kvm)
{
void *pgd = NULL;
spin_lock(&kvm->mmu_lock);
if (kvm->arch.pgd) {
gstage_unmap_range(kvm, 0UL, gstage_gpa_size, false);
pgd = READ_ONCE(kvm->arch.pgd);
kvm->arch.pgd = NULL;
kvm->arch.pgd_phys = 0;
}
spin_unlock(&kvm->mmu_lock);
if (pgd)
free_pages((unsigned long)pgd, get_order(gstage_pgd_size));
}
void kvm_riscv_gstage_update_hgatp(struct kvm_vcpu *vcpu)
{
unsigned long hgatp = gstage_mode;
struct kvm_arch *k = &vcpu->kvm->arch;
hgatp |= (READ_ONCE(k->vmid.vmid) << HGATP_VMID_SHIFT) & HGATP_VMID;
hgatp |= (k->pgd_phys >> PAGE_SHIFT) & HGATP_PPN;
csr_write(CSR_HGATP, hgatp);
if (!kvm_riscv_gstage_vmid_bits())
kvm_riscv_local_hfence_gvma_all();
}
void __init kvm_riscv_gstage_mode_detect(void)
{
#ifdef CONFIG_64BIT
/* Try Sv57x4 G-stage mode */
csr_write(CSR_HGATP, HGATP_MODE_SV57X4 << HGATP_MODE_SHIFT);
if ((csr_read(CSR_HGATP) >> HGATP_MODE_SHIFT) == HGATP_MODE_SV57X4) {
gstage_mode = (HGATP_MODE_SV57X4 << HGATP_MODE_SHIFT);
gstage_pgd_levels = 5;
goto skip_sv48x4_test;
}
/* Try Sv48x4 G-stage mode */
csr_write(CSR_HGATP, HGATP_MODE_SV48X4 << HGATP_MODE_SHIFT);
if ((csr_read(CSR_HGATP) >> HGATP_MODE_SHIFT) == HGATP_MODE_SV48X4) {
gstage_mode = (HGATP_MODE_SV48X4 << HGATP_MODE_SHIFT);
gstage_pgd_levels = 4;
}
skip_sv48x4_test:
csr_write(CSR_HGATP, 0);
kvm_riscv_local_hfence_gvma_all();
#endif
}
unsigned long __init kvm_riscv_gstage_mode(void)
{
return gstage_mode >> HGATP_MODE_SHIFT;
}
int kvm_riscv_gstage_gpa_bits(void)
{
return gstage_gpa_bits;
}