885678f68d
Switch to always using bio_add_page(), which merges contiguous pages now that we have multipage bvecs. Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
1701 lines
42 KiB
C
1701 lines
42 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
#include "bcachefs.h"
|
|
#include "bkey_methods.h"
|
|
#include "bkey_sort.h"
|
|
#include "btree_cache.h"
|
|
#include "btree_io.h"
|
|
#include "btree_iter.h"
|
|
#include "btree_locking.h"
|
|
#include "btree_update.h"
|
|
#include "btree_update_interior.h"
|
|
#include "buckets.h"
|
|
#include "checksum.h"
|
|
#include "debug.h"
|
|
#include "error.h"
|
|
#include "extents.h"
|
|
#include "io.h"
|
|
#include "journal_reclaim.h"
|
|
#include "journal_seq_blacklist.h"
|
|
#include "super-io.h"
|
|
#include "trace.h"
|
|
|
|
static void verify_no_dups(struct btree *b,
|
|
struct bkey_packed *start,
|
|
struct bkey_packed *end)
|
|
{
|
|
#ifdef CONFIG_BCACHEFS_DEBUG
|
|
struct bkey_packed *k;
|
|
|
|
for (k = start; k != end && bkey_next(k) != end; k = bkey_next(k)) {
|
|
struct bkey l = bkey_unpack_key(b, k);
|
|
struct bkey r = bkey_unpack_key(b, bkey_next(k));
|
|
|
|
BUG_ON(btree_node_is_extents(b)
|
|
? bkey_cmp(l.p, bkey_start_pos(&r)) > 0
|
|
: bkey_cmp(l.p, bkey_start_pos(&r)) >= 0);
|
|
//BUG_ON(bkey_cmp_packed(&b->format, k, bkey_next(k)) >= 0);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void clear_needs_whiteout(struct bset *i)
|
|
{
|
|
struct bkey_packed *k;
|
|
|
|
for (k = i->start; k != vstruct_last(i); k = bkey_next(k))
|
|
k->needs_whiteout = false;
|
|
}
|
|
|
|
static void set_needs_whiteout(struct bset *i)
|
|
{
|
|
struct bkey_packed *k;
|
|
|
|
for (k = i->start; k != vstruct_last(i); k = bkey_next(k))
|
|
k->needs_whiteout = true;
|
|
}
|
|
|
|
static void btree_bounce_free(struct bch_fs *c, unsigned order,
|
|
bool used_mempool, void *p)
|
|
{
|
|
if (used_mempool)
|
|
mempool_free(p, &c->btree_bounce_pool);
|
|
else
|
|
vpfree(p, PAGE_SIZE << order);
|
|
}
|
|
|
|
static void *btree_bounce_alloc(struct bch_fs *c, unsigned order,
|
|
bool *used_mempool)
|
|
{
|
|
void *p;
|
|
|
|
BUG_ON(order > btree_page_order(c));
|
|
|
|
*used_mempool = false;
|
|
p = (void *) __get_free_pages(__GFP_NOWARN|GFP_NOWAIT, order);
|
|
if (p)
|
|
return p;
|
|
|
|
*used_mempool = true;
|
|
return mempool_alloc(&c->btree_bounce_pool, GFP_NOIO);
|
|
}
|
|
|
|
static unsigned should_compact_bset(struct btree *b, struct bset_tree *t,
|
|
bool compacting,
|
|
enum compact_mode mode)
|
|
{
|
|
unsigned bset_u64s = le16_to_cpu(bset(b, t)->u64s);
|
|
unsigned dead_u64s = bset_u64s - b->nr.bset_u64s[t - b->set];
|
|
|
|
if (mode == COMPACT_LAZY) {
|
|
if (should_compact_bset_lazy(b, t) ||
|
|
(compacting && !bset_written(b, bset(b, t))))
|
|
return dead_u64s;
|
|
} else {
|
|
if (bset_written(b, bset(b, t)))
|
|
return dead_u64s;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
bool __bch2_compact_whiteouts(struct bch_fs *c, struct btree *b,
|
|
enum compact_mode mode)
|
|
{
|
|
const struct bkey_format *f = &b->format;
|
|
struct bset_tree *t;
|
|
struct bkey_packed *whiteouts = NULL;
|
|
struct bkey_packed *u_start, *u_pos;
|
|
struct sort_iter sort_iter;
|
|
unsigned order, whiteout_u64s = 0, u64s;
|
|
bool used_mempool, compacting = false;
|
|
|
|
for_each_bset(b, t)
|
|
whiteout_u64s += should_compact_bset(b, t,
|
|
whiteout_u64s != 0, mode);
|
|
|
|
if (!whiteout_u64s)
|
|
return false;
|
|
|
|
sort_iter_init(&sort_iter, b);
|
|
|
|
whiteout_u64s += b->whiteout_u64s;
|
|
order = get_order(whiteout_u64s * sizeof(u64));
|
|
|
|
whiteouts = btree_bounce_alloc(c, order, &used_mempool);
|
|
u_start = u_pos = whiteouts;
|
|
|
|
memcpy_u64s(u_pos, unwritten_whiteouts_start(c, b),
|
|
b->whiteout_u64s);
|
|
u_pos = (void *) u_pos + b->whiteout_u64s * sizeof(u64);
|
|
|
|
sort_iter_add(&sort_iter, u_start, u_pos);
|
|
|
|
for_each_bset(b, t) {
|
|
struct bset *i = bset(b, t);
|
|
struct bkey_packed *k, *n, *out, *start, *end;
|
|
struct btree_node_entry *src = NULL, *dst = NULL;
|
|
|
|
if (t != b->set && !bset_written(b, i)) {
|
|
src = container_of(i, struct btree_node_entry, keys);
|
|
dst = max(write_block(b),
|
|
(void *) btree_bkey_last(b, t -1));
|
|
}
|
|
|
|
if (!should_compact_bset(b, t, compacting, mode)) {
|
|
if (src != dst) {
|
|
memmove(dst, src, sizeof(*src) +
|
|
le16_to_cpu(src->keys.u64s) *
|
|
sizeof(u64));
|
|
i = &dst->keys;
|
|
set_btree_bset(b, t, i);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
compacting = true;
|
|
u_start = u_pos;
|
|
start = i->start;
|
|
end = vstruct_last(i);
|
|
|
|
if (src != dst) {
|
|
memmove(dst, src, sizeof(*src));
|
|
i = &dst->keys;
|
|
set_btree_bset(b, t, i);
|
|
}
|
|
|
|
out = i->start;
|
|
|
|
for (k = start; k != end; k = n) {
|
|
n = bkey_next(k);
|
|
|
|
if (bkey_deleted(k) && btree_node_is_extents(b))
|
|
continue;
|
|
|
|
if (bkey_whiteout(k) && !k->needs_whiteout)
|
|
continue;
|
|
|
|
if (bkey_whiteout(k)) {
|
|
unreserve_whiteout(b, k);
|
|
memcpy_u64s(u_pos, k, bkeyp_key_u64s(f, k));
|
|
set_bkeyp_val_u64s(f, u_pos, 0);
|
|
u_pos = bkey_next(u_pos);
|
|
} else if (mode != COMPACT_WRITTEN_NO_WRITE_LOCK) {
|
|
bkey_copy(out, k);
|
|
out = bkey_next(out);
|
|
}
|
|
}
|
|
|
|
sort_iter_add(&sort_iter, u_start, u_pos);
|
|
|
|
if (mode != COMPACT_WRITTEN_NO_WRITE_LOCK) {
|
|
i->u64s = cpu_to_le16((u64 *) out - i->_data);
|
|
set_btree_bset_end(b, t);
|
|
bch2_bset_set_no_aux_tree(b, t);
|
|
}
|
|
}
|
|
|
|
b->whiteout_u64s = (u64 *) u_pos - (u64 *) whiteouts;
|
|
|
|
BUG_ON((void *) unwritten_whiteouts_start(c, b) <
|
|
(void *) btree_bkey_last(b, bset_tree_last(b)));
|
|
|
|
u64s = (btree_node_is_extents(b)
|
|
? bch2_sort_extent_whiteouts
|
|
: bch2_sort_key_whiteouts)(unwritten_whiteouts_start(c, b),
|
|
&sort_iter);
|
|
|
|
BUG_ON(u64s > b->whiteout_u64s);
|
|
BUG_ON(u64s != b->whiteout_u64s && !btree_node_is_extents(b));
|
|
BUG_ON(u_pos != whiteouts && !u64s);
|
|
|
|
if (u64s != b->whiteout_u64s) {
|
|
void *src = unwritten_whiteouts_start(c, b);
|
|
|
|
b->whiteout_u64s = u64s;
|
|
memmove_u64s_up(unwritten_whiteouts_start(c, b), src, u64s);
|
|
}
|
|
|
|
verify_no_dups(b,
|
|
unwritten_whiteouts_start(c, b),
|
|
unwritten_whiteouts_end(c, b));
|
|
|
|
btree_bounce_free(c, order, used_mempool, whiteouts);
|
|
|
|
if (mode != COMPACT_WRITTEN_NO_WRITE_LOCK)
|
|
bch2_btree_build_aux_trees(b);
|
|
|
|
bch_btree_keys_u64s_remaining(c, b);
|
|
bch2_verify_btree_nr_keys(b);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool bch2_drop_whiteouts(struct btree *b)
|
|
{
|
|
struct bset_tree *t;
|
|
bool ret = false;
|
|
|
|
for_each_bset(b, t) {
|
|
struct bset *i = bset(b, t);
|
|
struct bkey_packed *k, *n, *out, *start, *end;
|
|
|
|
if (!should_compact_bset(b, t, true, COMPACT_WRITTEN))
|
|
continue;
|
|
|
|
start = btree_bkey_first(b, t);
|
|
end = btree_bkey_last(b, t);
|
|
|
|
if (!bset_written(b, i) &&
|
|
t != b->set) {
|
|
struct bset *dst =
|
|
max_t(struct bset *, write_block(b),
|
|
(void *) btree_bkey_last(b, t -1));
|
|
|
|
memmove(dst, i, sizeof(struct bset));
|
|
i = dst;
|
|
set_btree_bset(b, t, i);
|
|
}
|
|
|
|
out = i->start;
|
|
|
|
for (k = start; k != end; k = n) {
|
|
n = bkey_next(k);
|
|
|
|
if (!bkey_whiteout(k)) {
|
|
bkey_copy(out, k);
|
|
out = bkey_next(out);
|
|
}
|
|
}
|
|
|
|
i->u64s = cpu_to_le16((u64 *) out - i->_data);
|
|
bch2_bset_set_no_aux_tree(b, t);
|
|
ret = true;
|
|
}
|
|
|
|
bch2_verify_btree_nr_keys(b);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void btree_node_sort(struct bch_fs *c, struct btree *b,
|
|
struct btree_iter *iter,
|
|
unsigned start_idx,
|
|
unsigned end_idx,
|
|
bool filter_whiteouts)
|
|
{
|
|
struct btree_node *out;
|
|
struct sort_iter sort_iter;
|
|
struct bset_tree *t;
|
|
struct bset *start_bset = bset(b, &b->set[start_idx]);
|
|
bool used_mempool = false;
|
|
u64 start_time, seq = 0;
|
|
unsigned i, u64s = 0, order, shift = end_idx - start_idx - 1;
|
|
bool sorting_entire_node = start_idx == 0 &&
|
|
end_idx == b->nsets;
|
|
|
|
sort_iter_init(&sort_iter, b);
|
|
|
|
for (t = b->set + start_idx;
|
|
t < b->set + end_idx;
|
|
t++) {
|
|
u64s += le16_to_cpu(bset(b, t)->u64s);
|
|
sort_iter_add(&sort_iter,
|
|
btree_bkey_first(b, t),
|
|
btree_bkey_last(b, t));
|
|
}
|
|
|
|
order = sorting_entire_node
|
|
? btree_page_order(c)
|
|
: get_order(__vstruct_bytes(struct btree_node, u64s));
|
|
|
|
out = btree_bounce_alloc(c, order, &used_mempool);
|
|
|
|
start_time = local_clock();
|
|
|
|
if (btree_node_is_extents(b))
|
|
filter_whiteouts = bset_written(b, start_bset);
|
|
|
|
u64s = (btree_node_is_extents(b)
|
|
? bch2_sort_extents
|
|
: bch2_sort_keys)(out->keys.start,
|
|
&sort_iter,
|
|
filter_whiteouts);
|
|
|
|
out->keys.u64s = cpu_to_le16(u64s);
|
|
|
|
BUG_ON(vstruct_end(&out->keys) > (void *) out + (PAGE_SIZE << order));
|
|
|
|
if (sorting_entire_node)
|
|
bch2_time_stats_update(&c->times[BCH_TIME_btree_node_sort],
|
|
start_time);
|
|
|
|
/* Make sure we preserve bset journal_seq: */
|
|
for (t = b->set + start_idx; t < b->set + end_idx; t++)
|
|
seq = max(seq, le64_to_cpu(bset(b, t)->journal_seq));
|
|
start_bset->journal_seq = cpu_to_le64(seq);
|
|
|
|
if (sorting_entire_node) {
|
|
unsigned u64s = le16_to_cpu(out->keys.u64s);
|
|
|
|
BUG_ON(order != btree_page_order(c));
|
|
|
|
/*
|
|
* Our temporary buffer is the same size as the btree node's
|
|
* buffer, we can just swap buffers instead of doing a big
|
|
* memcpy()
|
|
*/
|
|
*out = *b->data;
|
|
out->keys.u64s = cpu_to_le16(u64s);
|
|
swap(out, b->data);
|
|
set_btree_bset(b, b->set, &b->data->keys);
|
|
} else {
|
|
start_bset->u64s = out->keys.u64s;
|
|
memcpy_u64s(start_bset->start,
|
|
out->keys.start,
|
|
le16_to_cpu(out->keys.u64s));
|
|
}
|
|
|
|
for (i = start_idx + 1; i < end_idx; i++)
|
|
b->nr.bset_u64s[start_idx] +=
|
|
b->nr.bset_u64s[i];
|
|
|
|
b->nsets -= shift;
|
|
|
|
for (i = start_idx + 1; i < b->nsets; i++) {
|
|
b->nr.bset_u64s[i] = b->nr.bset_u64s[i + shift];
|
|
b->set[i] = b->set[i + shift];
|
|
}
|
|
|
|
for (i = b->nsets; i < MAX_BSETS; i++)
|
|
b->nr.bset_u64s[i] = 0;
|
|
|
|
set_btree_bset_end(b, &b->set[start_idx]);
|
|
bch2_bset_set_no_aux_tree(b, &b->set[start_idx]);
|
|
|
|
btree_bounce_free(c, order, used_mempool, out);
|
|
|
|
bch2_verify_btree_nr_keys(b);
|
|
}
|
|
|
|
void bch2_btree_sort_into(struct bch_fs *c,
|
|
struct btree *dst,
|
|
struct btree *src)
|
|
{
|
|
struct btree_nr_keys nr;
|
|
struct btree_node_iter src_iter;
|
|
u64 start_time = local_clock();
|
|
|
|
BUG_ON(dst->nsets != 1);
|
|
|
|
bch2_bset_set_no_aux_tree(dst, dst->set);
|
|
|
|
bch2_btree_node_iter_init_from_start(&src_iter, src);
|
|
|
|
if (btree_node_is_extents(src))
|
|
nr = bch2_sort_repack_merge(c, btree_bset_first(dst),
|
|
src, &src_iter,
|
|
&dst->format,
|
|
true);
|
|
else
|
|
nr = bch2_sort_repack(btree_bset_first(dst),
|
|
src, &src_iter,
|
|
&dst->format,
|
|
true);
|
|
|
|
bch2_time_stats_update(&c->times[BCH_TIME_btree_node_sort],
|
|
start_time);
|
|
|
|
set_btree_bset_end(dst, dst->set);
|
|
|
|
dst->nr.live_u64s += nr.live_u64s;
|
|
dst->nr.bset_u64s[0] += nr.bset_u64s[0];
|
|
dst->nr.packed_keys += nr.packed_keys;
|
|
dst->nr.unpacked_keys += nr.unpacked_keys;
|
|
|
|
bch2_verify_btree_nr_keys(dst);
|
|
}
|
|
|
|
#define SORT_CRIT (4096 / sizeof(u64))
|
|
|
|
/*
|
|
* We're about to add another bset to the btree node, so if there's currently
|
|
* too many bsets - sort some of them together:
|
|
*/
|
|
static bool btree_node_compact(struct bch_fs *c, struct btree *b,
|
|
struct btree_iter *iter)
|
|
{
|
|
unsigned unwritten_idx;
|
|
bool ret = false;
|
|
|
|
for (unwritten_idx = 0;
|
|
unwritten_idx < b->nsets;
|
|
unwritten_idx++)
|
|
if (!bset_written(b, bset(b, &b->set[unwritten_idx])))
|
|
break;
|
|
|
|
if (b->nsets - unwritten_idx > 1) {
|
|
btree_node_sort(c, b, iter, unwritten_idx,
|
|
b->nsets, false);
|
|
ret = true;
|
|
}
|
|
|
|
if (unwritten_idx > 1) {
|
|
btree_node_sort(c, b, iter, 0, unwritten_idx, false);
|
|
ret = true;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void bch2_btree_build_aux_trees(struct btree *b)
|
|
{
|
|
struct bset_tree *t;
|
|
|
|
for_each_bset(b, t)
|
|
bch2_bset_build_aux_tree(b, t,
|
|
!bset_written(b, bset(b, t)) &&
|
|
t == bset_tree_last(b));
|
|
}
|
|
|
|
/*
|
|
* @bch_btree_init_next - initialize a new (unwritten) bset that can then be
|
|
* inserted into
|
|
*
|
|
* Safe to call if there already is an unwritten bset - will only add a new bset
|
|
* if @b doesn't already have one.
|
|
*
|
|
* Returns true if we sorted (i.e. invalidated iterators
|
|
*/
|
|
void bch2_btree_init_next(struct bch_fs *c, struct btree *b,
|
|
struct btree_iter *iter)
|
|
{
|
|
struct btree_node_entry *bne;
|
|
bool did_sort;
|
|
|
|
EBUG_ON(!(b->c.lock.state.seq & 1));
|
|
EBUG_ON(iter && iter->l[b->c.level].b != b);
|
|
|
|
did_sort = btree_node_compact(c, b, iter);
|
|
|
|
bne = want_new_bset(c, b);
|
|
if (bne)
|
|
bch2_bset_init_next(c, b, bne);
|
|
|
|
bch2_btree_build_aux_trees(b);
|
|
|
|
if (iter && did_sort)
|
|
bch2_btree_iter_reinit_node(iter, b);
|
|
}
|
|
|
|
static struct nonce btree_nonce(struct bset *i, unsigned offset)
|
|
{
|
|
return (struct nonce) {{
|
|
[0] = cpu_to_le32(offset),
|
|
[1] = ((__le32 *) &i->seq)[0],
|
|
[2] = ((__le32 *) &i->seq)[1],
|
|
[3] = ((__le32 *) &i->journal_seq)[0]^BCH_NONCE_BTREE,
|
|
}};
|
|
}
|
|
|
|
static void bset_encrypt(struct bch_fs *c, struct bset *i, unsigned offset)
|
|
{
|
|
struct nonce nonce = btree_nonce(i, offset);
|
|
|
|
if (!offset) {
|
|
struct btree_node *bn = container_of(i, struct btree_node, keys);
|
|
unsigned bytes = (void *) &bn->keys - (void *) &bn->flags;
|
|
|
|
bch2_encrypt(c, BSET_CSUM_TYPE(i), nonce, &bn->flags,
|
|
bytes);
|
|
|
|
nonce = nonce_add(nonce, round_up(bytes, CHACHA_BLOCK_SIZE));
|
|
}
|
|
|
|
bch2_encrypt(c, BSET_CSUM_TYPE(i), nonce, i->_data,
|
|
vstruct_end(i) - (void *) i->_data);
|
|
}
|
|
|
|
static void btree_err_msg(struct printbuf *out, struct bch_fs *c,
|
|
struct btree *b, struct bset *i,
|
|
unsigned offset, int write)
|
|
{
|
|
pr_buf(out, "error validating btree node %s"
|
|
"at btree %u level %u/%u\n"
|
|
"pos %llu:%llu node offset %u",
|
|
write ? "before write " : "",
|
|
b->c.btree_id, b->c.level,
|
|
c->btree_roots[b->c.btree_id].level,
|
|
b->key.k.p.inode, b->key.k.p.offset,
|
|
b->written);
|
|
if (i)
|
|
pr_buf(out, " bset u64s %u", le16_to_cpu(i->u64s));
|
|
}
|
|
|
|
enum btree_err_type {
|
|
BTREE_ERR_FIXABLE,
|
|
BTREE_ERR_WANT_RETRY,
|
|
BTREE_ERR_MUST_RETRY,
|
|
BTREE_ERR_FATAL,
|
|
};
|
|
|
|
enum btree_validate_ret {
|
|
BTREE_RETRY_READ = 64,
|
|
};
|
|
|
|
#define btree_err(type, c, b, i, msg, ...) \
|
|
({ \
|
|
__label__ out; \
|
|
char _buf[300]; \
|
|
struct printbuf out = PBUF(_buf); \
|
|
\
|
|
btree_err_msg(&out, c, b, i, b->written, write); \
|
|
pr_buf(&out, ": " msg, ##__VA_ARGS__); \
|
|
\
|
|
if (type == BTREE_ERR_FIXABLE && \
|
|
write == READ && \
|
|
!test_bit(BCH_FS_INITIAL_GC_DONE, &c->flags)) { \
|
|
mustfix_fsck_err(c, "%s", _buf); \
|
|
goto out; \
|
|
} \
|
|
\
|
|
switch (write) { \
|
|
case READ: \
|
|
bch_err(c, "%s", _buf); \
|
|
\
|
|
switch (type) { \
|
|
case BTREE_ERR_FIXABLE: \
|
|
ret = BCH_FSCK_ERRORS_NOT_FIXED; \
|
|
goto fsck_err; \
|
|
case BTREE_ERR_WANT_RETRY: \
|
|
if (have_retry) { \
|
|
ret = BTREE_RETRY_READ; \
|
|
goto fsck_err; \
|
|
} \
|
|
break; \
|
|
case BTREE_ERR_MUST_RETRY: \
|
|
ret = BTREE_RETRY_READ; \
|
|
goto fsck_err; \
|
|
case BTREE_ERR_FATAL: \
|
|
ret = BCH_FSCK_ERRORS_NOT_FIXED; \
|
|
goto fsck_err; \
|
|
} \
|
|
break; \
|
|
case WRITE: \
|
|
bch_err(c, "corrupt metadata before write: %s", _buf); \
|
|
\
|
|
if (bch2_fs_inconsistent(c)) { \
|
|
ret = BCH_FSCK_ERRORS_NOT_FIXED; \
|
|
goto fsck_err; \
|
|
} \
|
|
break; \
|
|
} \
|
|
out: \
|
|
true; \
|
|
})
|
|
|
|
#define btree_err_on(cond, ...) ((cond) ? btree_err(__VA_ARGS__) : false)
|
|
|
|
static int validate_bset(struct bch_fs *c, struct btree *b,
|
|
struct bset *i, unsigned sectors,
|
|
unsigned *whiteout_u64s, int write,
|
|
bool have_retry)
|
|
{
|
|
struct bkey_packed *k, *prev = NULL;
|
|
struct bpos prev_pos = POS_MIN;
|
|
bool seen_non_whiteout = false;
|
|
unsigned version;
|
|
const char *err;
|
|
int ret = 0;
|
|
|
|
if (i == &b->data->keys) {
|
|
/* These indicate that we read the wrong btree node: */
|
|
btree_err_on(BTREE_NODE_ID(b->data) != b->c.btree_id,
|
|
BTREE_ERR_MUST_RETRY, c, b, i,
|
|
"incorrect btree id");
|
|
|
|
btree_err_on(BTREE_NODE_LEVEL(b->data) != b->c.level,
|
|
BTREE_ERR_MUST_RETRY, c, b, i,
|
|
"incorrect level");
|
|
|
|
if (BSET_BIG_ENDIAN(i) != CPU_BIG_ENDIAN) {
|
|
u64 *p = (u64 *) &b->data->ptr;
|
|
|
|
*p = swab64(*p);
|
|
bch2_bpos_swab(&b->data->min_key);
|
|
bch2_bpos_swab(&b->data->max_key);
|
|
}
|
|
|
|
btree_err_on(bkey_cmp(b->data->max_key, b->key.k.p),
|
|
BTREE_ERR_MUST_RETRY, c, b, i,
|
|
"incorrect max key");
|
|
|
|
/* XXX: ideally we would be validating min_key too */
|
|
#if 0
|
|
/*
|
|
* not correct anymore, due to btree node write error
|
|
* handling
|
|
*
|
|
* need to add b->data->seq to btree keys and verify
|
|
* against that
|
|
*/
|
|
btree_err_on(!extent_contains_ptr(bkey_i_to_s_c_extent(&b->key),
|
|
b->data->ptr),
|
|
BTREE_ERR_FATAL, c, b, i,
|
|
"incorrect backpointer");
|
|
#endif
|
|
err = bch2_bkey_format_validate(&b->data->format);
|
|
btree_err_on(err,
|
|
BTREE_ERR_FATAL, c, b, i,
|
|
"invalid bkey format: %s", err);
|
|
}
|
|
|
|
version = le16_to_cpu(i->version);
|
|
btree_err_on((version != BCH_BSET_VERSION_OLD &&
|
|
version < bcachefs_metadata_version_min) ||
|
|
version >= bcachefs_metadata_version_max,
|
|
BTREE_ERR_FATAL, c, b, i,
|
|
"unsupported bset version");
|
|
|
|
if (btree_err_on(b->written + sectors > c->opts.btree_node_size,
|
|
BTREE_ERR_FIXABLE, c, b, i,
|
|
"bset past end of btree node")) {
|
|
i->u64s = 0;
|
|
return 0;
|
|
}
|
|
|
|
btree_err_on(b->written && !i->u64s,
|
|
BTREE_ERR_FIXABLE, c, b, i,
|
|
"empty bset");
|
|
|
|
if (!BSET_SEPARATE_WHITEOUTS(i)) {
|
|
seen_non_whiteout = true;
|
|
*whiteout_u64s = 0;
|
|
}
|
|
|
|
for (k = i->start;
|
|
k != vstruct_last(i);) {
|
|
struct bkey_s_c u;
|
|
struct bkey tmp;
|
|
const char *invalid;
|
|
|
|
if (btree_err_on(!k->u64s,
|
|
BTREE_ERR_FIXABLE, c, b, i,
|
|
"KEY_U64s 0: %zu bytes of metadata lost",
|
|
vstruct_end(i) - (void *) k)) {
|
|
i->u64s = cpu_to_le16((u64 *) k - i->_data);
|
|
break;
|
|
}
|
|
|
|
if (btree_err_on(bkey_next(k) > vstruct_last(i),
|
|
BTREE_ERR_FIXABLE, c, b, i,
|
|
"key extends past end of bset")) {
|
|
i->u64s = cpu_to_le16((u64 *) k - i->_data);
|
|
break;
|
|
}
|
|
|
|
if (btree_err_on(k->format > KEY_FORMAT_CURRENT,
|
|
BTREE_ERR_FIXABLE, c, b, i,
|
|
"invalid bkey format %u", k->format)) {
|
|
i->u64s = cpu_to_le16(le16_to_cpu(i->u64s) - k->u64s);
|
|
memmove_u64s_down(k, bkey_next(k),
|
|
(u64 *) vstruct_end(i) - (u64 *) k);
|
|
continue;
|
|
}
|
|
|
|
if (BSET_BIG_ENDIAN(i) != CPU_BIG_ENDIAN)
|
|
bch2_bkey_swab(&b->format, k);
|
|
|
|
if (!write &&
|
|
version < bcachefs_metadata_version_bkey_renumber)
|
|
bch2_bkey_renumber(btree_node_type(b), k, write);
|
|
|
|
u = bkey_disassemble(b, k, &tmp);
|
|
|
|
invalid = __bch2_bkey_invalid(c, u, btree_node_type(b)) ?:
|
|
bch2_bkey_in_btree_node(b, u) ?:
|
|
(write ? bch2_bkey_val_invalid(c, u) : NULL);
|
|
if (invalid) {
|
|
char buf[160];
|
|
|
|
bch2_bkey_val_to_text(&PBUF(buf), c, u);
|
|
btree_err(BTREE_ERR_FIXABLE, c, b, i,
|
|
"invalid bkey:\n%s\n%s", invalid, buf);
|
|
|
|
i->u64s = cpu_to_le16(le16_to_cpu(i->u64s) - k->u64s);
|
|
memmove_u64s_down(k, bkey_next(k),
|
|
(u64 *) vstruct_end(i) - (u64 *) k);
|
|
continue;
|
|
}
|
|
|
|
if (write &&
|
|
version < bcachefs_metadata_version_bkey_renumber)
|
|
bch2_bkey_renumber(btree_node_type(b), k, write);
|
|
|
|
/*
|
|
* with the separate whiteouts thing (used for extents), the
|
|
* second set of keys actually can have whiteouts too, so we
|
|
* can't solely go off bkey_whiteout()...
|
|
*/
|
|
|
|
if (!seen_non_whiteout &&
|
|
(!bkey_whiteout(k) ||
|
|
(bkey_cmp(prev_pos, bkey_start_pos(u.k)) > 0))) {
|
|
*whiteout_u64s = k->_data - i->_data;
|
|
seen_non_whiteout = true;
|
|
} else if (bkey_cmp(prev_pos, bkey_start_pos(u.k)) > 0) {
|
|
btree_err(BTREE_ERR_FATAL, c, b, i,
|
|
"keys out of order: %llu:%llu > %llu:%llu",
|
|
prev_pos.inode,
|
|
prev_pos.offset,
|
|
u.k->p.inode,
|
|
bkey_start_offset(u.k));
|
|
/* XXX: repair this */
|
|
}
|
|
|
|
prev_pos = u.k->p;
|
|
prev = k;
|
|
k = bkey_next(k);
|
|
}
|
|
|
|
SET_BSET_BIG_ENDIAN(i, CPU_BIG_ENDIAN);
|
|
fsck_err:
|
|
return ret;
|
|
}
|
|
|
|
int bch2_btree_node_read_done(struct bch_fs *c, struct btree *b, bool have_retry)
|
|
{
|
|
struct btree_node_entry *bne;
|
|
struct btree_node_iter_large *iter;
|
|
struct btree_node *sorted;
|
|
struct bkey_packed *k;
|
|
struct bset *i;
|
|
bool used_mempool, blacklisted;
|
|
unsigned u64s;
|
|
int ret, retry_read = 0, write = READ;
|
|
|
|
iter = mempool_alloc(&c->fill_iter, GFP_NOIO);
|
|
iter->used = 0;
|
|
|
|
if (bch2_meta_read_fault("btree"))
|
|
btree_err(BTREE_ERR_MUST_RETRY, c, b, NULL,
|
|
"dynamic fault");
|
|
|
|
btree_err_on(le64_to_cpu(b->data->magic) != bset_magic(c),
|
|
BTREE_ERR_MUST_RETRY, c, b, NULL,
|
|
"bad magic");
|
|
|
|
btree_err_on(!b->data->keys.seq,
|
|
BTREE_ERR_MUST_RETRY, c, b, NULL,
|
|
"bad btree header");
|
|
|
|
while (b->written < c->opts.btree_node_size) {
|
|
unsigned sectors, whiteout_u64s = 0;
|
|
struct nonce nonce;
|
|
struct bch_csum csum;
|
|
bool first = !b->written;
|
|
|
|
if (!b->written) {
|
|
i = &b->data->keys;
|
|
|
|
btree_err_on(!bch2_checksum_type_valid(c, BSET_CSUM_TYPE(i)),
|
|
BTREE_ERR_WANT_RETRY, c, b, i,
|
|
"unknown checksum type");
|
|
|
|
nonce = btree_nonce(i, b->written << 9);
|
|
csum = csum_vstruct(c, BSET_CSUM_TYPE(i), nonce, b->data);
|
|
|
|
btree_err_on(bch2_crc_cmp(csum, b->data->csum),
|
|
BTREE_ERR_WANT_RETRY, c, b, i,
|
|
"invalid checksum");
|
|
|
|
bset_encrypt(c, i, b->written << 9);
|
|
|
|
sectors = vstruct_sectors(b->data, c->block_bits);
|
|
|
|
btree_node_set_format(b, b->data->format);
|
|
} else {
|
|
bne = write_block(b);
|
|
i = &bne->keys;
|
|
|
|
if (i->seq != b->data->keys.seq)
|
|
break;
|
|
|
|
btree_err_on(!bch2_checksum_type_valid(c, BSET_CSUM_TYPE(i)),
|
|
BTREE_ERR_WANT_RETRY, c, b, i,
|
|
"unknown checksum type");
|
|
|
|
nonce = btree_nonce(i, b->written << 9);
|
|
csum = csum_vstruct(c, BSET_CSUM_TYPE(i), nonce, bne);
|
|
|
|
btree_err_on(bch2_crc_cmp(csum, bne->csum),
|
|
BTREE_ERR_WANT_RETRY, c, b, i,
|
|
"invalid checksum");
|
|
|
|
bset_encrypt(c, i, b->written << 9);
|
|
|
|
sectors = vstruct_sectors(bne, c->block_bits);
|
|
}
|
|
|
|
ret = validate_bset(c, b, i, sectors, &whiteout_u64s,
|
|
READ, have_retry);
|
|
if (ret)
|
|
goto fsck_err;
|
|
|
|
b->written += sectors;
|
|
|
|
blacklisted = bch2_journal_seq_is_blacklisted(c,
|
|
le64_to_cpu(i->journal_seq),
|
|
true);
|
|
|
|
btree_err_on(blacklisted && first,
|
|
BTREE_ERR_FIXABLE, c, b, i,
|
|
"first btree node bset has blacklisted journal seq");
|
|
if (blacklisted && !first)
|
|
continue;
|
|
|
|
bch2_btree_node_iter_large_push(iter, b,
|
|
i->start,
|
|
vstruct_idx(i, whiteout_u64s));
|
|
|
|
bch2_btree_node_iter_large_push(iter, b,
|
|
vstruct_idx(i, whiteout_u64s),
|
|
vstruct_last(i));
|
|
}
|
|
|
|
for (bne = write_block(b);
|
|
bset_byte_offset(b, bne) < btree_bytes(c);
|
|
bne = (void *) bne + block_bytes(c))
|
|
btree_err_on(bne->keys.seq == b->data->keys.seq,
|
|
BTREE_ERR_WANT_RETRY, c, b, NULL,
|
|
"found bset signature after last bset");
|
|
|
|
sorted = btree_bounce_alloc(c, btree_page_order(c), &used_mempool);
|
|
sorted->keys.u64s = 0;
|
|
|
|
set_btree_bset(b, b->set, &b->data->keys);
|
|
|
|
b->nr = btree_node_is_extents(b)
|
|
? bch2_extent_sort_fix_overlapping(c, &sorted->keys, b, iter)
|
|
: bch2_key_sort_fix_overlapping(&sorted->keys, b, iter);
|
|
|
|
u64s = le16_to_cpu(sorted->keys.u64s);
|
|
*sorted = *b->data;
|
|
sorted->keys.u64s = cpu_to_le16(u64s);
|
|
swap(sorted, b->data);
|
|
set_btree_bset(b, b->set, &b->data->keys);
|
|
b->nsets = 1;
|
|
|
|
BUG_ON(b->nr.live_u64s != u64s);
|
|
|
|
btree_bounce_free(c, btree_page_order(c), used_mempool, sorted);
|
|
|
|
i = &b->data->keys;
|
|
for (k = i->start; k != vstruct_last(i);) {
|
|
struct bkey tmp;
|
|
struct bkey_s_c u = bkey_disassemble(b, k, &tmp);
|
|
const char *invalid = bch2_bkey_val_invalid(c, u);
|
|
|
|
if (invalid ||
|
|
(inject_invalid_keys(c) &&
|
|
!bversion_cmp(u.k->version, MAX_VERSION))) {
|
|
char buf[160];
|
|
|
|
bch2_bkey_val_to_text(&PBUF(buf), c, u);
|
|
btree_err(BTREE_ERR_FIXABLE, c, b, i,
|
|
"invalid bkey %s: %s", buf, invalid);
|
|
|
|
btree_keys_account_key_drop(&b->nr, 0, k);
|
|
|
|
i->u64s = cpu_to_le16(le16_to_cpu(i->u64s) - k->u64s);
|
|
memmove_u64s_down(k, bkey_next(k),
|
|
(u64 *) vstruct_end(i) - (u64 *) k);
|
|
set_btree_bset_end(b, b->set);
|
|
continue;
|
|
}
|
|
|
|
k = bkey_next(k);
|
|
}
|
|
|
|
bch2_bset_build_aux_tree(b, b->set, false);
|
|
|
|
set_needs_whiteout(btree_bset_first(b));
|
|
|
|
btree_node_reset_sib_u64s(b);
|
|
out:
|
|
mempool_free(iter, &c->fill_iter);
|
|
return retry_read;
|
|
fsck_err:
|
|
if (ret == BTREE_RETRY_READ) {
|
|
retry_read = 1;
|
|
} else {
|
|
bch2_inconsistent_error(c);
|
|
set_btree_node_read_error(b);
|
|
}
|
|
goto out;
|
|
}
|
|
|
|
static void btree_node_read_work(struct work_struct *work)
|
|
{
|
|
struct btree_read_bio *rb =
|
|
container_of(work, struct btree_read_bio, work);
|
|
struct bch_fs *c = rb->c;
|
|
struct bch_dev *ca = bch_dev_bkey_exists(c, rb->pick.ptr.dev);
|
|
struct btree *b = rb->bio.bi_private;
|
|
struct bio *bio = &rb->bio;
|
|
struct bch_io_failures failed = { .nr = 0 };
|
|
bool can_retry;
|
|
|
|
goto start;
|
|
while (1) {
|
|
bch_info(c, "retrying read");
|
|
ca = bch_dev_bkey_exists(c, rb->pick.ptr.dev);
|
|
rb->have_ioref = bch2_dev_get_ioref(ca, READ);
|
|
bio_reset(bio, NULL, REQ_OP_READ|REQ_SYNC|REQ_META);
|
|
bio->bi_iter.bi_sector = rb->pick.ptr.offset;
|
|
bio->bi_iter.bi_size = btree_bytes(c);
|
|
|
|
if (rb->have_ioref) {
|
|
bio_set_dev(bio, ca->disk_sb.bdev);
|
|
submit_bio_wait(bio);
|
|
} else {
|
|
bio->bi_status = BLK_STS_REMOVED;
|
|
}
|
|
start:
|
|
bch2_dev_io_err_on(bio->bi_status, ca, "btree read");
|
|
if (rb->have_ioref)
|
|
percpu_ref_put(&ca->io_ref);
|
|
rb->have_ioref = false;
|
|
|
|
bch2_mark_io_failure(&failed, &rb->pick);
|
|
|
|
can_retry = bch2_bkey_pick_read_device(c,
|
|
bkey_i_to_s_c(&b->key),
|
|
&failed, &rb->pick) > 0;
|
|
|
|
if (!bio->bi_status &&
|
|
!bch2_btree_node_read_done(c, b, can_retry))
|
|
break;
|
|
|
|
if (!can_retry) {
|
|
set_btree_node_read_error(b);
|
|
break;
|
|
}
|
|
}
|
|
|
|
bch2_time_stats_update(&c->times[BCH_TIME_btree_node_read],
|
|
rb->start_time);
|
|
bio_put(&rb->bio);
|
|
clear_btree_node_read_in_flight(b);
|
|
wake_up_bit(&b->flags, BTREE_NODE_read_in_flight);
|
|
}
|
|
|
|
static void btree_node_read_endio(struct bio *bio)
|
|
{
|
|
struct btree_read_bio *rb =
|
|
container_of(bio, struct btree_read_bio, bio);
|
|
struct bch_fs *c = rb->c;
|
|
|
|
if (rb->have_ioref) {
|
|
struct bch_dev *ca = bch_dev_bkey_exists(c, rb->pick.ptr.dev);
|
|
bch2_latency_acct(ca, rb->start_time, READ);
|
|
}
|
|
|
|
queue_work(system_unbound_wq, &rb->work);
|
|
}
|
|
|
|
void bch2_btree_node_read(struct bch_fs *c, struct btree *b,
|
|
bool sync)
|
|
{
|
|
struct extent_ptr_decoded pick;
|
|
struct btree_read_bio *rb;
|
|
struct bch_dev *ca;
|
|
struct bio *bio;
|
|
int ret;
|
|
|
|
trace_btree_read(c, b);
|
|
|
|
ret = bch2_bkey_pick_read_device(c, bkey_i_to_s_c(&b->key),
|
|
NULL, &pick);
|
|
if (bch2_fs_fatal_err_on(ret <= 0, c,
|
|
"btree node read error: no device to read from")) {
|
|
set_btree_node_read_error(b);
|
|
return;
|
|
}
|
|
|
|
ca = bch_dev_bkey_exists(c, pick.ptr.dev);
|
|
|
|
bio = bio_alloc_bioset(NULL,
|
|
buf_pages(b->data, btree_bytes(c)),
|
|
REQ_OP_READ|REQ_SYNC|REQ_META,
|
|
GFP_NOIO,
|
|
&c->btree_bio);
|
|
rb = container_of(bio, struct btree_read_bio, bio);
|
|
rb->c = c;
|
|
rb->start_time = local_clock();
|
|
rb->have_ioref = bch2_dev_get_ioref(ca, READ);
|
|
rb->pick = pick;
|
|
INIT_WORK(&rb->work, btree_node_read_work);
|
|
bio->bi_iter.bi_sector = pick.ptr.offset;
|
|
bio->bi_end_io = btree_node_read_endio;
|
|
bio->bi_private = b;
|
|
bch2_bio_map(bio, b->data, btree_bytes(c));
|
|
|
|
set_btree_node_read_in_flight(b);
|
|
|
|
if (rb->have_ioref) {
|
|
this_cpu_add(ca->io_done->sectors[READ][BCH_DATA_BTREE],
|
|
bio_sectors(bio));
|
|
bio_set_dev(bio, ca->disk_sb.bdev);
|
|
|
|
if (sync) {
|
|
submit_bio_wait(bio);
|
|
|
|
bio->bi_private = b;
|
|
btree_node_read_work(&rb->work);
|
|
} else {
|
|
submit_bio(bio);
|
|
}
|
|
} else {
|
|
bio->bi_status = BLK_STS_REMOVED;
|
|
|
|
if (sync)
|
|
btree_node_read_work(&rb->work);
|
|
else
|
|
queue_work(system_unbound_wq, &rb->work);
|
|
|
|
}
|
|
}
|
|
|
|
int bch2_btree_root_read(struct bch_fs *c, enum btree_id id,
|
|
const struct bkey_i *k, unsigned level)
|
|
{
|
|
struct closure cl;
|
|
struct btree *b;
|
|
int ret;
|
|
|
|
closure_init_stack(&cl);
|
|
|
|
do {
|
|
ret = bch2_btree_cache_cannibalize_lock(c, &cl);
|
|
closure_sync(&cl);
|
|
} while (ret);
|
|
|
|
b = bch2_btree_node_mem_alloc(c);
|
|
bch2_btree_cache_cannibalize_unlock(c);
|
|
|
|
BUG_ON(IS_ERR(b));
|
|
|
|
bkey_copy(&b->key, k);
|
|
BUG_ON(bch2_btree_node_hash_insert(&c->btree_cache, b, level, id));
|
|
|
|
bch2_btree_node_read(c, b, true);
|
|
|
|
if (btree_node_read_error(b)) {
|
|
bch2_btree_node_hash_remove(&c->btree_cache, b);
|
|
|
|
mutex_lock(&c->btree_cache.lock);
|
|
list_move(&b->list, &c->btree_cache.freeable);
|
|
mutex_unlock(&c->btree_cache.lock);
|
|
|
|
ret = -EIO;
|
|
goto err;
|
|
}
|
|
|
|
bch2_btree_set_root_for_read(c, b);
|
|
err:
|
|
six_unlock_write(&b->c.lock);
|
|
six_unlock_intent(&b->c.lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void bch2_btree_complete_write(struct bch_fs *c, struct btree *b,
|
|
struct btree_write *w)
|
|
{
|
|
unsigned long old, new, v = READ_ONCE(b->will_make_reachable);
|
|
|
|
do {
|
|
old = new = v;
|
|
if (!(old & 1))
|
|
break;
|
|
|
|
new &= ~1UL;
|
|
} while ((v = cmpxchg(&b->will_make_reachable, old, new)) != old);
|
|
|
|
if (old & 1)
|
|
closure_put(&((struct btree_update *) new)->cl);
|
|
|
|
bch2_journal_pin_drop(&c->journal, &w->journal);
|
|
closure_wake_up(&w->wait);
|
|
}
|
|
|
|
static void btree_node_write_done(struct bch_fs *c, struct btree *b)
|
|
{
|
|
struct btree_write *w = btree_prev_write(b);
|
|
|
|
bch2_btree_complete_write(c, b, w);
|
|
btree_node_io_unlock(b);
|
|
}
|
|
|
|
static void bch2_btree_node_write_error(struct bch_fs *c,
|
|
struct btree_write_bio *wbio)
|
|
{
|
|
struct btree *b = wbio->wbio.bio.bi_private;
|
|
__BKEY_PADDED(k, BKEY_BTREE_PTR_VAL_U64s_MAX) tmp;
|
|
struct bkey_i_btree_ptr *new_key;
|
|
struct bkey_s_btree_ptr bp;
|
|
struct bch_extent_ptr *ptr;
|
|
struct btree_trans trans;
|
|
struct btree_iter *iter;
|
|
int ret;
|
|
|
|
bch2_trans_init(&trans, c, 0, 0);
|
|
|
|
iter = bch2_trans_get_node_iter(&trans, b->c.btree_id, b->key.k.p,
|
|
BTREE_MAX_DEPTH, b->c.level, 0);
|
|
retry:
|
|
ret = bch2_btree_iter_traverse(iter);
|
|
if (ret)
|
|
goto err;
|
|
|
|
/* has node been freed? */
|
|
if (iter->l[b->c.level].b != b) {
|
|
/* node has been freed: */
|
|
BUG_ON(!btree_node_dying(b));
|
|
goto out;
|
|
}
|
|
|
|
BUG_ON(!btree_node_hashed(b));
|
|
|
|
bkey_copy(&tmp.k, &b->key);
|
|
|
|
new_key = bkey_i_to_btree_ptr(&tmp.k);
|
|
bp = btree_ptr_i_to_s(new_key);
|
|
|
|
bch2_bkey_drop_ptrs(bkey_i_to_s(&tmp.k), ptr,
|
|
bch2_dev_list_has_dev(wbio->wbio.failed, ptr->dev));
|
|
|
|
if (!bch2_bkey_nr_ptrs(bp.s_c))
|
|
goto err;
|
|
|
|
ret = bch2_btree_node_update_key(c, iter, b, new_key);
|
|
if (ret == -EINTR)
|
|
goto retry;
|
|
if (ret)
|
|
goto err;
|
|
out:
|
|
bch2_trans_exit(&trans);
|
|
bio_put(&wbio->wbio.bio);
|
|
btree_node_write_done(c, b);
|
|
return;
|
|
err:
|
|
set_btree_node_noevict(b);
|
|
bch2_fs_fatal_error(c, "fatal error writing btree node");
|
|
goto out;
|
|
}
|
|
|
|
void bch2_btree_write_error_work(struct work_struct *work)
|
|
{
|
|
struct bch_fs *c = container_of(work, struct bch_fs,
|
|
btree_write_error_work);
|
|
struct bio *bio;
|
|
|
|
while (1) {
|
|
spin_lock_irq(&c->btree_write_error_lock);
|
|
bio = bio_list_pop(&c->btree_write_error_list);
|
|
spin_unlock_irq(&c->btree_write_error_lock);
|
|
|
|
if (!bio)
|
|
break;
|
|
|
|
bch2_btree_node_write_error(c,
|
|
container_of(bio, struct btree_write_bio, wbio.bio));
|
|
}
|
|
}
|
|
|
|
static void btree_node_write_work(struct work_struct *work)
|
|
{
|
|
struct btree_write_bio *wbio =
|
|
container_of(work, struct btree_write_bio, work);
|
|
struct bch_fs *c = wbio->wbio.c;
|
|
struct btree *b = wbio->wbio.bio.bi_private;
|
|
|
|
btree_bounce_free(c,
|
|
wbio->wbio.order,
|
|
wbio->wbio.used_mempool,
|
|
wbio->data);
|
|
|
|
if (wbio->wbio.failed.nr) {
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&c->btree_write_error_lock, flags);
|
|
bio_list_add(&c->btree_write_error_list, &wbio->wbio.bio);
|
|
spin_unlock_irqrestore(&c->btree_write_error_lock, flags);
|
|
|
|
queue_work(c->wq, &c->btree_write_error_work);
|
|
return;
|
|
}
|
|
|
|
bio_put(&wbio->wbio.bio);
|
|
btree_node_write_done(c, b);
|
|
}
|
|
|
|
static void btree_node_write_endio(struct bio *bio)
|
|
{
|
|
struct bch_write_bio *wbio = to_wbio(bio);
|
|
struct bch_write_bio *parent = wbio->split ? wbio->parent : NULL;
|
|
struct bch_write_bio *orig = parent ?: wbio;
|
|
struct bch_fs *c = wbio->c;
|
|
struct bch_dev *ca = bch_dev_bkey_exists(c, wbio->dev);
|
|
unsigned long flags;
|
|
|
|
if (wbio->have_ioref)
|
|
bch2_latency_acct(ca, wbio->submit_time, WRITE);
|
|
|
|
if (bio->bi_status == BLK_STS_REMOVED ||
|
|
bch2_dev_io_err_on(bio->bi_status, ca, "btree write") ||
|
|
bch2_meta_write_fault("btree")) {
|
|
spin_lock_irqsave(&c->btree_write_error_lock, flags);
|
|
bch2_dev_list_add_dev(&orig->failed, wbio->dev);
|
|
spin_unlock_irqrestore(&c->btree_write_error_lock, flags);
|
|
}
|
|
|
|
if (wbio->have_ioref)
|
|
percpu_ref_put(&ca->io_ref);
|
|
|
|
if (parent) {
|
|
bio_put(bio);
|
|
bio_endio(&parent->bio);
|
|
} else {
|
|
struct btree_write_bio *wb =
|
|
container_of(orig, struct btree_write_bio, wbio);
|
|
|
|
INIT_WORK(&wb->work, btree_node_write_work);
|
|
queue_work(system_unbound_wq, &wb->work);
|
|
}
|
|
}
|
|
|
|
static int validate_bset_for_write(struct bch_fs *c, struct btree *b,
|
|
struct bset *i, unsigned sectors)
|
|
{
|
|
unsigned whiteout_u64s = 0;
|
|
int ret;
|
|
|
|
if (bch2_bkey_invalid(c, bkey_i_to_s_c(&b->key), BKEY_TYPE_BTREE))
|
|
return -1;
|
|
|
|
ret = validate_bset(c, b, i, sectors, &whiteout_u64s, WRITE, false);
|
|
if (ret)
|
|
bch2_inconsistent_error(c);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void __bch2_btree_node_write(struct bch_fs *c, struct btree *b,
|
|
enum six_lock_type lock_type_held)
|
|
{
|
|
struct btree_write_bio *wbio;
|
|
struct bset_tree *t;
|
|
struct bset *i;
|
|
struct btree_node *bn = NULL;
|
|
struct btree_node_entry *bne = NULL;
|
|
BKEY_PADDED(key) k;
|
|
struct bch_extent_ptr *ptr;
|
|
struct sort_iter sort_iter;
|
|
struct nonce nonce;
|
|
unsigned bytes_to_write, sectors_to_write, order, bytes, u64s;
|
|
u64 seq = 0;
|
|
bool used_mempool;
|
|
unsigned long old, new;
|
|
bool validate_before_checksum = false;
|
|
void *data;
|
|
|
|
if (test_bit(BCH_FS_HOLD_BTREE_WRITES, &c->flags))
|
|
return;
|
|
|
|
/*
|
|
* We may only have a read lock on the btree node - the dirty bit is our
|
|
* "lock" against racing with other threads that may be trying to start
|
|
* a write, we do a write iff we clear the dirty bit. Since setting the
|
|
* dirty bit requires a write lock, we can't race with other threads
|
|
* redirtying it:
|
|
*/
|
|
do {
|
|
old = new = READ_ONCE(b->flags);
|
|
|
|
if (!(old & (1 << BTREE_NODE_dirty)))
|
|
return;
|
|
|
|
if (!btree_node_may_write(b))
|
|
return;
|
|
|
|
if (old & (1 << BTREE_NODE_write_in_flight)) {
|
|
btree_node_wait_on_io(b);
|
|
continue;
|
|
}
|
|
|
|
new &= ~(1 << BTREE_NODE_dirty);
|
|
new &= ~(1 << BTREE_NODE_need_write);
|
|
new |= (1 << BTREE_NODE_write_in_flight);
|
|
new |= (1 << BTREE_NODE_just_written);
|
|
new ^= (1 << BTREE_NODE_write_idx);
|
|
} while (cmpxchg_acquire(&b->flags, old, new) != old);
|
|
|
|
BUG_ON(btree_node_fake(b));
|
|
BUG_ON((b->will_make_reachable != 0) != !b->written);
|
|
|
|
BUG_ON(b->written >= c->opts.btree_node_size);
|
|
BUG_ON(b->written & (c->opts.block_size - 1));
|
|
BUG_ON(bset_written(b, btree_bset_last(b)));
|
|
BUG_ON(le64_to_cpu(b->data->magic) != bset_magic(c));
|
|
BUG_ON(memcmp(&b->data->format, &b->format, sizeof(b->format)));
|
|
|
|
/*
|
|
* We can't block on six_lock_write() here; another thread might be
|
|
* trying to get a journal reservation with read locks held, and getting
|
|
* a journal reservation might be blocked on flushing the journal and
|
|
* doing btree writes:
|
|
*/
|
|
if (lock_type_held == SIX_LOCK_intent &&
|
|
six_trylock_write(&b->c.lock)) {
|
|
__bch2_compact_whiteouts(c, b, COMPACT_WRITTEN);
|
|
six_unlock_write(&b->c.lock);
|
|
} else {
|
|
__bch2_compact_whiteouts(c, b, COMPACT_WRITTEN_NO_WRITE_LOCK);
|
|
}
|
|
|
|
BUG_ON(b->uncompacted_whiteout_u64s);
|
|
|
|
sort_iter_init(&sort_iter, b);
|
|
|
|
bytes = !b->written
|
|
? sizeof(struct btree_node)
|
|
: sizeof(struct btree_node_entry);
|
|
|
|
bytes += b->whiteout_u64s * sizeof(u64);
|
|
|
|
for_each_bset(b, t) {
|
|
i = bset(b, t);
|
|
|
|
if (bset_written(b, i))
|
|
continue;
|
|
|
|
bytes += le16_to_cpu(i->u64s) * sizeof(u64);
|
|
sort_iter_add(&sort_iter,
|
|
btree_bkey_first(b, t),
|
|
btree_bkey_last(b, t));
|
|
seq = max(seq, le64_to_cpu(i->journal_seq));
|
|
}
|
|
|
|
order = get_order(bytes);
|
|
data = btree_bounce_alloc(c, order, &used_mempool);
|
|
|
|
if (!b->written) {
|
|
bn = data;
|
|
*bn = *b->data;
|
|
i = &bn->keys;
|
|
} else {
|
|
bne = data;
|
|
bne->keys = b->data->keys;
|
|
i = &bne->keys;
|
|
}
|
|
|
|
i->journal_seq = cpu_to_le64(seq);
|
|
i->u64s = 0;
|
|
|
|
if (!btree_node_is_extents(b)) {
|
|
sort_iter_add(&sort_iter,
|
|
unwritten_whiteouts_start(c, b),
|
|
unwritten_whiteouts_end(c, b));
|
|
SET_BSET_SEPARATE_WHITEOUTS(i, false);
|
|
} else {
|
|
memcpy_u64s(i->start,
|
|
unwritten_whiteouts_start(c, b),
|
|
b->whiteout_u64s);
|
|
i->u64s = cpu_to_le16(b->whiteout_u64s);
|
|
SET_BSET_SEPARATE_WHITEOUTS(i, true);
|
|
}
|
|
|
|
b->whiteout_u64s = 0;
|
|
|
|
u64s = btree_node_is_extents(b)
|
|
? bch2_sort_extents(vstruct_last(i), &sort_iter, false)
|
|
: bch2_sort_keys(i->start, &sort_iter, false);
|
|
le16_add_cpu(&i->u64s, u64s);
|
|
|
|
clear_needs_whiteout(i);
|
|
|
|
/* do we have data to write? */
|
|
if (b->written && !i->u64s)
|
|
goto nowrite;
|
|
|
|
bytes_to_write = vstruct_end(i) - data;
|
|
sectors_to_write = round_up(bytes_to_write, block_bytes(c)) >> 9;
|
|
|
|
memset(data + bytes_to_write, 0,
|
|
(sectors_to_write << 9) - bytes_to_write);
|
|
|
|
BUG_ON(b->written + sectors_to_write > c->opts.btree_node_size);
|
|
BUG_ON(BSET_BIG_ENDIAN(i) != CPU_BIG_ENDIAN);
|
|
BUG_ON(i->seq != b->data->keys.seq);
|
|
|
|
i->version = c->sb.version < bcachefs_metadata_version_new_versioning
|
|
? cpu_to_le16(BCH_BSET_VERSION_OLD)
|
|
: cpu_to_le16(c->sb.version);
|
|
SET_BSET_CSUM_TYPE(i, bch2_meta_checksum_type(c));
|
|
|
|
if (bch2_csum_type_is_encryption(BSET_CSUM_TYPE(i)))
|
|
validate_before_checksum = true;
|
|
|
|
/* validate_bset will be modifying: */
|
|
if (le16_to_cpu(i->version) <
|
|
bcachefs_metadata_version_bkey_renumber)
|
|
validate_before_checksum = true;
|
|
|
|
/* if we're going to be encrypting, check metadata validity first: */
|
|
if (validate_before_checksum &&
|
|
validate_bset_for_write(c, b, i, sectors_to_write))
|
|
goto err;
|
|
|
|
bset_encrypt(c, i, b->written << 9);
|
|
|
|
nonce = btree_nonce(i, b->written << 9);
|
|
|
|
if (bn)
|
|
bn->csum = csum_vstruct(c, BSET_CSUM_TYPE(i), nonce, bn);
|
|
else
|
|
bne->csum = csum_vstruct(c, BSET_CSUM_TYPE(i), nonce, bne);
|
|
|
|
/* if we're not encrypting, check metadata after checksumming: */
|
|
if (!validate_before_checksum &&
|
|
validate_bset_for_write(c, b, i, sectors_to_write))
|
|
goto err;
|
|
|
|
/*
|
|
* We handle btree write errors by immediately halting the journal -
|
|
* after we've done that, we can't issue any subsequent btree writes
|
|
* because they might have pointers to new nodes that failed to write.
|
|
*
|
|
* Furthermore, there's no point in doing any more btree writes because
|
|
* with the journal stopped, we're never going to update the journal to
|
|
* reflect that those writes were done and the data flushed from the
|
|
* journal:
|
|
*
|
|
* Make sure to update b->written so bch2_btree_init_next() doesn't
|
|
* break:
|
|
*/
|
|
if (bch2_journal_error(&c->journal) ||
|
|
c->opts.nochanges)
|
|
goto err;
|
|
|
|
trace_btree_write(b, bytes_to_write, sectors_to_write);
|
|
|
|
wbio = container_of(bio_alloc_bioset(NULL,
|
|
buf_pages(data, sectors_to_write << 9),
|
|
REQ_OP_WRITE|REQ_META|REQ_FUA,
|
|
GFP_NOIO,
|
|
&c->btree_bio),
|
|
struct btree_write_bio, wbio.bio);
|
|
wbio_init(&wbio->wbio.bio);
|
|
wbio->data = data;
|
|
wbio->wbio.order = order;
|
|
wbio->wbio.used_mempool = used_mempool;
|
|
wbio->wbio.bio.bi_end_io = btree_node_write_endio;
|
|
wbio->wbio.bio.bi_private = b;
|
|
|
|
bch2_bio_map(&wbio->wbio.bio, data, sectors_to_write << 9);
|
|
|
|
/*
|
|
* If we're appending to a leaf node, we don't technically need FUA -
|
|
* this write just needs to be persisted before the next journal write,
|
|
* which will be marked FLUSH|FUA.
|
|
*
|
|
* Similarly if we're writing a new btree root - the pointer is going to
|
|
* be in the next journal entry.
|
|
*
|
|
* But if we're writing a new btree node (that isn't a root) or
|
|
* appending to a non leaf btree node, we need either FUA or a flush
|
|
* when we write the parent with the new pointer. FUA is cheaper than a
|
|
* flush, and writes appending to leaf nodes aren't blocking anything so
|
|
* just make all btree node writes FUA to keep things sane.
|
|
*/
|
|
|
|
bkey_copy(&k.key, &b->key);
|
|
|
|
bkey_for_each_ptr(bch2_bkey_ptrs(bkey_i_to_s(&k.key)), ptr)
|
|
ptr->offset += b->written;
|
|
|
|
b->written += sectors_to_write;
|
|
|
|
bch2_submit_wbio_replicas(&wbio->wbio, c, BCH_DATA_BTREE, &k.key);
|
|
return;
|
|
err:
|
|
set_btree_node_noevict(b);
|
|
b->written += sectors_to_write;
|
|
nowrite:
|
|
btree_bounce_free(c, order, used_mempool, data);
|
|
btree_node_write_done(c, b);
|
|
}
|
|
|
|
/*
|
|
* Work that must be done with write lock held:
|
|
*/
|
|
bool bch2_btree_post_write_cleanup(struct bch_fs *c, struct btree *b)
|
|
{
|
|
bool invalidated_iter = false;
|
|
struct btree_node_entry *bne;
|
|
struct bset_tree *t;
|
|
|
|
if (!btree_node_just_written(b))
|
|
return false;
|
|
|
|
BUG_ON(b->whiteout_u64s);
|
|
BUG_ON(b->uncompacted_whiteout_u64s);
|
|
|
|
clear_btree_node_just_written(b);
|
|
|
|
/*
|
|
* Note: immediately after write, bset_written() doesn't work - the
|
|
* amount of data we had to write after compaction might have been
|
|
* smaller than the offset of the last bset.
|
|
*
|
|
* However, we know that all bsets have been written here, as long as
|
|
* we're still holding the write lock:
|
|
*/
|
|
|
|
/*
|
|
* XXX: decide if we really want to unconditionally sort down to a
|
|
* single bset:
|
|
*/
|
|
if (b->nsets > 1) {
|
|
btree_node_sort(c, b, NULL, 0, b->nsets, true);
|
|
invalidated_iter = true;
|
|
} else {
|
|
invalidated_iter = bch2_drop_whiteouts(b);
|
|
}
|
|
|
|
for_each_bset(b, t)
|
|
set_needs_whiteout(bset(b, t));
|
|
|
|
bch2_btree_verify(c, b);
|
|
|
|
/*
|
|
* If later we don't unconditionally sort down to a single bset, we have
|
|
* to ensure this is still true:
|
|
*/
|
|
BUG_ON((void *) btree_bkey_last(b, bset_tree_last(b)) > write_block(b));
|
|
|
|
bne = want_new_bset(c, b);
|
|
if (bne)
|
|
bch2_bset_init_next(c, b, bne);
|
|
|
|
bch2_btree_build_aux_trees(b);
|
|
|
|
return invalidated_iter;
|
|
}
|
|
|
|
/*
|
|
* Use this one if the node is intent locked:
|
|
*/
|
|
void bch2_btree_node_write(struct bch_fs *c, struct btree *b,
|
|
enum six_lock_type lock_type_held)
|
|
{
|
|
BUG_ON(lock_type_held == SIX_LOCK_write);
|
|
|
|
if (lock_type_held == SIX_LOCK_intent ||
|
|
six_lock_tryupgrade(&b->c.lock)) {
|
|
__bch2_btree_node_write(c, b, SIX_LOCK_intent);
|
|
|
|
/* don't cycle lock unnecessarily: */
|
|
if (btree_node_just_written(b) &&
|
|
six_trylock_write(&b->c.lock)) {
|
|
bch2_btree_post_write_cleanup(c, b);
|
|
six_unlock_write(&b->c.lock);
|
|
}
|
|
|
|
if (lock_type_held == SIX_LOCK_read)
|
|
six_lock_downgrade(&b->c.lock);
|
|
} else {
|
|
__bch2_btree_node_write(c, b, SIX_LOCK_read);
|
|
}
|
|
}
|
|
|
|
static void __bch2_btree_flush_all(struct bch_fs *c, unsigned flag)
|
|
{
|
|
struct bucket_table *tbl;
|
|
struct rhash_head *pos;
|
|
struct btree *b;
|
|
unsigned i;
|
|
restart:
|
|
rcu_read_lock();
|
|
for_each_cached_btree(b, c, tbl, i, pos)
|
|
if (test_bit(flag, &b->flags)) {
|
|
rcu_read_unlock();
|
|
wait_on_bit_io(&b->flags, flag, TASK_UNINTERRUPTIBLE);
|
|
goto restart;
|
|
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
void bch2_btree_flush_all_reads(struct bch_fs *c)
|
|
{
|
|
__bch2_btree_flush_all(c, BTREE_NODE_read_in_flight);
|
|
}
|
|
|
|
void bch2_btree_flush_all_writes(struct bch_fs *c)
|
|
{
|
|
__bch2_btree_flush_all(c, BTREE_NODE_write_in_flight);
|
|
}
|
|
|
|
void bch2_btree_verify_flushed(struct bch_fs *c)
|
|
{
|
|
struct bucket_table *tbl;
|
|
struct rhash_head *pos;
|
|
struct btree *b;
|
|
unsigned i;
|
|
|
|
rcu_read_lock();
|
|
for_each_cached_btree(b, c, tbl, i, pos) {
|
|
unsigned long flags = READ_ONCE(b->flags);
|
|
|
|
BUG_ON((flags & (1 << BTREE_NODE_dirty)) ||
|
|
(flags & (1 << BTREE_NODE_write_in_flight)));
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
ssize_t bch2_dirty_btree_nodes_print(struct bch_fs *c, char *buf)
|
|
{
|
|
struct printbuf out = _PBUF(buf, PAGE_SIZE);
|
|
struct bucket_table *tbl;
|
|
struct rhash_head *pos;
|
|
struct btree *b;
|
|
unsigned i;
|
|
|
|
rcu_read_lock();
|
|
for_each_cached_btree(b, c, tbl, i, pos) {
|
|
unsigned long flags = READ_ONCE(b->flags);
|
|
unsigned idx = (flags & (1 << BTREE_NODE_write_idx)) != 0;
|
|
|
|
if (!(flags & (1 << BTREE_NODE_dirty)))
|
|
continue;
|
|
|
|
pr_buf(&out, "%p d %u n %u l %u w %u b %u r %u:%lu c %u p %u\n",
|
|
b,
|
|
(flags & (1 << BTREE_NODE_dirty)) != 0,
|
|
(flags & (1 << BTREE_NODE_need_write)) != 0,
|
|
b->c.level,
|
|
b->written,
|
|
!list_empty_careful(&b->write_blocked),
|
|
b->will_make_reachable != 0,
|
|
b->will_make_reachable & 1,
|
|
b->writes[ idx].wait.list.first != NULL,
|
|
b->writes[!idx].wait.list.first != NULL);
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
return out.pos - buf;
|
|
}
|