Xiao Ni 76fed01420 md: account io_acct_set usage with active_io
io_acct_set was enabled for raid0/raid5 io accounting. bios that contain
md_io_acct are allocated in the i/o path. There isn't a good method to
monitor if these bios are all finished and freed. In the takeover process,
io_acct_set (which is used for bios with md_io_acct) need to be freed.
However, if some bios finish after io_acct_set is freed, it may trigger
the following panic:

[ 6973.767999] RIP: 0010:mempool_free+0x52/0x80
[ 6973.786098] Call Trace:
[ 6973.786549]  md_end_io_acct+0x31/0x40
[ 6973.787227]  blk_update_request+0x224/0x380
[ 6973.787994]  blk_mq_end_request+0x1a/0x130
[ 6973.788739]  blk_complete_reqs+0x35/0x50
[ 6973.789456]  __do_softirq+0xd7/0x2c8
[ 6973.790114]  ? sort_range+0x20/0x20
[ 6973.790763]  run_ksoftirqd+0x2a/0x40
[ 6973.791400]  smpboot_thread_fn+0xb5/0x150
[ 6973.792114]  kthread+0x10b/0x130
[ 6973.792724]  ? set_kthread_struct+0x50/0x50
[ 6973.793491]  ret_from_fork+0x1f/0x40

Fix this by increasing and decreasing active_io for each bio with
md_io_acct so that mddev_suspend() will wait until all bios from
io_acct_set finish before freeing io_acct_set.

Reported-by: Fine Fan <ffan@redhat.com>
Signed-off-by: Xiao Ni <xni@redhat.com>
Signed-off-by: Song Liu <song@kernel.org>
2023-02-08 15:46:57 -08:00

9984 lines
260 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
md.c : Multiple Devices driver for Linux
Copyright (C) 1998, 1999, 2000 Ingo Molnar
completely rewritten, based on the MD driver code from Marc Zyngier
Changes:
- RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
- RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
- boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
- kerneld support by Boris Tobotras <boris@xtalk.msk.su>
- kmod support by: Cyrus Durgin
- RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
- Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
- lots of fixes and improvements to the RAID1/RAID5 and generic
RAID code (such as request based resynchronization):
Neil Brown <neilb@cse.unsw.edu.au>.
- persistent bitmap code
Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
Errors, Warnings, etc.
Please use:
pr_crit() for error conditions that risk data loss
pr_err() for error conditions that are unexpected, like an IO error
or internal inconsistency
pr_warn() for error conditions that could have been predicated, like
adding a device to an array when it has incompatible metadata
pr_info() for every interesting, very rare events, like an array starting
or stopping, or resync starting or stopping
pr_debug() for everything else.
*/
#include <linux/sched/mm.h>
#include <linux/sched/signal.h>
#include <linux/kthread.h>
#include <linux/blkdev.h>
#include <linux/blk-integrity.h>
#include <linux/badblocks.h>
#include <linux/sysctl.h>
#include <linux/seq_file.h>
#include <linux/fs.h>
#include <linux/poll.h>
#include <linux/ctype.h>
#include <linux/string.h>
#include <linux/hdreg.h>
#include <linux/proc_fs.h>
#include <linux/random.h>
#include <linux/major.h>
#include <linux/module.h>
#include <linux/reboot.h>
#include <linux/file.h>
#include <linux/compat.h>
#include <linux/delay.h>
#include <linux/raid/md_p.h>
#include <linux/raid/md_u.h>
#include <linux/raid/detect.h>
#include <linux/slab.h>
#include <linux/percpu-refcount.h>
#include <linux/part_stat.h>
#include <trace/events/block.h>
#include "md.h"
#include "md-bitmap.h"
#include "md-cluster.h"
/* pers_list is a list of registered personalities protected
* by pers_lock.
* pers_lock does extra service to protect accesses to
* mddev->thread when the mutex cannot be held.
*/
static LIST_HEAD(pers_list);
static DEFINE_SPINLOCK(pers_lock);
static struct kobj_type md_ktype;
struct md_cluster_operations *md_cluster_ops;
EXPORT_SYMBOL(md_cluster_ops);
static struct module *md_cluster_mod;
static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
static struct workqueue_struct *md_wq;
static struct workqueue_struct *md_misc_wq;
static struct workqueue_struct *md_rdev_misc_wq;
static int remove_and_add_spares(struct mddev *mddev,
struct md_rdev *this);
static void mddev_detach(struct mddev *mddev);
enum md_ro_state {
MD_RDWR,
MD_RDONLY,
MD_AUTO_READ,
MD_MAX_STATE
};
static bool md_is_rdwr(struct mddev *mddev)
{
return (mddev->ro == MD_RDWR);
}
/*
* Default number of read corrections we'll attempt on an rdev
* before ejecting it from the array. We divide the read error
* count by 2 for every hour elapsed between read errors.
*/
#define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
/* Default safemode delay: 200 msec */
#define DEFAULT_SAFEMODE_DELAY ((200 * HZ)/1000 +1)
/*
* Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
* is 1000 KB/sec, so the extra system load does not show up that much.
* Increase it if you want to have more _guaranteed_ speed. Note that
* the RAID driver will use the maximum available bandwidth if the IO
* subsystem is idle. There is also an 'absolute maximum' reconstruction
* speed limit - in case reconstruction slows down your system despite
* idle IO detection.
*
* you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
* or /sys/block/mdX/md/sync_speed_{min,max}
*/
static int sysctl_speed_limit_min = 1000;
static int sysctl_speed_limit_max = 200000;
static inline int speed_min(struct mddev *mddev)
{
return mddev->sync_speed_min ?
mddev->sync_speed_min : sysctl_speed_limit_min;
}
static inline int speed_max(struct mddev *mddev)
{
return mddev->sync_speed_max ?
mddev->sync_speed_max : sysctl_speed_limit_max;
}
static void rdev_uninit_serial(struct md_rdev *rdev)
{
if (!test_and_clear_bit(CollisionCheck, &rdev->flags))
return;
kvfree(rdev->serial);
rdev->serial = NULL;
}
static void rdevs_uninit_serial(struct mddev *mddev)
{
struct md_rdev *rdev;
rdev_for_each(rdev, mddev)
rdev_uninit_serial(rdev);
}
static int rdev_init_serial(struct md_rdev *rdev)
{
/* serial_nums equals with BARRIER_BUCKETS_NR */
int i, serial_nums = 1 << ((PAGE_SHIFT - ilog2(sizeof(atomic_t))));
struct serial_in_rdev *serial = NULL;
if (test_bit(CollisionCheck, &rdev->flags))
return 0;
serial = kvmalloc(sizeof(struct serial_in_rdev) * serial_nums,
GFP_KERNEL);
if (!serial)
return -ENOMEM;
for (i = 0; i < serial_nums; i++) {
struct serial_in_rdev *serial_tmp = &serial[i];
spin_lock_init(&serial_tmp->serial_lock);
serial_tmp->serial_rb = RB_ROOT_CACHED;
init_waitqueue_head(&serial_tmp->serial_io_wait);
}
rdev->serial = serial;
set_bit(CollisionCheck, &rdev->flags);
return 0;
}
static int rdevs_init_serial(struct mddev *mddev)
{
struct md_rdev *rdev;
int ret = 0;
rdev_for_each(rdev, mddev) {
ret = rdev_init_serial(rdev);
if (ret)
break;
}
/* Free all resources if pool is not existed */
if (ret && !mddev->serial_info_pool)
rdevs_uninit_serial(mddev);
return ret;
}
/*
* rdev needs to enable serial stuffs if it meets the conditions:
* 1. it is multi-queue device flaged with writemostly.
* 2. the write-behind mode is enabled.
*/
static int rdev_need_serial(struct md_rdev *rdev)
{
return (rdev && rdev->mddev->bitmap_info.max_write_behind > 0 &&
rdev->bdev->bd_disk->queue->nr_hw_queues != 1 &&
test_bit(WriteMostly, &rdev->flags));
}
/*
* Init resource for rdev(s), then create serial_info_pool if:
* 1. rdev is the first device which return true from rdev_enable_serial.
* 2. rdev is NULL, means we want to enable serialization for all rdevs.
*/
void mddev_create_serial_pool(struct mddev *mddev, struct md_rdev *rdev,
bool is_suspend)
{
int ret = 0;
if (rdev && !rdev_need_serial(rdev) &&
!test_bit(CollisionCheck, &rdev->flags))
return;
if (!is_suspend)
mddev_suspend(mddev);
if (!rdev)
ret = rdevs_init_serial(mddev);
else
ret = rdev_init_serial(rdev);
if (ret)
goto abort;
if (mddev->serial_info_pool == NULL) {
/*
* already in memalloc noio context by
* mddev_suspend()
*/
mddev->serial_info_pool =
mempool_create_kmalloc_pool(NR_SERIAL_INFOS,
sizeof(struct serial_info));
if (!mddev->serial_info_pool) {
rdevs_uninit_serial(mddev);
pr_err("can't alloc memory pool for serialization\n");
}
}
abort:
if (!is_suspend)
mddev_resume(mddev);
}
/*
* Free resource from rdev(s), and destroy serial_info_pool under conditions:
* 1. rdev is the last device flaged with CollisionCheck.
* 2. when bitmap is destroyed while policy is not enabled.
* 3. for disable policy, the pool is destroyed only when no rdev needs it.
*/
void mddev_destroy_serial_pool(struct mddev *mddev, struct md_rdev *rdev,
bool is_suspend)
{
if (rdev && !test_bit(CollisionCheck, &rdev->flags))
return;
if (mddev->serial_info_pool) {
struct md_rdev *temp;
int num = 0; /* used to track if other rdevs need the pool */
if (!is_suspend)
mddev_suspend(mddev);
rdev_for_each(temp, mddev) {
if (!rdev) {
if (!mddev->serialize_policy ||
!rdev_need_serial(temp))
rdev_uninit_serial(temp);
else
num++;
} else if (temp != rdev &&
test_bit(CollisionCheck, &temp->flags))
num++;
}
if (rdev)
rdev_uninit_serial(rdev);
if (num)
pr_info("The mempool could be used by other devices\n");
else {
mempool_destroy(mddev->serial_info_pool);
mddev->serial_info_pool = NULL;
}
if (!is_suspend)
mddev_resume(mddev);
}
}
static struct ctl_table_header *raid_table_header;
static struct ctl_table raid_table[] = {
{
.procname = "speed_limit_min",
.data = &sysctl_speed_limit_min,
.maxlen = sizeof(int),
.mode = S_IRUGO|S_IWUSR,
.proc_handler = proc_dointvec,
},
{
.procname = "speed_limit_max",
.data = &sysctl_speed_limit_max,
.maxlen = sizeof(int),
.mode = S_IRUGO|S_IWUSR,
.proc_handler = proc_dointvec,
},
{ }
};
static struct ctl_table raid_dir_table[] = {
{
.procname = "raid",
.maxlen = 0,
.mode = S_IRUGO|S_IXUGO,
.child = raid_table,
},
{ }
};
static struct ctl_table raid_root_table[] = {
{
.procname = "dev",
.maxlen = 0,
.mode = 0555,
.child = raid_dir_table,
},
{ }
};
static int start_readonly;
/*
* The original mechanism for creating an md device is to create
* a device node in /dev and to open it. This causes races with device-close.
* The preferred method is to write to the "new_array" module parameter.
* This can avoid races.
* Setting create_on_open to false disables the original mechanism
* so all the races disappear.
*/
static bool create_on_open = true;
/*
* We have a system wide 'event count' that is incremented
* on any 'interesting' event, and readers of /proc/mdstat
* can use 'poll' or 'select' to find out when the event
* count increases.
*
* Events are:
* start array, stop array, error, add device, remove device,
* start build, activate spare
*/
static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
static atomic_t md_event_count;
void md_new_event(void)
{
atomic_inc(&md_event_count);
wake_up(&md_event_waiters);
}
EXPORT_SYMBOL_GPL(md_new_event);
/*
* Enables to iterate over all existing md arrays
* all_mddevs_lock protects this list.
*/
static LIST_HEAD(all_mddevs);
static DEFINE_SPINLOCK(all_mddevs_lock);
static bool is_md_suspended(struct mddev *mddev)
{
return percpu_ref_is_dying(&mddev->active_io);
}
/* Rather than calling directly into the personality make_request function,
* IO requests come here first so that we can check if the device is
* being suspended pending a reconfiguration.
* We hold a refcount over the call to ->make_request. By the time that
* call has finished, the bio has been linked into some internal structure
* and so is visible to ->quiesce(), so we don't need the refcount any more.
*/
static bool is_suspended(struct mddev *mddev, struct bio *bio)
{
if (is_md_suspended(mddev))
return true;
if (bio_data_dir(bio) != WRITE)
return false;
if (mddev->suspend_lo >= mddev->suspend_hi)
return false;
if (bio->bi_iter.bi_sector >= mddev->suspend_hi)
return false;
if (bio_end_sector(bio) < mddev->suspend_lo)
return false;
return true;
}
void md_handle_request(struct mddev *mddev, struct bio *bio)
{
check_suspended:
if (is_suspended(mddev, bio)) {
DEFINE_WAIT(__wait);
/* Bail out if REQ_NOWAIT is set for the bio */
if (bio->bi_opf & REQ_NOWAIT) {
bio_wouldblock_error(bio);
return;
}
for (;;) {
prepare_to_wait(&mddev->sb_wait, &__wait,
TASK_UNINTERRUPTIBLE);
if (!is_suspended(mddev, bio))
break;
schedule();
}
finish_wait(&mddev->sb_wait, &__wait);
}
if (!percpu_ref_tryget_live(&mddev->active_io))
goto check_suspended;
if (!mddev->pers->make_request(mddev, bio)) {
percpu_ref_put(&mddev->active_io);
goto check_suspended;
}
percpu_ref_put(&mddev->active_io);
}
EXPORT_SYMBOL(md_handle_request);
static void md_submit_bio(struct bio *bio)
{
const int rw = bio_data_dir(bio);
struct mddev *mddev = bio->bi_bdev->bd_disk->private_data;
if (mddev == NULL || mddev->pers == NULL) {
bio_io_error(bio);
return;
}
if (unlikely(test_bit(MD_BROKEN, &mddev->flags)) && (rw == WRITE)) {
bio_io_error(bio);
return;
}
bio = bio_split_to_limits(bio);
if (!bio)
return;
if (mddev->ro == MD_RDONLY && unlikely(rw == WRITE)) {
if (bio_sectors(bio) != 0)
bio->bi_status = BLK_STS_IOERR;
bio_endio(bio);
return;
}
/* bio could be mergeable after passing to underlayer */
bio->bi_opf &= ~REQ_NOMERGE;
md_handle_request(mddev, bio);
}
/* mddev_suspend makes sure no new requests are submitted
* to the device, and that any requests that have been submitted
* are completely handled.
* Once mddev_detach() is called and completes, the module will be
* completely unused.
*/
void mddev_suspend(struct mddev *mddev)
{
WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk);
lockdep_assert_held(&mddev->reconfig_mutex);
if (mddev->suspended++)
return;
wake_up(&mddev->sb_wait);
set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags);
percpu_ref_kill(&mddev->active_io);
wait_event(mddev->sb_wait, percpu_ref_is_zero(&mddev->active_io));
mddev->pers->quiesce(mddev, 1);
clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags);
wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags));
del_timer_sync(&mddev->safemode_timer);
/* restrict memory reclaim I/O during raid array is suspend */
mddev->noio_flag = memalloc_noio_save();
}
EXPORT_SYMBOL_GPL(mddev_suspend);
void mddev_resume(struct mddev *mddev)
{
/* entred the memalloc scope from mddev_suspend() */
memalloc_noio_restore(mddev->noio_flag);
lockdep_assert_held(&mddev->reconfig_mutex);
if (--mddev->suspended)
return;
percpu_ref_resurrect(&mddev->active_io);
wake_up(&mddev->sb_wait);
mddev->pers->quiesce(mddev, 0);
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
md_wakeup_thread(mddev->thread);
md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
}
EXPORT_SYMBOL_GPL(mddev_resume);
/*
* Generic flush handling for md
*/
static void md_end_flush(struct bio *bio)
{
struct md_rdev *rdev = bio->bi_private;
struct mddev *mddev = rdev->mddev;
bio_put(bio);
rdev_dec_pending(rdev, mddev);
if (atomic_dec_and_test(&mddev->flush_pending)) {
/* The pre-request flush has finished */
queue_work(md_wq, &mddev->flush_work);
}
}
static void md_submit_flush_data(struct work_struct *ws);
static void submit_flushes(struct work_struct *ws)
{
struct mddev *mddev = container_of(ws, struct mddev, flush_work);
struct md_rdev *rdev;
mddev->start_flush = ktime_get_boottime();
INIT_WORK(&mddev->flush_work, md_submit_flush_data);
atomic_set(&mddev->flush_pending, 1);
rcu_read_lock();
rdev_for_each_rcu(rdev, mddev)
if (rdev->raid_disk >= 0 &&
!test_bit(Faulty, &rdev->flags)) {
/* Take two references, one is dropped
* when request finishes, one after
* we reclaim rcu_read_lock
*/
struct bio *bi;
atomic_inc(&rdev->nr_pending);
atomic_inc(&rdev->nr_pending);
rcu_read_unlock();
bi = bio_alloc_bioset(rdev->bdev, 0,
REQ_OP_WRITE | REQ_PREFLUSH,
GFP_NOIO, &mddev->bio_set);
bi->bi_end_io = md_end_flush;
bi->bi_private = rdev;
atomic_inc(&mddev->flush_pending);
submit_bio(bi);
rcu_read_lock();
rdev_dec_pending(rdev, mddev);
}
rcu_read_unlock();
if (atomic_dec_and_test(&mddev->flush_pending))
queue_work(md_wq, &mddev->flush_work);
}
static void md_submit_flush_data(struct work_struct *ws)
{
struct mddev *mddev = container_of(ws, struct mddev, flush_work);
struct bio *bio = mddev->flush_bio;
/*
* must reset flush_bio before calling into md_handle_request to avoid a
* deadlock, because other bios passed md_handle_request suspend check
* could wait for this and below md_handle_request could wait for those
* bios because of suspend check
*/
spin_lock_irq(&mddev->lock);
mddev->prev_flush_start = mddev->start_flush;
mddev->flush_bio = NULL;
spin_unlock_irq(&mddev->lock);
wake_up(&mddev->sb_wait);
if (bio->bi_iter.bi_size == 0) {
/* an empty barrier - all done */
bio_endio(bio);
} else {
bio->bi_opf &= ~REQ_PREFLUSH;
md_handle_request(mddev, bio);
}
}
/*
* Manages consolidation of flushes and submitting any flushes needed for
* a bio with REQ_PREFLUSH. Returns true if the bio is finished or is
* being finished in another context. Returns false if the flushing is
* complete but still needs the I/O portion of the bio to be processed.
*/
bool md_flush_request(struct mddev *mddev, struct bio *bio)
{
ktime_t req_start = ktime_get_boottime();
spin_lock_irq(&mddev->lock);
/* flush requests wait until ongoing flush completes,
* hence coalescing all the pending requests.
*/
wait_event_lock_irq(mddev->sb_wait,
!mddev->flush_bio ||
ktime_before(req_start, mddev->prev_flush_start),
mddev->lock);
/* new request after previous flush is completed */
if (ktime_after(req_start, mddev->prev_flush_start)) {
WARN_ON(mddev->flush_bio);
mddev->flush_bio = bio;
bio = NULL;
}
spin_unlock_irq(&mddev->lock);
if (!bio) {
INIT_WORK(&mddev->flush_work, submit_flushes);
queue_work(md_wq, &mddev->flush_work);
} else {
/* flush was performed for some other bio while we waited. */
if (bio->bi_iter.bi_size == 0)
/* an empty barrier - all done */
bio_endio(bio);
else {
bio->bi_opf &= ~REQ_PREFLUSH;
return false;
}
}
return true;
}
EXPORT_SYMBOL(md_flush_request);
static inline struct mddev *mddev_get(struct mddev *mddev)
{
lockdep_assert_held(&all_mddevs_lock);
if (test_bit(MD_DELETED, &mddev->flags))
return NULL;
atomic_inc(&mddev->active);
return mddev;
}
static void mddev_delayed_delete(struct work_struct *ws);
void mddev_put(struct mddev *mddev)
{
if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
return;
if (!mddev->raid_disks && list_empty(&mddev->disks) &&
mddev->ctime == 0 && !mddev->hold_active) {
/* Array is not configured at all, and not held active,
* so destroy it */
set_bit(MD_DELETED, &mddev->flags);
/*
* Call queue_work inside the spinlock so that
* flush_workqueue() after mddev_find will succeed in waiting
* for the work to be done.
*/
INIT_WORK(&mddev->del_work, mddev_delayed_delete);
queue_work(md_misc_wq, &mddev->del_work);
}
spin_unlock(&all_mddevs_lock);
}
static void md_safemode_timeout(struct timer_list *t);
void mddev_init(struct mddev *mddev)
{
mutex_init(&mddev->open_mutex);
mutex_init(&mddev->reconfig_mutex);
mutex_init(&mddev->bitmap_info.mutex);
INIT_LIST_HEAD(&mddev->disks);
INIT_LIST_HEAD(&mddev->all_mddevs);
timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0);
atomic_set(&mddev->active, 1);
atomic_set(&mddev->openers, 0);
spin_lock_init(&mddev->lock);
atomic_set(&mddev->flush_pending, 0);
init_waitqueue_head(&mddev->sb_wait);
init_waitqueue_head(&mddev->recovery_wait);
mddev->reshape_position = MaxSector;
mddev->reshape_backwards = 0;
mddev->last_sync_action = "none";
mddev->resync_min = 0;
mddev->resync_max = MaxSector;
mddev->level = LEVEL_NONE;
}
EXPORT_SYMBOL_GPL(mddev_init);
static struct mddev *mddev_find_locked(dev_t unit)
{
struct mddev *mddev;
list_for_each_entry(mddev, &all_mddevs, all_mddevs)
if (mddev->unit == unit)
return mddev;
return NULL;
}
/* find an unused unit number */
static dev_t mddev_alloc_unit(void)
{
static int next_minor = 512;
int start = next_minor;
bool is_free = 0;
dev_t dev = 0;
while (!is_free) {
dev = MKDEV(MD_MAJOR, next_minor);
next_minor++;
if (next_minor > MINORMASK)
next_minor = 0;
if (next_minor == start)
return 0; /* Oh dear, all in use. */
is_free = !mddev_find_locked(dev);
}
return dev;
}
static struct mddev *mddev_alloc(dev_t unit)
{
struct mddev *new;
int error;
if (unit && MAJOR(unit) != MD_MAJOR)
unit &= ~((1 << MdpMinorShift) - 1);
new = kzalloc(sizeof(*new), GFP_KERNEL);
if (!new)
return ERR_PTR(-ENOMEM);
mddev_init(new);
spin_lock(&all_mddevs_lock);
if (unit) {
error = -EEXIST;
if (mddev_find_locked(unit))
goto out_free_new;
new->unit = unit;
if (MAJOR(unit) == MD_MAJOR)
new->md_minor = MINOR(unit);
else
new->md_minor = MINOR(unit) >> MdpMinorShift;
new->hold_active = UNTIL_IOCTL;
} else {
error = -ENODEV;
new->unit = mddev_alloc_unit();
if (!new->unit)
goto out_free_new;
new->md_minor = MINOR(new->unit);
new->hold_active = UNTIL_STOP;
}
list_add(&new->all_mddevs, &all_mddevs);
spin_unlock(&all_mddevs_lock);
return new;
out_free_new:
spin_unlock(&all_mddevs_lock);
kfree(new);
return ERR_PTR(error);
}
static void mddev_free(struct mddev *mddev)
{
spin_lock(&all_mddevs_lock);
list_del(&mddev->all_mddevs);
spin_unlock(&all_mddevs_lock);
kfree(mddev);
}
static const struct attribute_group md_redundancy_group;
void mddev_unlock(struct mddev *mddev)
{
if (mddev->to_remove) {
/* These cannot be removed under reconfig_mutex as
* an access to the files will try to take reconfig_mutex
* while holding the file unremovable, which leads to
* a deadlock.
* So hold set sysfs_active while the remove in happeing,
* and anything else which might set ->to_remove or my
* otherwise change the sysfs namespace will fail with
* -EBUSY if sysfs_active is still set.
* We set sysfs_active under reconfig_mutex and elsewhere
* test it under the same mutex to ensure its correct value
* is seen.
*/
const struct attribute_group *to_remove = mddev->to_remove;
mddev->to_remove = NULL;
mddev->sysfs_active = 1;
mutex_unlock(&mddev->reconfig_mutex);
if (mddev->kobj.sd) {
if (to_remove != &md_redundancy_group)
sysfs_remove_group(&mddev->kobj, to_remove);
if (mddev->pers == NULL ||
mddev->pers->sync_request == NULL) {
sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
if (mddev->sysfs_action)
sysfs_put(mddev->sysfs_action);
if (mddev->sysfs_completed)
sysfs_put(mddev->sysfs_completed);
if (mddev->sysfs_degraded)
sysfs_put(mddev->sysfs_degraded);
mddev->sysfs_action = NULL;
mddev->sysfs_completed = NULL;
mddev->sysfs_degraded = NULL;
}
}
mddev->sysfs_active = 0;
} else
mutex_unlock(&mddev->reconfig_mutex);
/* As we've dropped the mutex we need a spinlock to
* make sure the thread doesn't disappear
*/
spin_lock(&pers_lock);
md_wakeup_thread(mddev->thread);
wake_up(&mddev->sb_wait);
spin_unlock(&pers_lock);
}
EXPORT_SYMBOL_GPL(mddev_unlock);
struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
{
struct md_rdev *rdev;
rdev_for_each_rcu(rdev, mddev)
if (rdev->desc_nr == nr)
return rdev;
return NULL;
}
EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
{
struct md_rdev *rdev;
rdev_for_each(rdev, mddev)
if (rdev->bdev->bd_dev == dev)
return rdev;
return NULL;
}
struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev)
{
struct md_rdev *rdev;
rdev_for_each_rcu(rdev, mddev)
if (rdev->bdev->bd_dev == dev)
return rdev;
return NULL;
}
EXPORT_SYMBOL_GPL(md_find_rdev_rcu);
static struct md_personality *find_pers(int level, char *clevel)
{
struct md_personality *pers;
list_for_each_entry(pers, &pers_list, list) {
if (level != LEVEL_NONE && pers->level == level)
return pers;
if (strcmp(pers->name, clevel)==0)
return pers;
}
return NULL;
}
/* return the offset of the super block in 512byte sectors */
static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
{
return MD_NEW_SIZE_SECTORS(bdev_nr_sectors(rdev->bdev));
}
static int alloc_disk_sb(struct md_rdev *rdev)
{
rdev->sb_page = alloc_page(GFP_KERNEL);
if (!rdev->sb_page)
return -ENOMEM;
return 0;
}
void md_rdev_clear(struct md_rdev *rdev)
{
if (rdev->sb_page) {
put_page(rdev->sb_page);
rdev->sb_loaded = 0;
rdev->sb_page = NULL;
rdev->sb_start = 0;
rdev->sectors = 0;
}
if (rdev->bb_page) {
put_page(rdev->bb_page);
rdev->bb_page = NULL;
}
badblocks_exit(&rdev->badblocks);
}
EXPORT_SYMBOL_GPL(md_rdev_clear);
static void super_written(struct bio *bio)
{
struct md_rdev *rdev = bio->bi_private;
struct mddev *mddev = rdev->mddev;
if (bio->bi_status) {
pr_err("md: %s gets error=%d\n", __func__,
blk_status_to_errno(bio->bi_status));
md_error(mddev, rdev);
if (!test_bit(Faulty, &rdev->flags)
&& (bio->bi_opf & MD_FAILFAST)) {
set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags);
set_bit(LastDev, &rdev->flags);
}
} else
clear_bit(LastDev, &rdev->flags);
bio_put(bio);
rdev_dec_pending(rdev, mddev);
if (atomic_dec_and_test(&mddev->pending_writes))
wake_up(&mddev->sb_wait);
}
void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
sector_t sector, int size, struct page *page)
{
/* write first size bytes of page to sector of rdev
* Increment mddev->pending_writes before returning
* and decrement it on completion, waking up sb_wait
* if zero is reached.
* If an error occurred, call md_error
*/
struct bio *bio;
if (!page)
return;
if (test_bit(Faulty, &rdev->flags))
return;
bio = bio_alloc_bioset(rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev,
1,
REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA,
GFP_NOIO, &mddev->sync_set);
atomic_inc(&rdev->nr_pending);
bio->bi_iter.bi_sector = sector;
bio_add_page(bio, page, size, 0);
bio->bi_private = rdev;
bio->bi_end_io = super_written;
if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) &&
test_bit(FailFast, &rdev->flags) &&
!test_bit(LastDev, &rdev->flags))
bio->bi_opf |= MD_FAILFAST;
atomic_inc(&mddev->pending_writes);
submit_bio(bio);
}
int md_super_wait(struct mddev *mddev)
{
/* wait for all superblock writes that were scheduled to complete */
wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags))
return -EAGAIN;
return 0;
}
int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
struct page *page, blk_opf_t opf, bool metadata_op)
{
struct bio bio;
struct bio_vec bvec;
if (metadata_op && rdev->meta_bdev)
bio_init(&bio, rdev->meta_bdev, &bvec, 1, opf);
else
bio_init(&bio, rdev->bdev, &bvec, 1, opf);
if (metadata_op)
bio.bi_iter.bi_sector = sector + rdev->sb_start;
else if (rdev->mddev->reshape_position != MaxSector &&
(rdev->mddev->reshape_backwards ==
(sector >= rdev->mddev->reshape_position)))
bio.bi_iter.bi_sector = sector + rdev->new_data_offset;
else
bio.bi_iter.bi_sector = sector + rdev->data_offset;
bio_add_page(&bio, page, size, 0);
submit_bio_wait(&bio);
return !bio.bi_status;
}
EXPORT_SYMBOL_GPL(sync_page_io);
static int read_disk_sb(struct md_rdev *rdev, int size)
{
if (rdev->sb_loaded)
return 0;
if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, true))
goto fail;
rdev->sb_loaded = 1;
return 0;
fail:
pr_err("md: disabled device %pg, could not read superblock.\n",
rdev->bdev);
return -EINVAL;
}
static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
{
return sb1->set_uuid0 == sb2->set_uuid0 &&
sb1->set_uuid1 == sb2->set_uuid1 &&
sb1->set_uuid2 == sb2->set_uuid2 &&
sb1->set_uuid3 == sb2->set_uuid3;
}
static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
{
int ret;
mdp_super_t *tmp1, *tmp2;
tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
if (!tmp1 || !tmp2) {
ret = 0;
goto abort;
}
*tmp1 = *sb1;
*tmp2 = *sb2;
/*
* nr_disks is not constant
*/
tmp1->nr_disks = 0;
tmp2->nr_disks = 0;
ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
abort:
kfree(tmp1);
kfree(tmp2);
return ret;
}
static u32 md_csum_fold(u32 csum)
{
csum = (csum & 0xffff) + (csum >> 16);
return (csum & 0xffff) + (csum >> 16);
}
static unsigned int calc_sb_csum(mdp_super_t *sb)
{
u64 newcsum = 0;
u32 *sb32 = (u32*)sb;
int i;
unsigned int disk_csum, csum;
disk_csum = sb->sb_csum;
sb->sb_csum = 0;
for (i = 0; i < MD_SB_BYTES/4 ; i++)
newcsum += sb32[i];
csum = (newcsum & 0xffffffff) + (newcsum>>32);
#ifdef CONFIG_ALPHA
/* This used to use csum_partial, which was wrong for several
* reasons including that different results are returned on
* different architectures. It isn't critical that we get exactly
* the same return value as before (we always csum_fold before
* testing, and that removes any differences). However as we
* know that csum_partial always returned a 16bit value on
* alphas, do a fold to maximise conformity to previous behaviour.
*/
sb->sb_csum = md_csum_fold(disk_csum);
#else
sb->sb_csum = disk_csum;
#endif
return csum;
}
/*
* Handle superblock details.
* We want to be able to handle multiple superblock formats
* so we have a common interface to them all, and an array of
* different handlers.
* We rely on user-space to write the initial superblock, and support
* reading and updating of superblocks.
* Interface methods are:
* int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
* loads and validates a superblock on dev.
* if refdev != NULL, compare superblocks on both devices
* Return:
* 0 - dev has a superblock that is compatible with refdev
* 1 - dev has a superblock that is compatible and newer than refdev
* so dev should be used as the refdev in future
* -EINVAL superblock incompatible or invalid
* -othererror e.g. -EIO
*
* int validate_super(struct mddev *mddev, struct md_rdev *dev)
* Verify that dev is acceptable into mddev.
* The first time, mddev->raid_disks will be 0, and data from
* dev should be merged in. Subsequent calls check that dev
* is new enough. Return 0 or -EINVAL
*
* void sync_super(struct mddev *mddev, struct md_rdev *dev)
* Update the superblock for rdev with data in mddev
* This does not write to disc.
*
*/
struct super_type {
char *name;
struct module *owner;
int (*load_super)(struct md_rdev *rdev,
struct md_rdev *refdev,
int minor_version);
int (*validate_super)(struct mddev *mddev,
struct md_rdev *rdev);
void (*sync_super)(struct mddev *mddev,
struct md_rdev *rdev);
unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
sector_t num_sectors);
int (*allow_new_offset)(struct md_rdev *rdev,
unsigned long long new_offset);
};
/*
* Check that the given mddev has no bitmap.
*
* This function is called from the run method of all personalities that do not
* support bitmaps. It prints an error message and returns non-zero if mddev
* has a bitmap. Otherwise, it returns 0.
*
*/
int md_check_no_bitmap(struct mddev *mddev)
{
if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
return 0;
pr_warn("%s: bitmaps are not supported for %s\n",
mdname(mddev), mddev->pers->name);
return 1;
}
EXPORT_SYMBOL(md_check_no_bitmap);
/*
* load_super for 0.90.0
*/
static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
{
mdp_super_t *sb;
int ret;
bool spare_disk = true;
/*
* Calculate the position of the superblock (512byte sectors),
* it's at the end of the disk.
*
* It also happens to be a multiple of 4Kb.
*/
rdev->sb_start = calc_dev_sboffset(rdev);
ret = read_disk_sb(rdev, MD_SB_BYTES);
if (ret)
return ret;
ret = -EINVAL;
sb = page_address(rdev->sb_page);
if (sb->md_magic != MD_SB_MAGIC) {
pr_warn("md: invalid raid superblock magic on %pg\n",
rdev->bdev);
goto abort;
}
if (sb->major_version != 0 ||
sb->minor_version < 90 ||
sb->minor_version > 91) {
pr_warn("Bad version number %d.%d on %pg\n",
sb->major_version, sb->minor_version, rdev->bdev);
goto abort;
}
if (sb->raid_disks <= 0)
goto abort;
if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
pr_warn("md: invalid superblock checksum on %pg\n", rdev->bdev);
goto abort;
}
rdev->preferred_minor = sb->md_minor;
rdev->data_offset = 0;
rdev->new_data_offset = 0;
rdev->sb_size = MD_SB_BYTES;
rdev->badblocks.shift = -1;
if (sb->level == LEVEL_MULTIPATH)
rdev->desc_nr = -1;
else
rdev->desc_nr = sb->this_disk.number;
/* not spare disk, or LEVEL_MULTIPATH */
if (sb->level == LEVEL_MULTIPATH ||
(rdev->desc_nr >= 0 &&
rdev->desc_nr < MD_SB_DISKS &&
sb->disks[rdev->desc_nr].state &
((1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))))
spare_disk = false;
if (!refdev) {
if (!spare_disk)
ret = 1;
else
ret = 0;
} else {
__u64 ev1, ev2;
mdp_super_t *refsb = page_address(refdev->sb_page);
if (!md_uuid_equal(refsb, sb)) {
pr_warn("md: %pg has different UUID to %pg\n",
rdev->bdev, refdev->bdev);
goto abort;
}
if (!md_sb_equal(refsb, sb)) {
pr_warn("md: %pg has same UUID but different superblock to %pg\n",
rdev->bdev, refdev->bdev);
goto abort;
}
ev1 = md_event(sb);
ev2 = md_event(refsb);
if (!spare_disk && ev1 > ev2)
ret = 1;
else
ret = 0;
}
rdev->sectors = rdev->sb_start;
/* Limit to 4TB as metadata cannot record more than that.
* (not needed for Linear and RAID0 as metadata doesn't
* record this size)
*/
if ((u64)rdev->sectors >= (2ULL << 32) && sb->level >= 1)
rdev->sectors = (sector_t)(2ULL << 32) - 2;
if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
/* "this cannot possibly happen" ... */
ret = -EINVAL;
abort:
return ret;
}
/*
* validate_super for 0.90.0
*/
static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
{
mdp_disk_t *desc;
mdp_super_t *sb = page_address(rdev->sb_page);
__u64 ev1 = md_event(sb);
rdev->raid_disk = -1;
clear_bit(Faulty, &rdev->flags);
clear_bit(In_sync, &rdev->flags);
clear_bit(Bitmap_sync, &rdev->flags);
clear_bit(WriteMostly, &rdev->flags);
if (mddev->raid_disks == 0) {
mddev->major_version = 0;
mddev->minor_version = sb->minor_version;
mddev->patch_version = sb->patch_version;
mddev->external = 0;
mddev->chunk_sectors = sb->chunk_size >> 9;
mddev->ctime = sb->ctime;
mddev->utime = sb->utime;
mddev->level = sb->level;
mddev->clevel[0] = 0;
mddev->layout = sb->layout;
mddev->raid_disks = sb->raid_disks;
mddev->dev_sectors = ((sector_t)sb->size) * 2;
mddev->events = ev1;
mddev->bitmap_info.offset = 0;
mddev->bitmap_info.space = 0;
/* bitmap can use 60 K after the 4K superblocks */
mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
mddev->reshape_backwards = 0;
if (mddev->minor_version >= 91) {
mddev->reshape_position = sb->reshape_position;
mddev->delta_disks = sb->delta_disks;
mddev->new_level = sb->new_level;
mddev->new_layout = sb->new_layout;
mddev->new_chunk_sectors = sb->new_chunk >> 9;
if (mddev->delta_disks < 0)
mddev->reshape_backwards = 1;
} else {
mddev->reshape_position = MaxSector;
mddev->delta_disks = 0;
mddev->new_level = mddev->level;
mddev->new_layout = mddev->layout;
mddev->new_chunk_sectors = mddev->chunk_sectors;
}
if (mddev->level == 0)
mddev->layout = -1;
if (sb->state & (1<<MD_SB_CLEAN))
mddev->recovery_cp = MaxSector;
else {
if (sb->events_hi == sb->cp_events_hi &&
sb->events_lo == sb->cp_events_lo) {
mddev->recovery_cp = sb->recovery_cp;
} else
mddev->recovery_cp = 0;
}
memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
mddev->max_disks = MD_SB_DISKS;
if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
mddev->bitmap_info.file == NULL) {
mddev->bitmap_info.offset =
mddev->bitmap_info.default_offset;
mddev->bitmap_info.space =
mddev->bitmap_info.default_space;
}
} else if (mddev->pers == NULL) {
/* Insist on good event counter while assembling, except
* for spares (which don't need an event count) */
++ev1;
if (sb->disks[rdev->desc_nr].state & (
(1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
if (ev1 < mddev->events)
return -EINVAL;
} else if (mddev->bitmap) {
/* if adding to array with a bitmap, then we can accept an
* older device ... but not too old.
*/
if (ev1 < mddev->bitmap->events_cleared)
return 0;
if (ev1 < mddev->events)
set_bit(Bitmap_sync, &rdev->flags);
} else {
if (ev1 < mddev->events)
/* just a hot-add of a new device, leave raid_disk at -1 */
return 0;
}
if (mddev->level != LEVEL_MULTIPATH) {
desc = sb->disks + rdev->desc_nr;
if (desc->state & (1<<MD_DISK_FAULTY))
set_bit(Faulty, &rdev->flags);
else if (desc->state & (1<<MD_DISK_SYNC) /* &&
desc->raid_disk < mddev->raid_disks */) {
set_bit(In_sync, &rdev->flags);
rdev->raid_disk = desc->raid_disk;
rdev->saved_raid_disk = desc->raid_disk;
} else if (desc->state & (1<<MD_DISK_ACTIVE)) {
/* active but not in sync implies recovery up to
* reshape position. We don't know exactly where
* that is, so set to zero for now */
if (mddev->minor_version >= 91) {
rdev->recovery_offset = 0;
rdev->raid_disk = desc->raid_disk;
}
}
if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
set_bit(WriteMostly, &rdev->flags);
if (desc->state & (1<<MD_DISK_FAILFAST))
set_bit(FailFast, &rdev->flags);
} else /* MULTIPATH are always insync */
set_bit(In_sync, &rdev->flags);
return 0;
}
/*
* sync_super for 0.90.0
*/
static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
{
mdp_super_t *sb;
struct md_rdev *rdev2;
int next_spare = mddev->raid_disks;
/* make rdev->sb match mddev data..
*
* 1/ zero out disks
* 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
* 3/ any empty disks < next_spare become removed
*
* disks[0] gets initialised to REMOVED because
* we cannot be sure from other fields if it has
* been initialised or not.
*/
int i;
int active=0, working=0,failed=0,spare=0,nr_disks=0;
rdev->sb_size = MD_SB_BYTES;
sb = page_address(rdev->sb_page);
memset(sb, 0, sizeof(*sb));
sb->md_magic = MD_SB_MAGIC;
sb->major_version = mddev->major_version;
sb->patch_version = mddev->patch_version;
sb->gvalid_words = 0; /* ignored */
memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
memcpy(&sb->set_uuid3, mddev->uuid+12,4);
sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
sb->level = mddev->level;
sb->size = mddev->dev_sectors / 2;
sb->raid_disks = mddev->raid_disks;
sb->md_minor = mddev->md_minor;
sb->not_persistent = 0;
sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
sb->state = 0;
sb->events_hi = (mddev->events>>32);
sb->events_lo = (u32)mddev->events;
if (mddev->reshape_position == MaxSector)
sb->minor_version = 90;
else {
sb->minor_version = 91;
sb->reshape_position = mddev->reshape_position;
sb->new_level = mddev->new_level;
sb->delta_disks = mddev->delta_disks;
sb->new_layout = mddev->new_layout;
sb->new_chunk = mddev->new_chunk_sectors << 9;
}
mddev->minor_version = sb->minor_version;
if (mddev->in_sync)
{
sb->recovery_cp = mddev->recovery_cp;
sb->cp_events_hi = (mddev->events>>32);
sb->cp_events_lo = (u32)mddev->events;
if (mddev->recovery_cp == MaxSector)
sb->state = (1<< MD_SB_CLEAN);
} else
sb->recovery_cp = 0;
sb->layout = mddev->layout;
sb->chunk_size = mddev->chunk_sectors << 9;
if (mddev->bitmap && mddev->bitmap_info.file == NULL)
sb->state |= (1<<MD_SB_BITMAP_PRESENT);
sb->disks[0].state = (1<<MD_DISK_REMOVED);
rdev_for_each(rdev2, mddev) {
mdp_disk_t *d;
int desc_nr;
int is_active = test_bit(In_sync, &rdev2->flags);
if (rdev2->raid_disk >= 0 &&
sb->minor_version >= 91)
/* we have nowhere to store the recovery_offset,
* but if it is not below the reshape_position,
* we can piggy-back on that.
*/
is_active = 1;
if (rdev2->raid_disk < 0 ||
test_bit(Faulty, &rdev2->flags))
is_active = 0;
if (is_active)
desc_nr = rdev2->raid_disk;
else
desc_nr = next_spare++;
rdev2->desc_nr = desc_nr;
d = &sb->disks[rdev2->desc_nr];
nr_disks++;
d->number = rdev2->desc_nr;
d->major = MAJOR(rdev2->bdev->bd_dev);
d->minor = MINOR(rdev2->bdev->bd_dev);
if (is_active)
d->raid_disk = rdev2->raid_disk;
else
d->raid_disk = rdev2->desc_nr; /* compatibility */
if (test_bit(Faulty, &rdev2->flags))
d->state = (1<<MD_DISK_FAULTY);
else if (is_active) {
d->state = (1<<MD_DISK_ACTIVE);
if (test_bit(In_sync, &rdev2->flags))
d->state |= (1<<MD_DISK_SYNC);
active++;
working++;
} else {
d->state = 0;
spare++;
working++;
}
if (test_bit(WriteMostly, &rdev2->flags))
d->state |= (1<<MD_DISK_WRITEMOSTLY);
if (test_bit(FailFast, &rdev2->flags))
d->state |= (1<<MD_DISK_FAILFAST);
}
/* now set the "removed" and "faulty" bits on any missing devices */
for (i=0 ; i < mddev->raid_disks ; i++) {
mdp_disk_t *d = &sb->disks[i];
if (d->state == 0 && d->number == 0) {
d->number = i;
d->raid_disk = i;
d->state = (1<<MD_DISK_REMOVED);
d->state |= (1<<MD_DISK_FAULTY);
failed++;
}
}
sb->nr_disks = nr_disks;
sb->active_disks = active;
sb->working_disks = working;
sb->failed_disks = failed;
sb->spare_disks = spare;
sb->this_disk = sb->disks[rdev->desc_nr];
sb->sb_csum = calc_sb_csum(sb);
}
/*
* rdev_size_change for 0.90.0
*/
static unsigned long long
super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
{
if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
return 0; /* component must fit device */
if (rdev->mddev->bitmap_info.offset)
return 0; /* can't move bitmap */
rdev->sb_start = calc_dev_sboffset(rdev);
if (!num_sectors || num_sectors > rdev->sb_start)
num_sectors = rdev->sb_start;
/* Limit to 4TB as metadata cannot record more than that.
* 4TB == 2^32 KB, or 2*2^32 sectors.
*/
if ((u64)num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
num_sectors = (sector_t)(2ULL << 32) - 2;
do {
md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
rdev->sb_page);
} while (md_super_wait(rdev->mddev) < 0);
return num_sectors;
}
static int
super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
{
/* non-zero offset changes not possible with v0.90 */
return new_offset == 0;
}
/*
* version 1 superblock
*/
static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
{
__le32 disk_csum;
u32 csum;
unsigned long long newcsum;
int size = 256 + le32_to_cpu(sb->max_dev)*2;
__le32 *isuper = (__le32*)sb;
disk_csum = sb->sb_csum;
sb->sb_csum = 0;
newcsum = 0;
for (; size >= 4; size -= 4)
newcsum += le32_to_cpu(*isuper++);
if (size == 2)
newcsum += le16_to_cpu(*(__le16*) isuper);
csum = (newcsum & 0xffffffff) + (newcsum >> 32);
sb->sb_csum = disk_csum;
return cpu_to_le32(csum);
}
static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
{
struct mdp_superblock_1 *sb;
int ret;
sector_t sb_start;
sector_t sectors;
int bmask;
bool spare_disk = true;
/*
* Calculate the position of the superblock in 512byte sectors.
* It is always aligned to a 4K boundary and
* depeding on minor_version, it can be:
* 0: At least 8K, but less than 12K, from end of device
* 1: At start of device
* 2: 4K from start of device.
*/
switch(minor_version) {
case 0:
sb_start = bdev_nr_sectors(rdev->bdev) - 8 * 2;
sb_start &= ~(sector_t)(4*2-1);
break;
case 1:
sb_start = 0;
break;
case 2:
sb_start = 8;
break;
default:
return -EINVAL;
}
rdev->sb_start = sb_start;
/* superblock is rarely larger than 1K, but it can be larger,
* and it is safe to read 4k, so we do that
*/
ret = read_disk_sb(rdev, 4096);
if (ret) return ret;
sb = page_address(rdev->sb_page);
if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
sb->major_version != cpu_to_le32(1) ||
le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
le64_to_cpu(sb->super_offset) != rdev->sb_start ||
(le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
return -EINVAL;
if (calc_sb_1_csum(sb) != sb->sb_csum) {
pr_warn("md: invalid superblock checksum on %pg\n",
rdev->bdev);
return -EINVAL;
}
if (le64_to_cpu(sb->data_size) < 10) {
pr_warn("md: data_size too small on %pg\n",
rdev->bdev);
return -EINVAL;
}
if (sb->pad0 ||
sb->pad3[0] ||
memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
/* Some padding is non-zero, might be a new feature */
return -EINVAL;
rdev->preferred_minor = 0xffff;
rdev->data_offset = le64_to_cpu(sb->data_offset);
rdev->new_data_offset = rdev->data_offset;
if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
(le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
if (rdev->sb_size & bmask)
rdev->sb_size = (rdev->sb_size | bmask) + 1;
if (minor_version
&& rdev->data_offset < sb_start + (rdev->sb_size/512))
return -EINVAL;
if (minor_version
&& rdev->new_data_offset < sb_start + (rdev->sb_size/512))
return -EINVAL;
if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
rdev->desc_nr = -1;
else
rdev->desc_nr = le32_to_cpu(sb->dev_number);
if (!rdev->bb_page) {
rdev->bb_page = alloc_page(GFP_KERNEL);
if (!rdev->bb_page)
return -ENOMEM;
}
if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
rdev->badblocks.count == 0) {
/* need to load the bad block list.
* Currently we limit it to one page.
*/
s32 offset;
sector_t bb_sector;
__le64 *bbp;
int i;
int sectors = le16_to_cpu(sb->bblog_size);
if (sectors > (PAGE_SIZE / 512))
return -EINVAL;
offset = le32_to_cpu(sb->bblog_offset);
if (offset == 0)
return -EINVAL;
bb_sector = (long long)offset;
if (!sync_page_io(rdev, bb_sector, sectors << 9,
rdev->bb_page, REQ_OP_READ, true))
return -EIO;
bbp = (__le64 *)page_address(rdev->bb_page);
rdev->badblocks.shift = sb->bblog_shift;
for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
u64 bb = le64_to_cpu(*bbp);
int count = bb & (0x3ff);
u64 sector = bb >> 10;
sector <<= sb->bblog_shift;
count <<= sb->bblog_shift;
if (bb + 1 == 0)
break;
if (badblocks_set(&rdev->badblocks, sector, count, 1))
return -EINVAL;
}
} else if (sb->bblog_offset != 0)
rdev->badblocks.shift = 0;
if ((le32_to_cpu(sb->feature_map) &
(MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) {
rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset);
rdev->ppl.size = le16_to_cpu(sb->ppl.size);
rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset;
}
if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT) &&
sb->level != 0)
return -EINVAL;
/* not spare disk, or LEVEL_MULTIPATH */
if (sb->level == cpu_to_le32(LEVEL_MULTIPATH) ||
(rdev->desc_nr >= 0 &&
rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
(le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)))
spare_disk = false;
if (!refdev) {
if (!spare_disk)
ret = 1;
else
ret = 0;
} else {
__u64 ev1, ev2;
struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
sb->level != refsb->level ||
sb->layout != refsb->layout ||
sb->chunksize != refsb->chunksize) {
pr_warn("md: %pg has strangely different superblock to %pg\n",
rdev->bdev,
refdev->bdev);
return -EINVAL;
}
ev1 = le64_to_cpu(sb->events);
ev2 = le64_to_cpu(refsb->events);
if (!spare_disk && ev1 > ev2)
ret = 1;
else
ret = 0;
}
if (minor_version)
sectors = bdev_nr_sectors(rdev->bdev) - rdev->data_offset;
else
sectors = rdev->sb_start;
if (sectors < le64_to_cpu(sb->data_size))
return -EINVAL;
rdev->sectors = le64_to_cpu(sb->data_size);
return ret;
}
static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
{
struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
__u64 ev1 = le64_to_cpu(sb->events);
rdev->raid_disk = -1;
clear_bit(Faulty, &rdev->flags);
clear_bit(In_sync, &rdev->flags);
clear_bit(Bitmap_sync, &rdev->flags);
clear_bit(WriteMostly, &rdev->flags);
if (mddev->raid_disks == 0) {
mddev->major_version = 1;
mddev->patch_version = 0;
mddev->external = 0;
mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
mddev->ctime = le64_to_cpu(sb->ctime);
mddev->utime = le64_to_cpu(sb->utime);
mddev->level = le32_to_cpu(sb->level);
mddev->clevel[0] = 0;
mddev->layout = le32_to_cpu(sb->layout);
mddev->raid_disks = le32_to_cpu(sb->raid_disks);
mddev->dev_sectors = le64_to_cpu(sb->size);
mddev->events = ev1;
mddev->bitmap_info.offset = 0;
mddev->bitmap_info.space = 0;
/* Default location for bitmap is 1K after superblock
* using 3K - total of 4K
*/
mddev->bitmap_info.default_offset = 1024 >> 9;
mddev->bitmap_info.default_space = (4096-1024) >> 9;
mddev->reshape_backwards = 0;
mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
memcpy(mddev->uuid, sb->set_uuid, 16);
mddev->max_disks = (4096-256)/2;
if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
mddev->bitmap_info.file == NULL) {
mddev->bitmap_info.offset =
(__s32)le32_to_cpu(sb->bitmap_offset);
/* Metadata doesn't record how much space is available.
* For 1.0, we assume we can use up to the superblock
* if before, else to 4K beyond superblock.
* For others, assume no change is possible.
*/
if (mddev->minor_version > 0)
mddev->bitmap_info.space = 0;
else if (mddev->bitmap_info.offset > 0)
mddev->bitmap_info.space =
8 - mddev->bitmap_info.offset;
else
mddev->bitmap_info.space =
-mddev->bitmap_info.offset;
}
if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
mddev->reshape_position = le64_to_cpu(sb->reshape_position);
mddev->delta_disks = le32_to_cpu(sb->delta_disks);
mddev->new_level = le32_to_cpu(sb->new_level);
mddev->new_layout = le32_to_cpu(sb->new_layout);
mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
if (mddev->delta_disks < 0 ||
(mddev->delta_disks == 0 &&
(le32_to_cpu(sb->feature_map)
& MD_FEATURE_RESHAPE_BACKWARDS)))
mddev->reshape_backwards = 1;
} else {
mddev->reshape_position = MaxSector;
mddev->delta_disks = 0;
mddev->new_level = mddev->level;
mddev->new_layout = mddev->layout;
mddev->new_chunk_sectors = mddev->chunk_sectors;
}
if (mddev->level == 0 &&
!(le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT))
mddev->layout = -1;
if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)
set_bit(MD_HAS_JOURNAL, &mddev->flags);
if (le32_to_cpu(sb->feature_map) &
(MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) {
if (le32_to_cpu(sb->feature_map) &
(MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL))
return -EINVAL;
if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) &&
(le32_to_cpu(sb->feature_map) &
MD_FEATURE_MULTIPLE_PPLS))
return -EINVAL;
set_bit(MD_HAS_PPL, &mddev->flags);
}
} else if (mddev->pers == NULL) {
/* Insist of good event counter while assembling, except for
* spares (which don't need an event count) */
++ev1;
if (rdev->desc_nr >= 0 &&
rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
(le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))
if (ev1 < mddev->events)
return -EINVAL;
} else if (mddev->bitmap) {
/* If adding to array with a bitmap, then we can accept an
* older device, but not too old.
*/
if (ev1 < mddev->bitmap->events_cleared)
return 0;
if (ev1 < mddev->events)
set_bit(Bitmap_sync, &rdev->flags);
} else {
if (ev1 < mddev->events)
/* just a hot-add of a new device, leave raid_disk at -1 */
return 0;
}
if (mddev->level != LEVEL_MULTIPATH) {
int role;
if (rdev->desc_nr < 0 ||
rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
role = MD_DISK_ROLE_SPARE;
rdev->desc_nr = -1;
} else
role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
switch(role) {
case MD_DISK_ROLE_SPARE: /* spare */
break;
case MD_DISK_ROLE_FAULTY: /* faulty */
set_bit(Faulty, &rdev->flags);
break;
case MD_DISK_ROLE_JOURNAL: /* journal device */
if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) {
/* journal device without journal feature */
pr_warn("md: journal device provided without journal feature, ignoring the device\n");
return -EINVAL;
}
set_bit(Journal, &rdev->flags);
rdev->journal_tail = le64_to_cpu(sb->journal_tail);
rdev->raid_disk = 0;
break;
default:
rdev->saved_raid_disk = role;
if ((le32_to_cpu(sb->feature_map) &
MD_FEATURE_RECOVERY_OFFSET)) {
rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
if (!(le32_to_cpu(sb->feature_map) &
MD_FEATURE_RECOVERY_BITMAP))
rdev->saved_raid_disk = -1;
} else {
/*
* If the array is FROZEN, then the device can't
* be in_sync with rest of array.
*/
if (!test_bit(MD_RECOVERY_FROZEN,
&mddev->recovery))
set_bit(In_sync, &rdev->flags);
}
rdev->raid_disk = role;
break;
}
if (sb->devflags & WriteMostly1)
set_bit(WriteMostly, &rdev->flags);
if (sb->devflags & FailFast1)
set_bit(FailFast, &rdev->flags);
if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
set_bit(Replacement, &rdev->flags);
} else /* MULTIPATH are always insync */
set_bit(In_sync, &rdev->flags);
return 0;
}
static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
{
struct mdp_superblock_1 *sb;
struct md_rdev *rdev2;
int max_dev, i;
/* make rdev->sb match mddev and rdev data. */
sb = page_address(rdev->sb_page);
sb->feature_map = 0;
sb->pad0 = 0;
sb->recovery_offset = cpu_to_le64(0);
memset(sb->pad3, 0, sizeof(sb->pad3));
sb->utime = cpu_to_le64((__u64)mddev->utime);
sb->events = cpu_to_le64(mddev->events);
if (mddev->in_sync)
sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags))
sb->resync_offset = cpu_to_le64(MaxSector);
else
sb->resync_offset = cpu_to_le64(0);
sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
sb->raid_disks = cpu_to_le32(mddev->raid_disks);
sb->size = cpu_to_le64(mddev->dev_sectors);
sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
sb->level = cpu_to_le32(mddev->level);
sb->layout = cpu_to_le32(mddev->layout);
if (test_bit(FailFast, &rdev->flags))
sb->devflags |= FailFast1;
else
sb->devflags &= ~FailFast1;
if (test_bit(WriteMostly, &rdev->flags))
sb->devflags |= WriteMostly1;
else
sb->devflags &= ~WriteMostly1;
sb->data_offset = cpu_to_le64(rdev->data_offset);
sb->data_size = cpu_to_le64(rdev->sectors);
if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
}
if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) &&
!test_bit(In_sync, &rdev->flags)) {
sb->feature_map |=
cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
sb->recovery_offset =
cpu_to_le64(rdev->recovery_offset);
if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
sb->feature_map |=
cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
}
/* Note: recovery_offset and journal_tail share space */
if (test_bit(Journal, &rdev->flags))
sb->journal_tail = cpu_to_le64(rdev->journal_tail);
if (test_bit(Replacement, &rdev->flags))
sb->feature_map |=
cpu_to_le32(MD_FEATURE_REPLACEMENT);
if (mddev->reshape_position != MaxSector) {
sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
sb->reshape_position = cpu_to_le64(mddev->reshape_position);
sb->new_layout = cpu_to_le32(mddev->new_layout);
sb->delta_disks = cpu_to_le32(mddev->delta_disks);
sb->new_level = cpu_to_le32(mddev->new_level);
sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
if (mddev->delta_disks == 0 &&
mddev->reshape_backwards)
sb->feature_map
|= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
if (rdev->new_data_offset != rdev->data_offset) {
sb->feature_map
|= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
- rdev->data_offset));
}
}
if (mddev_is_clustered(mddev))
sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED);
if (rdev->badblocks.count == 0)
/* Nothing to do for bad blocks*/ ;
else if (sb->bblog_offset == 0)
/* Cannot record bad blocks on this device */
md_error(mddev, rdev);
else {
struct badblocks *bb = &rdev->badblocks;
__le64 *bbp = (__le64 *)page_address(rdev->bb_page);
u64 *p = bb->page;
sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
if (bb->changed) {
unsigned seq;
retry:
seq = read_seqbegin(&bb->lock);
memset(bbp, 0xff, PAGE_SIZE);
for (i = 0 ; i < bb->count ; i++) {
u64 internal_bb = p[i];
u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
| BB_LEN(internal_bb));
bbp[i] = cpu_to_le64(store_bb);
}
bb->changed = 0;
if (read_seqretry(&bb->lock, seq))
goto retry;
bb->sector = (rdev->sb_start +
(int)le32_to_cpu(sb->bblog_offset));
bb->size = le16_to_cpu(sb->bblog_size);
}
}
max_dev = 0;
rdev_for_each(rdev2, mddev)
if (rdev2->desc_nr+1 > max_dev)
max_dev = rdev2->desc_nr+1;
if (max_dev > le32_to_cpu(sb->max_dev)) {
int bmask;
sb->max_dev = cpu_to_le32(max_dev);
rdev->sb_size = max_dev * 2 + 256;
bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
if (rdev->sb_size & bmask)
rdev->sb_size = (rdev->sb_size | bmask) + 1;
} else
max_dev = le32_to_cpu(sb->max_dev);
for (i=0; i<max_dev;i++)
sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
if (test_bit(MD_HAS_JOURNAL, &mddev->flags))
sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL);
if (test_bit(MD_HAS_PPL, &mddev->flags)) {
if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags))
sb->feature_map |=
cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS);
else
sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL);
sb->ppl.offset = cpu_to_le16(rdev->ppl.offset);
sb->ppl.size = cpu_to_le16(rdev->ppl.size);
}
rdev_for_each(rdev2, mddev) {
i = rdev2->desc_nr;
if (test_bit(Faulty, &rdev2->flags))
sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
else if (test_bit(In_sync, &rdev2->flags))
sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
else if (test_bit(Journal, &rdev2->flags))
sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL);
else if (rdev2->raid_disk >= 0)
sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
else
sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
}
sb->sb_csum = calc_sb_1_csum(sb);
}
static sector_t super_1_choose_bm_space(sector_t dev_size)
{
sector_t bm_space;
/* if the device is bigger than 8Gig, save 64k for bitmap
* usage, if bigger than 200Gig, save 128k
*/
if (dev_size < 64*2)
bm_space = 0;
else if (dev_size - 64*2 >= 200*1024*1024*2)
bm_space = 128*2;
else if (dev_size - 4*2 > 8*1024*1024*2)
bm_space = 64*2;
else
bm_space = 4*2;
return bm_space;
}
static unsigned long long
super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
{
struct mdp_superblock_1 *sb;
sector_t max_sectors;
if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
return 0; /* component must fit device */
if (rdev->data_offset != rdev->new_data_offset)
return 0; /* too confusing */
if (rdev->sb_start < rdev->data_offset) {
/* minor versions 1 and 2; superblock before data */
max_sectors = bdev_nr_sectors(rdev->bdev) - rdev->data_offset;
if (!num_sectors || num_sectors > max_sectors)
num_sectors = max_sectors;
} else if (rdev->mddev->bitmap_info.offset) {
/* minor version 0 with bitmap we can't move */
return 0;
} else {
/* minor version 0; superblock after data */
sector_t sb_start, bm_space;
sector_t dev_size = bdev_nr_sectors(rdev->bdev);
/* 8K is for superblock */
sb_start = dev_size - 8*2;
sb_start &= ~(sector_t)(4*2 - 1);
bm_space = super_1_choose_bm_space(dev_size);
/* Space that can be used to store date needs to decrease
* superblock bitmap space and bad block space(4K)
*/
max_sectors = sb_start - bm_space - 4*2;
if (!num_sectors || num_sectors > max_sectors)
num_sectors = max_sectors;
rdev->sb_start = sb_start;
}
sb = page_address(rdev->sb_page);
sb->data_size = cpu_to_le64(num_sectors);
sb->super_offset = cpu_to_le64(rdev->sb_start);
sb->sb_csum = calc_sb_1_csum(sb);
do {
md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
rdev->sb_page);
} while (md_super_wait(rdev->mddev) < 0);
return num_sectors;
}
static int
super_1_allow_new_offset(struct md_rdev *rdev,
unsigned long long new_offset)
{
/* All necessary checks on new >= old have been done */
struct bitmap *bitmap;
if (new_offset >= rdev->data_offset)
return 1;
/* with 1.0 metadata, there is no metadata to tread on
* so we can always move back */
if (rdev->mddev->minor_version == 0)
return 1;
/* otherwise we must be sure not to step on
* any metadata, so stay:
* 36K beyond start of superblock
* beyond end of badblocks
* beyond write-intent bitmap
*/
if (rdev->sb_start + (32+4)*2 > new_offset)
return 0;
bitmap = rdev->mddev->bitmap;
if (bitmap && !rdev->mddev->bitmap_info.file &&
rdev->sb_start + rdev->mddev->bitmap_info.offset +
bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
return 0;
if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
return 0;
return 1;
}
static struct super_type super_types[] = {
[0] = {
.name = "0.90.0",
.owner = THIS_MODULE,
.load_super = super_90_load,
.validate_super = super_90_validate,
.sync_super = super_90_sync,
.rdev_size_change = super_90_rdev_size_change,
.allow_new_offset = super_90_allow_new_offset,
},
[1] = {
.name = "md-1",
.owner = THIS_MODULE,
.load_super = super_1_load,
.validate_super = super_1_validate,
.sync_super = super_1_sync,
.rdev_size_change = super_1_rdev_size_change,
.allow_new_offset = super_1_allow_new_offset,
},
};
static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
{
if (mddev->sync_super) {
mddev->sync_super(mddev, rdev);
return;
}
BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
super_types[mddev->major_version].sync_super(mddev, rdev);
}
static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
{
struct md_rdev *rdev, *rdev2;
rcu_read_lock();
rdev_for_each_rcu(rdev, mddev1) {
if (test_bit(Faulty, &rdev->flags) ||
test_bit(Journal, &rdev->flags) ||
rdev->raid_disk == -1)
continue;
rdev_for_each_rcu(rdev2, mddev2) {
if (test_bit(Faulty, &rdev2->flags) ||
test_bit(Journal, &rdev2->flags) ||
rdev2->raid_disk == -1)
continue;
if (rdev->bdev->bd_disk == rdev2->bdev->bd_disk) {
rcu_read_unlock();
return 1;
}
}
}
rcu_read_unlock();
return 0;
}
static LIST_HEAD(pending_raid_disks);
/*
* Try to register data integrity profile for an mddev
*
* This is called when an array is started and after a disk has been kicked
* from the array. It only succeeds if all working and active component devices
* are integrity capable with matching profiles.
*/
int md_integrity_register(struct mddev *mddev)
{
struct md_rdev *rdev, *reference = NULL;
if (list_empty(&mddev->disks))
return 0; /* nothing to do */
if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
return 0; /* shouldn't register, or already is */
rdev_for_each(rdev, mddev) {
/* skip spares and non-functional disks */
if (test_bit(Faulty, &rdev->flags))
continue;
if (rdev->raid_disk < 0)
continue;
if (!reference) {
/* Use the first rdev as the reference */
reference = rdev;
continue;
}
/* does this rdev's profile match the reference profile? */
if (blk_integrity_compare(reference->bdev->bd_disk,
rdev->bdev->bd_disk) < 0)
return -EINVAL;
}
if (!reference || !bdev_get_integrity(reference->bdev))
return 0;
/*
* All component devices are integrity capable and have matching
* profiles, register the common profile for the md device.
*/
blk_integrity_register(mddev->gendisk,
bdev_get_integrity(reference->bdev));
pr_debug("md: data integrity enabled on %s\n", mdname(mddev));
if (bioset_integrity_create(&mddev->bio_set, BIO_POOL_SIZE) ||
(mddev->level != 1 && mddev->level != 10 &&
bioset_integrity_create(&mddev->io_acct_set, BIO_POOL_SIZE))) {
/*
* No need to handle the failure of bioset_integrity_create,
* because the function is called by md_run() -> pers->run(),
* md_run calls bioset_exit -> bioset_integrity_free in case
* of failure case.
*/
pr_err("md: failed to create integrity pool for %s\n",
mdname(mddev));
return -EINVAL;
}
return 0;
}
EXPORT_SYMBOL(md_integrity_register);
/*
* Attempt to add an rdev, but only if it is consistent with the current
* integrity profile
*/
int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
{
struct blk_integrity *bi_mddev;
if (!mddev->gendisk)
return 0;
bi_mddev = blk_get_integrity(mddev->gendisk);
if (!bi_mddev) /* nothing to do */
return 0;
if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) {
pr_err("%s: incompatible integrity profile for %pg\n",
mdname(mddev), rdev->bdev);
return -ENXIO;
}
return 0;
}
EXPORT_SYMBOL(md_integrity_add_rdev);
static bool rdev_read_only(struct md_rdev *rdev)
{
return bdev_read_only(rdev->bdev) ||
(rdev->meta_bdev && bdev_read_only(rdev->meta_bdev));
}
static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
{
char b[BDEVNAME_SIZE];
int err;
/* prevent duplicates */
if (find_rdev(mddev, rdev->bdev->bd_dev))
return -EEXIST;
if (rdev_read_only(rdev) && mddev->pers)
return -EROFS;
/* make sure rdev->sectors exceeds mddev->dev_sectors */
if (!test_bit(Journal, &rdev->flags) &&
rdev->sectors &&
(mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) {
if (mddev->pers) {
/* Cannot change size, so fail
* If mddev->level <= 0, then we don't care
* about aligning sizes (e.g. linear)
*/
if (mddev->level > 0)
return -ENOSPC;
} else
mddev->dev_sectors = rdev->sectors;
}
/* Verify rdev->desc_nr is unique.
* If it is -1, assign a free number, else
* check number is not in use
*/
rcu_read_lock();
if (rdev->desc_nr < 0) {
int choice = 0;
if (mddev->pers)
choice = mddev->raid_disks;
while (md_find_rdev_nr_rcu(mddev, choice))
choice++;
rdev->desc_nr = choice;
} else {
if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
rcu_read_unlock();
return -EBUSY;
}
}
rcu_read_unlock();
if (!test_bit(Journal, &rdev->flags) &&
mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
pr_warn("md: %s: array is limited to %d devices\n",
mdname(mddev), mddev->max_disks);
return -EBUSY;
}
snprintf(b, sizeof(b), "%pg", rdev->bdev);
strreplace(b, '/', '!');
rdev->mddev = mddev;
pr_debug("md: bind<%s>\n", b);
if (mddev->raid_disks)
mddev_create_serial_pool(mddev, rdev, false);
if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
goto fail;
/* failure here is OK */
err = sysfs_create_link(&rdev->kobj, bdev_kobj(rdev->bdev), "block");
rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
rdev->sysfs_unack_badblocks =
sysfs_get_dirent_safe(rdev->kobj.sd, "unacknowledged_bad_blocks");
rdev->sysfs_badblocks =
sysfs_get_dirent_safe(rdev->kobj.sd, "bad_blocks");
list_add_rcu(&rdev->same_set, &mddev->disks);
bd_link_disk_holder(rdev->bdev, mddev->gendisk);
/* May as well allow recovery to be retried once */
mddev->recovery_disabled++;
return 0;
fail:
pr_warn("md: failed to register dev-%s for %s\n",
b, mdname(mddev));
return err;
}
static void rdev_delayed_delete(struct work_struct *ws)
{
struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
kobject_del(&rdev->kobj);
kobject_put(&rdev->kobj);
}
void md_autodetect_dev(dev_t dev);
static void export_rdev(struct md_rdev *rdev)
{
pr_debug("md: export_rdev(%pg)\n", rdev->bdev);
md_rdev_clear(rdev);
#ifndef MODULE
if (test_bit(AutoDetected, &rdev->flags))
md_autodetect_dev(rdev->bdev->bd_dev);
#endif
blkdev_put(rdev->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
rdev->bdev = NULL;
kobject_put(&rdev->kobj);
}
static void md_kick_rdev_from_array(struct md_rdev *rdev)
{
bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
list_del_rcu(&rdev->same_set);
pr_debug("md: unbind<%pg>\n", rdev->bdev);
mddev_destroy_serial_pool(rdev->mddev, rdev, false);
rdev->mddev = NULL;
sysfs_remove_link(&rdev->kobj, "block");
sysfs_put(rdev->sysfs_state);
sysfs_put(rdev->sysfs_unack_badblocks);
sysfs_put(rdev->sysfs_badblocks);
rdev->sysfs_state = NULL;
rdev->sysfs_unack_badblocks = NULL;
rdev->sysfs_badblocks = NULL;
rdev->badblocks.count = 0;
/* We need to delay this, otherwise we can deadlock when
* writing to 'remove' to "dev/state". We also need
* to delay it due to rcu usage.
*/
synchronize_rcu();
INIT_WORK(&rdev->del_work, rdev_delayed_delete);
kobject_get(&rdev->kobj);
queue_work(md_rdev_misc_wq, &rdev->del_work);
export_rdev(rdev);
}
static void export_array(struct mddev *mddev)
{
struct md_rdev *rdev;
while (!list_empty(&mddev->disks)) {
rdev = list_first_entry(&mddev->disks, struct md_rdev,
same_set);
md_kick_rdev_from_array(rdev);
}
mddev->raid_disks = 0;
mddev->major_version = 0;
}
static bool set_in_sync(struct mddev *mddev)
{
lockdep_assert_held(&mddev->lock);
if (!mddev->in_sync) {
mddev->sync_checkers++;
spin_unlock(&mddev->lock);
percpu_ref_switch_to_atomic_sync(&mddev->writes_pending);
spin_lock(&mddev->lock);
if (!mddev->in_sync &&
percpu_ref_is_zero(&mddev->writes_pending)) {
mddev->in_sync = 1;
/*
* Ensure ->in_sync is visible before we clear
* ->sync_checkers.
*/
smp_mb();
set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
sysfs_notify_dirent_safe(mddev->sysfs_state);
}
if (--mddev->sync_checkers == 0)
percpu_ref_switch_to_percpu(&mddev->writes_pending);
}
if (mddev->safemode == 1)
mddev->safemode = 0;
return mddev->in_sync;
}
static void sync_sbs(struct mddev *mddev, int nospares)
{
/* Update each superblock (in-memory image), but
* if we are allowed to, skip spares which already
* have the right event counter, or have one earlier
* (which would mean they aren't being marked as dirty
* with the rest of the array)
*/
struct md_rdev *rdev;
rdev_for_each(rdev, mddev) {
if (rdev->sb_events == mddev->events ||
(nospares &&
rdev->raid_disk < 0 &&
rdev->sb_events+1 == mddev->events)) {
/* Don't update this superblock */
rdev->sb_loaded = 2;
} else {
sync_super(mddev, rdev);
rdev->sb_loaded = 1;
}
}
}
static bool does_sb_need_changing(struct mddev *mddev)
{
struct md_rdev *rdev = NULL, *iter;
struct mdp_superblock_1 *sb;
int role;
/* Find a good rdev */
rdev_for_each(iter, mddev)
if ((iter->raid_disk >= 0) && !test_bit(Faulty, &iter->flags)) {
rdev = iter;
break;
}
/* No good device found. */
if (!rdev)
return false;
sb = page_address(rdev->sb_page);
/* Check if a device has become faulty or a spare become active */
rdev_for_each(rdev, mddev) {
role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
/* Device activated? */
if (role == MD_DISK_ROLE_SPARE && rdev->raid_disk >= 0 &&
!test_bit(Faulty, &rdev->flags))
return true;
/* Device turned faulty? */
if (test_bit(Faulty, &rdev->flags) && (role < MD_DISK_ROLE_MAX))
return true;
}
/* Check if any mddev parameters have changed */
if ((mddev->dev_sectors != le64_to_cpu(sb->size)) ||
(mddev->reshape_position != le64_to_cpu(sb->reshape_position)) ||
(mddev->layout != le32_to_cpu(sb->layout)) ||
(mddev->raid_disks != le32_to_cpu(sb->raid_disks)) ||
(mddev->chunk_sectors != le32_to_cpu(sb->chunksize)))
return true;
return false;
}
void md_update_sb(struct mddev *mddev, int force_change)
{
struct md_rdev *rdev;
int sync_req;
int nospares = 0;
int any_badblocks_changed = 0;
int ret = -1;
if (!md_is_rdwr(mddev)) {
if (force_change)
set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
return;
}
repeat:
if (mddev_is_clustered(mddev)) {
if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
force_change = 1;
if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
nospares = 1;
ret = md_cluster_ops->metadata_update_start(mddev);
/* Has someone else has updated the sb */
if (!does_sb_need_changing(mddev)) {
if (ret == 0)
md_cluster_ops->metadata_update_cancel(mddev);
bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
BIT(MD_SB_CHANGE_DEVS) |
BIT(MD_SB_CHANGE_CLEAN));
return;
}
}
/*
* First make sure individual recovery_offsets are correct
* curr_resync_completed can only be used during recovery.
* During reshape/resync it might use array-addresses rather
* that device addresses.
*/
rdev_for_each(rdev, mddev) {
if (rdev->raid_disk >= 0 &&
mddev->delta_disks >= 0 &&
test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) &&
!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
!test_bit(Journal, &rdev->flags) &&
!test_bit(In_sync, &rdev->flags) &&
mddev->curr_resync_completed > rdev->recovery_offset)
rdev->recovery_offset = mddev->curr_resync_completed;
}
if (!mddev->persistent) {
clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
if (!mddev->external) {
clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
rdev_for_each(rdev, mddev) {
if (rdev->badblocks.changed) {
rdev->badblocks.changed = 0;
ack_all_badblocks(&rdev->badblocks);
md_error(mddev, rdev);
}
clear_bit(Blocked, &rdev->flags);
clear_bit(BlockedBadBlocks, &rdev->flags);
wake_up(&rdev->blocked_wait);
}
}
wake_up(&mddev->sb_wait);
return;
}
spin_lock(&mddev->lock);
mddev->utime = ktime_get_real_seconds();
if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
force_change = 1;
if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
/* just a clean<-> dirty transition, possibly leave spares alone,
* though if events isn't the right even/odd, we will have to do
* spares after all
*/
nospares = 1;
if (force_change)
nospares = 0;
if (mddev->degraded)
/* If the array is degraded, then skipping spares is both
* dangerous and fairly pointless.
* Dangerous because a device that was removed from the array
* might have a event_count that still looks up-to-date,
* so it can be re-added without a resync.
* Pointless because if there are any spares to skip,
* then a recovery will happen and soon that array won't
* be degraded any more and the spare can go back to sleep then.
*/
nospares = 0;
sync_req = mddev->in_sync;
/* If this is just a dirty<->clean transition, and the array is clean
* and 'events' is odd, we can roll back to the previous clean state */
if (nospares
&& (mddev->in_sync && mddev->recovery_cp == MaxSector)
&& mddev->can_decrease_events
&& mddev->events != 1) {
mddev->events--;
mddev->can_decrease_events = 0;
} else {
/* otherwise we have to go forward and ... */
mddev->events ++;
mddev->can_decrease_events = nospares;
}
/*
* This 64-bit counter should never wrap.
* Either we are in around ~1 trillion A.C., assuming
* 1 reboot per second, or we have a bug...
*/
WARN_ON(mddev->events == 0);
rdev_for_each(rdev, mddev) {
if (rdev->badblocks.changed)
any_badblocks_changed++;
if (test_bit(Faulty, &rdev->flags))
set_bit(FaultRecorded, &rdev->flags);
}
sync_sbs(mddev, nospares);
spin_unlock(&mddev->lock);
pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
mdname(mddev), mddev->in_sync);
if (mddev->queue)
blk_add_trace_msg(mddev->queue, "md md_update_sb");
rewrite:
md_bitmap_update_sb(mddev->bitmap);
rdev_for_each(rdev, mddev) {
if (rdev->sb_loaded != 1)
continue; /* no noise on spare devices */
if (!test_bit(Faulty, &rdev->flags)) {
md_super_write(mddev,rdev,
rdev->sb_start, rdev->sb_size,
rdev->sb_page);
pr_debug("md: (write) %pg's sb offset: %llu\n",
rdev->bdev,
(unsigned long long)rdev->sb_start);
rdev->sb_events = mddev->events;
if (rdev->badblocks.size) {
md_super_write(mddev, rdev,
rdev->badblocks.sector,
rdev->badblocks.size << 9,
rdev->bb_page);
rdev->badblocks.size = 0;
}
} else
pr_debug("md: %pg (skipping faulty)\n",
rdev->bdev);
if (mddev->level == LEVEL_MULTIPATH)
/* only need to write one superblock... */
break;
}
if (md_super_wait(mddev) < 0)
goto rewrite;
/* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */
if (mddev_is_clustered(mddev) && ret == 0)
md_cluster_ops->metadata_update_finish(mddev);
if (mddev->in_sync != sync_req ||
!bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN)))
/* have to write it out again */
goto repeat;
wake_up(&mddev->sb_wait);
if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
sysfs_notify_dirent_safe(mddev->sysfs_completed);
rdev_for_each(rdev, mddev) {
if (test_and_clear_bit(FaultRecorded, &rdev->flags))
clear_bit(Blocked, &rdev->flags);
if (any_badblocks_changed)
ack_all_badblocks(&rdev->badblocks);
clear_bit(BlockedBadBlocks, &rdev->flags);
wake_up(&rdev->blocked_wait);
}
}
EXPORT_SYMBOL(md_update_sb);
static int add_bound_rdev(struct md_rdev *rdev)
{
struct mddev *mddev = rdev->mddev;
int err = 0;
bool add_journal = test_bit(Journal, &rdev->flags);
if (!mddev->pers->hot_remove_disk || add_journal) {
/* If there is hot_add_disk but no hot_remove_disk
* then added disks for geometry changes,
* and should be added immediately.
*/
super_types[mddev->major_version].
validate_super(mddev, rdev);
if (add_journal)
mddev_suspend(mddev);
err = mddev->pers->hot_add_disk(mddev, rdev);
if (add_journal)
mddev_resume(mddev);
if (err) {
md_kick_rdev_from_array(rdev);
return err;
}
}
sysfs_notify_dirent_safe(rdev->sysfs_state);
set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
if (mddev->degraded)
set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
md_new_event();
md_wakeup_thread(mddev->thread);
return 0;
}
/* words written to sysfs files may, or may not, be \n terminated.
* We want to accept with case. For this we use cmd_match.
*/
static int cmd_match(const char *cmd, const char *str)
{
/* See if cmd, written into a sysfs file, matches
* str. They must either be the same, or cmd can
* have a trailing newline
*/
while (*cmd && *str && *cmd == *str) {
cmd++;
str++;
}
if (*cmd == '\n')
cmd++;
if (*str || *cmd)
return 0;
return 1;
}
struct rdev_sysfs_entry {
struct attribute attr;
ssize_t (*show)(struct md_rdev *, char *);
ssize_t (*store)(struct md_rdev *, const char *, size_t);
};
static ssize_t
state_show(struct md_rdev *rdev, char *page)
{
char *sep = ",";
size_t len = 0;
unsigned long flags = READ_ONCE(rdev->flags);
if (test_bit(Faulty, &flags) ||
(!test_bit(ExternalBbl, &flags) &&
rdev->badblocks.unacked_exist))
len += sprintf(page+len, "faulty%s", sep);
if (test_bit(In_sync, &flags))
len += sprintf(page+len, "in_sync%s", sep);
if (test_bit(Journal, &flags))
len += sprintf(page+len, "journal%s", sep);
if (test_bit(WriteMostly, &flags))
len += sprintf(page+len, "write_mostly%s", sep);
if (test_bit(Blocked, &flags) ||
(rdev->badblocks.unacked_exist
&& !test_bit(Faulty, &flags)))
len += sprintf(page+len, "blocked%s", sep);
if (!test_bit(Faulty, &flags) &&
!test_bit(Journal, &flags) &&
!test_bit(In_sync, &flags))
len += sprintf(page+len, "spare%s", sep);
if (test_bit(WriteErrorSeen, &flags))
len += sprintf(page+len, "write_error%s", sep);
if (test_bit(WantReplacement, &flags))
len += sprintf(page+len, "want_replacement%s", sep);
if (test_bit(Replacement, &flags))
len += sprintf(page+len, "replacement%s", sep);
if (test_bit(ExternalBbl, &flags))
len += sprintf(page+len, "external_bbl%s", sep);
if (test_bit(FailFast, &flags))
len += sprintf(page+len, "failfast%s", sep);
if (len)
len -= strlen(sep);
return len+sprintf(page+len, "\n");
}
static ssize_t
state_store(struct md_rdev *rdev, const char *buf, size_t len)
{
/* can write
* faulty - simulates an error
* remove - disconnects the device
* writemostly - sets write_mostly
* -writemostly - clears write_mostly
* blocked - sets the Blocked flags
* -blocked - clears the Blocked and possibly simulates an error
* insync - sets Insync providing device isn't active
* -insync - clear Insync for a device with a slot assigned,
* so that it gets rebuilt based on bitmap
* write_error - sets WriteErrorSeen
* -write_error - clears WriteErrorSeen
* {,-}failfast - set/clear FailFast
*/
struct mddev *mddev = rdev->mddev;
int err = -EINVAL;
bool need_update_sb = false;
if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
md_error(rdev->mddev, rdev);
if (test_bit(MD_BROKEN, &rdev->mddev->flags))
err = -EBUSY;
else
err = 0;
} else if (cmd_match(buf, "remove")) {
if (rdev->mddev->pers) {
clear_bit(Blocked, &rdev->flags);
remove_and_add_spares(rdev->mddev, rdev);
}
if (rdev->raid_disk >= 0)
err = -EBUSY;
else {
err = 0;
if (mddev_is_clustered(mddev))
err = md_cluster_ops->remove_disk(mddev, rdev);
if (err == 0) {
md_kick_rdev_from_array(rdev);
if (mddev->pers) {
set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
md_wakeup_thread(mddev->thread);
}
md_new_event();
}
}
} else if (cmd_match(buf, "writemostly")) {
set_bit(WriteMostly, &rdev->flags);
mddev_create_serial_pool(rdev->mddev, rdev, false);
need_update_sb = true;
err = 0;
} else if (cmd_match(buf, "-writemostly")) {
mddev_destroy_serial_pool(rdev->mddev, rdev, false);
clear_bit(WriteMostly, &rdev->flags);
need_update_sb = true;
err = 0;
} else if (cmd_match(buf, "blocked")) {
set_bit(Blocked, &rdev->flags);
err = 0;
} else if (cmd_match(buf, "-blocked")) {
if (!test_bit(Faulty, &rdev->flags) &&
!test_bit(ExternalBbl, &rdev->flags) &&
rdev->badblocks.unacked_exist) {
/* metadata handler doesn't understand badblocks,
* so we need to fail the device
*/
md_error(rdev->mddev, rdev);
}
clear_bit(Blocked, &rdev->flags);
clear_bit(BlockedBadBlocks, &rdev->flags);
wake_up(&rdev->blocked_wait);
set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
md_wakeup_thread(rdev->mddev->thread);
err = 0;
} else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
set_bit(In_sync, &rdev->flags);
err = 0;
} else if (cmd_match(buf, "failfast")) {
set_bit(FailFast, &rdev->flags);
need_update_sb = true;
err = 0;
} else if (cmd_match(buf, "-failfast")) {
clear_bit(FailFast, &rdev->flags);
need_update_sb = true;
err = 0;
} else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 &&
!test_bit(Journal, &rdev->flags)) {
if (rdev->mddev->pers == NULL) {
clear_bit(In_sync, &rdev->flags);
rdev->saved_raid_disk = rdev->raid_disk;
rdev->raid_disk = -1;
err = 0;
}
} else if (cmd_match(buf, "write_error")) {
set_bit(WriteErrorSeen, &rdev->flags);
err = 0;
} else if (cmd_match(buf, "-write_error")) {
clear_bit(WriteErrorSeen, &rdev->flags);
err = 0;
} else if (cmd_match(buf, "want_replacement")) {
/* Any non-spare device that is not a replacement can
* become want_replacement at any time, but we then need to
* check if recovery is needed.
*/
if (rdev->raid_disk >= 0 &&
!test_bit(Journal, &rdev->flags) &&
!test_bit(Replacement, &rdev->flags))
set_bit(WantReplacement, &rdev->flags);
set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
md_wakeup_thread(rdev->mddev->thread);
err = 0;
} else if (cmd_match(buf, "-want_replacement")) {
/* Clearing 'want_replacement' is always allowed.
* Once replacements starts it is too late though.
*/
err = 0;
clear_bit(WantReplacement, &rdev->flags);
} else if (cmd_match(buf, "replacement")) {
/* Can only set a device as a replacement when array has not
* yet been started. Once running, replacement is automatic
* from spares, or by assigning 'slot'.
*/
if (rdev->mddev->pers)
err = -EBUSY;
else {
set_bit(Replacement, &rdev->flags);
err = 0;
}
} else if (cmd_match(buf, "-replacement")) {
/* Similarly, can only clear Replacement before start */
if (rdev->mddev->pers)
err = -EBUSY;
else {
clear_bit(Replacement, &rdev->flags);
err = 0;
}
} else if (cmd_match(buf, "re-add")) {
if (!rdev->mddev->pers)
err = -EINVAL;
else if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) &&
rdev->saved_raid_disk >= 0) {
/* clear_bit is performed _after_ all the devices
* have their local Faulty bit cleared. If any writes
* happen in the meantime in the local node, they
* will land in the local bitmap, which will be synced
* by this node eventually
*/
if (!mddev_is_clustered(rdev->mddev) ||
(err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
clear_bit(Faulty, &rdev->flags);
err = add_bound_rdev(rdev);
}
} else
err = -EBUSY;
} else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) {
set_bit(ExternalBbl, &rdev->flags);
rdev->badblocks.shift = 0;
err = 0;
} else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) {
clear_bit(ExternalBbl, &rdev->flags);
err = 0;
}
if (need_update_sb)
md_update_sb(mddev, 1);
if (!err)
sysfs_notify_dirent_safe(rdev->sysfs_state);
return err ? err : len;
}
static struct rdev_sysfs_entry rdev_state =
__ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
static ssize_t
errors_show(struct md_rdev *rdev, char *page)
{
return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
}
static ssize_t
errors_store(struct md_rdev *rdev, const char *buf, size_t len)
{
unsigned int n;
int rv;
rv = kstrtouint(buf, 10, &n);
if (rv < 0)
return rv;
atomic_set(&rdev->corrected_errors, n);
return len;
}
static struct rdev_sysfs_entry rdev_errors =
__ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
static ssize_t
slot_show(struct md_rdev *rdev, char *page)
{
if (test_bit(Journal, &rdev->flags))
return sprintf(page, "journal\n");
else if (rdev->raid_disk < 0)
return sprintf(page, "none\n");
else
return sprintf(page, "%d\n", rdev->raid_disk);
}
static ssize_t
slot_store(struct md_rdev *rdev, const char *buf, size_t len)
{
int slot;
int err;
if (test_bit(Journal, &rdev->flags))
return -EBUSY;
if (strncmp(buf, "none", 4)==0)
slot = -1;
else {
err = kstrtouint(buf, 10, (unsigned int *)&slot);
if (err < 0)
return err;
}
if (rdev->mddev->pers && slot == -1) {
/* Setting 'slot' on an active array requires also
* updating the 'rd%d' link, and communicating
* with the personality with ->hot_*_disk.
* For now we only support removing
* failed/spare devices. This normally happens automatically,
* but not when the metadata is externally managed.
*/
if (rdev->raid_disk == -1)
return -EEXIST;
/* personality does all needed checks */
if (rdev->mddev->pers->hot_remove_disk == NULL)
return -EINVAL;
clear_bit(Blocked, &rdev->flags);
remove_and_add_spares(rdev->mddev, rdev);
if (rdev->raid_disk >= 0)
return -EBUSY;
set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
md_wakeup_thread(rdev->mddev->thread);
} else if (rdev->mddev->pers) {
/* Activating a spare .. or possibly reactivating
* if we ever get bitmaps working here.
*/
int err;
if (rdev->raid_disk != -1)
return -EBUSY;
if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
return -EBUSY;
if (rdev->mddev->pers->hot_add_disk == NULL)
return -EINVAL;
if (slot >= rdev->mddev->raid_disks &&
slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
return -ENOSPC;
rdev->raid_disk = slot;
if (test_bit(In_sync, &rdev->flags))
rdev->saved_raid_disk = slot;
else
rdev->saved_raid_disk = -1;
clear_bit(In_sync, &rdev->flags);
clear_bit(Bitmap_sync, &rdev->flags);
err = rdev->mddev->pers->hot_add_disk(rdev->mddev, rdev);
if (err) {
rdev->raid_disk = -1;
return err;
} else
sysfs_notify_dirent_safe(rdev->sysfs_state);
/* failure here is OK */;
sysfs_link_rdev(rdev->mddev, rdev);
/* don't wakeup anyone, leave that to userspace. */
} else {
if (slot >= rdev->mddev->raid_disks &&
slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
return -ENOSPC;
rdev->raid_disk = slot;
/* assume it is working */
clear_bit(Faulty, &rdev->flags);
clear_bit(WriteMostly, &rdev->flags);
set_bit(In_sync, &rdev->flags);
sysfs_notify_dirent_safe(rdev->sysfs_state);
}
return len;
}
static struct rdev_sysfs_entry rdev_slot =
__ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
static ssize_t
offset_show(struct md_rdev *rdev, char *page)
{
return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
}
static ssize_t
offset_store(struct md_rdev *rdev, const char *buf, size_t len)
{
unsigned long long offset;
if (kstrtoull(buf, 10, &offset) < 0)
return -EINVAL;
if (rdev->mddev->pers && rdev->raid_disk >= 0)
return -EBUSY;
if (rdev->sectors && rdev->mddev->external)
/* Must set offset before size, so overlap checks
* can be sane */
return -EBUSY;
rdev->data_offset = offset;
rdev->new_data_offset = offset;
return len;
}
static struct rdev_sysfs_entry rdev_offset =
__ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
{
return sprintf(page, "%llu\n",
(unsigned long long)rdev->new_data_offset);
}
static ssize_t new_offset_store(struct md_rdev *rdev,
const char *buf, size_t len)
{
unsigned long long new_offset;
struct mddev *mddev = rdev->mddev;
if (kstrtoull(buf, 10, &new_offset) < 0)
return -EINVAL;
if (mddev->sync_thread ||
test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
return -EBUSY;
if (new_offset == rdev->data_offset)
/* reset is always permitted */
;
else if (new_offset > rdev->data_offset) {
/* must not push array size beyond rdev_sectors */
if (new_offset - rdev->data_offset
+ mddev->dev_sectors > rdev->sectors)
return -E2BIG;
}
/* Metadata worries about other space details. */
/* decreasing the offset is inconsistent with a backwards
* reshape.
*/
if (new_offset < rdev->data_offset &&
mddev->reshape_backwards)
return -EINVAL;
/* Increasing offset is inconsistent with forwards
* reshape. reshape_direction should be set to
* 'backwards' first.
*/
if (new_offset > rdev->data_offset &&
!mddev->reshape_backwards)
return -EINVAL;
if (mddev->pers && mddev->persistent &&
!super_types[mddev->major_version]
.allow_new_offset(rdev, new_offset))
return -E2BIG;
rdev->new_data_offset = new_offset;
if (new_offset > rdev->data_offset)
mddev->reshape_backwards = 1;
else if (new_offset < rdev->data_offset)
mddev->reshape_backwards = 0;
return len;
}
static struct rdev_sysfs_entry rdev_new_offset =
__ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
static ssize_t
rdev_size_show(struct md_rdev *rdev, char *page)
{
return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
}
static int md_rdevs_overlap(struct md_rdev *a, struct md_rdev *b)
{
/* check if two start/length pairs overlap */
if (a->data_offset + a->sectors <= b->data_offset)
return false;
if (b->data_offset + b->sectors <= a->data_offset)
return false;
return true;
}
static bool md_rdev_overlaps(struct md_rdev *rdev)
{
struct mddev *mddev;
struct md_rdev *rdev2;
spin_lock(&all_mddevs_lock);
list_for_each_entry(mddev, &all_mddevs, all_mddevs) {
if (test_bit(MD_DELETED, &mddev->flags))
continue;
rdev_for_each(rdev2, mddev) {
if (rdev != rdev2 && rdev->bdev == rdev2->bdev &&
md_rdevs_overlap(rdev, rdev2)) {
spin_unlock(&all_mddevs_lock);
return true;
}
}
}
spin_unlock(&all_mddevs_lock);
return false;
}
static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
{
unsigned long long blocks;
sector_t new;
if (kstrtoull(buf, 10, &blocks) < 0)
return -EINVAL;
if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
return -EINVAL; /* sector conversion overflow */
new = blocks * 2;
if (new != blocks * 2)
return -EINVAL; /* unsigned long long to sector_t overflow */
*sectors = new;
return 0;
}
static ssize_t
rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
{
struct mddev *my_mddev = rdev->mddev;
sector_t oldsectors = rdev->sectors;
sector_t sectors;
if (test_bit(Journal, &rdev->flags))
return -EBUSY;
if (strict_blocks_to_sectors(buf, &sectors) < 0)
return -EINVAL;
if (rdev->data_offset != rdev->new_data_offset)
return -EINVAL; /* too confusing */
if (my_mddev->pers && rdev->raid_disk >= 0) {
if (my_mddev->persistent) {
sectors = super_types[my_mddev->major_version].
rdev_size_change(rdev, sectors);
if (!sectors)
return -EBUSY;
} else if (!sectors)
sectors = bdev_nr_sectors(rdev->bdev) -
rdev->data_offset;
if (!my_mddev->pers->resize)
/* Cannot change size for RAID0 or Linear etc */
return -EINVAL;
}
if (sectors < my_mddev->dev_sectors)
return -EINVAL; /* component must fit device */
rdev->sectors = sectors;
/*
* Check that all other rdevs with the same bdev do not overlap. This
* check does not provide a hard guarantee, it just helps avoid
* dangerous mistakes.
*/
if (sectors > oldsectors && my_mddev->external &&
md_rdev_overlaps(rdev)) {
/*
* Someone else could have slipped in a size change here, but
* doing so is just silly. We put oldsectors back because we
* know it is safe, and trust userspace not to race with itself.
*/
rdev->sectors = oldsectors;
return -EBUSY;
}
return len;
}
static struct rdev_sysfs_entry rdev_size =
__ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
{
unsigned long long recovery_start = rdev->recovery_offset;
if (test_bit(In_sync, &rdev->flags) ||
recovery_start == MaxSector)
return sprintf(page, "none\n");
return sprintf(page, "%llu\n", recovery_start);
}
static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
{
unsigned long long recovery_start;
if (cmd_match(buf, "none"))
recovery_start = MaxSector;
else if (kstrtoull(buf, 10, &recovery_start))
return -EINVAL;
if (rdev->mddev->pers &&
rdev->raid_disk >= 0)
return -EBUSY;
rdev->recovery_offset = recovery_start;
if (recovery_start == MaxSector)
set_bit(In_sync, &rdev->flags);
else
clear_bit(In_sync, &rdev->flags);
return len;
}
static struct rdev_sysfs_entry rdev_recovery_start =
__ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
/* sysfs access to bad-blocks list.
* We present two files.
* 'bad-blocks' lists sector numbers and lengths of ranges that
* are recorded as bad. The list is truncated to fit within
* the one-page limit of sysfs.
* Writing "sector length" to this file adds an acknowledged
* bad block list.
* 'unacknowledged-bad-blocks' lists bad blocks that have not yet
* been acknowledged. Writing to this file adds bad blocks
* without acknowledging them. This is largely for testing.
*/
static ssize_t bb_show(struct md_rdev *rdev, char *page)
{
return badblocks_show(&rdev->badblocks, page, 0);
}
static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
{
int rv = badblocks_store(&rdev->badblocks, page, len, 0);
/* Maybe that ack was all we needed */
if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
wake_up(&rdev->blocked_wait);
return rv;
}
static struct rdev_sysfs_entry rdev_bad_blocks =
__ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
static ssize_t ubb_show(struct md_rdev *rdev, char *page)
{
return badblocks_show(&rdev->badblocks, page, 1);
}
static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
{
return badblocks_store(&rdev->badblocks, page, len, 1);
}
static struct rdev_sysfs_entry rdev_unack_bad_blocks =
__ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
static ssize_t
ppl_sector_show(struct md_rdev *rdev, char *page)
{
return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector);
}
static ssize_t
ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len)
{
unsigned long long sector;
if (kstrtoull(buf, 10, &sector) < 0)
return -EINVAL;
if (sector != (sector_t)sector)
return -EINVAL;
if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
rdev->raid_disk >= 0)
return -EBUSY;
if (rdev->mddev->persistent) {
if (rdev->mddev->major_version == 0)
return -EINVAL;
if ((sector > rdev->sb_start &&
sector - rdev->sb_start > S16_MAX) ||
(sector < rdev->sb_start &&
rdev->sb_start - sector > -S16_MIN))
return -EINVAL;
rdev->ppl.offset = sector - rdev->sb_start;
} else if (!rdev->mddev->external) {
return -EBUSY;
}
rdev->ppl.sector = sector;
return len;
}
static struct rdev_sysfs_entry rdev_ppl_sector =
__ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store);
static ssize_t
ppl_size_show(struct md_rdev *rdev, char *page)
{
return sprintf(page, "%u\n", rdev->ppl.size);
}
static ssize_t
ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len)
{
unsigned int size;
if (kstrtouint(buf, 10, &size) < 0)
return -EINVAL;
if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
rdev->raid_disk >= 0)
return -EBUSY;
if (rdev->mddev->persistent) {
if (rdev->mddev->major_version == 0)
return -EINVAL;
if (size > U16_MAX)
return -EINVAL;
} else if (!rdev->mddev->external) {
return -EBUSY;
}
rdev->ppl.size = size;
return len;
}
static struct rdev_sysfs_entry rdev_ppl_size =
__ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store);
static struct attribute *rdev_default_attrs[] = {
&rdev_state.attr,
&rdev_errors.attr,
&rdev_slot.attr,
&rdev_offset.attr,
&rdev_new_offset.attr,
&rdev_size.attr,
&rdev_recovery_start.attr,
&rdev_bad_blocks.attr,
&rdev_unack_bad_blocks.attr,
&rdev_ppl_sector.attr,
&rdev_ppl_size.attr,
NULL,
};
ATTRIBUTE_GROUPS(rdev_default);
static ssize_t
rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
{
struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
if (!entry->show)
return -EIO;
if (!rdev->mddev)
return -ENODEV;
return entry->show(rdev, page);
}
static ssize_t
rdev_attr_store(struct kobject *kobj, struct attribute *attr,
const char *page, size_t length)
{
struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
ssize_t rv;
struct mddev *mddev = rdev->mddev;
if (!entry->store)
return -EIO;
if (!capable(CAP_SYS_ADMIN))
return -EACCES;
rv = mddev ? mddev_lock(mddev) : -ENODEV;
if (!rv) {
if (rdev->mddev == NULL)
rv = -ENODEV;
else
rv = entry->store(rdev, page, length);
mddev_unlock(mddev);
}
return rv;
}
static void rdev_free(struct kobject *ko)
{
struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
kfree(rdev);
}
static const struct sysfs_ops rdev_sysfs_ops = {
.show = rdev_attr_show,
.store = rdev_attr_store,
};
static struct kobj_type rdev_ktype = {
.release = rdev_free,
.sysfs_ops = &rdev_sysfs_ops,
.default_groups = rdev_default_groups,
};
int md_rdev_init(struct md_rdev *rdev)
{
rdev->desc_nr = -1;
rdev->saved_raid_disk = -1;
rdev->raid_disk = -1;
rdev->flags = 0;
rdev->data_offset = 0;
rdev->new_data_offset = 0;
rdev->sb_events = 0;
rdev->last_read_error = 0;
rdev->sb_loaded = 0;
rdev->bb_page = NULL;
atomic_set(&rdev->nr_pending, 0);
atomic_set(&rdev->read_errors, 0);
atomic_set(&rdev->corrected_errors, 0);
INIT_LIST_HEAD(&rdev->same_set);
init_waitqueue_head(&rdev->blocked_wait);
/* Add space to store bad block list.
* This reserves the space even on arrays where it cannot
* be used - I wonder if that matters
*/
return badblocks_init(&rdev->badblocks, 0);
}
EXPORT_SYMBOL_GPL(md_rdev_init);
/*
* Import a device. If 'super_format' >= 0, then sanity check the superblock
*
* mark the device faulty if:
*
* - the device is nonexistent (zero size)
* - the device has no valid superblock
*
* a faulty rdev _never_ has rdev->sb set.
*/
static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
{
static struct md_rdev claim_rdev; /* just for claiming the bdev */
struct md_rdev *rdev;
sector_t size;
int err;
rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
if (!rdev)
return ERR_PTR(-ENOMEM);
err = md_rdev_init(rdev);
if (err)
goto out_free_rdev;
err = alloc_disk_sb(rdev);
if (err)
goto out_clear_rdev;
rdev->bdev = blkdev_get_by_dev(newdev,
FMODE_READ | FMODE_WRITE | FMODE_EXCL,
super_format == -2 ? &claim_rdev : rdev);
if (IS_ERR(rdev->bdev)) {
pr_warn("md: could not open device unknown-block(%u,%u).\n",
MAJOR(newdev), MINOR(newdev));
err = PTR_ERR(rdev->bdev);
goto out_clear_rdev;
}
kobject_init(&rdev->kobj, &rdev_ktype);
size = bdev_nr_bytes(rdev->bdev) >> BLOCK_SIZE_BITS;
if (!size) {
pr_warn("md: %pg has zero or unknown size, marking faulty!\n",
rdev->bdev);
err = -EINVAL;
goto out_blkdev_put;
}
if (super_format >= 0) {
err = super_types[super_format].
load_super(rdev, NULL, super_minor);
if (err == -EINVAL) {
pr_warn("md: %pg does not have a valid v%d.%d superblock, not importing!\n",
rdev->bdev,
super_format, super_minor);
goto out_blkdev_put;
}
if (err < 0) {
pr_warn("md: could not read %pg's sb, not importing!\n",
rdev->bdev);
goto out_blkdev_put;
}
}
return rdev;
out_blkdev_put:
blkdev_put(rdev->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
out_clear_rdev:
md_rdev_clear(rdev);
out_free_rdev:
kfree(rdev);
return ERR_PTR(err);
}
/*
* Check a full RAID array for plausibility
*/
static int analyze_sbs(struct mddev *mddev)
{
int i;
struct md_rdev *rdev, *freshest, *tmp;
freshest = NULL;
rdev_for_each_safe(rdev, tmp, mddev)
switch (super_types[mddev->major_version].
load_super(rdev, freshest, mddev->minor_version)) {
case 1:
freshest = rdev;
break;
case 0:
break;
default:
pr_warn("md: fatal superblock inconsistency in %pg -- removing from array\n",
rdev->bdev);
md_kick_rdev_from_array(rdev);
}
/* Cannot find a valid fresh disk */
if (!freshest) {
pr_warn("md: cannot find a valid disk\n");
return -EINVAL;
}
super_types[mddev->major_version].
validate_super(mddev, freshest);
i = 0;
rdev_for_each_safe(rdev, tmp, mddev) {
if (mddev->max_disks &&
(rdev->desc_nr >= mddev->max_disks ||
i > mddev->max_disks)) {
pr_warn("md: %s: %pg: only %d devices permitted\n",
mdname(mddev), rdev->bdev,
mddev->max_disks);
md_kick_rdev_from_array(rdev);
continue;
}
if (rdev != freshest) {
if (super_types[mddev->major_version].
validate_super(mddev, rdev)) {
pr_warn("md: kicking non-fresh %pg from array!\n",
rdev->bdev);
md_kick_rdev_from_array(rdev);
continue;
}
}
if (mddev->level == LEVEL_MULTIPATH) {
rdev->desc_nr = i++;
rdev->raid_disk = rdev->desc_nr;
set_bit(In_sync, &rdev->flags);
} else if (rdev->raid_disk >=
(mddev->raid_disks - min(0, mddev->delta_disks)) &&
!test_bit(Journal, &rdev->flags)) {
rdev->raid_disk = -1;
clear_bit(In_sync, &rdev->flags);
}
}
return 0;
}
/* Read a fixed-point number.
* Numbers in sysfs attributes should be in "standard" units where
* possible, so time should be in seconds.
* However we internally use a a much smaller unit such as
* milliseconds or jiffies.
* This function takes a decimal number with a possible fractional
* component, and produces an integer which is the result of
* multiplying that number by 10^'scale'.
* all without any floating-point arithmetic.
*/
int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
{
unsigned long result = 0;
long decimals = -1;
while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
if (*cp == '.')
decimals = 0;
else if (decimals < scale) {
unsigned int value;
value = *cp - '0';
result = result * 10 + value;
if (decimals >= 0)
decimals++;
}
cp++;
}
if (*cp == '\n')
cp++;
if (*cp)
return -EINVAL;
if (decimals < 0)
decimals = 0;
*res = result * int_pow(10, scale - decimals);
return 0;
}
static ssize_t
safe_delay_show(struct mddev *mddev, char *page)
{
int msec = (mddev->safemode_delay*1000)/HZ;
return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
}
static ssize_t
safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
{
unsigned long msec;
if (mddev_is_clustered(mddev)) {
pr_warn("md: Safemode is disabled for clustered mode\n");
return -EINVAL;
}
if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
return -EINVAL;
if (msec == 0)
mddev->safemode_delay = 0;
else {
unsigned long old_delay = mddev->safemode_delay;
unsigned long new_delay = (msec*HZ)/1000;
if (new_delay == 0)
new_delay = 1;
mddev->safemode_delay = new_delay;
if (new_delay < old_delay || old_delay == 0)
mod_timer(&mddev->safemode_timer, jiffies+1);
}
return len;
}
static struct md_sysfs_entry md_safe_delay =
__ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
static ssize_t
level_show(struct mddev *mddev, char *page)
{
struct md_personality *p;
int ret;
spin_lock(&mddev->lock);
p = mddev->pers;
if (p)
ret = sprintf(page, "%s\n", p->name);
else if (mddev->clevel[0])
ret = sprintf(page, "%s\n", mddev->clevel);
else if (mddev->level != LEVEL_NONE)
ret = sprintf(page, "%d\n", mddev->level);
else
ret = 0;
spin_unlock(&mddev->lock);
return ret;
}
static ssize_t
level_store(struct mddev *mddev, const char *buf, size_t len)
{
char clevel[16];
ssize_t rv;
size_t slen = len;
struct md_personality *pers, *oldpers;
long level;
void *priv, *oldpriv;
struct md_rdev *rdev;
if (slen == 0 || slen >= sizeof(clevel))
return -EINVAL;
rv = mddev_lock(mddev);
if (rv)
return rv;
if (mddev->pers == NULL) {
strncpy(mddev->clevel, buf, slen);
if (mddev->clevel[slen-1] == '\n')
slen--;
mddev->clevel[slen] = 0;
mddev->level = LEVEL_NONE;
rv = len;
goto out_unlock;
}
rv = -EROFS;
if (!md_is_rdwr(mddev))
goto out_unlock;
/* request to change the personality. Need to ensure:
* - array is not engaged in resync/recovery/reshape
* - old personality can be suspended
* - new personality will access other array.
*/
rv = -EBUSY;
if (mddev->sync_thread ||
test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
mddev->reshape_position != MaxSector ||
mddev->sysfs_active)
goto out_unlock;
rv = -EINVAL;
if (!mddev->pers->quiesce) {
pr_warn("md: %s: %s does not support online personality change\n",
mdname(mddev), mddev->pers->name);
goto out_unlock;
}
/* Now find the new personality */
strncpy(clevel, buf, slen);
if (clevel[slen-1] == '\n')
slen--;
clevel[slen] = 0;
if (kstrtol(clevel, 10, &level))
level = LEVEL_NONE;
if (request_module("md-%s", clevel) != 0)
request_module("md-level-%s", clevel);
spin_lock(&pers_lock);
pers = find_pers(level, clevel);
if (!pers || !try_module_get(pers->owner)) {
spin_unlock(&pers_lock);
pr_warn("md: personality %s not loaded\n", clevel);
rv = -EINVAL;
goto out_unlock;
}
spin_unlock(&pers_lock);
if (pers == mddev->pers) {
/* Nothing to do! */
module_put(pers->owner);
rv = len;
goto out_unlock;
}
if (!pers->takeover) {
module_put(pers->owner);
pr_warn("md: %s: %s does not support personality takeover\n",
mdname(mddev), clevel);
rv = -EINVAL;
goto out_unlock;
}
rdev_for_each(rdev, mddev)
rdev->new_raid_disk = rdev->raid_disk;
/* ->takeover must set new_* and/or delta_disks
* if it succeeds, and may set them when it fails.
*/
priv = pers->takeover(mddev);
if (IS_ERR(priv)) {
mddev->new_level = mddev->level;
mddev->new_layout = mddev->layout;
mddev->new_chunk_sectors = mddev->chunk_sectors;
mddev->raid_disks -= mddev->delta_disks;
mddev->delta_disks = 0;
mddev->reshape_backwards = 0;
module_put(pers->owner);
pr_warn("md: %s: %s would not accept array\n",
mdname(mddev), clevel);
rv = PTR_ERR(priv);
goto out_unlock;
}
/* Looks like we have a winner */
mddev_suspend(mddev);
mddev_detach(mddev);
spin_lock(&mddev->lock);
oldpers = mddev->pers;
oldpriv = mddev->private;
mddev->pers = pers;
mddev->private = priv;
strscpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
mddev->level = mddev->new_level;
mddev->layout = mddev->new_layout;
mddev->chunk_sectors = mddev->new_chunk_sectors;
mddev->delta_disks = 0;
mddev->reshape_backwards = 0;
mddev->degraded = 0;
spin_unlock(&mddev->lock);
if (oldpers->sync_request == NULL &&
mddev->external) {
/* We are converting from a no-redundancy array
* to a redundancy array and metadata is managed
* externally so we need to be sure that writes
* won't block due to a need to transition
* clean->dirty
* until external management is started.
*/
mddev->in_sync = 0;
mddev->safemode_delay = 0;
mddev->safemode = 0;
}
oldpers->free(mddev, oldpriv);
if (oldpers->sync_request == NULL &&
pers->sync_request != NULL) {
/* need to add the md_redundancy_group */
if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
pr_warn("md: cannot register extra attributes for %s\n",
mdname(mddev));
mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed");
mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded");
}
if (oldpers->sync_request != NULL &&
pers->sync_request == NULL) {
/* need to remove the md_redundancy_group */
if (mddev->to_remove == NULL)
mddev->to_remove = &md_redundancy_group;
}
module_put(oldpers->owner);
rdev_for_each(rdev, mddev) {
if (rdev->raid_disk < 0)
continue;
if (rdev->new_raid_disk >= mddev->raid_disks)
rdev->new_raid_disk = -1;
if (rdev->new_raid_disk == rdev->raid_disk)
continue;
sysfs_unlink_rdev(mddev, rdev);
}
rdev_for_each(rdev, mddev) {
if (rdev->raid_disk < 0)
continue;
if (rdev->new_raid_disk == rdev->raid_disk)
continue;
rdev->raid_disk = rdev->new_raid_disk;
if (rdev->raid_disk < 0)
clear_bit(In_sync, &rdev->flags);
else {
if (sysfs_link_rdev(mddev, rdev))
pr_warn("md: cannot register rd%d for %s after level change\n",
rdev->raid_disk, mdname(mddev));
}
}
if (pers->sync_request == NULL) {
/* this is now an array without redundancy, so
* it must always be in_sync
*/
mddev->in_sync = 1;
del_timer_sync(&mddev->safemode_timer);
}
blk_set_stacking_limits(&mddev->queue->limits);
pers->run(mddev);
set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
mddev_resume(mddev);
if (!mddev->thread)
md_update_sb(mddev, 1);
sysfs_notify_dirent_safe(mddev->sysfs_level);
md_new_event();
rv = len;
out_unlock:
mddev_unlock(mddev);
return rv;
}
static struct md_sysfs_entry md_level =
__ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
static ssize_t
layout_show(struct mddev *mddev, char *page)
{
/* just a number, not meaningful for all levels */
if (mddev->reshape_position != MaxSector &&
mddev->layout != mddev->new_layout)
return sprintf(page, "%d (%d)\n",
mddev->new_layout, mddev->layout);
return sprintf(page, "%d\n", mddev->layout);
}
static ssize_t
layout_store(struct mddev *mddev, const char *buf, size_t len)
{
unsigned int n;
int err;
err = kstrtouint(buf, 10, &n);
if (err < 0)
return err;
err = mddev_lock(mddev);
if (err)
return err;
if (mddev->pers) {
if (mddev->pers->check_reshape == NULL)
err = -EBUSY;
else if (!md_is_rdwr(mddev))
err = -EROFS;
else {
mddev->new_layout = n;
err = mddev->pers->check_reshape(mddev);
if (err)
mddev->new_layout = mddev->layout;
}
} else {
mddev->new_layout = n;
if (mddev->reshape_position == MaxSector)
mddev->layout = n;
}
mddev_unlock(mddev);
return err ?: len;
}
static struct md_sysfs_entry md_layout =
__ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
static ssize_t
raid_disks_show(struct mddev *mddev, char *page)
{
if (mddev->raid_disks == 0)
return 0;
if (mddev->reshape_position != MaxSector &&
mddev->delta_disks != 0)
return sprintf(page, "%d (%d)\n", mddev->raid_disks,
mddev->raid_disks - mddev->delta_disks);
return sprintf(page, "%d\n", mddev->raid_disks);
}
static int update_raid_disks(struct mddev *mddev, int raid_disks);
static ssize_t
raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
{
unsigned int n;
int err;
err = kstrtouint(buf, 10, &n);
if (err < 0)
return err;
err = mddev_lock(mddev);
if (err)
return err;
if (mddev->pers)
err = update_raid_disks(mddev, n);
else if (mddev->reshape_position != MaxSector) {
struct md_rdev *rdev;
int olddisks = mddev->raid_disks - mddev->delta_disks;
err = -EINVAL;
rdev_for_each(rdev, mddev) {
if (olddisks < n &&
rdev->data_offset < rdev->new_data_offset)
goto out_unlock;
if (olddisks > n &&
rdev->data_offset > rdev->new_data_offset)
goto out_unlock;
}
err = 0;
mddev->delta_disks = n - olddisks;
mddev->raid_disks = n;
mddev->reshape_backwards = (mddev->delta_disks < 0);
} else
mddev->raid_disks = n;
out_unlock:
mddev_unlock(mddev);
return err ? err : len;
}
static struct md_sysfs_entry md_raid_disks =
__ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
static ssize_t
uuid_show(struct mddev *mddev, char *page)
{
return sprintf(page, "%pU\n", mddev->uuid);
}
static struct md_sysfs_entry md_uuid =
__ATTR(uuid, S_IRUGO, uuid_show, NULL);
static ssize_t
chunk_size_show(struct mddev *mddev, char *page)
{
if (mddev->reshape_position != MaxSector &&
mddev->chunk_sectors != mddev->new_chunk_sectors)
return sprintf(page, "%d (%d)\n",
mddev->new_chunk_sectors << 9,
mddev->chunk_sectors << 9);
return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
}
static ssize_t
chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
{
unsigned long n;
int err;
err = kstrtoul(buf, 10, &n);
if (err < 0)
return err;
err = mddev_lock(mddev);
if (err)
return err;
if (mddev->pers) {
if (mddev->pers->check_reshape == NULL)
err = -EBUSY;
else if (!md_is_rdwr(mddev))
err = -EROFS;
else {
mddev->new_chunk_sectors = n >> 9;
err = mddev->pers->check_reshape(mddev);
if (err)
mddev->new_chunk_sectors = mddev->chunk_sectors;
}
} else {
mddev->new_chunk_sectors = n >> 9;
if (mddev->reshape_position == MaxSector)
mddev->chunk_sectors = n >> 9;
}
mddev_unlock(mddev);
return err ?: len;
}
static struct md_sysfs_entry md_chunk_size =
__ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
static ssize_t
resync_start_show(struct mddev *mddev, char *page)
{
if (mddev->recovery_cp == MaxSector)
return sprintf(page, "none\n");
return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
}
static ssize_t
resync_start_store(struct mddev *mddev, const char *buf, size_t len)
{
unsigned long long n;
int err;
if (cmd_match(buf, "none"))
n = MaxSector;
else {
err = kstrtoull(buf, 10, &n);
if (err < 0)
return err;
if (n != (sector_t)n)
return -EINVAL;
}
err = mddev_lock(mddev);
if (err)
return err;
if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
err = -EBUSY;
if (!err) {
mddev->recovery_cp = n;
if (mddev->pers)
set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
}
mddev_unlock(mddev);
return err ?: len;
}
static struct md_sysfs_entry md_resync_start =
__ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
resync_start_show, resync_start_store);
/*
* The array state can be:
*
* clear
* No devices, no size, no level
* Equivalent to STOP_ARRAY ioctl
* inactive
* May have some settings, but array is not active
* all IO results in error
* When written, doesn't tear down array, but just stops it
* suspended (not supported yet)
* All IO requests will block. The array can be reconfigured.
* Writing this, if accepted, will block until array is quiescent
* readonly
* no resync can happen. no superblocks get written.
* write requests fail
* read-auto
* like readonly, but behaves like 'clean' on a write request.
*
* clean - no pending writes, but otherwise active.
* When written to inactive array, starts without resync
* If a write request arrives then
* if metadata is known, mark 'dirty' and switch to 'active'.
* if not known, block and switch to write-pending
* If written to an active array that has pending writes, then fails.
* active
* fully active: IO and resync can be happening.
* When written to inactive array, starts with resync
*
* write-pending
* clean, but writes are blocked waiting for 'active' to be written.
*
* active-idle
* like active, but no writes have been seen for a while (100msec).
*
* broken
* Array is failed. It's useful because mounted-arrays aren't stopped
* when array is failed, so this state will at least alert the user that
* something is wrong.
*/
enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
write_pending, active_idle, broken, bad_word};
static char *array_states[] = {
"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
"write-pending", "active-idle", "broken", NULL };
static int match_word(const char *word, char **list)
{
int n;
for (n=0; list[n]; n++)
if (cmd_match(word, list[n]))
break;
return n;
}
static ssize_t
array_state_show(struct mddev *mddev, char *page)
{
enum array_state st = inactive;
if (mddev->pers && !test_bit(MD_NOT_READY, &mddev->flags)) {
switch(mddev->ro) {
case MD_RDONLY:
st = readonly;
break;
case MD_AUTO_READ:
st = read_auto;
break;
case MD_RDWR:
spin_lock(&mddev->lock);
if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
st = write_pending;
else if (mddev->in_sync)
st = clean;
else if (mddev->safemode)
st = active_idle;
else
st = active;
spin_unlock(&mddev->lock);
}
if (test_bit(MD_BROKEN, &mddev->flags) && st == clean)
st = broken;
} else {
if (list_empty(&mddev->disks) &&
mddev->raid_disks == 0 &&
mddev->dev_sectors == 0)
st = clear;
else
st = inactive;
}
return sprintf(page, "%s\n", array_states[st]);
}
static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
static int restart_array(struct mddev *mddev);
static ssize_t
array_state_store(struct mddev *mddev, const char *buf, size_t len)
{
int err = 0;
enum array_state st = match_word(buf, array_states);
if (mddev->pers && (st == active || st == clean) &&
mddev->ro != MD_RDONLY) {
/* don't take reconfig_mutex when toggling between
* clean and active
*/
spin_lock(&mddev->lock);
if (st == active) {
restart_array(mddev);
clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
md_wakeup_thread(mddev->thread);
wake_up(&mddev->sb_wait);
} else /* st == clean */ {
restart_array(mddev);
if (!set_in_sync(mddev))
err = -EBUSY;
}
if (!err)
sysfs_notify_dirent_safe(mddev->sysfs_state);
spin_unlock(&mddev->lock);
return err ?: len;
}
err = mddev_lock(mddev);
if (err)
return err;
err = -EINVAL;
switch(st) {
case bad_word:
break;
case clear:
/* stopping an active array */
err = do_md_stop(mddev, 0, NULL);
break;
case inactive:
/* stopping an active array */
if (mddev->pers)
err = do_md_stop(mddev, 2, NULL);
else
err = 0; /* already inactive */
break;
case suspended:
break; /* not supported yet */
case readonly:
if (mddev->pers)
err = md_set_readonly(mddev, NULL);
else {
mddev->ro = MD_RDONLY;
set_disk_ro(mddev->gendisk, 1);
err = do_md_run(mddev);
}
break;
case read_auto:
if (mddev->pers) {
if (md_is_rdwr(mddev))
err = md_set_readonly(mddev, NULL);
else if (mddev->ro == MD_RDONLY)
err = restart_array(mddev);
if (err == 0) {
mddev->ro = MD_AUTO_READ;
set_disk_ro(mddev->gendisk, 0);
}
} else {
mddev->ro = MD_AUTO_READ;
err = do_md_run(mddev);
}
break;
case clean:
if (mddev->pers) {
err = restart_array(mddev);
if (err)
break;
spin_lock(&mddev->lock);
if (!set_in_sync(mddev))
err = -EBUSY;
spin_unlock(&mddev->lock);
} else
err = -EINVAL;
break;
case active:
if (mddev->pers) {
err = restart_array(mddev);
if (err)
break;
clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
wake_up(&mddev->sb_wait);
err = 0;
} else {
mddev->ro = MD_RDWR;
set_disk_ro(mddev->gendisk, 0);
err = do_md_run(mddev);
}
break;
case write_pending:
case active_idle:
case broken:
/* these cannot be set */
break;
}
if (!err) {
if (mddev->hold_active == UNTIL_IOCTL)
mddev->hold_active = 0;
sysfs_notify_dirent_safe(mddev->sysfs_state);
}
mddev_unlock(mddev);
return err ?: len;
}
static struct md_sysfs_entry md_array_state =
__ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
static ssize_t
max_corrected_read_errors_show(struct mddev *mddev, char *page) {
return sprintf(page, "%d\n",
atomic_read(&mddev->max_corr_read_errors));
}
static ssize_t
max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
{
unsigned int n;
int rv;
rv = kstrtouint(buf, 10, &n);
if (rv < 0)
return rv;
atomic_set(&mddev->max_corr_read_errors, n);
return len;
}
static struct md_sysfs_entry max_corr_read_errors =
__ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
max_corrected_read_errors_store);
static ssize_t
null_show(struct mddev *mddev, char *page)
{
return -EINVAL;
}
/* need to ensure rdev_delayed_delete() has completed */
static void flush_rdev_wq(struct mddev *mddev)
{
struct md_rdev *rdev;
rcu_read_lock();
rdev_for_each_rcu(rdev, mddev)
if (work_pending(&rdev->del_work)) {
flush_workqueue(md_rdev_misc_wq);
break;
}
rcu_read_unlock();
}
static ssize_t
new_dev_store(struct mddev *mddev, const char *buf, size_t len)
{
/* buf must be %d:%d\n? giving major and minor numbers */
/* The new device is added to the array.
* If the array has a persistent superblock, we read the
* superblock to initialise info and check validity.
* Otherwise, only checking done is that in bind_rdev_to_array,
* which mainly checks size.
*/
char *e;
int major = simple_strtoul(buf, &e, 10);
int minor;
dev_t dev;
struct md_rdev *rdev;
int err;
if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
return -EINVAL;
minor = simple_strtoul(e+1, &e, 10);
if (*e && *e != '\n')
return -EINVAL;
dev = MKDEV(major, minor);
if (major != MAJOR(dev) ||
minor != MINOR(dev))
return -EOVERFLOW;
flush_rdev_wq(mddev);
err = mddev_lock(mddev);
if (err)
return err;
if (mddev->persistent) {
rdev = md_import_device(dev, mddev->major_version,
mddev->minor_version);
if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
struct md_rdev *rdev0
= list_entry(mddev->disks.next,
struct md_rdev, same_set);
err = super_types[mddev->major_version]
.load_super(rdev, rdev0, mddev->minor_version);
if (err < 0)
goto out;
}
} else if (mddev->external)
rdev = md_import_device(dev, -2, -1);
else
rdev = md_import_device(dev, -1, -1);
if (IS_ERR(rdev)) {
mddev_unlock(mddev);
return PTR_ERR(rdev);
}
err = bind_rdev_to_array(rdev, mddev);
out:
if (err)
export_rdev(rdev);
mddev_unlock(mddev);
if (!err)
md_new_event();
return err ? err : len;
}
static struct md_sysfs_entry md_new_device =
__ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
static ssize_t
bitmap_store(struct mddev *mddev, const char *buf, size_t len)
{
char *end;
unsigned long chunk, end_chunk;
int err;
err = mddev_lock(mddev);
if (err)
return err;
if (!mddev->bitmap)
goto out;
/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
while (*buf) {
chunk = end_chunk = simple_strtoul(buf, &end, 0);
if (buf == end) break;
if (*end == '-') { /* range */
buf = end + 1;
end_chunk = simple_strtoul(buf, &end, 0);
if (buf == end) break;
}
if (*end && !isspace(*end)) break;
md_bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
buf = skip_spaces(end);
}
md_bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
out:
mddev_unlock(mddev);
return len;
}
static struct md_sysfs_entry md_bitmap =
__ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
static ssize_t
size_show(struct mddev *mddev, char *page)
{
return sprintf(page, "%llu\n",
(unsigned long long)mddev->dev_sectors / 2);
}
static int update_size(struct mddev *mddev, sector_t num_sectors);
static ssize_t
size_store(struct mddev *mddev, const char *buf, size_t len)
{
/* If array is inactive, we can reduce the component size, but
* not increase it (except from 0).
* If array is active, we can try an on-line resize
*/
sector_t sectors;
int err = strict_blocks_to_sectors(buf, &sectors);
if (err < 0)
return err;
err = mddev_lock(mddev);
if (err)
return err;
if (mddev->pers) {
err = update_size(mddev, sectors);
if (err == 0)
md_update_sb(mddev, 1);
} else {
if (mddev->dev_sectors == 0 ||
mddev->dev_sectors > sectors)
mddev->dev_sectors = sectors;
else
err = -ENOSPC;
}
mddev_unlock(mddev);
return err ? err : len;
}
static struct md_sysfs_entry md_size =
__ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
/* Metadata version.
* This is one of
* 'none' for arrays with no metadata (good luck...)
* 'external' for arrays with externally managed metadata,
* or N.M for internally known formats
*/
static ssize_t
metadata_show(struct mddev *mddev, char *page)
{
if (mddev->persistent)
return sprintf(page, "%d.%d\n",
mddev->major_version, mddev->minor_version);
else if (mddev->external)
return sprintf(page, "external:%s\n", mddev->metadata_type);
else
return sprintf(page, "none\n");
}
static ssize_t
metadata_store(struct mddev *mddev, const char *buf, size_t len)
{
int major, minor;
char *e;
int err;
/* Changing the details of 'external' metadata is
* always permitted. Otherwise there must be
* no devices attached to the array.
*/
err = mddev_lock(mddev);
if (err)
return err;
err = -EBUSY;
if (mddev->external && strncmp(buf, "external:", 9) == 0)
;
else if (!list_empty(&mddev->disks))
goto out_unlock;
err = 0;
if (cmd_match(buf, "none")) {
mddev->persistent = 0;
mddev->external = 0;
mddev->major_version = 0;
mddev->minor_version = 90;
goto out_unlock;
}
if (strncmp(buf, "external:", 9) == 0) {
size_t namelen = len-9;
if (namelen >= sizeof(mddev->metadata_type))
namelen = sizeof(mddev->metadata_type)-1;
strncpy(mddev->metadata_type, buf+9, namelen);
mddev->metadata_type[namelen] = 0;
if (namelen && mddev->metadata_type[namelen-1] == '\n')
mddev->metadata_type[--namelen] = 0;
mddev->persistent = 0;
mddev->external = 1;
mddev->major_version = 0;
mddev->minor_version = 90;
goto out_unlock;
}
major = simple_strtoul(buf, &e, 10);
err = -EINVAL;
if (e==buf || *e != '.')
goto out_unlock;
buf = e+1;
minor = simple_strtoul(buf, &e, 10);
if (e==buf || (*e && *e != '\n') )
goto out_unlock;
err = -ENOENT;
if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
goto out_unlock;
mddev->major_version = major;
mddev->minor_version = minor;
mddev->persistent = 1;
mddev->external = 0;
err = 0;
out_unlock:
mddev_unlock(mddev);
return err ?: len;
}
static struct md_sysfs_entry md_metadata =
__ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
static ssize_t
action_show(struct mddev *mddev, char *page)
{
char *type = "idle";
unsigned long recovery = mddev->recovery;
if (test_bit(MD_RECOVERY_FROZEN, &recovery))
type = "frozen";
else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
(md_is_rdwr(mddev) && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
type = "reshape";
else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
type = "resync";
else if (test_bit(MD_RECOVERY_CHECK, &recovery))
type = "check";
else
type = "repair";
} else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
type = "recover";
else if (mddev->reshape_position != MaxSector)
type = "reshape";
}
return sprintf(page, "%s\n", type);
}
static ssize_t
action_store(struct mddev *mddev, const char *page, size_t len)
{
if (!mddev->pers || !mddev->pers->sync_request)
return -EINVAL;
if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
if (cmd_match(page, "frozen"))
set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
else
clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
mddev_lock(mddev) == 0) {
if (work_pending(&mddev->del_work))
flush_workqueue(md_misc_wq);
if (mddev->sync_thread) {
sector_t save_rp = mddev->reshape_position;
mddev_unlock(mddev);
set_bit(MD_RECOVERY_INTR, &mddev->recovery);
md_unregister_thread(&mddev->sync_thread);
mddev_lock_nointr(mddev);
/*
* set RECOVERY_INTR again and restore reshape
* position in case others changed them after
* got lock, eg, reshape_position_store and
* md_check_recovery.
*/
mddev->reshape_position = save_rp;
set_bit(MD_RECOVERY_INTR, &mddev->recovery);
md_reap_sync_thread(mddev);
}
mddev_unlock(mddev);
}
} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
return -EBUSY;
else if (cmd_match(page, "resync"))
clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
else if (cmd_match(page, "recover")) {
clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
} else if (cmd_match(page, "reshape")) {
int err;
if (mddev->pers->start_reshape == NULL)
return -EINVAL;
err = mddev_lock(mddev);
if (!err) {
if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
err = -EBUSY;
else {
clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
err = mddev->pers->start_reshape(mddev);
}
mddev_unlock(mddev);
}
if (err)
return err;
sysfs_notify_dirent_safe(mddev->sysfs_degraded);
} else {
if (cmd_match(page, "check"))
set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
else if (!cmd_match(page, "repair"))
return -EINVAL;
clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
}
if (mddev->ro == MD_AUTO_READ) {
/* A write to sync_action is enough to justify
* canceling read-auto mode
*/
mddev->ro = MD_RDWR;
md_wakeup_thread(mddev->sync_thread);
}
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
md_wakeup_thread(mddev->thread);
sysfs_notify_dirent_safe(mddev->sysfs_action);
return len;
}
static struct md_sysfs_entry md_scan_mode =
__ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
static ssize_t
last_sync_action_show(struct mddev *mddev, char *page)
{
return sprintf(page, "%s\n", mddev->last_sync_action);
}
static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
static ssize_t
mismatch_cnt_show(struct mddev *mddev, char *page)
{
return sprintf(page, "%llu\n",
(unsigned long long)
atomic64_read(&mddev->resync_mismatches));
}
static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
static ssize_t
sync_min_show(struct mddev *mddev, char *page)
{
return sprintf(page, "%d (%s)\n", speed_min(mddev),
mddev->sync_speed_min ? "local": "system");
}
static ssize_t
sync_min_store(struct mddev *mddev, const char *buf, size_t len)
{
unsigned int min;
int rv;
if (strncmp(buf, "system", 6)==0) {
min = 0;
} else {
rv = kstrtouint(buf, 10, &min);
if (rv < 0)
return rv;
if (min == 0)
return -EINVAL;
}
mddev->sync_speed_min = min;
return len;
}
static struct md_sysfs_entry md_sync_min =
__ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
static ssize_t
sync_max_show(struct mddev *mddev, char *page)
{
return sprintf(page, "%d (%s)\n", speed_max(mddev),
mddev->sync_speed_max ? "local": "system");
}
static ssize_t
sync_max_store(struct mddev *mddev, const char *buf, size_t len)
{
unsigned int max;
int rv;
if (strncmp(buf, "system", 6)==0) {
max = 0;
} else {
rv = kstrtouint(buf, 10, &max);
if (rv < 0)
return rv;
if (max == 0)
return -EINVAL;
}
mddev->sync_speed_max = max;
return len;
}
static struct md_sysfs_entry md_sync_max =
__ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
static ssize_t
degraded_show(struct mddev *mddev, char *page)
{
return sprintf(page, "%d\n", mddev->degraded);
}
static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
static ssize_t
sync_force_parallel_show(struct mddev *mddev, char *page)
{
return sprintf(page, "%d\n", mddev->parallel_resync);
}
static ssize_t
sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
{
long n;
if (kstrtol(buf, 10, &n))
return -EINVAL;
if (n != 0 && n != 1)
return -EINVAL;
mddev->parallel_resync = n;
if (mddev->sync_thread)
wake_up(&resync_wait);
return len;
}
/* force parallel resync, even with shared block devices */
static struct md_sysfs_entry md_sync_force_parallel =
__ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
sync_force_parallel_show, sync_force_parallel_store);
static ssize_t
sync_speed_show(struct mddev *mddev, char *page)
{
unsigned long resync, dt, db;
if (mddev->curr_resync == MD_RESYNC_NONE)
return sprintf(page, "none\n");
resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
dt = (jiffies - mddev->resync_mark) / HZ;
if (!dt) dt++;
db = resync - mddev->resync_mark_cnt;
return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
}
static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
static ssize_t
sync_completed_show(struct mddev *mddev, char *page)
{
unsigned long long max_sectors, resync;
if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
return sprintf(page, "none\n");
if (mddev->curr_resync == MD_RESYNC_YIELDED ||
mddev->curr_resync == MD_RESYNC_DELAYED)
return sprintf(page, "delayed\n");
if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
max_sectors = mddev->resync_max_sectors;
else
max_sectors = mddev->dev_sectors;
resync = mddev->curr_resync_completed;
return sprintf(page, "%llu / %llu\n", resync, max_sectors);
}
static struct md_sysfs_entry md_sync_completed =
__ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
static ssize_t
min_sync_show(struct mddev *mddev, char *page)
{
return sprintf(page, "%llu\n",
(unsigned long long)mddev->resync_min);
}
static ssize_t
min_sync_store(struct mddev *mddev, const char *buf, size_t len)
{
unsigned long long min;
int err;
if (kstrtoull(buf, 10, &min))
return -EINVAL;
spin_lock(&mddev->lock);
err = -EINVAL;
if (min > mddev->resync_max)
goto out_unlock;
err = -EBUSY;
if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
goto out_unlock;
/* Round down to multiple of 4K for safety */
mddev->resync_min = round_down(min, 8);
err = 0;
out_unlock:
spin_unlock(&mddev->lock);
return err ?: len;
}
static struct md_sysfs_entry md_min_sync =
__ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
static ssize_t
max_sync_show(struct mddev *mddev, char *page)
{
if (mddev->resync_max == MaxSector)
return sprintf(page, "max\n");
else
return sprintf(page, "%llu\n",
(unsigned long long)mddev->resync_max);
}
static ssize_t
max_sync_store(struct mddev *mddev, const char *buf, size_t len)
{
int err;
spin_lock(&mddev->lock);
if (strncmp(buf, "max", 3) == 0)
mddev->resync_max = MaxSector;
else {
unsigned long long max;
int chunk;
err = -EINVAL;
if (kstrtoull(buf, 10, &max))
goto out_unlock;
if (max < mddev->resync_min)
goto out_unlock;
err = -EBUSY;
if (max < mddev->resync_max && md_is_rdwr(mddev) &&
test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
goto out_unlock;
/* Must be a multiple of chunk_size */
chunk = mddev->chunk_sectors;
if (chunk) {
sector_t temp = max;
err = -EINVAL;
if (sector_div(temp, chunk))
goto out_unlock;
}
mddev->resync_max = max;
}
wake_up(&mddev->recovery_wait);
err = 0;
out_unlock:
spin_unlock(&mddev->lock);
return err ?: len;
}
static struct md_sysfs_entry md_max_sync =
__ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
static ssize_t
suspend_lo_show(struct mddev *mddev, char *page)
{
return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
}
static ssize_t
suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
{
unsigned long long new;
int err;
err = kstrtoull(buf, 10, &new);
if (err < 0)
return err;
if (new != (sector_t)new)
return -EINVAL;
err = mddev_lock(mddev);
if (err)
return err;
err = -EINVAL;
if (mddev->pers == NULL ||
mddev->pers->quiesce == NULL)
goto unlock;
mddev_suspend(mddev);
mddev->suspend_lo = new;
mddev_resume(mddev);
err = 0;
unlock:
mddev_unlock(mddev);
return err ?: len;
}
static struct md_sysfs_entry md_suspend_lo =
__ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
static ssize_t
suspend_hi_show(struct mddev *mddev, char *page)
{
return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
}
static ssize_t
suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
{
unsigned long long new;
int err;
err = kstrtoull(buf, 10, &new);
if (err < 0)
return err;
if (new != (sector_t)new)
return -EINVAL;
err = mddev_lock(mddev);
if (err)
return err;
err = -EINVAL;
if (mddev->pers == NULL)
goto unlock;
mddev_suspend(mddev);
mddev->suspend_hi = new;
mddev_resume(mddev);
err = 0;
unlock:
mddev_unlock(mddev);
return err ?: len;
}
static struct md_sysfs_entry md_suspend_hi =
__ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
static ssize_t
reshape_position_show(struct mddev *mddev, char *page)
{
if (mddev->reshape_position != MaxSector)
return sprintf(page, "%llu\n",
(unsigned long long)mddev->reshape_position);
strcpy(page, "none\n");
return 5;
}
static ssize_t
reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
{
struct md_rdev *rdev;
unsigned long long new;
int err;
err = kstrtoull(buf, 10, &new);
if (err < 0)
return err;
if (new != (sector_t)new)
return -EINVAL;
err = mddev_lock(mddev);
if (err)
return err;
err = -EBUSY;
if (mddev->pers)
goto unlock;
mddev->reshape_position = new;
mddev->delta_disks = 0;
mddev->reshape_backwards = 0;
mddev->new_level = mddev->level;
mddev->new_layout = mddev->layout;
mddev->new_chunk_sectors = mddev->chunk_sectors;
rdev_for_each(rdev, mddev)
rdev->new_data_offset = rdev->data_offset;
err = 0;
unlock:
mddev_unlock(mddev);
return err ?: len;
}
static struct md_sysfs_entry md_reshape_position =
__ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
reshape_position_store);
static ssize_t
reshape_direction_show(struct mddev *mddev, char *page)
{
return sprintf(page, "%s\n",
mddev->reshape_backwards ? "backwards" : "forwards");
}
static ssize_t
reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
{
int backwards = 0;
int err;
if (cmd_match(buf, "forwards"))
backwards = 0;
else if (cmd_match(buf, "backwards"))
backwards = 1;
else
return -EINVAL;
if (mddev->reshape_backwards == backwards)
return len;
err = mddev_lock(mddev);
if (err)
return err;
/* check if we are allowed to change */
if (mddev->delta_disks)
err = -EBUSY;
else if (mddev->persistent &&
mddev->major_version == 0)
err = -EINVAL;
else
mddev->reshape_backwards = backwards;
mddev_unlock(mddev);
return err ?: len;
}
static struct md_sysfs_entry md_reshape_direction =
__ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
reshape_direction_store);
static ssize_t
array_size_show(struct mddev *mddev, char *page)
{
if (mddev->external_size)
return sprintf(page, "%llu\n",
(unsigned long long)mddev->array_sectors/2);
else
return sprintf(page, "default\n");
}
static ssize_t
array_size_store(struct mddev *mddev, const char *buf, size_t len)
{
sector_t sectors;
int err;
err = mddev_lock(mddev);
if (err)
return err;
/* cluster raid doesn't support change array_sectors */
if (mddev_is_clustered(mddev)) {
mddev_unlock(mddev);
return -EINVAL;
}
if (strncmp(buf, "default", 7) == 0) {
if (mddev->pers)
sectors = mddev->pers->size(mddev, 0, 0);
else
sectors = mddev->array_sectors;
mddev->external_size = 0;
} else {
if (strict_blocks_to_sectors(buf, &sectors) < 0)
err = -EINVAL;
else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
err = -E2BIG;
else
mddev->external_size = 1;
}
if (!err) {
mddev->array_sectors = sectors;
if (mddev->pers)
set_capacity_and_notify(mddev->gendisk,
mddev->array_sectors);
}
mddev_unlock(mddev);
return err ?: len;
}
static struct md_sysfs_entry md_array_size =
__ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
array_size_store);
static ssize_t
consistency_policy_show(struct mddev *mddev, char *page)
{
int ret;
if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
ret = sprintf(page, "journal\n");
} else if (test_bit(MD_HAS_PPL, &mddev->flags)) {
ret = sprintf(page, "ppl\n");
} else if (mddev->bitmap) {
ret = sprintf(page, "bitmap\n");
} else if (mddev->pers) {
if (mddev->pers->sync_request)
ret = sprintf(page, "resync\n");
else
ret = sprintf(page, "none\n");
} else {
ret = sprintf(page, "unknown\n");
}
return ret;
}
static ssize_t
consistency_policy_store(struct mddev *mddev, const char *buf, size_t len)
{
int err = 0;
if (mddev->pers) {
if (mddev->pers->change_consistency_policy)
err = mddev->pers->change_consistency_policy(mddev, buf);
else
err = -EBUSY;
} else if (mddev->external && strncmp(buf, "ppl", 3) == 0) {
set_bit(MD_HAS_PPL, &mddev->flags);
} else {
err = -EINVAL;
}
return err ? err : len;
}
static struct md_sysfs_entry md_consistency_policy =
__ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show,
consistency_policy_store);
static ssize_t fail_last_dev_show(struct mddev *mddev, char *page)
{
return sprintf(page, "%d\n", mddev->fail_last_dev);
}
/*
* Setting fail_last_dev to true to allow last device to be forcibly removed
* from RAID1/RAID10.
*/
static ssize_t
fail_last_dev_store(struct mddev *mddev, const char *buf, size_t len)
{
int ret;
bool value;
ret = kstrtobool(buf, &value);
if (ret)
return ret;
if (value != mddev->fail_last_dev)
mddev->fail_last_dev = value;
return len;
}
static struct md_sysfs_entry md_fail_last_dev =
__ATTR(fail_last_dev, S_IRUGO | S_IWUSR, fail_last_dev_show,
fail_last_dev_store);
static ssize_t serialize_policy_show(struct mddev *mddev, char *page)
{
if (mddev->pers == NULL || (mddev->pers->level != 1))
return sprintf(page, "n/a\n");
else
return sprintf(page, "%d\n", mddev->serialize_policy);
}
/*
* Setting serialize_policy to true to enforce write IO is not reordered
* for raid1.
*/
static ssize_t
serialize_policy_store(struct mddev *mddev, const char *buf, size_t len)
{
int err;
bool value;
err = kstrtobool(buf, &value);
if (err)
return err;
if (value == mddev->serialize_policy)
return len;
err = mddev_lock(mddev);
if (err)
return err;
if (mddev->pers == NULL || (mddev->pers->level != 1)) {
pr_err("md: serialize_policy is only effective for raid1\n");
err = -EINVAL;
goto unlock;
}
mddev_suspend(mddev);
if (value)
mddev_create_serial_pool(mddev, NULL, true);
else
mddev_destroy_serial_pool(mddev, NULL, true);
mddev->serialize_policy = value;
mddev_resume(mddev);
unlock:
mddev_unlock(mddev);
return err ?: len;
}
static struct md_sysfs_entry md_serialize_policy =
__ATTR(serialize_policy, S_IRUGO | S_IWUSR, serialize_policy_show,
serialize_policy_store);
static struct attribute *md_default_attrs[] = {
&md_level.attr,
&md_layout.attr,
&md_raid_disks.attr,
&md_uuid.attr,
&md_chunk_size.attr,
&md_size.attr,
&md_resync_start.attr,
&md_metadata.attr,
&md_new_device.attr,
&md_safe_delay.attr,
&md_array_state.attr,
&md_reshape_position.attr,
&md_reshape_direction.attr,
&md_array_size.attr,
&max_corr_read_errors.attr,
&md_consistency_policy.attr,
&md_fail_last_dev.attr,
&md_serialize_policy.attr,
NULL,
};
static const struct attribute_group md_default_group = {
.attrs = md_default_attrs,
};
static struct attribute *md_redundancy_attrs[] = {
&md_scan_mode.attr,
&md_last_scan_mode.attr,
&md_mismatches.attr,
&md_sync_min.attr,
&md_sync_max.attr,
&md_sync_speed.attr,
&md_sync_force_parallel.attr,
&md_sync_completed.attr,
&md_min_sync.attr,
&md_max_sync.attr,
&md_suspend_lo.attr,
&md_suspend_hi.attr,
&md_bitmap.attr,
&md_degraded.attr,
NULL,
};
static const struct attribute_group md_redundancy_group = {
.name = NULL,
.attrs = md_redundancy_attrs,
};
static const struct attribute_group *md_attr_groups[] = {
&md_default_group,
&md_bitmap_group,
NULL,
};
static ssize_t
md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
{
struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
struct mddev *mddev = container_of(kobj, struct mddev, kobj);
ssize_t rv;
if (!entry->show)
return -EIO;
spin_lock(&all_mddevs_lock);
if (!mddev_get(mddev)) {
spin_unlock(&all_mddevs_lock);
return -EBUSY;
}
spin_unlock(&all_mddevs_lock);
rv = entry->show(mddev, page);
mddev_put(mddev);
return rv;
}
static ssize_t
md_attr_store(struct kobject *kobj, struct attribute *attr,
const char *page, size_t length)
{
struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
struct mddev *mddev = container_of(kobj, struct mddev, kobj);
ssize_t rv;
if (!entry->store)
return -EIO;
if (!capable(CAP_SYS_ADMIN))
return -EACCES;
spin_lock(&all_mddevs_lock);
if (!mddev_get(mddev)) {
spin_unlock(&all_mddevs_lock);
return -EBUSY;
}
spin_unlock(&all_mddevs_lock);
rv = entry->store(mddev, page, length);
mddev_put(mddev);
return rv;
}
static void md_kobj_release(struct kobject *ko)
{
struct mddev *mddev = container_of(ko, struct mddev, kobj);
if (mddev->sysfs_state)
sysfs_put(mddev->sysfs_state);
if (mddev->sysfs_level)
sysfs_put(mddev->sysfs_level);
del_gendisk(mddev->gendisk);
put_disk(mddev->gendisk);
}
static const struct sysfs_ops md_sysfs_ops = {
.show = md_attr_show,
.store = md_attr_store,
};
static struct kobj_type md_ktype = {
.release = md_kobj_release,
.sysfs_ops = &md_sysfs_ops,
.default_groups = md_attr_groups,
};
int mdp_major = 0;
static void mddev_delayed_delete(struct work_struct *ws)
{
struct mddev *mddev = container_of(ws, struct mddev, del_work);
kobject_put(&mddev->kobj);
}
static void no_op(struct percpu_ref *r) {}
int mddev_init_writes_pending(struct mddev *mddev)
{
if (mddev->writes_pending.percpu_count_ptr)
return 0;
if (percpu_ref_init(&mddev->writes_pending, no_op,
PERCPU_REF_ALLOW_REINIT, GFP_KERNEL) < 0)
return -ENOMEM;
/* We want to start with the refcount at zero */
percpu_ref_put(&mddev->writes_pending);
return 0;
}
EXPORT_SYMBOL_GPL(mddev_init_writes_pending);
struct mddev *md_alloc(dev_t dev, char *name)
{
/*
* If dev is zero, name is the name of a device to allocate with
* an arbitrary minor number. It will be "md_???"
* If dev is non-zero it must be a device number with a MAJOR of
* MD_MAJOR or mdp_major. In this case, if "name" is NULL, then
* the device is being created by opening a node in /dev.
* If "name" is not NULL, the device is being created by
* writing to /sys/module/md_mod/parameters/new_array.
*/
static DEFINE_MUTEX(disks_mutex);
struct mddev *mddev;
struct gendisk *disk;
int partitioned;
int shift;
int unit;
int error ;
/*
* Wait for any previous instance of this device to be completely
* removed (mddev_delayed_delete).
*/
flush_workqueue(md_misc_wq);
flush_workqueue(md_rdev_misc_wq);
mutex_lock(&disks_mutex);
mddev = mddev_alloc(dev);
if (IS_ERR(mddev)) {
error = PTR_ERR(mddev);
goto out_unlock;
}
partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
shift = partitioned ? MdpMinorShift : 0;
unit = MINOR(mddev->unit) >> shift;
if (name && !dev) {
/* Need to ensure that 'name' is not a duplicate.
*/
struct mddev *mddev2;
spin_lock(&all_mddevs_lock);
list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
if (mddev2->gendisk &&
strcmp(mddev2->gendisk->disk_name, name) == 0) {
spin_unlock(&all_mddevs_lock);
error = -EEXIST;
goto out_free_mddev;
}
spin_unlock(&all_mddevs_lock);
}
if (name && dev)
/*
* Creating /dev/mdNNN via "newarray", so adjust hold_active.
*/
mddev->hold_active = UNTIL_STOP;
error = -ENOMEM;
disk = blk_alloc_disk(NUMA_NO_NODE);
if (!disk)
goto out_free_mddev;
disk->major = MAJOR(mddev->unit);
disk->first_minor = unit << shift;
disk->minors = 1 << shift;
if (name)
strcpy(disk->disk_name, name);
else if (partitioned)
sprintf(disk->disk_name, "md_d%d", unit);
else
sprintf(disk->disk_name, "md%d", unit);
disk->fops = &md_fops;
disk->private_data = mddev;
mddev->queue = disk->queue;
blk_set_stacking_limits(&mddev->queue->limits);
blk_queue_write_cache(mddev->queue, true, true);
disk->events |= DISK_EVENT_MEDIA_CHANGE;
mddev->gendisk = disk;
error = add_disk(disk);
if (error)
goto out_put_disk;
kobject_init(&mddev->kobj, &md_ktype);
error = kobject_add(&mddev->kobj, &disk_to_dev(disk)->kobj, "%s", "md");
if (error) {
/*
* The disk is already live at this point. Clear the hold flag
* and let mddev_put take care of the deletion, as it isn't any
* different from a normal close on last release now.
*/
mddev->hold_active = 0;
mutex_unlock(&disks_mutex);
mddev_put(mddev);
return ERR_PTR(error);
}
kobject_uevent(&mddev->kobj, KOBJ_ADD);
mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
mddev->sysfs_level = sysfs_get_dirent_safe(mddev->kobj.sd, "level");
mutex_unlock(&disks_mutex);
return mddev;
out_put_disk:
put_disk(disk);
out_free_mddev:
mddev_free(mddev);
out_unlock:
mutex_unlock(&disks_mutex);
return ERR_PTR(error);
}
static int md_alloc_and_put(dev_t dev, char *name)
{
struct mddev *mddev = md_alloc(dev, name);
if (IS_ERR(mddev))
return PTR_ERR(mddev);
mddev_put(mddev);
return 0;
}
static void md_probe(dev_t dev)
{
if (MAJOR(dev) == MD_MAJOR && MINOR(dev) >= 512)
return;
if (create_on_open)
md_alloc_and_put(dev, NULL);
}
static int add_named_array(const char *val, const struct kernel_param *kp)
{
/*
* val must be "md_*" or "mdNNN".
* For "md_*" we allocate an array with a large free minor number, and
* set the name to val. val must not already be an active name.
* For "mdNNN" we allocate an array with the minor number NNN
* which must not already be in use.
*/
int len = strlen(val);
char buf[DISK_NAME_LEN];
unsigned long devnum;
while (len && val[len-1] == '\n')
len--;
if (len >= DISK_NAME_LEN)
return -E2BIG;
strscpy(buf, val, len+1);
if (strncmp(buf, "md_", 3) == 0)
return md_alloc_and_put(0, buf);
if (strncmp(buf, "md", 2) == 0 &&
isdigit(buf[2]) &&
kstrtoul(buf+2, 10, &devnum) == 0 &&
devnum <= MINORMASK)
return md_alloc_and_put(MKDEV(MD_MAJOR, devnum), NULL);
return -EINVAL;
}
static void md_safemode_timeout(struct timer_list *t)
{
struct mddev *mddev = from_timer(mddev, t, safemode_timer);
mddev->safemode = 1;
if (mddev->external)
sysfs_notify_dirent_safe(mddev->sysfs_state);
md_wakeup_thread(mddev->thread);
}
static int start_dirty_degraded;
static void active_io_release(struct percpu_ref *ref)
{
struct mddev *mddev = container_of(ref, struct mddev, active_io);
wake_up(&mddev->sb_wait);
}
int md_run(struct mddev *mddev)
{
int err;
struct md_rdev *rdev;
struct md_personality *pers;
bool nowait = true;
if (list_empty(&mddev->disks))
/* cannot run an array with no devices.. */
return -EINVAL;
if (mddev->pers)
return -EBUSY;
/* Cannot run until previous stop completes properly */
if (mddev->sysfs_active)
return -EBUSY;
/*
* Analyze all RAID superblock(s)
*/
if (!mddev->raid_disks) {
if (!mddev->persistent)
return -EINVAL;
err = analyze_sbs(mddev);
if (err)
return -EINVAL;
}
if (mddev->level != LEVEL_NONE)
request_module("md-level-%d", mddev->level);
else if (mddev->clevel[0])
request_module("md-%s", mddev->clevel);
/*
* Drop all container device buffers, from now on
* the only valid external interface is through the md
* device.
*/
mddev->has_superblocks = false;
rdev_for_each(rdev, mddev) {
if (test_bit(Faulty, &rdev->flags))
continue;
sync_blockdev(rdev->bdev);
invalidate_bdev(rdev->bdev);
if (mddev->ro != MD_RDONLY && rdev_read_only(rdev)) {
mddev->ro = MD_RDONLY;
if (mddev->gendisk)
set_disk_ro(mddev->gendisk, 1);
}
if (rdev->sb_page)
mddev->has_superblocks = true;
/* perform some consistency tests on the device.
* We don't want the data to overlap the metadata,
* Internal Bitmap issues have been handled elsewhere.
*/
if (rdev->meta_bdev) {
/* Nothing to check */;
} else if (rdev->data_offset < rdev->sb_start) {
if (mddev->dev_sectors &&
rdev->data_offset + mddev->dev_sectors
> rdev->sb_start) {
pr_warn("md: %s: data overlaps metadata\n",
mdname(mddev));
return -EINVAL;
}
} else {
if (rdev->sb_start + rdev->sb_size/512
> rdev->data_offset) {
pr_warn("md: %s: metadata overlaps data\n",
mdname(mddev));
return -EINVAL;
}
}
sysfs_notify_dirent_safe(rdev->sysfs_state);
nowait = nowait && bdev_nowait(rdev->bdev);
}
err = percpu_ref_init(&mddev->active_io, active_io_release,
PERCPU_REF_ALLOW_REINIT, GFP_KERNEL);
if (err)
return err;
if (!bioset_initialized(&mddev->bio_set)) {
err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
if (err)
goto exit_active_io;
}
if (!bioset_initialized(&mddev->sync_set)) {
err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
if (err)
goto exit_bio_set;
}
spin_lock(&pers_lock);
pers = find_pers(mddev->level, mddev->clevel);
if (!pers || !try_module_get(pers->owner)) {
spin_unlock(&pers_lock);
if (mddev->level != LEVEL_NONE)
pr_warn("md: personality for level %d is not loaded!\n",
mddev->level);
else
pr_warn("md: personality for level %s is not loaded!\n",
mddev->clevel);
err = -EINVAL;
goto abort;
}
spin_unlock(&pers_lock);
if (mddev->level != pers->level) {
mddev->level = pers->level;
mddev->new_level = pers->level;
}
strscpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
if (mddev->reshape_position != MaxSector &&
pers->start_reshape == NULL) {
/* This personality cannot handle reshaping... */
module_put(pers->owner);
err = -EINVAL;
goto abort;
}
if (pers->sync_request) {
/* Warn if this is a potentially silly
* configuration.
*/
struct md_rdev *rdev2;
int warned = 0;
rdev_for_each(rdev, mddev)
rdev_for_each(rdev2, mddev) {
if (rdev < rdev2 &&
rdev->bdev->bd_disk ==
rdev2->bdev->bd_disk) {
pr_warn("%s: WARNING: %pg appears to be on the same physical disk as %pg.\n",
mdname(mddev),
rdev->bdev,
rdev2->bdev);
warned = 1;
}
}
if (warned)
pr_warn("True protection against single-disk failure might be compromised.\n");
}
mddev->recovery = 0;
/* may be over-ridden by personality */
mddev->resync_max_sectors = mddev->dev_sectors;
mddev->ok_start_degraded = start_dirty_degraded;
if (start_readonly && md_is_rdwr(mddev))
mddev->ro = MD_AUTO_READ; /* read-only, but switch on first write */
err = pers->run(mddev);
if (err)
pr_warn("md: pers->run() failed ...\n");
else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
WARN_ONCE(!mddev->external_size,
"%s: default size too small, but 'external_size' not in effect?\n",
__func__);
pr_warn("md: invalid array_size %llu > default size %llu\n",
(unsigned long long)mddev->array_sectors / 2,
(unsigned long long)pers->size(mddev, 0, 0) / 2);
err = -EINVAL;
}
if (err == 0 && pers->sync_request &&
(mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
struct bitmap *bitmap;
bitmap = md_bitmap_create(mddev, -1);
if (IS_ERR(bitmap)) {
err = PTR_ERR(bitmap);
pr_warn("%s: failed to create bitmap (%d)\n",
mdname(mddev), err);
} else
mddev->bitmap = bitmap;
}
if (err)
goto bitmap_abort;
if (mddev->bitmap_info.max_write_behind > 0) {
bool create_pool = false;
rdev_for_each(rdev, mddev) {
if (test_bit(WriteMostly, &rdev->flags) &&
rdev_init_serial(rdev))
create_pool = true;
}
if (create_pool && mddev->serial_info_pool == NULL) {
mddev->serial_info_pool =
mempool_create_kmalloc_pool(NR_SERIAL_INFOS,
sizeof(struct serial_info));
if (!mddev->serial_info_pool) {
err = -ENOMEM;
goto bitmap_abort;
}
}
}
if (mddev->queue) {
bool nonrot = true;
rdev_for_each(rdev, mddev) {
if (rdev->raid_disk >= 0 && !bdev_nonrot(rdev->bdev)) {
nonrot = false;
break;
}
}
if (mddev->degraded)
nonrot = false;
if (nonrot)
blk_queue_flag_set(QUEUE_FLAG_NONROT, mddev->queue);
else
blk_queue_flag_clear(QUEUE_FLAG_NONROT, mddev->queue);
blk_queue_flag_set(QUEUE_FLAG_IO_STAT, mddev->queue);
/* Set the NOWAIT flags if all underlying devices support it */
if (nowait)
blk_queue_flag_set(QUEUE_FLAG_NOWAIT, mddev->queue);
}
if (pers->sync_request) {
if (mddev->kobj.sd &&
sysfs_create_group(&mddev->kobj, &md_redundancy_group))
pr_warn("md: cannot register extra attributes for %s\n",
mdname(mddev));
mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed");
mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded");
} else if (mddev->ro == MD_AUTO_READ)
mddev->ro = MD_RDWR;
atomic_set(&mddev->max_corr_read_errors,
MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
mddev->safemode = 0;
if (mddev_is_clustered(mddev))
mddev->safemode_delay = 0;
else
mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY;
mddev->in_sync = 1;
smp_wmb();
spin_lock(&mddev->lock);
mddev->pers = pers;
spin_unlock(&mddev->lock);
rdev_for_each(rdev, mddev)
if (rdev->raid_disk >= 0)
sysfs_link_rdev(mddev, rdev); /* failure here is OK */
if (mddev->degraded && md_is_rdwr(mddev))
/* This ensures that recovering status is reported immediately
* via sysfs - until a lack of spares is confirmed.
*/
set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
if (mddev->sb_flags)
md_update_sb(mddev, 0);
md_new_event();
return 0;
bitmap_abort:
mddev_detach(mddev);
if (mddev->private)
pers->free(mddev, mddev->private);
mddev->private = NULL;
module_put(pers->owner);
md_bitmap_destroy(mddev);
abort:
bioset_exit(&mddev->sync_set);
exit_bio_set:
bioset_exit(&mddev->bio_set);
exit_active_io:
percpu_ref_exit(&mddev->active_io);
return err;
}
EXPORT_SYMBOL_GPL(md_run);
int do_md_run(struct mddev *mddev)
{
int err;
set_bit(MD_NOT_READY, &mddev->flags);
err = md_run(mddev);
if (err)
goto out;
err = md_bitmap_load(mddev);
if (err) {
md_bitmap_destroy(mddev);
goto out;
}
if (mddev_is_clustered(mddev))
md_allow_write(mddev);
/* run start up tasks that require md_thread */
md_start(mddev);
md_wakeup_thread(mddev->thread);
md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
set_capacity_and_notify(mddev->gendisk, mddev->array_sectors);
clear_bit(MD_NOT_READY, &mddev->flags);
mddev->changed = 1;
kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
sysfs_notify_dirent_safe(mddev->sysfs_state);
sysfs_notify_dirent_safe(mddev->sysfs_action);
sysfs_notify_dirent_safe(mddev->sysfs_degraded);
out:
clear_bit(MD_NOT_READY, &mddev->flags);
return err;
}
int md_start(struct mddev *mddev)
{
int ret = 0;
if (mddev->pers->start) {
set_bit(MD_RECOVERY_WAIT, &mddev->recovery);
md_wakeup_thread(mddev->thread);
ret = mddev->pers->start(mddev);
clear_bit(MD_RECOVERY_WAIT, &mddev->recovery);
md_wakeup_thread(mddev->sync_thread);
}
return ret;
}
EXPORT_SYMBOL_GPL(md_start);
static int restart_array(struct mddev *mddev)
{
struct gendisk *disk = mddev->gendisk;
struct md_rdev *rdev;
bool has_journal = false;
bool has_readonly = false;
/* Complain if it has no devices */
if (list_empty(&mddev->disks))
return -ENXIO;
if (!mddev->pers)
return -EINVAL;
if (md_is_rdwr(mddev))
return -EBUSY;
rcu_read_lock();
rdev_for_each_rcu(rdev, mddev) {
if (test_bit(Journal, &rdev->flags) &&
!test_bit(Faulty, &rdev->flags))
has_journal = true;
if (rdev_read_only(rdev))
has_readonly = true;
}
rcu_read_unlock();
if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal)
/* Don't restart rw with journal missing/faulty */
return -EINVAL;
if (has_readonly)
return -EROFS;
mddev->safemode = 0;
mddev->ro = MD_RDWR;
set_disk_ro(disk, 0);
pr_debug("md: %s switched to read-write mode.\n", mdname(mddev));
/* Kick recovery or resync if necessary */
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
md_wakeup_thread(mddev->thread);
md_wakeup_thread(mddev->sync_thread);
sysfs_notify_dirent_safe(mddev->sysfs_state);
return 0;
}
static void md_clean(struct mddev *mddev)
{
mddev->array_sectors = 0;
mddev->external_size = 0;
mddev->dev_sectors = 0;
mddev->raid_disks = 0;
mddev->recovery_cp = 0;
mddev->resync_min = 0;
mddev->resync_max = MaxSector;
mddev->reshape_position = MaxSector;
mddev->external = 0;
mddev->persistent = 0;
mddev->level = LEVEL_NONE;
mddev->clevel[0] = 0;
mddev->flags = 0;
mddev->sb_flags = 0;
mddev->ro = MD_RDWR;
mddev->metadata_type[0] = 0;
mddev->chunk_sectors = 0;
mddev->ctime = mddev->utime = 0;
mddev->layout = 0;
mddev->max_disks = 0;
mddev->events = 0;
mddev->can_decrease_events = 0;
mddev->delta_disks = 0;
mddev->reshape_backwards = 0;
mddev->new_level = LEVEL_NONE;
mddev->new_layout = 0;
mddev->new_chunk_sectors = 0;
mddev->curr_resync = MD_RESYNC_NONE;
atomic64_set(&mddev->resync_mismatches, 0);
mddev->suspend_lo = mddev->suspend_hi = 0;
mddev->sync_speed_min = mddev->sync_speed_max = 0;
mddev->recovery = 0;
mddev->in_sync = 0;
mddev->changed = 0;
mddev->degraded = 0;
mddev->safemode = 0;
mddev->private = NULL;
mddev->cluster_info = NULL;
mddev->bitmap_info.offset = 0;
mddev->bitmap_info.default_offset = 0;
mddev->bitmap_info.default_space = 0;
mddev->bitmap_info.chunksize = 0;
mddev->bitmap_info.daemon_sleep = 0;
mddev->bitmap_info.max_write_behind = 0;
mddev->bitmap_info.nodes = 0;
}
static void __md_stop_writes(struct mddev *mddev)
{
set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
if (work_pending(&mddev->del_work))
flush_workqueue(md_misc_wq);
if (mddev->sync_thread) {
set_bit(MD_RECOVERY_INTR, &mddev->recovery);
md_unregister_thread(&mddev->sync_thread);
md_reap_sync_thread(mddev);
}
del_timer_sync(&mddev->safemode_timer);
if (mddev->pers && mddev->pers->quiesce) {
mddev->pers->quiesce(mddev, 1);
mddev->pers->quiesce(mddev, 0);
}
md_bitmap_flush(mddev);
if (md_is_rdwr(mddev) &&
((!mddev->in_sync && !mddev_is_clustered(mddev)) ||
mddev->sb_flags)) {
/* mark array as shutdown cleanly */
if (!mddev_is_clustered(mddev))
mddev->in_sync = 1;
md_update_sb(mddev, 1);
}
/* disable policy to guarantee rdevs free resources for serialization */
mddev->serialize_policy = 0;
mddev_destroy_serial_pool(mddev, NULL, true);
}
void md_stop_writes(struct mddev *mddev)
{
mddev_lock_nointr(mddev);
__md_stop_writes(mddev);
mddev_unlock(mddev);
}
EXPORT_SYMBOL_GPL(md_stop_writes);
static void mddev_detach(struct mddev *mddev)
{
md_bitmap_wait_behind_writes(mddev);
if (mddev->pers && mddev->pers->quiesce && !is_md_suspended(mddev)) {
mddev->pers->quiesce(mddev, 1);
mddev->pers->quiesce(mddev, 0);
}
md_unregister_thread(&mddev->thread);
if (mddev->queue)
blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
}
static void __md_stop(struct mddev *mddev)
{
struct md_personality *pers = mddev->pers;
md_bitmap_destroy(mddev);
mddev_detach(mddev);
/* Ensure ->event_work is done */
if (mddev->event_work.func)
flush_workqueue(md_misc_wq);
spin_lock(&mddev->lock);
mddev->pers = NULL;
spin_unlock(&mddev->lock);
if (mddev->private)
pers->free(mddev, mddev->private);
mddev->private = NULL;
if (pers->sync_request && mddev->to_remove == NULL)
mddev->to_remove = &md_redundancy_group;
module_put(pers->owner);
clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
}
void md_stop(struct mddev *mddev)
{
/* stop the array and free an attached data structures.
* This is called from dm-raid
*/
__md_stop_writes(mddev);
__md_stop(mddev);
percpu_ref_exit(&mddev->writes_pending);
percpu_ref_exit(&mddev->active_io);
bioset_exit(&mddev->bio_set);
bioset_exit(&mddev->sync_set);
}
EXPORT_SYMBOL_GPL(md_stop);
static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
{
int err = 0;
int did_freeze = 0;
if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
did_freeze = 1;
set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
md_wakeup_thread(mddev->thread);
}
if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
set_bit(MD_RECOVERY_INTR, &mddev->recovery);
if (mddev->sync_thread)
/* Thread might be blocked waiting for metadata update
* which will now never happen */
wake_up_process(mddev->sync_thread->tsk);
if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
return -EBUSY;
mddev_unlock(mddev);
wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
&mddev->recovery));
wait_event(mddev->sb_wait,
!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
mddev_lock_nointr(mddev);
mutex_lock(&mddev->open_mutex);
if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
mddev->sync_thread ||
test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
pr_warn("md: %s still in use.\n",mdname(mddev));
if (did_freeze) {
clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
md_wakeup_thread(mddev->thread);
}
err = -EBUSY;
goto out;
}
if (mddev->pers) {
__md_stop_writes(mddev);
err = -ENXIO;
if (mddev->ro == MD_RDONLY)
goto out;
mddev->ro = MD_RDONLY;
set_disk_ro(mddev->gendisk, 1);
clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
md_wakeup_thread(mddev->thread);
sysfs_notify_dirent_safe(mddev->sysfs_state);
err = 0;
}
out:
mutex_unlock(&mddev->open_mutex);
return err;
}
/* mode:
* 0 - completely stop and dis-assemble array
* 2 - stop but do not disassemble array
*/
static int do_md_stop(struct mddev *mddev, int mode,
struct block_device *bdev)
{
struct gendisk *disk = mddev->gendisk;
struct md_rdev *rdev;
int did_freeze = 0;
if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
did_freeze = 1;
set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
md_wakeup_thread(mddev->thread);
}
if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
set_bit(MD_RECOVERY_INTR, &mddev->recovery);
if (mddev->sync_thread)
/* Thread might be blocked waiting for metadata update
* which will now never happen */
wake_up_process(mddev->sync_thread->tsk);
mddev_unlock(mddev);
wait_event(resync_wait, (mddev->sync_thread == NULL &&
!test_bit(MD_RECOVERY_RUNNING,
&mddev->recovery)));
mddev_lock_nointr(mddev);
mutex_lock(&mddev->open_mutex);
if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
mddev->sysfs_active ||
mddev->sync_thread ||
test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
pr_warn("md: %s still in use.\n",mdname(mddev));
mutex_unlock(&mddev->open_mutex);
if (did_freeze) {
clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
md_wakeup_thread(mddev->thread);
}
return -EBUSY;
}
if (mddev->pers) {
if (!md_is_rdwr(mddev))
set_disk_ro(disk, 0);
__md_stop_writes(mddev);
__md_stop(mddev);
/* tell userspace to handle 'inactive' */
sysfs_notify_dirent_safe(mddev->sysfs_state);
rdev_for_each(rdev, mddev)
if (rdev->raid_disk >= 0)
sysfs_unlink_rdev(mddev, rdev);
set_capacity_and_notify(disk, 0);
mutex_unlock(&mddev->open_mutex);
mddev->changed = 1;
if (!md_is_rdwr(mddev))
mddev->ro = MD_RDWR;
} else
mutex_unlock(&mddev->open_mutex);
/*
* Free resources if final stop
*/
if (mode == 0) {
pr_info("md: %s stopped.\n", mdname(mddev));
if (mddev->bitmap_info.file) {
struct file *f = mddev->bitmap_info.file;
spin_lock(&mddev->lock);
mddev->bitmap_info.file = NULL;
spin_unlock(&mddev->lock);
fput(f);
}
mddev->bitmap_info.offset = 0;
export_array(mddev);
md_clean(mddev);
if (mddev->hold_active == UNTIL_STOP)
mddev->hold_active = 0;
}
md_new_event();
sysfs_notify_dirent_safe(mddev->sysfs_state);
return 0;
}
#ifndef MODULE
static void autorun_array(struct mddev *mddev)
{
struct md_rdev *rdev;
int err;
if (list_empty(&mddev->disks))
return;
pr_info("md: running: ");
rdev_for_each(rdev, mddev) {
pr_cont("<%pg>", rdev->bdev);
}
pr_cont("\n");
err = do_md_run(mddev);
if (err) {
pr_warn("md: do_md_run() returned %d\n", err);
do_md_stop(mddev, 0, NULL);
}
}
/*
* lets try to run arrays based on all disks that have arrived
* until now. (those are in pending_raid_disks)
*
* the method: pick the first pending disk, collect all disks with
* the same UUID, remove all from the pending list and put them into
* the 'same_array' list. Then order this list based on superblock
* update time (freshest comes first), kick out 'old' disks and
* compare superblocks. If everything's fine then run it.
*
* If "unit" is allocated, then bump its reference count
*/
static void autorun_devices(int part)
{
struct md_rdev *rdev0, *rdev, *tmp;
struct mddev *mddev;
pr_info("md: autorun ...\n");
while (!list_empty(&pending_raid_disks)) {
int unit;
dev_t dev;
LIST_HEAD(candidates);
rdev0 = list_entry(pending_raid_disks.next,
struct md_rdev, same_set);
pr_debug("md: considering %pg ...\n", rdev0->bdev);
INIT_LIST_HEAD(&candidates);
rdev_for_each_list(rdev, tmp, &pending_raid_disks)
if (super_90_load(rdev, rdev0, 0) >= 0) {
pr_debug("md: adding %pg ...\n",
rdev->bdev);
list_move(&rdev->same_set, &candidates);
}
/*
* now we have a set of devices, with all of them having
* mostly sane superblocks. It's time to allocate the
* mddev.
*/
if (part) {
dev = MKDEV(mdp_major,
rdev0->preferred_minor << MdpMinorShift);
unit = MINOR(dev) >> MdpMinorShift;
} else {
dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
unit = MINOR(dev);
}
if (rdev0->preferred_minor != unit) {
pr_warn("md: unit number in %pg is bad: %d\n",
rdev0->bdev, rdev0->preferred_minor);
break;
}
mddev = md_alloc(dev, NULL);
if (IS_ERR(mddev))
break;
if (mddev_lock(mddev))
pr_warn("md: %s locked, cannot run\n", mdname(mddev));
else if (mddev->raid_disks || mddev->major_version
|| !list_empty(&mddev->disks)) {
pr_warn("md: %s already running, cannot run %pg\n",
mdname(mddev), rdev0->bdev);
mddev_unlock(mddev);
} else {
pr_debug("md: created %s\n", mdname(mddev));
mddev->persistent = 1;
rdev_for_each_list(rdev, tmp, &candidates) {
list_del_init(&rdev->same_set);
if (bind_rdev_to_array(rdev, mddev))
export_rdev(rdev);
}
autorun_array(mddev);
mddev_unlock(mddev);
}
/* on success, candidates will be empty, on error
* it won't...
*/
rdev_for_each_list(rdev, tmp, &candidates) {
list_del_init(&rdev->same_set);
export_rdev(rdev);
}
mddev_put(mddev);
}
pr_info("md: ... autorun DONE.\n");
}
#endif /* !MODULE */
static int get_version(void __user *arg)
{
mdu_version_t ver;
ver.major = MD_MAJOR_VERSION;
ver.minor = MD_MINOR_VERSION;
ver.patchlevel = MD_PATCHLEVEL_VERSION;
if (copy_to_user(arg, &ver, sizeof(ver)))
return -EFAULT;
return 0;
}
static int get_array_info(struct mddev *mddev, void __user *arg)
{
mdu_array_info_t info;
int nr,working,insync,failed,spare;
struct md_rdev *rdev;
nr = working = insync = failed = spare = 0;
rcu_read_lock();
rdev_for_each_rcu(rdev, mddev) {
nr++;
if (test_bit(Faulty, &rdev->flags))
failed++;
else {
working++;
if (test_bit(In_sync, &rdev->flags))
insync++;
else if (test_bit(Journal, &rdev->flags))
/* TODO: add journal count to md_u.h */
;
else
spare++;
}
}
rcu_read_unlock();
info.major_version = mddev->major_version;
info.minor_version = mddev->minor_version;
info.patch_version = MD_PATCHLEVEL_VERSION;
info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
info.level = mddev->level;
info.size = mddev->dev_sectors / 2;
if (info.size != mddev->dev_sectors / 2) /* overflow */
info.size = -1;
info.nr_disks = nr;
info.raid_disks = mddev->raid_disks;
info.md_minor = mddev->md_minor;
info.not_persistent= !mddev->persistent;
info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
info.state = 0;
if (mddev->in_sync)
info.state = (1<<MD_SB_CLEAN);
if (mddev->bitmap && mddev->bitmap_info.offset)
info.state |= (1<<MD_SB_BITMAP_PRESENT);
if (mddev_is_clustered(mddev))
info.state |= (1<<MD_SB_CLUSTERED);
info.active_disks = insync;
info.working_disks = working;
info.failed_disks = failed;
info.spare_disks = spare;
info.layout = mddev->layout;
info.chunk_size = mddev->chunk_sectors << 9;
if (copy_to_user(arg, &info, sizeof(info)))
return -EFAULT;
return 0;
}
static int get_bitmap_file(struct mddev *mddev, void __user * arg)
{
mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
char *ptr;
int err;
file = kzalloc(sizeof(*file), GFP_NOIO);
if (!file)
return -ENOMEM;
err = 0;
spin_lock(&mddev->lock);
/* bitmap enabled */
if (mddev->bitmap_info.file) {
ptr = file_path(mddev->bitmap_info.file, file->pathname,
sizeof(file->pathname));
if (IS_ERR(ptr))
err = PTR_ERR(ptr);
else
memmove(file->pathname, ptr,
sizeof(file->pathname)-(ptr-file->pathname));
}
spin_unlock(&mddev->lock);
if (err == 0 &&
copy_to_user(arg, file, sizeof(*file)))
err = -EFAULT;
kfree(file);
return err;
}
static int get_disk_info(struct mddev *mddev, void __user * arg)
{
mdu_disk_info_t info;
struct md_rdev *rdev;
if (copy_from_user(&info, arg, sizeof(info)))
return -EFAULT;
rcu_read_lock();
rdev = md_find_rdev_nr_rcu(mddev, info.number);
if (rdev) {
info.major = MAJOR(rdev->bdev->bd_dev);
info.minor = MINOR(rdev->bdev->bd_dev);
info.raid_disk = rdev->raid_disk;
info.state = 0;
if (test_bit(Faulty, &rdev->flags))
info.state |= (1<<MD_DISK_FAULTY);
else if (test_bit(In_sync, &rdev->flags)) {
info.state |= (1<<MD_DISK_ACTIVE);
info.state |= (1<<MD_DISK_SYNC);
}
if (test_bit(Journal, &rdev->flags))
info.state |= (1<<MD_DISK_JOURNAL);
if (test_bit(WriteMostly, &rdev->flags))
info.state |= (1<<MD_DISK_WRITEMOSTLY);
if (test_bit(FailFast, &rdev->flags))
info.state |= (1<<MD_DISK_FAILFAST);
} else {
info.major = info.minor = 0;
info.raid_disk = -1;
info.state = (1<<MD_DISK_REMOVED);
}
rcu_read_unlock();
if (copy_to_user(arg, &info, sizeof(info)))
return -EFAULT;
return 0;
}
int md_add_new_disk(struct mddev *mddev, struct mdu_disk_info_s *info)
{
struct md_rdev *rdev;
dev_t dev = MKDEV(info->major,info->minor);
if (mddev_is_clustered(mddev) &&
!(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
pr_warn("%s: Cannot add to clustered mddev.\n",
mdname(mddev));
return -EINVAL;
}
if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
return -EOVERFLOW;
if (!mddev->raid_disks) {
int err;
/* expecting a device which has a superblock */
rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
if (IS_ERR(rdev)) {
pr_warn("md: md_import_device returned %ld\n",
PTR_ERR(rdev));
return PTR_ERR(rdev);
}
if (!list_empty(&mddev->disks)) {
struct md_rdev *rdev0
= list_entry(mddev->disks.next,
struct md_rdev, same_set);
err = super_types[mddev->major_version]
.load_super(rdev, rdev0, mddev->minor_version);
if (err < 0) {
pr_warn("md: %pg has different UUID to %pg\n",
rdev->bdev,
rdev0->bdev);
export_rdev(rdev);
return -EINVAL;
}
}
err = bind_rdev_to_array(rdev, mddev);
if (err)
export_rdev(rdev);
return err;
}
/*
* md_add_new_disk can be used once the array is assembled
* to add "hot spares". They must already have a superblock
* written
*/
if (mddev->pers) {
int err;
if (!mddev->pers->hot_add_disk) {
pr_warn("%s: personality does not support diskops!\n",
mdname(mddev));
return -EINVAL;
}
if (mddev->persistent)
rdev = md_import_device(dev, mddev->major_version,
mddev->minor_version);
else
rdev = md_import_device(dev, -1, -1);
if (IS_ERR(rdev)) {
pr_warn("md: md_import_device returned %ld\n",
PTR_ERR(rdev));
return PTR_ERR(rdev);
}
/* set saved_raid_disk if appropriate */
if (!mddev->persistent) {
if (info->state & (1<<MD_DISK_SYNC) &&
info->raid_disk < mddev->raid_disks) {
rdev->raid_disk = info->raid_disk;
set_bit(In_sync, &rdev->flags);
clear_bit(Bitmap_sync, &rdev->flags);
} else
rdev->raid_disk = -1;
rdev->saved_raid_disk = rdev->raid_disk;
} else
super_types[mddev->major_version].
validate_super(mddev, rdev);
if ((info->state & (1<<MD_DISK_SYNC)) &&
rdev->raid_disk != info->raid_disk) {
/* This was a hot-add request, but events doesn't
* match, so reject it.
*/
export_rdev(rdev);
return -EINVAL;
}
clear_bit(In_sync, &rdev->flags); /* just to be sure */
if (info->state & (1<<MD_DISK_WRITEMOSTLY))
set_bit(WriteMostly, &rdev->flags);
else
clear_bit(WriteMostly, &rdev->flags);
if (info->state & (1<<MD_DISK_FAILFAST))
set_bit(FailFast, &rdev->flags);
else
clear_bit(FailFast, &rdev->flags);
if (info->state & (1<<MD_DISK_JOURNAL)) {
struct md_rdev *rdev2;
bool has_journal = false;
/* make sure no existing journal disk */
rdev_for_each(rdev2, mddev) {
if (test_bit(Journal, &rdev2->flags)) {
has_journal = true;
break;
}
}
if (has_journal || mddev->bitmap) {
export_rdev(rdev);
return -EBUSY;
}
set_bit(Journal, &rdev->flags);
}
/*
* check whether the device shows up in other nodes
*/
if (mddev_is_clustered(mddev)) {
if (info->state & (1 << MD_DISK_CANDIDATE))
set_bit(Candidate, &rdev->flags);
else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
/* --add initiated by this node */
err = md_cluster_ops->add_new_disk(mddev, rdev);
if (err) {
export_rdev(rdev);
return err;
}
}
}
rdev->raid_disk = -1;
err = bind_rdev_to_array(rdev, mddev);
if (err)
export_rdev(rdev);
if (mddev_is_clustered(mddev)) {
if (info->state & (1 << MD_DISK_CANDIDATE)) {
if (!err) {
err = md_cluster_ops->new_disk_ack(mddev,
err == 0);
if (err)
md_kick_rdev_from_array(rdev);
}
} else {
if (err)
md_cluster_ops->add_new_disk_cancel(mddev);
else
err = add_bound_rdev(rdev);
}
} else if (!err)
err = add_bound_rdev(rdev);
return err;
}
/* otherwise, md_add_new_disk is only allowed
* for major_version==0 superblocks
*/
if (mddev->major_version != 0) {
pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev));
return -EINVAL;
}
if (!(info->state & (1<<MD_DISK_FAULTY))) {
int err;
rdev = md_import_device(dev, -1, 0);
if (IS_ERR(rdev)) {
pr_warn("md: error, md_import_device() returned %ld\n",
PTR_ERR(rdev));
return PTR_ERR(rdev);
}
rdev->desc_nr = info->number;
if (info->raid_disk < mddev->raid_disks)
rdev->raid_disk = info->raid_disk;
else
rdev->raid_disk = -1;
if (rdev->raid_disk < mddev->raid_disks)
if (info->state & (1<<MD_DISK_SYNC))
set_bit(In_sync, &rdev->flags);
if (info->state & (1<<MD_DISK_WRITEMOSTLY))
set_bit(WriteMostly, &rdev->flags);
if (info->state & (1<<MD_DISK_FAILFAST))
set_bit(FailFast, &rdev->flags);
if (!mddev->persistent) {
pr_debug("md: nonpersistent superblock ...\n");
rdev->sb_start = bdev_nr_sectors(rdev->bdev);
} else
rdev->sb_start = calc_dev_sboffset(rdev);
rdev->sectors = rdev->sb_start;
err = bind_rdev_to_array(rdev, mddev);
if (err) {
export_rdev(rdev);
return err;
}
}
return 0;
}
static int hot_remove_disk(struct mddev *mddev, dev_t dev)
{
struct md_rdev *rdev;
if (!mddev->pers)
return -ENODEV;
rdev = find_rdev(mddev, dev);
if (!rdev)
return -ENXIO;
if (rdev->raid_disk < 0)
goto kick_rdev;
clear_bit(Blocked, &rdev->flags);
remove_and_add_spares(mddev, rdev);
if (rdev->raid_disk >= 0)
goto busy;
kick_rdev:
if (mddev_is_clustered(mddev)) {
if (md_cluster_ops->remove_disk(mddev, rdev))
goto busy;
}
md_kick_rdev_from_array(rdev);
set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
if (mddev->thread)
md_wakeup_thread(mddev->thread);
else
md_update_sb(mddev, 1);
md_new_event();
return 0;
busy:
pr_debug("md: cannot remove active disk %pg from %s ...\n",
rdev->bdev, mdname(mddev));
return -EBUSY;
}
static int hot_add_disk(struct mddev *mddev, dev_t dev)
{
int err;
struct md_rdev *rdev;
if (!mddev->pers)
return -ENODEV;
if (mddev->major_version != 0) {
pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n",
mdname(mddev));
return -EINVAL;
}
if (!mddev->pers->hot_add_disk) {
pr_warn("%s: personality does not support diskops!\n",
mdname(mddev));
return -EINVAL;
}
rdev = md_import_device(dev, -1, 0);
if (IS_ERR(rdev)) {
pr_warn("md: error, md_import_device() returned %ld\n",
PTR_ERR(rdev));
return -EINVAL;
}
if (mddev->persistent)
rdev->sb_start = calc_dev_sboffset(rdev);
else
rdev->sb_start = bdev_nr_sectors(rdev->bdev);
rdev->sectors = rdev->sb_start;
if (test_bit(Faulty, &rdev->flags)) {
pr_warn("md: can not hot-add faulty %pg disk to %s!\n",
rdev->bdev, mdname(mddev));
err = -EINVAL;
goto abort_export;
}
clear_bit(In_sync, &rdev->flags);
rdev->desc_nr = -1;
rdev->saved_raid_disk = -1;
err = bind_rdev_to_array(rdev, mddev);
if (err)
goto abort_export;
/*
* The rest should better be atomic, we can have disk failures
* noticed in interrupt contexts ...
*/
rdev->raid_disk = -1;
set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
if (!mddev->thread)
md_update_sb(mddev, 1);
/*
* If the new disk does not support REQ_NOWAIT,
* disable on the whole MD.
*/
if (!bdev_nowait(rdev->bdev)) {
pr_info("%s: Disabling nowait because %pg does not support nowait\n",
mdname(mddev), rdev->bdev);
blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, mddev->queue);
}
/*
* Kick recovery, maybe this spare has to be added to the
* array immediately.
*/
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
md_wakeup_thread(mddev->thread);
md_new_event();
return 0;
abort_export:
export_rdev(rdev);
return err;
}
static int set_bitmap_file(struct mddev *mddev, int fd)
{
int err = 0;
if (mddev->pers) {
if (!mddev->pers->quiesce || !mddev->thread)
return -EBUSY;
if (mddev->recovery || mddev->sync_thread)
return -EBUSY;
/* we should be able to change the bitmap.. */
}
if (fd >= 0) {
struct inode *inode;
struct file *f;
if (mddev->bitmap || mddev->bitmap_info.file)
return -EEXIST; /* cannot add when bitmap is present */
f = fget(fd);
if (f == NULL) {
pr_warn("%s: error: failed to get bitmap file\n",
mdname(mddev));
return -EBADF;
}
inode = f->f_mapping->host;
if (!S_ISREG(inode->i_mode)) {
pr_warn("%s: error: bitmap file must be a regular file\n",
mdname(mddev));
err = -EBADF;
} else if (!(f->f_mode & FMODE_WRITE)) {
pr_warn("%s: error: bitmap file must open for write\n",
mdname(mddev));
err = -EBADF;
} else if (atomic_read(&inode->i_writecount) != 1) {
pr_warn("%s: error: bitmap file is already in use\n",
mdname(mddev));
err = -EBUSY;
}
if (err) {
fput(f);
return err;
}
mddev->bitmap_info.file = f;
mddev->bitmap_info.offset = 0; /* file overrides offset */
} else if (mddev->bitmap == NULL)
return -ENOENT; /* cannot remove what isn't there */
err = 0;
if (mddev->pers) {
if (fd >= 0) {
struct bitmap *bitmap;
bitmap = md_bitmap_create(mddev, -1);
mddev_suspend(mddev);
if (!IS_ERR(bitmap)) {
mddev->bitmap = bitmap;
err = md_bitmap_load(mddev);
} else
err = PTR_ERR(bitmap);
if (err) {
md_bitmap_destroy(mddev);
fd = -1;
}
mddev_resume(mddev);
} else if (fd < 0) {
mddev_suspend(mddev);
md_bitmap_destroy(mddev);
mddev_resume(mddev);
}
}
if (fd < 0) {
struct file *f = mddev->bitmap_info.file;
if (f) {
spin_lock(&mddev->lock);
mddev->bitmap_info.file = NULL;
spin_unlock(&mddev->lock);
fput(f);
}
}
return err;
}
/*
* md_set_array_info is used two different ways
* The original usage is when creating a new array.
* In this usage, raid_disks is > 0 and it together with
* level, size, not_persistent,layout,chunksize determine the
* shape of the array.
* This will always create an array with a type-0.90.0 superblock.
* The newer usage is when assembling an array.
* In this case raid_disks will be 0, and the major_version field is
* use to determine which style super-blocks are to be found on the devices.
* The minor and patch _version numbers are also kept incase the
* super_block handler wishes to interpret them.
*/
int md_set_array_info(struct mddev *mddev, struct mdu_array_info_s *info)
{
if (info->raid_disks == 0) {
/* just setting version number for superblock loading */
if (info->major_version < 0 ||
info->major_version >= ARRAY_SIZE(super_types) ||
super_types[info->major_version].name == NULL) {
/* maybe try to auto-load a module? */
pr_warn("md: superblock version %d not known\n",
info->major_version);
return -EINVAL;
}
mddev->major_version = info->major_version;
mddev->minor_version = info->minor_version;
mddev->patch_version = info->patch_version;
mddev->persistent = !info->not_persistent;
/* ensure mddev_put doesn't delete this now that there
* is some minimal configuration.
*/
mddev->ctime = ktime_get_real_seconds();
return 0;
}
mddev->major_version = MD_MAJOR_VERSION;
mddev->minor_version = MD_MINOR_VERSION;
mddev->patch_version = MD_PATCHLEVEL_VERSION;
mddev->ctime = ktime_get_real_seconds();
mddev->level = info->level;
mddev->clevel[0] = 0;
mddev->dev_sectors = 2 * (sector_t)info->size;
mddev->raid_disks = info->raid_disks;
/* don't set md_minor, it is determined by which /dev/md* was
* openned
*/
if (info->state & (1<<MD_SB_CLEAN))
mddev->recovery_cp = MaxSector;
else
mddev->recovery_cp = 0;
mddev->persistent = ! info->not_persistent;
mddev->external = 0;
mddev->layout = info->layout;
if (mddev->level == 0)
/* Cannot trust RAID0 layout info here */
mddev->layout = -1;
mddev->chunk_sectors = info->chunk_size >> 9;
if (mddev->persistent) {
mddev->max_disks = MD_SB_DISKS;
mddev->flags = 0;
mddev->sb_flags = 0;
}
set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
mddev->bitmap_info.offset = 0;
mddev->reshape_position = MaxSector;
/*
* Generate a 128 bit UUID
*/
get_random_bytes(mddev->uuid, 16);
mddev->new_level = mddev->level;
mddev->new_chunk_sectors = mddev->chunk_sectors;
mddev->new_layout = mddev->layout;
mddev->delta_disks = 0;
mddev->reshape_backwards = 0;
return 0;
}
void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
{
lockdep_assert_held(&mddev->reconfig_mutex);
if (mddev->external_size)
return;
mddev->array_sectors = array_sectors;
}
EXPORT_SYMBOL(md_set_array_sectors);
static int update_size(struct mddev *mddev, sector_t num_sectors)
{
struct md_rdev *rdev;
int rv;
int fit = (num_sectors == 0);
sector_t old_dev_sectors = mddev->dev_sectors;
if (mddev->pers->resize == NULL)
return -EINVAL;
/* The "num_sectors" is the number of sectors of each device that
* is used. This can only make sense for arrays with redundancy.
* linear and raid0 always use whatever space is available. We can only
* consider changing this number if no resync or reconstruction is
* happening, and if the new size is acceptable. It must fit before the
* sb_start or, if that is <data_offset, it must fit before the size
* of each device. If num_sectors is zero, we find the largest size
* that fits.
*/
if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
mddev->sync_thread)
return -EBUSY;
if (!md_is_rdwr(mddev))
return -EROFS;
rdev_for_each(rdev, mddev) {
sector_t avail = rdev->sectors;
if (fit && (num_sectors == 0 || num_sectors > avail))
num_sectors = avail;
if (avail < num_sectors)
return -ENOSPC;
}
rv = mddev->pers->resize(mddev, num_sectors);
if (!rv) {
if (mddev_is_clustered(mddev))
md_cluster_ops->update_size(mddev, old_dev_sectors);
else if (mddev->queue) {
set_capacity_and_notify(mddev->gendisk,
mddev->array_sectors);
}
}
return rv;
}
static int update_raid_disks(struct mddev *mddev, int raid_disks)
{
int rv;
struct md_rdev *rdev;
/* change the number of raid disks */
if (mddev->pers->check_reshape == NULL)
return -EINVAL;
if (!md_is_rdwr(mddev))
return -EROFS;
if (raid_disks <= 0 ||
(mddev->max_disks && raid_disks >= mddev->max_disks))
return -EINVAL;
if (mddev->sync_thread ||
test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) ||
mddev->reshape_position != MaxSector)
return -EBUSY;
rdev_for_each(rdev, mddev) {
if (mddev->raid_disks < raid_disks &&
rdev->data_offset < rdev->new_data_offset)
return -EINVAL;
if (mddev->raid_disks > raid_disks &&
rdev->data_offset > rdev->new_data_offset)
return -EINVAL;
}
mddev->delta_disks = raid_disks - mddev->raid_disks;
if (mddev->delta_disks < 0)
mddev->reshape_backwards = 1;
else if (mddev->delta_disks > 0)
mddev->reshape_backwards = 0;
rv = mddev->pers->check_reshape(mddev);
if (rv < 0) {
mddev->delta_disks = 0;
mddev->reshape_backwards = 0;
}
return rv;
}
/*
* update_array_info is used to change the configuration of an
* on-line array.
* The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
* fields in the info are checked against the array.
* Any differences that cannot be handled will cause an error.
* Normally, only one change can be managed at a time.
*/
static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
{
int rv = 0;
int cnt = 0;
int state = 0;
/* calculate expected state,ignoring low bits */
if (mddev->bitmap && mddev->bitmap_info.offset)
state |= (1 << MD_SB_BITMAP_PRESENT);
if (mddev->major_version != info->major_version ||
mddev->minor_version != info->minor_version ||
/* mddev->patch_version != info->patch_version || */
mddev->ctime != info->ctime ||
mddev->level != info->level ||
/* mddev->layout != info->layout || */
mddev->persistent != !info->not_persistent ||
mddev->chunk_sectors != info->chunk_size >> 9 ||
/* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
((state^info->state) & 0xfffffe00)
)
return -EINVAL;
/* Check there is only one change */
if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
cnt++;
if (mddev->raid_disks != info->raid_disks)
cnt++;
if (mddev->layout != info->layout)
cnt++;
if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
cnt++;
if (cnt == 0)
return 0;
if (cnt > 1)
return -EINVAL;
if (mddev->layout != info->layout) {
/* Change layout
* we don't need to do anything at the md level, the
* personality will take care of it all.
*/
if (mddev->pers->check_reshape == NULL)
return -EINVAL;
else {
mddev->new_layout = info->layout;
rv = mddev->pers->check_reshape(mddev);
if (rv)
mddev->new_layout = mddev->layout;
return rv;
}
}
if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
rv = update_size(mddev, (sector_t)info->size * 2);
if (mddev->raid_disks != info->raid_disks)
rv = update_raid_disks(mddev, info->raid_disks);
if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
rv = -EINVAL;
goto err;
}
if (mddev->recovery || mddev->sync_thread) {
rv = -EBUSY;
goto err;
}
if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
struct bitmap *bitmap;
/* add the bitmap */
if (mddev->bitmap) {
rv = -EEXIST;
goto err;
}
if (mddev->bitmap_info.default_offset == 0) {
rv = -EINVAL;
goto err;
}
mddev->bitmap_info.offset =
mddev->bitmap_info.default_offset;
mddev->bitmap_info.space =
mddev->bitmap_info.default_space;
bitmap = md_bitmap_create(mddev, -1);
mddev_suspend(mddev);
if (!IS_ERR(bitmap)) {
mddev->bitmap = bitmap;
rv = md_bitmap_load(mddev);
} else
rv = PTR_ERR(bitmap);
if (rv)
md_bitmap_destroy(mddev);
mddev_resume(mddev);
} else {
/* remove the bitmap */
if (!mddev->bitmap) {
rv = -ENOENT;
goto err;
}
if (mddev->bitmap->storage.file) {
rv = -EINVAL;
goto err;
}
if (mddev->bitmap_info.nodes) {
/* hold PW on all the bitmap lock */
if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) {
pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n");
rv = -EPERM;
md_cluster_ops->unlock_all_bitmaps(mddev);
goto err;
}
mddev->bitmap_info.nodes = 0;
md_cluster_ops->leave(mddev);
module_put(md_cluster_mod);
mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY;
}
mddev_suspend(mddev);
md_bitmap_destroy(mddev);
mddev_resume(mddev);
mddev->bitmap_info.offset = 0;
}
}
md_update_sb(mddev, 1);
return rv;
err:
return rv;
}
static int set_disk_faulty(struct mddev *mddev, dev_t dev)
{
struct md_rdev *rdev;
int err = 0;
if (mddev->pers == NULL)
return -ENODEV;
rcu_read_lock();
rdev = md_find_rdev_rcu(mddev, dev);
if (!rdev)
err = -ENODEV;
else {
md_error(mddev, rdev);
if (test_bit(MD_BROKEN, &mddev->flags))
err = -EBUSY;
}
rcu_read_unlock();
return err;
}
/*
* We have a problem here : there is no easy way to give a CHS
* virtual geometry. We currently pretend that we have a 2 heads
* 4 sectors (with a BIG number of cylinders...). This drives
* dosfs just mad... ;-)
*/
static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
{
struct mddev *mddev = bdev->bd_disk->private_data;
geo->heads = 2;
geo->sectors = 4;
geo->cylinders = mddev->array_sectors / 8;
return 0;
}
static inline bool md_ioctl_valid(unsigned int cmd)
{
switch (cmd) {
case ADD_NEW_DISK:
case GET_ARRAY_INFO:
case GET_BITMAP_FILE:
case GET_DISK_INFO:
case HOT_ADD_DISK:
case HOT_REMOVE_DISK:
case RAID_VERSION:
case RESTART_ARRAY_RW:
case RUN_ARRAY:
case SET_ARRAY_INFO:
case SET_BITMAP_FILE:
case SET_DISK_FAULTY:
case STOP_ARRAY:
case STOP_ARRAY_RO:
case CLUSTERED_DISK_NACK:
return true;
default:
return false;
}
}
static int __md_set_array_info(struct mddev *mddev, void __user *argp)
{
mdu_array_info_t info;
int err;
if (!argp)
memset(&info, 0, sizeof(info));
else if (copy_from_user(&info, argp, sizeof(info)))
return -EFAULT;
if (mddev->pers) {
err = update_array_info(mddev, &info);
if (err)
pr_warn("md: couldn't update array info. %d\n", err);
return err;
}
if (!list_empty(&mddev->disks)) {
pr_warn("md: array %s already has disks!\n", mdname(mddev));
return -EBUSY;
}
if (mddev->raid_disks) {
pr_warn("md: array %s already initialised!\n", mdname(mddev));
return -EBUSY;
}
err = md_set_array_info(mddev, &info);
if (err)
pr_warn("md: couldn't set array info. %d\n", err);
return err;
}
static int md_ioctl(struct block_device *bdev, fmode_t mode,
unsigned int cmd, unsigned long arg)
{
int err = 0;
void __user *argp = (void __user *)arg;
struct mddev *mddev = NULL;
bool did_set_md_closing = false;
if (!md_ioctl_valid(cmd))
return -ENOTTY;
switch (cmd) {
case RAID_VERSION:
case GET_ARRAY_INFO:
case GET_DISK_INFO:
break;
default:
if (!capable(CAP_SYS_ADMIN))
return -EACCES;
}
/*
* Commands dealing with the RAID driver but not any
* particular array:
*/
switch (cmd) {
case RAID_VERSION:
err = get_version(argp);
goto out;
default:;
}
/*
* Commands creating/starting a new array:
*/
mddev = bdev->bd_disk->private_data;
if (!mddev) {
BUG();
goto out;
}
/* Some actions do not requires the mutex */
switch (cmd) {
case GET_ARRAY_INFO:
if (!mddev->raid_disks && !mddev->external)
err = -ENODEV;
else
err = get_array_info(mddev, argp);
goto out;
case GET_DISK_INFO:
if (!mddev->raid_disks && !mddev->external)
err = -ENODEV;
else
err = get_disk_info(mddev, argp);
goto out;
case SET_DISK_FAULTY:
err = set_disk_faulty(mddev, new_decode_dev(arg));
goto out;
case GET_BITMAP_FILE:
err = get_bitmap_file(mddev, argp);
goto out;
}
if (cmd == ADD_NEW_DISK || cmd == HOT_ADD_DISK)
flush_rdev_wq(mddev);
if (cmd == HOT_REMOVE_DISK)
/* need to ensure recovery thread has run */
wait_event_interruptible_timeout(mddev->sb_wait,
!test_bit(MD_RECOVERY_NEEDED,
&mddev->recovery),
msecs_to_jiffies(5000));
if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
/* Need to flush page cache, and ensure no-one else opens
* and writes
*/
mutex_lock(&mddev->open_mutex);
if (mddev->pers && atomic_read(&mddev->openers) > 1) {
mutex_unlock(&mddev->open_mutex);
err = -EBUSY;
goto out;
}
if (test_and_set_bit(MD_CLOSING, &mddev->flags)) {
mutex_unlock(&mddev->open_mutex);
err = -EBUSY;
goto out;
}
did_set_md_closing = true;
mutex_unlock(&mddev->open_mutex);
sync_blockdev(bdev);
}
err = mddev_lock(mddev);
if (err) {
pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n",
err, cmd);
goto out;
}
if (cmd == SET_ARRAY_INFO) {
err = __md_set_array_info(mddev, argp);
goto unlock;
}
/*
* Commands querying/configuring an existing array:
*/
/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
* RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
if ((!mddev->raid_disks && !mddev->external)
&& cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
&& cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
&& cmd != GET_BITMAP_FILE) {
err = -ENODEV;
goto unlock;
}
/*
* Commands even a read-only array can execute:
*/
switch (cmd) {
case RESTART_ARRAY_RW:
err = restart_array(mddev);
goto unlock;
case STOP_ARRAY:
err = do_md_stop(mddev, 0, bdev);
goto unlock;
case STOP_ARRAY_RO:
err = md_set_readonly(mddev, bdev);
goto unlock;
case HOT_REMOVE_DISK:
err = hot_remove_disk(mddev, new_decode_dev(arg));
goto unlock;
case ADD_NEW_DISK:
/* We can support ADD_NEW_DISK on read-only arrays
* only if we are re-adding a preexisting device.
* So require mddev->pers and MD_DISK_SYNC.
*/
if (mddev->pers) {
mdu_disk_info_t info;
if (copy_from_user(&info, argp, sizeof(info)))
err = -EFAULT;
else if (!(info.state & (1<<MD_DISK_SYNC)))
/* Need to clear read-only for this */
break;
else
err = md_add_new_disk(mddev, &info);
goto unlock;
}
break;
}
/*
* The remaining ioctls are changing the state of the
* superblock, so we do not allow them on read-only arrays.
*/
if (!md_is_rdwr(mddev) && mddev->pers) {
if (mddev->ro != MD_AUTO_READ) {
err = -EROFS;
goto unlock;
}
mddev->ro = MD_RDWR;
sysfs_notify_dirent_safe(mddev->sysfs_state);
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
/* mddev_unlock will wake thread */
/* If a device failed while we were read-only, we
* need to make sure the metadata is updated now.
*/
if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) {
mddev_unlock(mddev);
wait_event(mddev->sb_wait,
!test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) &&
!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
mddev_lock_nointr(mddev);
}
}
switch (cmd) {
case ADD_NEW_DISK:
{
mdu_disk_info_t info;
if (copy_from_user(&info, argp, sizeof(info)))
err = -EFAULT;
else
err = md_add_new_disk(mddev, &info);
goto unlock;
}
case CLUSTERED_DISK_NACK:
if (mddev_is_clustered(mddev))
md_cluster_ops->new_disk_ack(mddev, false);
else
err = -EINVAL;
goto unlock;
case HOT_ADD_DISK:
err = hot_add_disk(mddev, new_decode_dev(arg));
goto unlock;
case RUN_ARRAY:
err = do_md_run(mddev);
goto unlock;
case SET_BITMAP_FILE:
err = set_bitmap_file(mddev, (int)arg);
goto unlock;
default:
err = -EINVAL;
goto unlock;
}
unlock:
if (mddev->hold_active == UNTIL_IOCTL &&
err != -EINVAL)
mddev->hold_active = 0;
mddev_unlock(mddev);
out:
if(did_set_md_closing)
clear_bit(MD_CLOSING, &mddev->flags);
return err;
}
#ifdef CONFIG_COMPAT
static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
unsigned int cmd, unsigned long arg)
{
switch (cmd) {
case HOT_REMOVE_DISK:
case HOT_ADD_DISK:
case SET_DISK_FAULTY:
case SET_BITMAP_FILE:
/* These take in integer arg, do not convert */
break;
default:
arg = (unsigned long)compat_ptr(arg);
break;
}
return md_ioctl(bdev, mode, cmd, arg);
}
#endif /* CONFIG_COMPAT */
static int md_set_read_only(struct block_device *bdev, bool ro)
{
struct mddev *mddev = bdev->bd_disk->private_data;
int err;
err = mddev_lock(mddev);
if (err)
return err;
if (!mddev->raid_disks && !mddev->external) {
err = -ENODEV;
goto out_unlock;
}
/*
* Transitioning to read-auto need only happen for arrays that call
* md_write_start and which are not ready for writes yet.
*/
if (!ro && mddev->ro == MD_RDONLY && mddev->pers) {
err = restart_array(mddev);
if (err)
goto out_unlock;
mddev->ro = MD_AUTO_READ;
}
out_unlock:
mddev_unlock(mddev);
return err;
}
static int md_open(struct block_device *bdev, fmode_t mode)
{
struct mddev *mddev;
int err;
spin_lock(&all_mddevs_lock);
mddev = mddev_get(bdev->bd_disk->private_data);
spin_unlock(&all_mddevs_lock);
if (!mddev)
return -ENODEV;
err = mutex_lock_interruptible(&mddev->open_mutex);
if (err)
goto out;
err = -ENODEV;
if (test_bit(MD_CLOSING, &mddev->flags))
goto out_unlock;
atomic_inc(&mddev->openers);
mutex_unlock(&mddev->open_mutex);
bdev_check_media_change(bdev);
return 0;
out_unlock:
mutex_unlock(&mddev->open_mutex);
out:
mddev_put(mddev);
return err;
}
static void md_release(struct gendisk *disk, fmode_t mode)
{
struct mddev *mddev = disk->private_data;
BUG_ON(!mddev);
atomic_dec(&mddev->openers);
mddev_put(mddev);
}
static unsigned int md_check_events(struct gendisk *disk, unsigned int clearing)
{
struct mddev *mddev = disk->private_data;
unsigned int ret = 0;
if (mddev->changed)
ret = DISK_EVENT_MEDIA_CHANGE;
mddev->changed = 0;
return ret;
}
static void md_free_disk(struct gendisk *disk)
{
struct mddev *mddev = disk->private_data;
percpu_ref_exit(&mddev->writes_pending);
percpu_ref_exit(&mddev->active_io);
bioset_exit(&mddev->bio_set);
bioset_exit(&mddev->sync_set);
mddev_free(mddev);
}
const struct block_device_operations md_fops =
{
.owner = THIS_MODULE,
.submit_bio = md_submit_bio,
.open = md_open,
.release = md_release,
.ioctl = md_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = md_compat_ioctl,
#endif
.getgeo = md_getgeo,
.check_events = md_check_events,
.set_read_only = md_set_read_only,
.free_disk = md_free_disk,
};
static int md_thread(void *arg)
{
struct md_thread *thread = arg;
/*
* md_thread is a 'system-thread', it's priority should be very
* high. We avoid resource deadlocks individually in each
* raid personality. (RAID5 does preallocation) We also use RR and
* the very same RT priority as kswapd, thus we will never get
* into a priority inversion deadlock.
*
* we definitely have to have equal or higher priority than
* bdflush, otherwise bdflush will deadlock if there are too
* many dirty RAID5 blocks.
*/
allow_signal(SIGKILL);
while (!kthread_should_stop()) {
/* We need to wait INTERRUPTIBLE so that
* we don't add to the load-average.
* That means we need to be sure no signals are
* pending
*/
if (signal_pending(current))
flush_signals(current);
wait_event_interruptible_timeout
(thread->wqueue,
test_bit(THREAD_WAKEUP, &thread->flags)
|| kthread_should_stop() || kthread_should_park(),
thread->timeout);
clear_bit(THREAD_WAKEUP, &thread->flags);
if (kthread_should_park())
kthread_parkme();
if (!kthread_should_stop())
thread->run(thread);
}
return 0;
}
void md_wakeup_thread(struct md_thread *thread)
{
if (thread) {
pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
set_bit(THREAD_WAKEUP, &thread->flags);
wake_up(&thread->wqueue);
}
}
EXPORT_SYMBOL(md_wakeup_thread);
struct md_thread *md_register_thread(void (*run) (struct md_thread *),
struct mddev *mddev, const char *name)
{
struct md_thread *thread;
thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
if (!thread)
return NULL;
init_waitqueue_head(&thread->wqueue);
thread->run = run;
thread->mddev = mddev;
thread->timeout = MAX_SCHEDULE_TIMEOUT;
thread->tsk = kthread_run(md_thread, thread,
"%s_%s",
mdname(thread->mddev),
name);
if (IS_ERR(thread->tsk)) {
kfree(thread);
return NULL;
}
return thread;
}
EXPORT_SYMBOL(md_register_thread);
void md_unregister_thread(struct md_thread **threadp)
{
struct md_thread *thread;
/*
* Locking ensures that mddev_unlock does not wake_up a
* non-existent thread
*/
spin_lock(&pers_lock);
thread = *threadp;
if (!thread) {
spin_unlock(&pers_lock);
return;
}
*threadp = NULL;
spin_unlock(&pers_lock);
pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
kthread_stop(thread->tsk);
kfree(thread);
}
EXPORT_SYMBOL(md_unregister_thread);
void md_error(struct mddev *mddev, struct md_rdev *rdev)
{
if (!rdev || test_bit(Faulty, &rdev->flags))
return;
if (!mddev->pers || !mddev->pers->error_handler)
return;
mddev->pers->error_handler(mddev, rdev);
if (mddev->degraded && !test_bit(MD_BROKEN, &mddev->flags))
set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
sysfs_notify_dirent_safe(rdev->sysfs_state);
set_bit(MD_RECOVERY_INTR, &mddev->recovery);
if (!test_bit(MD_BROKEN, &mddev->flags)) {
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
md_wakeup_thread(mddev->thread);
}
if (mddev->event_work.func)
queue_work(md_misc_wq, &mddev->event_work);
md_new_event();
}
EXPORT_SYMBOL(md_error);
/* seq_file implementation /proc/mdstat */
static void status_unused(struct seq_file *seq)
{
int i = 0;
struct md_rdev *rdev;
seq_printf(seq, "unused devices: ");
list_for_each_entry(rdev, &pending_raid_disks, same_set) {
i++;
seq_printf(seq, "%pg ", rdev->bdev);
}
if (!i)
seq_printf(seq, "<none>");
seq_printf(seq, "\n");
}
static int status_resync(struct seq_file *seq, struct mddev *mddev)
{
sector_t max_sectors, resync, res;
unsigned long dt, db = 0;
sector_t rt, curr_mark_cnt, resync_mark_cnt;
int scale, recovery_active;
unsigned int per_milli;
if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
max_sectors = mddev->resync_max_sectors;
else
max_sectors = mddev->dev_sectors;
resync = mddev->curr_resync;
if (resync < MD_RESYNC_ACTIVE) {
if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
/* Still cleaning up */
resync = max_sectors;
} else if (resync > max_sectors) {
resync = max_sectors;
} else {
resync -= atomic_read(&mddev->recovery_active);
if (resync < MD_RESYNC_ACTIVE) {
/*
* Resync has started, but the subtraction has
* yielded one of the special values. Force it
* to active to ensure the status reports an
* active resync.
*/
resync = MD_RESYNC_ACTIVE;
}
}
if (resync == MD_RESYNC_NONE) {
if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery)) {
struct md_rdev *rdev;
rdev_for_each(rdev, mddev)
if (rdev->raid_disk >= 0 &&
!test_bit(Faulty, &rdev->flags) &&
rdev->recovery_offset != MaxSector &&
rdev->recovery_offset) {
seq_printf(seq, "\trecover=REMOTE");
return 1;
}
if (mddev->reshape_position != MaxSector)
seq_printf(seq, "\treshape=REMOTE");
else
seq_printf(seq, "\tresync=REMOTE");
return 1;
}
if (mddev->recovery_cp < MaxSector) {
seq_printf(seq, "\tresync=PENDING");
return 1;
}
return 0;
}
if (resync < MD_RESYNC_ACTIVE) {
seq_printf(seq, "\tresync=DELAYED");
return 1;
}
WARN_ON(max_sectors == 0);
/* Pick 'scale' such that (resync>>scale)*1000 will fit
* in a sector_t, and (max_sectors>>scale) will fit in a
* u32, as those are the requirements for sector_div.
* Thus 'scale' must be at least 10
*/
scale = 10;
if (sizeof(sector_t) > sizeof(unsigned long)) {
while ( max_sectors/2 > (1ULL<<(scale+32)))
scale++;
}
res = (resync>>scale)*1000;
sector_div(res, (u32)((max_sectors>>scale)+1));
per_milli = res;
{
int i, x = per_milli/50, y = 20-x;
seq_printf(seq, "[");
for (i = 0; i < x; i++)
seq_printf(seq, "=");
seq_printf(seq, ">");
for (i = 0; i < y; i++)
seq_printf(seq, ".");
seq_printf(seq, "] ");
}
seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
(test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
"reshape" :
(test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
"check" :
(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
"resync" : "recovery"))),
per_milli/10, per_milli % 10,
(unsigned long long) resync/2,
(unsigned long long) max_sectors/2);
/*
* dt: time from mark until now
* db: blocks written from mark until now
* rt: remaining time
*
* rt is a sector_t, which is always 64bit now. We are keeping
* the original algorithm, but it is not really necessary.
*
* Original algorithm:
* So we divide before multiply in case it is 32bit and close
* to the limit.
* We scale the divisor (db) by 32 to avoid losing precision
* near the end of resync when the number of remaining sectors
* is close to 'db'.
* We then divide rt by 32 after multiplying by db to compensate.
* The '+1' avoids division by zero if db is very small.
*/
dt = ((jiffies - mddev->resync_mark) / HZ);
if (!dt) dt++;
curr_mark_cnt = mddev->curr_mark_cnt;
recovery_active = atomic_read(&mddev->recovery_active);
resync_mark_cnt = mddev->resync_mark_cnt;
if (curr_mark_cnt >= (recovery_active + resync_mark_cnt))
db = curr_mark_cnt - (recovery_active + resync_mark_cnt);
rt = max_sectors - resync; /* number of remaining sectors */
rt = div64_u64(rt, db/32+1);
rt *= dt;
rt >>= 5;
seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
((unsigned long)rt % 60)/6);
seq_printf(seq, " speed=%ldK/sec", db/2/dt);
return 1;
}
static void *md_seq_start(struct seq_file *seq, loff_t *pos)
{
struct list_head *tmp;
loff_t l = *pos;
struct mddev *mddev;
if (l == 0x10000) {
++*pos;
return (void *)2;
}
if (l > 0x10000)
return NULL;
if (!l--)
/* header */
return (void*)1;
spin_lock(&all_mddevs_lock);
list_for_each(tmp,&all_mddevs)
if (!l--) {
mddev = list_entry(tmp, struct mddev, all_mddevs);
if (!mddev_get(mddev))
continue;
spin_unlock(&all_mddevs_lock);
return mddev;
}
spin_unlock(&all_mddevs_lock);
if (!l--)
return (void*)2;/* tail */
return NULL;
}
static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
struct list_head *tmp;
struct mddev *next_mddev, *mddev = v;
struct mddev *to_put = NULL;
++*pos;
if (v == (void*)2)
return NULL;
spin_lock(&all_mddevs_lock);
if (v == (void*)1) {
tmp = all_mddevs.next;
} else {
to_put = mddev;
tmp = mddev->all_mddevs.next;
}
for (;;) {
if (tmp == &all_mddevs) {
next_mddev = (void*)2;
*pos = 0x10000;
break;
}
next_mddev = list_entry(tmp, struct mddev, all_mddevs);
if (mddev_get(next_mddev))
break;
mddev = next_mddev;
tmp = mddev->all_mddevs.next;
}
spin_unlock(&all_mddevs_lock);
if (to_put)
mddev_put(mddev);
return next_mddev;
}
static void md_seq_stop(struct seq_file *seq, void *v)
{
struct mddev *mddev = v;
if (mddev && v != (void*)1 && v != (void*)2)
mddev_put(mddev);
}
static int md_seq_show(struct seq_file *seq, void *v)
{
struct mddev *mddev = v;
sector_t sectors;
struct md_rdev *rdev;
if (v == (void*)1) {
struct md_personality *pers;
seq_printf(seq, "Personalities : ");
spin_lock(&pers_lock);
list_for_each_entry(pers, &pers_list, list)
seq_printf(seq, "[%s] ", pers->name);
spin_unlock(&pers_lock);
seq_printf(seq, "\n");
seq->poll_event = atomic_read(&md_event_count);
return 0;
}
if (v == (void*)2) {
status_unused(seq);
return 0;
}
spin_lock(&mddev->lock);
if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
seq_printf(seq, "%s : %sactive", mdname(mddev),
mddev->pers ? "" : "in");
if (mddev->pers) {
if (mddev->ro == MD_RDONLY)
seq_printf(seq, " (read-only)");
if (mddev->ro == MD_AUTO_READ)
seq_printf(seq, " (auto-read-only)");
seq_printf(seq, " %s", mddev->pers->name);
}
sectors = 0;
rcu_read_lock();
rdev_for_each_rcu(rdev, mddev) {
seq_printf(seq, " %pg[%d]", rdev->bdev, rdev->desc_nr);
if (test_bit(WriteMostly, &rdev->flags))
seq_printf(seq, "(W)");
if (test_bit(Journal, &rdev->flags))
seq_printf(seq, "(J)");
if (test_bit(Faulty, &rdev->flags)) {
seq_printf(seq, "(F)");
continue;
}
if (rdev->raid_disk < 0)
seq_printf(seq, "(S)"); /* spare */
if (test_bit(Replacement, &rdev->flags))
seq_printf(seq, "(R)");
sectors += rdev->sectors;
}
rcu_read_unlock();
if (!list_empty(&mddev->disks)) {
if (mddev->pers)
seq_printf(seq, "\n %llu blocks",
(unsigned long long)
mddev->array_sectors / 2);
else
seq_printf(seq, "\n %llu blocks",
(unsigned long long)sectors / 2);
}
if (mddev->persistent) {
if (mddev->major_version != 0 ||
mddev->minor_version != 90) {
seq_printf(seq," super %d.%d",
mddev->major_version,
mddev->minor_version);
}
} else if (mddev->external)
seq_printf(seq, " super external:%s",
mddev->metadata_type);
else
seq_printf(seq, " super non-persistent");
if (mddev->pers) {
mddev->pers->status(seq, mddev);
seq_printf(seq, "\n ");
if (mddev->pers->sync_request) {
if (status_resync(seq, mddev))
seq_printf(seq, "\n ");
}
} else
seq_printf(seq, "\n ");
md_bitmap_status(seq, mddev->bitmap);
seq_printf(seq, "\n");
}
spin_unlock(&mddev->lock);
return 0;
}
static const struct seq_operations md_seq_ops = {
.start = md_seq_start,
.next = md_seq_next,
.stop = md_seq_stop,
.show = md_seq_show,
};
static int md_seq_open(struct inode *inode, struct file *file)
{
struct seq_file *seq;
int error;
error = seq_open(file, &md_seq_ops);
if (error)
return error;
seq = file->private_data;
seq->poll_event = atomic_read(&md_event_count);
return error;
}
static int md_unloading;
static __poll_t mdstat_poll(struct file *filp, poll_table *wait)
{
struct seq_file *seq = filp->private_data;
__poll_t mask;
if (md_unloading)
return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
poll_wait(filp, &md_event_waiters, wait);
/* always allow read */
mask = EPOLLIN | EPOLLRDNORM;
if (seq->poll_event != atomic_read(&md_event_count))
mask |= EPOLLERR | EPOLLPRI;
return mask;
}
static const struct proc_ops mdstat_proc_ops = {
.proc_open = md_seq_open,
.proc_read = seq_read,
.proc_lseek = seq_lseek,
.proc_release = seq_release,
.proc_poll = mdstat_poll,
};
int register_md_personality(struct md_personality *p)
{
pr_debug("md: %s personality registered for level %d\n",
p->name, p->level);
spin_lock(&pers_lock);
list_add_tail(&p->list, &pers_list);
spin_unlock(&pers_lock);
return 0;
}
EXPORT_SYMBOL(register_md_personality);
int unregister_md_personality(struct md_personality *p)
{
pr_debug("md: %s personality unregistered\n", p->name);
spin_lock(&pers_lock);
list_del_init(&p->list);
spin_unlock(&pers_lock);
return 0;
}
EXPORT_SYMBOL(unregister_md_personality);
int register_md_cluster_operations(struct md_cluster_operations *ops,
struct module *module)
{
int ret = 0;
spin_lock(&pers_lock);
if (md_cluster_ops != NULL)
ret = -EALREADY;
else {
md_cluster_ops = ops;
md_cluster_mod = module;
}
spin_unlock(&pers_lock);
return ret;
}
EXPORT_SYMBOL(register_md_cluster_operations);
int unregister_md_cluster_operations(void)
{
spin_lock(&pers_lock);
md_cluster_ops = NULL;
spin_unlock(&pers_lock);
return 0;
}
EXPORT_SYMBOL(unregister_md_cluster_operations);
int md_setup_cluster(struct mddev *mddev, int nodes)
{
int ret;
if (!md_cluster_ops)
request_module("md-cluster");
spin_lock(&pers_lock);
/* ensure module won't be unloaded */
if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
pr_warn("can't find md-cluster module or get its reference.\n");
spin_unlock(&pers_lock);
return -ENOENT;
}
spin_unlock(&pers_lock);
ret = md_cluster_ops->join(mddev, nodes);
if (!ret)
mddev->safemode_delay = 0;
return ret;
}
void md_cluster_stop(struct mddev *mddev)
{
if (!md_cluster_ops)
return;
md_cluster_ops->leave(mddev);
module_put(md_cluster_mod);
}
static int is_mddev_idle(struct mddev *mddev, int init)
{
struct md_rdev *rdev;
int idle;
int curr_events;
idle = 1;
rcu_read_lock();
rdev_for_each_rcu(rdev, mddev) {
struct gendisk *disk = rdev->bdev->bd_disk;
curr_events = (int)part_stat_read_accum(disk->part0, sectors) -
atomic_read(&disk->sync_io);
/* sync IO will cause sync_io to increase before the disk_stats
* as sync_io is counted when a request starts, and
* disk_stats is counted when it completes.
* So resync activity will cause curr_events to be smaller than
* when there was no such activity.
* non-sync IO will cause disk_stat to increase without
* increasing sync_io so curr_events will (eventually)
* be larger than it was before. Once it becomes
* substantially larger, the test below will cause
* the array to appear non-idle, and resync will slow
* down.
* If there is a lot of outstanding resync activity when
* we set last_event to curr_events, then all that activity
* completing might cause the array to appear non-idle
* and resync will be slowed down even though there might
* not have been non-resync activity. This will only
* happen once though. 'last_events' will soon reflect
* the state where there is little or no outstanding
* resync requests, and further resync activity will
* always make curr_events less than last_events.
*
*/
if (init || curr_events - rdev->last_events > 64) {
rdev->last_events = curr_events;
idle = 0;
}
}
rcu_read_unlock();
return idle;
}
void md_done_sync(struct mddev *mddev, int blocks, int ok)
{
/* another "blocks" (512byte) blocks have been synced */
atomic_sub(blocks, &mddev->recovery_active);
wake_up(&mddev->recovery_wait);
if (!ok) {
set_bit(MD_RECOVERY_INTR, &mddev->recovery);
set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
md_wakeup_thread(mddev->thread);
// stop recovery, signal do_sync ....
}
}
EXPORT_SYMBOL(md_done_sync);
/* md_write_start(mddev, bi)
* If we need to update some array metadata (e.g. 'active' flag
* in superblock) before writing, schedule a superblock update
* and wait for it to complete.
* A return value of 'false' means that the write wasn't recorded
* and cannot proceed as the array is being suspend.
*/
bool md_write_start(struct mddev *mddev, struct bio *bi)
{
int did_change = 0;
if (bio_data_dir(bi) != WRITE)
return true;
BUG_ON(mddev->ro == MD_RDONLY);
if (mddev->ro == MD_AUTO_READ) {
/* need to switch to read/write */
mddev->ro = MD_RDWR;
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
md_wakeup_thread(mddev->thread);
md_wakeup_thread(mddev->sync_thread);
did_change = 1;
}
rcu_read_lock();
percpu_ref_get(&mddev->writes_pending);
smp_mb(); /* Match smp_mb in set_in_sync() */
if (mddev->safemode == 1)
mddev->safemode = 0;
/* sync_checkers is always 0 when writes_pending is in per-cpu mode */
if (mddev->in_sync || mddev->sync_checkers) {
spin_lock(&mddev->lock);
if (mddev->in_sync) {
mddev->in_sync = 0;
set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
md_wakeup_thread(mddev->thread);
did_change = 1;
}
spin_unlock(&mddev->lock);
}
rcu_read_unlock();
if (did_change)
sysfs_notify_dirent_safe(mddev->sysfs_state);
if (!mddev->has_superblocks)
return true;
wait_event(mddev->sb_wait,
!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) ||
is_md_suspended(mddev));
if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
percpu_ref_put(&mddev->writes_pending);
return false;
}
return true;
}
EXPORT_SYMBOL(md_write_start);
/* md_write_inc can only be called when md_write_start() has
* already been called at least once of the current request.
* It increments the counter and is useful when a single request
* is split into several parts. Each part causes an increment and
* so needs a matching md_write_end().
* Unlike md_write_start(), it is safe to call md_write_inc() inside
* a spinlocked region.
*/
void md_write_inc(struct mddev *mddev, struct bio *bi)
{
if (bio_data_dir(bi) != WRITE)
return;
WARN_ON_ONCE(mddev->in_sync || !md_is_rdwr(mddev));
percpu_ref_get(&mddev->writes_pending);
}
EXPORT_SYMBOL(md_write_inc);
void md_write_end(struct mddev *mddev)
{
percpu_ref_put(&mddev->writes_pending);
if (mddev->safemode == 2)
md_wakeup_thread(mddev->thread);
else if (mddev->safemode_delay)
/* The roundup() ensures this only performs locking once
* every ->safemode_delay jiffies
*/
mod_timer(&mddev->safemode_timer,
roundup(jiffies, mddev->safemode_delay) +
mddev->safemode_delay);
}
EXPORT_SYMBOL(md_write_end);
/* This is used by raid0 and raid10 */
void md_submit_discard_bio(struct mddev *mddev, struct md_rdev *rdev,
struct bio *bio, sector_t start, sector_t size)
{
struct bio *discard_bio = NULL;
if (__blkdev_issue_discard(rdev->bdev, start, size, GFP_NOIO,
&discard_bio) || !discard_bio)
return;
bio_chain(discard_bio, bio);
bio_clone_blkg_association(discard_bio, bio);
if (mddev->gendisk)
trace_block_bio_remap(discard_bio,
disk_devt(mddev->gendisk),
bio->bi_iter.bi_sector);
submit_bio_noacct(discard_bio);
}
EXPORT_SYMBOL_GPL(md_submit_discard_bio);
int acct_bioset_init(struct mddev *mddev)
{
int err = 0;
if (!bioset_initialized(&mddev->io_acct_set))
err = bioset_init(&mddev->io_acct_set, BIO_POOL_SIZE,
offsetof(struct md_io_acct, bio_clone), 0);
return err;
}
EXPORT_SYMBOL_GPL(acct_bioset_init);
void acct_bioset_exit(struct mddev *mddev)
{
bioset_exit(&mddev->io_acct_set);
}
EXPORT_SYMBOL_GPL(acct_bioset_exit);
static void md_end_io_acct(struct bio *bio)
{
struct md_io_acct *md_io_acct = bio->bi_private;
struct bio *orig_bio = md_io_acct->orig_bio;
struct mddev *mddev = md_io_acct->mddev;
orig_bio->bi_status = bio->bi_status;
bio_end_io_acct(orig_bio, md_io_acct->start_time);
bio_put(bio);
bio_endio(orig_bio);
percpu_ref_put(&mddev->active_io);
}
/*
* Used by personalities that don't already clone the bio and thus can't
* easily add the timestamp to their extended bio structure.
*/
void md_account_bio(struct mddev *mddev, struct bio **bio)
{
struct block_device *bdev = (*bio)->bi_bdev;
struct md_io_acct *md_io_acct;
struct bio *clone;
if (!blk_queue_io_stat(bdev->bd_disk->queue))
return;
percpu_ref_get(&mddev->active_io);
clone = bio_alloc_clone(bdev, *bio, GFP_NOIO, &mddev->io_acct_set);
md_io_acct = container_of(clone, struct md_io_acct, bio_clone);
md_io_acct->orig_bio = *bio;
md_io_acct->start_time = bio_start_io_acct(*bio);
md_io_acct->mddev = mddev;
clone->bi_end_io = md_end_io_acct;
clone->bi_private = md_io_acct;
*bio = clone;
}
EXPORT_SYMBOL_GPL(md_account_bio);
/* md_allow_write(mddev)
* Calling this ensures that the array is marked 'active' so that writes
* may proceed without blocking. It is important to call this before
* attempting a GFP_KERNEL allocation while holding the mddev lock.
* Must be called with mddev_lock held.
*/
void md_allow_write(struct mddev *mddev)
{
if (!mddev->pers)
return;
if (!md_is_rdwr(mddev))
return;
if (!mddev->pers->sync_request)
return;
spin_lock(&mddev->lock);
if (mddev->in_sync) {
mddev->in_sync = 0;
set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
if (mddev->safemode_delay &&
mddev->safemode == 0)
mddev->safemode = 1;
spin_unlock(&mddev->lock);
md_update_sb(mddev, 0);
sysfs_notify_dirent_safe(mddev->sysfs_state);
/* wait for the dirty state to be recorded in the metadata */
wait_event(mddev->sb_wait,
!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
} else
spin_unlock(&mddev->lock);
}
EXPORT_SYMBOL_GPL(md_allow_write);
#define SYNC_MARKS 10
#define SYNC_MARK_STEP (3*HZ)
#define UPDATE_FREQUENCY (5*60*HZ)
void md_do_sync(struct md_thread *thread)
{
struct mddev *mddev = thread->mddev;
struct mddev *mddev2;
unsigned int currspeed = 0, window;
sector_t max_sectors,j, io_sectors, recovery_done;
unsigned long mark[SYNC_MARKS];
unsigned long update_time;
sector_t mark_cnt[SYNC_MARKS];
int last_mark,m;
sector_t last_check;
int skipped = 0;
struct md_rdev *rdev;
char *desc, *action = NULL;
struct blk_plug plug;
int ret;
/* just incase thread restarts... */
if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
test_bit(MD_RECOVERY_WAIT, &mddev->recovery))
return;
if (!md_is_rdwr(mddev)) {/* never try to sync a read-only array */
set_bit(MD_RECOVERY_INTR, &mddev->recovery);
return;
}
if (mddev_is_clustered(mddev)) {
ret = md_cluster_ops->resync_start(mddev);
if (ret)
goto skip;
set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags);
if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) ||
test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
&& ((unsigned long long)mddev->curr_resync_completed
< (unsigned long long)mddev->resync_max_sectors))
goto skip;
}
if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
desc = "data-check";
action = "check";
} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
desc = "requested-resync";
action = "repair";
} else
desc = "resync";
} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
desc = "reshape";
else
desc = "recovery";
mddev->last_sync_action = action ?: desc;
/*
* Before starting a resync we must have set curr_resync to
* 2, and then checked that every "conflicting" array has curr_resync
* less than ours. When we find one that is the same or higher
* we wait on resync_wait. To avoid deadlock, we reduce curr_resync
* to 1 if we choose to yield (based arbitrarily on address of mddev structure).
* This will mean we have to start checking from the beginning again.
*
*/
do {
int mddev2_minor = -1;
mddev->curr_resync = MD_RESYNC_DELAYED;
try_again:
if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
goto skip;
spin_lock(&all_mddevs_lock);
list_for_each_entry(mddev2, &all_mddevs, all_mddevs) {
if (test_bit(MD_DELETED, &mddev2->flags))
continue;
if (mddev2 == mddev)
continue;
if (!mddev->parallel_resync
&& mddev2->curr_resync
&& match_mddev_units(mddev, mddev2)) {
DEFINE_WAIT(wq);
if (mddev < mddev2 &&
mddev->curr_resync == MD_RESYNC_DELAYED) {
/* arbitrarily yield */
mddev->curr_resync = MD_RESYNC_YIELDED;
wake_up(&resync_wait);
}
if (mddev > mddev2 &&
mddev->curr_resync == MD_RESYNC_YIELDED)
/* no need to wait here, we can wait the next
* time 'round when curr_resync == 2
*/
continue;
/* We need to wait 'interruptible' so as not to
* contribute to the load average, and not to
* be caught by 'softlockup'
*/
prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
mddev2->curr_resync >= mddev->curr_resync) {
if (mddev2_minor != mddev2->md_minor) {
mddev2_minor = mddev2->md_minor;
pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n",
desc, mdname(mddev),
mdname(mddev2));
}
spin_unlock(&all_mddevs_lock);
if (signal_pending(current))
flush_signals(current);
schedule();
finish_wait(&resync_wait, &wq);
goto try_again;
}
finish_wait(&resync_wait, &wq);
}
}
spin_unlock(&all_mddevs_lock);
} while (mddev->curr_resync < MD_RESYNC_DELAYED);
j = 0;
if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
/* resync follows the size requested by the personality,
* which defaults to physical size, but can be virtual size
*/
max_sectors = mddev->resync_max_sectors;
atomic64_set(&mddev->resync_mismatches, 0);
/* we don't use the checkpoint if there's a bitmap */
if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
j = mddev->resync_min;
else if (!mddev->bitmap)
j = mddev->recovery_cp;
} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
max_sectors = mddev->resync_max_sectors;
/*
* If the original node aborts reshaping then we continue the
* reshaping, so set j again to avoid restart reshape from the
* first beginning
*/
if (mddev_is_clustered(mddev) &&
mddev->reshape_position != MaxSector)
j = mddev->reshape_position;
} else {
/* recovery follows the physical size of devices */
max_sectors = mddev->dev_sectors;
j = MaxSector;
rcu_read_lock();
rdev_for_each_rcu(rdev, mddev)
if (rdev->raid_disk >= 0 &&
!test_bit(Journal, &rdev->flags) &&
!test_bit(Faulty, &rdev->flags) &&
!test_bit(In_sync, &rdev->flags) &&
rdev->recovery_offset < j)
j = rdev->recovery_offset;
rcu_read_unlock();
/* If there is a bitmap, we need to make sure all
* writes that started before we added a spare
* complete before we start doing a recovery.
* Otherwise the write might complete and (via
* bitmap_endwrite) set a bit in the bitmap after the
* recovery has checked that bit and skipped that
* region.
*/
if (mddev->bitmap) {
mddev->pers->quiesce(mddev, 1);
mddev->pers->quiesce(mddev, 0);
}
}
pr_info("md: %s of RAID array %s\n", desc, mdname(mddev));
pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev));
pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n",
speed_max(mddev), desc);
is_mddev_idle(mddev, 1); /* this initializes IO event counters */
io_sectors = 0;
for (m = 0; m < SYNC_MARKS; m++) {
mark[m] = jiffies;
mark_cnt[m] = io_sectors;
}
last_mark = 0;
mddev->resync_mark = mark[last_mark];
mddev->resync_mark_cnt = mark_cnt[last_mark];
/*
* Tune reconstruction:
*/
window = 32 * (PAGE_SIZE / 512);
pr_debug("md: using %dk window, over a total of %lluk.\n",
window/2, (unsigned long long)max_sectors/2);
atomic_set(&mddev->recovery_active, 0);
last_check = 0;
if (j >= MD_RESYNC_ACTIVE) {
pr_debug("md: resuming %s of %s from checkpoint.\n",
desc, mdname(mddev));
mddev->curr_resync = j;
} else
mddev->curr_resync = MD_RESYNC_ACTIVE; /* no longer delayed */
mddev->curr_resync_completed = j;
sysfs_notify_dirent_safe(mddev->sysfs_completed);
md_new_event();
update_time = jiffies;
blk_start_plug(&plug);
while (j < max_sectors) {
sector_t sectors;
skipped = 0;
if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
((mddev->curr_resync > mddev->curr_resync_completed &&
(mddev->curr_resync - mddev->curr_resync_completed)
> (max_sectors >> 4)) ||
time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
(j - mddev->curr_resync_completed)*2
>= mddev->resync_max - mddev->curr_resync_completed ||
mddev->curr_resync_completed > mddev->resync_max
)) {
/* time to update curr_resync_completed */
wait_event(mddev->recovery_wait,
atomic_read(&mddev->recovery_active) == 0);
mddev->curr_resync_completed = j;
if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
j > mddev->recovery_cp)
mddev->recovery_cp = j;
update_time = jiffies;
set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
sysfs_notify_dirent_safe(mddev->sysfs_completed);
}
while (j >= mddev->resync_max &&
!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
/* As this condition is controlled by user-space,
* we can block indefinitely, so use '_interruptible'
* to avoid triggering warnings.
*/
flush_signals(current); /* just in case */
wait_event_interruptible(mddev->recovery_wait,
mddev->resync_max > j
|| test_bit(MD_RECOVERY_INTR,
&mddev->recovery));
}
if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
break;
sectors = mddev->pers->sync_request(mddev, j, &skipped);
if (sectors == 0) {
set_bit(MD_RECOVERY_INTR, &mddev->recovery);
break;
}
if (!skipped) { /* actual IO requested */
io_sectors += sectors;
atomic_add(sectors, &mddev->recovery_active);
}
if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
break;
j += sectors;
if (j > max_sectors)
/* when skipping, extra large numbers can be returned. */
j = max_sectors;
if (j >= MD_RESYNC_ACTIVE)
mddev->curr_resync = j;
mddev->curr_mark_cnt = io_sectors;
if (last_check == 0)
/* this is the earliest that rebuild will be
* visible in /proc/mdstat
*/
md_new_event();
if (last_check + window > io_sectors || j == max_sectors)
continue;
last_check = io_sectors;
repeat:
if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
/* step marks */
int next = (last_mark+1) % SYNC_MARKS;
mddev->resync_mark = mark[next];
mddev->resync_mark_cnt = mark_cnt[next];
mark[next] = jiffies;
mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
last_mark = next;
}
if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
break;
/*
* this loop exits only if either when we are slower than
* the 'hard' speed limit, or the system was IO-idle for
* a jiffy.
* the system might be non-idle CPU-wise, but we only care
* about not overloading the IO subsystem. (things like an
* e2fsck being done on the RAID array should execute fast)
*/
cond_resched();
recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
/((jiffies-mddev->resync_mark)/HZ +1) +1;
if (currspeed > speed_min(mddev)) {
if (currspeed > speed_max(mddev)) {
msleep(500);
goto repeat;
}
if (!is_mddev_idle(mddev, 0)) {
/*
* Give other IO more of a chance.
* The faster the devices, the less we wait.
*/
wait_event(mddev->recovery_wait,
!atomic_read(&mddev->recovery_active));
}
}
}
pr_info("md: %s: %s %s.\n",mdname(mddev), desc,
test_bit(MD_RECOVERY_INTR, &mddev->recovery)
? "interrupted" : "done");
/*
* this also signals 'finished resyncing' to md_stop
*/
blk_finish_plug(&plug);
wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
mddev->curr_resync >= MD_RESYNC_ACTIVE) {
mddev->curr_resync_completed = mddev->curr_resync;
sysfs_notify_dirent_safe(mddev->sysfs_completed);
}
mddev->pers->sync_request(mddev, max_sectors, &skipped);
if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
mddev->curr_resync > MD_RESYNC_ACTIVE) {
if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
if (mddev->curr_resync >= mddev->recovery_cp) {
pr_debug("md: checkpointing %s of %s.\n",
desc, mdname(mddev));
if (test_bit(MD_RECOVERY_ERROR,
&mddev->recovery))
mddev->recovery_cp =
mddev->curr_resync_completed;
else
mddev->recovery_cp =
mddev->curr_resync;
}
} else
mddev->recovery_cp = MaxSector;
} else {
if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
mddev->curr_resync = MaxSector;
if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) {
rcu_read_lock();
rdev_for_each_rcu(rdev, mddev)
if (rdev->raid_disk >= 0 &&
mddev->delta_disks >= 0 &&
!test_bit(Journal, &rdev->flags) &&
!test_bit(Faulty, &rdev->flags) &&
!test_bit(In_sync, &rdev->flags) &&
rdev->recovery_offset < mddev->curr_resync)
rdev->recovery_offset = mddev->curr_resync;
rcu_read_unlock();
}
}
}
skip:
/* set CHANGE_PENDING here since maybe another update is needed,
* so other nodes are informed. It should be harmless for normal
* raid */
set_mask_bits(&mddev->sb_flags, 0,
BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS));
if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
mddev->delta_disks > 0 &&
mddev->pers->finish_reshape &&
mddev->pers->size &&
mddev->queue) {
mddev_lock_nointr(mddev);
md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0));
mddev_unlock(mddev);
if (!mddev_is_clustered(mddev))
set_capacity_and_notify(mddev->gendisk,
mddev->array_sectors);
}
spin_lock(&mddev->lock);
if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
/* We completed so min/max setting can be forgotten if used. */
if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
mddev->resync_min = 0;
mddev->resync_max = MaxSector;
} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
mddev->resync_min = mddev->curr_resync_completed;
set_bit(MD_RECOVERY_DONE, &mddev->recovery);
mddev->curr_resync = MD_RESYNC_NONE;
spin_unlock(&mddev->lock);
wake_up(&resync_wait);
md_wakeup_thread(mddev->thread);
return;
}
EXPORT_SYMBOL_GPL(md_do_sync);
static int remove_and_add_spares(struct mddev *mddev,
struct md_rdev *this)
{
struct md_rdev *rdev;
int spares = 0;
int removed = 0;
bool remove_some = false;
if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
/* Mustn't remove devices when resync thread is running */
return 0;
rdev_for_each(rdev, mddev) {
if ((this == NULL || rdev == this) &&
rdev->raid_disk >= 0 &&
!test_bit(Blocked, &rdev->flags) &&
test_bit(Faulty, &rdev->flags) &&
atomic_read(&rdev->nr_pending)==0) {
/* Faulty non-Blocked devices with nr_pending == 0
* never get nr_pending incremented,
* never get Faulty cleared, and never get Blocked set.
* So we can synchronize_rcu now rather than once per device
*/
remove_some = true;
set_bit(RemoveSynchronized, &rdev->flags);
}
}
if (remove_some)
synchronize_rcu();
rdev_for_each(rdev, mddev) {
if ((this == NULL || rdev == this) &&
rdev->raid_disk >= 0 &&
!test_bit(Blocked, &rdev->flags) &&
((test_bit(RemoveSynchronized, &rdev->flags) ||
(!test_bit(In_sync, &rdev->flags) &&
!test_bit(Journal, &rdev->flags))) &&
atomic_read(&rdev->nr_pending)==0)) {
if (mddev->pers->hot_remove_disk(
mddev, rdev) == 0) {
sysfs_unlink_rdev(mddev, rdev);
rdev->saved_raid_disk = rdev->raid_disk;
rdev->raid_disk = -1;
removed++;
}
}
if (remove_some && test_bit(RemoveSynchronized, &rdev->flags))
clear_bit(RemoveSynchronized, &rdev->flags);
}
if (removed && mddev->kobj.sd)
sysfs_notify_dirent_safe(mddev->sysfs_degraded);
if (this && removed)
goto no_add;
rdev_for_each(rdev, mddev) {
if (this && this != rdev)
continue;
if (test_bit(Candidate, &rdev->flags))
continue;
if (rdev->raid_disk >= 0 &&
!test_bit(In_sync, &rdev->flags) &&
!test_bit(Journal, &rdev->flags) &&
!test_bit(Faulty, &rdev->flags))
spares++;
if (rdev->raid_disk >= 0)
continue;
if (test_bit(Faulty, &rdev->flags))
continue;
if (!test_bit(Journal, &rdev->flags)) {
if (!md_is_rdwr(mddev) &&
!(rdev->saved_raid_disk >= 0 &&
!test_bit(Bitmap_sync, &rdev->flags)))
continue;
rdev->recovery_offset = 0;
}
if (mddev->pers->hot_add_disk(mddev, rdev) == 0) {
/* failure here is OK */
sysfs_link_rdev(mddev, rdev);
if (!test_bit(Journal, &rdev->flags))
spares++;
md_new_event();
set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
}
}
no_add:
if (removed)
set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
return spares;
}
static void md_start_sync(struct work_struct *ws)
{
struct mddev *mddev = container_of(ws, struct mddev, del_work);
mddev->sync_thread = md_register_thread(md_do_sync,
mddev,
"resync");
if (!mddev->sync_thread) {
pr_warn("%s: could not start resync thread...\n",
mdname(mddev));
/* leave the spares where they are, it shouldn't hurt */
clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
wake_up(&resync_wait);
if (test_and_clear_bit(MD_RECOVERY_RECOVER,
&mddev->recovery))
if (mddev->sysfs_action)
sysfs_notify_dirent_safe(mddev->sysfs_action);
} else
md_wakeup_thread(mddev->sync_thread);
sysfs_notify_dirent_safe(mddev->sysfs_action);
md_new_event();
}
/*
* This routine is regularly called by all per-raid-array threads to
* deal with generic issues like resync and super-block update.
* Raid personalities that don't have a thread (linear/raid0) do not
* need this as they never do any recovery or update the superblock.
*
* It does not do any resync itself, but rather "forks" off other threads
* to do that as needed.
* When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
* "->recovery" and create a thread at ->sync_thread.
* When the thread finishes it sets MD_RECOVERY_DONE
* and wakeups up this thread which will reap the thread and finish up.
* This thread also removes any faulty devices (with nr_pending == 0).
*
* The overall approach is:
* 1/ if the superblock needs updating, update it.
* 2/ If a recovery thread is running, don't do anything else.
* 3/ If recovery has finished, clean up, possibly marking spares active.
* 4/ If there are any faulty devices, remove them.
* 5/ If array is degraded, try to add spares devices
* 6/ If array has spares or is not in-sync, start a resync thread.
*/
void md_check_recovery(struct mddev *mddev)
{
if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) {
/* Write superblock - thread that called mddev_suspend()
* holds reconfig_mutex for us.
*/
set_bit(MD_UPDATING_SB, &mddev->flags);
smp_mb__after_atomic();
if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags))
md_update_sb(mddev, 0);
clear_bit_unlock(MD_UPDATING_SB, &mddev->flags);
wake_up(&mddev->sb_wait);
}
if (is_md_suspended(mddev))
return;
if (mddev->bitmap)
md_bitmap_daemon_work(mddev);
if (signal_pending(current)) {
if (mddev->pers->sync_request && !mddev->external) {
pr_debug("md: %s in immediate safe mode\n",
mdname(mddev));
mddev->safemode = 2;
}
flush_signals(current);
}
if (!md_is_rdwr(mddev) &&
!test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
return;
if ( ! (
(mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) ||
test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
(mddev->external == 0 && mddev->safemode == 1) ||
(mddev->safemode == 2
&& !mddev->in_sync && mddev->recovery_cp == MaxSector)
))
return;
if (mddev_trylock(mddev)) {
int spares = 0;
bool try_set_sync = mddev->safemode != 0;
if (!mddev->external && mddev->safemode == 1)
mddev->safemode = 0;
if (!md_is_rdwr(mddev)) {
struct md_rdev *rdev;
if (!mddev->external && mddev->in_sync)
/* 'Blocked' flag not needed as failed devices
* will be recorded if array switched to read/write.
* Leaving it set will prevent the device
* from being removed.
*/
rdev_for_each(rdev, mddev)
clear_bit(Blocked, &rdev->flags);
/* On a read-only array we can:
* - remove failed devices
* - add already-in_sync devices if the array itself
* is in-sync.
* As we only add devices that are already in-sync,
* we can activate the spares immediately.
*/
remove_and_add_spares(mddev, NULL);
/* There is no thread, but we need to call
* ->spare_active and clear saved_raid_disk
*/
set_bit(MD_RECOVERY_INTR, &mddev->recovery);
md_unregister_thread(&mddev->sync_thread);
md_reap_sync_thread(mddev);
clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
goto unlock;
}
if (mddev_is_clustered(mddev)) {
struct md_rdev *rdev, *tmp;
/* kick the device if another node issued a
* remove disk.
*/
rdev_for_each_safe(rdev, tmp, mddev) {
if (test_and_clear_bit(ClusterRemove, &rdev->flags) &&
rdev->raid_disk < 0)
md_kick_rdev_from_array(rdev);
}
}
if (try_set_sync && !mddev->external && !mddev->in_sync) {
spin_lock(&mddev->lock);
set_in_sync(mddev);
spin_unlock(&mddev->lock);
}
if (mddev->sb_flags)
md_update_sb(mddev, 0);
if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
!test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
/* resync/recovery still happening */
clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
goto unlock;
}
if (mddev->sync_thread) {
md_unregister_thread(&mddev->sync_thread);
md_reap_sync_thread(mddev);
goto unlock;
}
/* Set RUNNING before clearing NEEDED to avoid
* any transients in the value of "sync_action".
*/
mddev->curr_resync_completed = 0;
spin_lock(&mddev->lock);
set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
spin_unlock(&mddev->lock);
/* Clear some bits that don't mean anything, but
* might be left set
*/
clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
goto not_running;
/* no recovery is running.
* remove any failed drives, then
* add spares if possible.
* Spares are also removed and re-added, to allow
* the personality to fail the re-add.
*/
if (mddev->reshape_position != MaxSector) {
if (mddev->pers->check_reshape == NULL ||
mddev->pers->check_reshape(mddev) != 0)
/* Cannot proceed */
goto not_running;
set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
} else if ((spares = remove_and_add_spares(mddev, NULL))) {
clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
} else if (mddev->recovery_cp < MaxSector) {
set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
/* nothing to be done ... */
goto not_running;
if (mddev->pers->sync_request) {
if (spares) {
/* We are adding a device or devices to an array
* which has the bitmap stored on all devices.
* So make sure all bitmap pages get written
*/
md_bitmap_write_all(mddev->bitmap);
}
INIT_WORK(&mddev->del_work, md_start_sync);
queue_work(md_misc_wq, &mddev->del_work);
goto unlock;
}
not_running:
if (!mddev->sync_thread) {
clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
wake_up(&resync_wait);
if (test_and_clear_bit(MD_RECOVERY_RECOVER,
&mddev->recovery))
if (mddev->sysfs_action)
sysfs_notify_dirent_safe(mddev->sysfs_action);
}
unlock:
wake_up(&mddev->sb_wait);
mddev_unlock(mddev);
}
}
EXPORT_SYMBOL(md_check_recovery);
void md_reap_sync_thread(struct mddev *mddev)
{
struct md_rdev *rdev;
sector_t old_dev_sectors = mddev->dev_sectors;
bool is_reshaped = false;
/* sync_thread should be unregistered, collect result */
if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
mddev->degraded != mddev->raid_disks) {
/* success...*/
/* activate any spares */
if (mddev->pers->spare_active(mddev)) {
sysfs_notify_dirent_safe(mddev->sysfs_degraded);
set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
}
}
if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
mddev->pers->finish_reshape) {
mddev->pers->finish_reshape(mddev);
if (mddev_is_clustered(mddev))
is_reshaped = true;
}
/* If array is no-longer degraded, then any saved_raid_disk
* information must be scrapped.
*/
if (!mddev->degraded)
rdev_for_each(rdev, mddev)
rdev->saved_raid_disk = -1;
md_update_sb(mddev, 1);
/* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can
* call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by
* clustered raid */
if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags))
md_cluster_ops->resync_finish(mddev);
clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
/*
* We call md_cluster_ops->update_size here because sync_size could
* be changed by md_update_sb, and MD_RECOVERY_RESHAPE is cleared,
* so it is time to update size across cluster.
*/
if (mddev_is_clustered(mddev) && is_reshaped
&& !test_bit(MD_CLOSING, &mddev->flags))
md_cluster_ops->update_size(mddev, old_dev_sectors);
wake_up(&resync_wait);
/* flag recovery needed just to double check */
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
sysfs_notify_dirent_safe(mddev->sysfs_completed);
sysfs_notify_dirent_safe(mddev->sysfs_action);
md_new_event();
if (mddev->event_work.func)
queue_work(md_misc_wq, &mddev->event_work);
}
EXPORT_SYMBOL(md_reap_sync_thread);
void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
{
sysfs_notify_dirent_safe(rdev->sysfs_state);
wait_event_timeout(rdev->blocked_wait,
!test_bit(Blocked, &rdev->flags) &&
!test_bit(BlockedBadBlocks, &rdev->flags),
msecs_to_jiffies(5000));
rdev_dec_pending(rdev, mddev);
}
EXPORT_SYMBOL(md_wait_for_blocked_rdev);
void md_finish_reshape(struct mddev *mddev)
{
/* called be personality module when reshape completes. */
struct md_rdev *rdev;
rdev_for_each(rdev, mddev) {
if (rdev->data_offset > rdev->new_data_offset)
rdev->sectors += rdev->data_offset - rdev->new_data_offset;
else
rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
rdev->data_offset = rdev->new_data_offset;
}
}
EXPORT_SYMBOL(md_finish_reshape);
/* Bad block management */
/* Returns 1 on success, 0 on failure */
int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
int is_new)
{
struct mddev *mddev = rdev->mddev;
int rv;
if (is_new)
s += rdev->new_data_offset;
else
s += rdev->data_offset;
rv = badblocks_set(&rdev->badblocks, s, sectors, 0);
if (rv == 0) {
/* Make sure they get written out promptly */
if (test_bit(ExternalBbl, &rdev->flags))
sysfs_notify_dirent_safe(rdev->sysfs_unack_badblocks);
sysfs_notify_dirent_safe(rdev->sysfs_state);
set_mask_bits(&mddev->sb_flags, 0,
BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING));
md_wakeup_thread(rdev->mddev->thread);
return 1;
} else
return 0;
}
EXPORT_SYMBOL_GPL(rdev_set_badblocks);
int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
int is_new)
{
int rv;
if (is_new)
s += rdev->new_data_offset;
else
s += rdev->data_offset;
rv = badblocks_clear(&rdev->badblocks, s, sectors);
if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags))
sysfs_notify_dirent_safe(rdev->sysfs_badblocks);
return rv;
}
EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
static int md_notify_reboot(struct notifier_block *this,
unsigned long code, void *x)
{
struct mddev *mddev, *n;
int need_delay = 0;
spin_lock(&all_mddevs_lock);
list_for_each_entry_safe(mddev, n, &all_mddevs, all_mddevs) {
if (!mddev_get(mddev))
continue;
spin_unlock(&all_mddevs_lock);
if (mddev_trylock(mddev)) {
if (mddev->pers)
__md_stop_writes(mddev);
if (mddev->persistent)
mddev->safemode = 2;
mddev_unlock(mddev);
}
need_delay = 1;
mddev_put(mddev);
spin_lock(&all_mddevs_lock);
}
spin_unlock(&all_mddevs_lock);
/*
* certain more exotic SCSI devices are known to be
* volatile wrt too early system reboots. While the
* right place to handle this issue is the given
* driver, we do want to have a safe RAID driver ...
*/
if (need_delay)
msleep(1000);
return NOTIFY_DONE;
}
static struct notifier_block md_notifier = {
.notifier_call = md_notify_reboot,
.next = NULL,
.priority = INT_MAX, /* before any real devices */
};
static void md_geninit(void)
{
pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
proc_create("mdstat", S_IRUGO, NULL, &mdstat_proc_ops);
}
static int __init md_init(void)
{
int ret = -ENOMEM;
md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
if (!md_wq)
goto err_wq;
md_misc_wq = alloc_workqueue("md_misc", 0, 0);
if (!md_misc_wq)
goto err_misc_wq;
md_rdev_misc_wq = alloc_workqueue("md_rdev_misc", 0, 0);
if (!md_rdev_misc_wq)
goto err_rdev_misc_wq;
ret = __register_blkdev(MD_MAJOR, "md", md_probe);
if (ret < 0)
goto err_md;
ret = __register_blkdev(0, "mdp", md_probe);
if (ret < 0)
goto err_mdp;
mdp_major = ret;
register_reboot_notifier(&md_notifier);
raid_table_header = register_sysctl_table(raid_root_table);
md_geninit();
return 0;
err_mdp:
unregister_blkdev(MD_MAJOR, "md");
err_md:
destroy_workqueue(md_rdev_misc_wq);
err_rdev_misc_wq:
destroy_workqueue(md_misc_wq);
err_misc_wq:
destroy_workqueue(md_wq);
err_wq:
return ret;
}
static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev)
{
struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
struct md_rdev *rdev2, *tmp;
int role, ret;
/*
* If size is changed in another node then we need to
* do resize as well.
*/
if (mddev->dev_sectors != le64_to_cpu(sb->size)) {
ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size));
if (ret)
pr_info("md-cluster: resize failed\n");
else
md_bitmap_update_sb(mddev->bitmap);
}
/* Check for change of roles in the active devices */
rdev_for_each_safe(rdev2, tmp, mddev) {
if (test_bit(Faulty, &rdev2->flags))
continue;
/* Check if the roles changed */
role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]);
if (test_bit(Candidate, &rdev2->flags)) {
if (role == MD_DISK_ROLE_FAULTY) {
pr_info("md: Removing Candidate device %pg because add failed\n",
rdev2->bdev);
md_kick_rdev_from_array(rdev2);
continue;
}
else
clear_bit(Candidate, &rdev2->flags);
}
if (role != rdev2->raid_disk) {
/*
* got activated except reshape is happening.
*/
if (rdev2->raid_disk == -1 && role != MD_DISK_ROLE_SPARE &&
!(le32_to_cpu(sb->feature_map) &
MD_FEATURE_RESHAPE_ACTIVE)) {
rdev2->saved_raid_disk = role;
ret = remove_and_add_spares(mddev, rdev2);
pr_info("Activated spare: %pg\n",
rdev2->bdev);
/* wakeup mddev->thread here, so array could
* perform resync with the new activated disk */
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
md_wakeup_thread(mddev->thread);
}
/* device faulty
* We just want to do the minimum to mark the disk
* as faulty. The recovery is performed by the
* one who initiated the error.
*/
if (role == MD_DISK_ROLE_FAULTY ||
role == MD_DISK_ROLE_JOURNAL) {
md_error(mddev, rdev2);
clear_bit(Blocked, &rdev2->flags);
}
}
}
if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) {
ret = update_raid_disks(mddev, le32_to_cpu(sb->raid_disks));
if (ret)
pr_warn("md: updating array disks failed. %d\n", ret);
}
/*
* Since mddev->delta_disks has already updated in update_raid_disks,
* so it is time to check reshape.
*/
if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) &&
(le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
/*
* reshape is happening in the remote node, we need to
* update reshape_position and call start_reshape.
*/
mddev->reshape_position = le64_to_cpu(sb->reshape_position);
if (mddev->pers->update_reshape_pos)
mddev->pers->update_reshape_pos(mddev);
if (mddev->pers->start_reshape)
mddev->pers->start_reshape(mddev);
} else if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) &&
mddev->reshape_position != MaxSector &&
!(le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
/* reshape is just done in another node. */
mddev->reshape_position = MaxSector;
if (mddev->pers->update_reshape_pos)
mddev->pers->update_reshape_pos(mddev);
}
/* Finally set the event to be up to date */
mddev->events = le64_to_cpu(sb->events);
}
static int read_rdev(struct mddev *mddev, struct md_rdev *rdev)
{
int err;
struct page *swapout = rdev->sb_page;
struct mdp_superblock_1 *sb;
/* Store the sb page of the rdev in the swapout temporary
* variable in case we err in the future
*/
rdev->sb_page = NULL;
err = alloc_disk_sb(rdev);
if (err == 0) {
ClearPageUptodate(rdev->sb_page);
rdev->sb_loaded = 0;
err = super_types[mddev->major_version].
load_super(rdev, NULL, mddev->minor_version);
}
if (err < 0) {
pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n",
__func__, __LINE__, rdev->desc_nr, err);
if (rdev->sb_page)
put_page(rdev->sb_page);
rdev->sb_page = swapout;
rdev->sb_loaded = 1;
return err;
}
sb = page_address(rdev->sb_page);
/* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET
* is not set
*/
if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET))
rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
/* The other node finished recovery, call spare_active to set
* device In_sync and mddev->degraded
*/
if (rdev->recovery_offset == MaxSector &&
!test_bit(In_sync, &rdev->flags) &&
mddev->pers->spare_active(mddev))
sysfs_notify_dirent_safe(mddev->sysfs_degraded);
put_page(swapout);
return 0;
}
void md_reload_sb(struct mddev *mddev, int nr)
{
struct md_rdev *rdev = NULL, *iter;
int err;
/* Find the rdev */
rdev_for_each_rcu(iter, mddev) {
if (iter->desc_nr == nr) {
rdev = iter;
break;
}
}
if (!rdev) {
pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr);
return;
}
err = read_rdev(mddev, rdev);
if (err < 0)
return;
check_sb_changes(mddev, rdev);
/* Read all rdev's to update recovery_offset */
rdev_for_each_rcu(rdev, mddev) {
if (!test_bit(Faulty, &rdev->flags))
read_rdev(mddev, rdev);
}
}
EXPORT_SYMBOL(md_reload_sb);
#ifndef MODULE
/*
* Searches all registered partitions for autorun RAID arrays
* at boot time.
*/
static DEFINE_MUTEX(detected_devices_mutex);
static LIST_HEAD(all_detected_devices);
struct detected_devices_node {
struct list_head list;
dev_t dev;
};
void md_autodetect_dev(dev_t dev)
{
struct detected_devices_node *node_detected_dev;
node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
if (node_detected_dev) {
node_detected_dev->dev = dev;
mutex_lock(&detected_devices_mutex);
list_add_tail(&node_detected_dev->list, &all_detected_devices);
mutex_unlock(&detected_devices_mutex);
}
}
void md_autostart_arrays(int part)
{
struct md_rdev *rdev;
struct detected_devices_node *node_detected_dev;
dev_t dev;
int i_scanned, i_passed;
i_scanned = 0;
i_passed = 0;
pr_info("md: Autodetecting RAID arrays.\n");
mutex_lock(&detected_devices_mutex);
while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
i_scanned++;
node_detected_dev = list_entry(all_detected_devices.next,
struct detected_devices_node, list);
list_del(&node_detected_dev->list);
dev = node_detected_dev->dev;
kfree(node_detected_dev);
mutex_unlock(&detected_devices_mutex);
rdev = md_import_device(dev,0, 90);
mutex_lock(&detected_devices_mutex);
if (IS_ERR(rdev))
continue;
if (test_bit(Faulty, &rdev->flags))
continue;
set_bit(AutoDetected, &rdev->flags);
list_add(&rdev->same_set, &pending_raid_disks);
i_passed++;
}
mutex_unlock(&detected_devices_mutex);
pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed);
autorun_devices(part);
}
#endif /* !MODULE */
static __exit void md_exit(void)
{
struct mddev *mddev, *n;
int delay = 1;
unregister_blkdev(MD_MAJOR,"md");
unregister_blkdev(mdp_major, "mdp");
unregister_reboot_notifier(&md_notifier);
unregister_sysctl_table(raid_table_header);
/* We cannot unload the modules while some process is
* waiting for us in select() or poll() - wake them up
*/
md_unloading = 1;
while (waitqueue_active(&md_event_waiters)) {
/* not safe to leave yet */
wake_up(&md_event_waiters);
msleep(delay);
delay += delay;
}
remove_proc_entry("mdstat", NULL);
spin_lock(&all_mddevs_lock);
list_for_each_entry_safe(mddev, n, &all_mddevs, all_mddevs) {
if (!mddev_get(mddev))
continue;
spin_unlock(&all_mddevs_lock);
export_array(mddev);
mddev->ctime = 0;
mddev->hold_active = 0;
/*
* As the mddev is now fully clear, mddev_put will schedule
* the mddev for destruction by a workqueue, and the
* destroy_workqueue() below will wait for that to complete.
*/
mddev_put(mddev);
spin_lock(&all_mddevs_lock);
}
spin_unlock(&all_mddevs_lock);
destroy_workqueue(md_rdev_misc_wq);
destroy_workqueue(md_misc_wq);
destroy_workqueue(md_wq);
}
subsys_initcall(md_init);
module_exit(md_exit)
static int get_ro(char *buffer, const struct kernel_param *kp)
{
return sprintf(buffer, "%d\n", start_readonly);
}
static int set_ro(const char *val, const struct kernel_param *kp)
{
return kstrtouint(val, 10, (unsigned int *)&start_readonly);
}
module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
module_param(create_on_open, bool, S_IRUSR|S_IWUSR);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("MD RAID framework");
MODULE_ALIAS("md");
MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);