8c1aef6a68
Similarly to commit 855bfe0de1 ("powerpc: hard disable irqs in smp_send_stop loop"), irqs should be hard disabled by panic_smp_self_stop. Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
990 lines
25 KiB
C
990 lines
25 KiB
C
/*
|
|
*
|
|
* Common boot and setup code.
|
|
*
|
|
* Copyright (C) 2001 PPC64 Team, IBM Corp
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*/
|
|
|
|
#include <linux/export.h>
|
|
#include <linux/string.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/init.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/reboot.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/initrd.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/console.h>
|
|
#include <linux/utsname.h>
|
|
#include <linux/tty.h>
|
|
#include <linux/root_dev.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/unistd.h>
|
|
#include <linux/serial.h>
|
|
#include <linux/serial_8250.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/lockdep.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/memory.h>
|
|
#include <linux/nmi.h>
|
|
|
|
#include <asm/debugfs.h>
|
|
#include <asm/io.h>
|
|
#include <asm/kdump.h>
|
|
#include <asm/prom.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/smp.h>
|
|
#include <asm/elf.h>
|
|
#include <asm/machdep.h>
|
|
#include <asm/paca.h>
|
|
#include <asm/time.h>
|
|
#include <asm/cputable.h>
|
|
#include <asm/dt_cpu_ftrs.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/btext.h>
|
|
#include <asm/nvram.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/rtas.h>
|
|
#include <asm/iommu.h>
|
|
#include <asm/serial.h>
|
|
#include <asm/cache.h>
|
|
#include <asm/page.h>
|
|
#include <asm/mmu.h>
|
|
#include <asm/firmware.h>
|
|
#include <asm/xmon.h>
|
|
#include <asm/udbg.h>
|
|
#include <asm/kexec.h>
|
|
#include <asm/code-patching.h>
|
|
#include <asm/livepatch.h>
|
|
#include <asm/opal.h>
|
|
#include <asm/cputhreads.h>
|
|
#include <asm/hw_irq.h>
|
|
|
|
#include "setup.h"
|
|
|
|
#ifdef DEBUG
|
|
#define DBG(fmt...) udbg_printf(fmt)
|
|
#else
|
|
#define DBG(fmt...)
|
|
#endif
|
|
|
|
int spinning_secondaries;
|
|
u64 ppc64_pft_size;
|
|
|
|
struct ppc64_caches ppc64_caches = {
|
|
.l1d = {
|
|
.block_size = 0x40,
|
|
.log_block_size = 6,
|
|
},
|
|
.l1i = {
|
|
.block_size = 0x40,
|
|
.log_block_size = 6
|
|
},
|
|
};
|
|
EXPORT_SYMBOL_GPL(ppc64_caches);
|
|
|
|
#if defined(CONFIG_PPC_BOOK3E) && defined(CONFIG_SMP)
|
|
void __init setup_tlb_core_data(void)
|
|
{
|
|
int cpu;
|
|
|
|
BUILD_BUG_ON(offsetof(struct tlb_core_data, lock) != 0);
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
int first = cpu_first_thread_sibling(cpu);
|
|
|
|
/*
|
|
* If we boot via kdump on a non-primary thread,
|
|
* make sure we point at the thread that actually
|
|
* set up this TLB.
|
|
*/
|
|
if (cpu_first_thread_sibling(boot_cpuid) == first)
|
|
first = boot_cpuid;
|
|
|
|
paca_ptrs[cpu]->tcd_ptr = &paca_ptrs[first]->tcd;
|
|
|
|
/*
|
|
* If we have threads, we need either tlbsrx.
|
|
* or e6500 tablewalk mode, or else TLB handlers
|
|
* will be racy and could produce duplicate entries.
|
|
* Should we panic instead?
|
|
*/
|
|
WARN_ONCE(smt_enabled_at_boot >= 2 &&
|
|
!mmu_has_feature(MMU_FTR_USE_TLBRSRV) &&
|
|
book3e_htw_mode != PPC_HTW_E6500,
|
|
"%s: unsupported MMU configuration\n", __func__);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
static char *smt_enabled_cmdline;
|
|
|
|
/* Look for ibm,smt-enabled OF option */
|
|
void __init check_smt_enabled(void)
|
|
{
|
|
struct device_node *dn;
|
|
const char *smt_option;
|
|
|
|
/* Default to enabling all threads */
|
|
smt_enabled_at_boot = threads_per_core;
|
|
|
|
/* Allow the command line to overrule the OF option */
|
|
if (smt_enabled_cmdline) {
|
|
if (!strcmp(smt_enabled_cmdline, "on"))
|
|
smt_enabled_at_boot = threads_per_core;
|
|
else if (!strcmp(smt_enabled_cmdline, "off"))
|
|
smt_enabled_at_boot = 0;
|
|
else {
|
|
int smt;
|
|
int rc;
|
|
|
|
rc = kstrtoint(smt_enabled_cmdline, 10, &smt);
|
|
if (!rc)
|
|
smt_enabled_at_boot =
|
|
min(threads_per_core, smt);
|
|
}
|
|
} else {
|
|
dn = of_find_node_by_path("/options");
|
|
if (dn) {
|
|
smt_option = of_get_property(dn, "ibm,smt-enabled",
|
|
NULL);
|
|
|
|
if (smt_option) {
|
|
if (!strcmp(smt_option, "on"))
|
|
smt_enabled_at_boot = threads_per_core;
|
|
else if (!strcmp(smt_option, "off"))
|
|
smt_enabled_at_boot = 0;
|
|
}
|
|
|
|
of_node_put(dn);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Look for smt-enabled= cmdline option */
|
|
static int __init early_smt_enabled(char *p)
|
|
{
|
|
smt_enabled_cmdline = p;
|
|
return 0;
|
|
}
|
|
early_param("smt-enabled", early_smt_enabled);
|
|
|
|
#endif /* CONFIG_SMP */
|
|
|
|
/** Fix up paca fields required for the boot cpu */
|
|
static void __init fixup_boot_paca(void)
|
|
{
|
|
/* The boot cpu is started */
|
|
get_paca()->cpu_start = 1;
|
|
/* Allow percpu accesses to work until we setup percpu data */
|
|
get_paca()->data_offset = 0;
|
|
/* Mark interrupts disabled in PACA */
|
|
irq_soft_mask_set(IRQS_DISABLED);
|
|
}
|
|
|
|
static void __init configure_exceptions(void)
|
|
{
|
|
/*
|
|
* Setup the trampolines from the lowmem exception vectors
|
|
* to the kdump kernel when not using a relocatable kernel.
|
|
*/
|
|
setup_kdump_trampoline();
|
|
|
|
/* Under a PAPR hypervisor, we need hypercalls */
|
|
if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
|
|
/* Enable AIL if possible */
|
|
pseries_enable_reloc_on_exc();
|
|
|
|
/*
|
|
* Tell the hypervisor that we want our exceptions to
|
|
* be taken in little endian mode.
|
|
*
|
|
* We don't call this for big endian as our calling convention
|
|
* makes us always enter in BE, and the call may fail under
|
|
* some circumstances with kdump.
|
|
*/
|
|
#ifdef __LITTLE_ENDIAN__
|
|
pseries_little_endian_exceptions();
|
|
#endif
|
|
} else {
|
|
/* Set endian mode using OPAL */
|
|
if (firmware_has_feature(FW_FEATURE_OPAL))
|
|
opal_configure_cores();
|
|
|
|
/* AIL on native is done in cpu_ready_for_interrupts() */
|
|
}
|
|
}
|
|
|
|
static void cpu_ready_for_interrupts(void)
|
|
{
|
|
/*
|
|
* Enable AIL if supported, and we are in hypervisor mode. This
|
|
* is called once for every processor.
|
|
*
|
|
* If we are not in hypervisor mode the job is done once for
|
|
* the whole partition in configure_exceptions().
|
|
*/
|
|
if (cpu_has_feature(CPU_FTR_HVMODE) &&
|
|
cpu_has_feature(CPU_FTR_ARCH_207S)) {
|
|
unsigned long lpcr = mfspr(SPRN_LPCR);
|
|
mtspr(SPRN_LPCR, lpcr | LPCR_AIL_3);
|
|
}
|
|
|
|
/*
|
|
* Fixup HFSCR:TM based on CPU features. The bit is set by our
|
|
* early asm init because at that point we haven't updated our
|
|
* CPU features from firmware and device-tree. Here we have,
|
|
* so let's do it.
|
|
*/
|
|
if (cpu_has_feature(CPU_FTR_HVMODE) && !cpu_has_feature(CPU_FTR_TM_COMP))
|
|
mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) & ~HFSCR_TM);
|
|
|
|
/* Set IR and DR in PACA MSR */
|
|
get_paca()->kernel_msr = MSR_KERNEL;
|
|
}
|
|
|
|
unsigned long spr_default_dscr = 0;
|
|
|
|
void __init record_spr_defaults(void)
|
|
{
|
|
if (early_cpu_has_feature(CPU_FTR_DSCR))
|
|
spr_default_dscr = mfspr(SPRN_DSCR);
|
|
}
|
|
|
|
/*
|
|
* Early initialization entry point. This is called by head.S
|
|
* with MMU translation disabled. We rely on the "feature" of
|
|
* the CPU that ignores the top 2 bits of the address in real
|
|
* mode so we can access kernel globals normally provided we
|
|
* only toy with things in the RMO region. From here, we do
|
|
* some early parsing of the device-tree to setup out MEMBLOCK
|
|
* data structures, and allocate & initialize the hash table
|
|
* and segment tables so we can start running with translation
|
|
* enabled.
|
|
*
|
|
* It is this function which will call the probe() callback of
|
|
* the various platform types and copy the matching one to the
|
|
* global ppc_md structure. Your platform can eventually do
|
|
* some very early initializations from the probe() routine, but
|
|
* this is not recommended, be very careful as, for example, the
|
|
* device-tree is not accessible via normal means at this point.
|
|
*/
|
|
|
|
void __init early_setup(unsigned long dt_ptr)
|
|
{
|
|
static __initdata struct paca_struct boot_paca;
|
|
|
|
/* -------- printk is _NOT_ safe to use here ! ------- */
|
|
|
|
/* Try new device tree based feature discovery ... */
|
|
if (!dt_cpu_ftrs_init(__va(dt_ptr)))
|
|
/* Otherwise use the old style CPU table */
|
|
identify_cpu(0, mfspr(SPRN_PVR));
|
|
|
|
/* Assume we're on cpu 0 for now. Don't write to the paca yet! */
|
|
initialise_paca(&boot_paca, 0);
|
|
setup_paca(&boot_paca);
|
|
fixup_boot_paca();
|
|
|
|
/* -------- printk is now safe to use ------- */
|
|
|
|
/* Enable early debugging if any specified (see udbg.h) */
|
|
udbg_early_init();
|
|
|
|
DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr);
|
|
|
|
/*
|
|
* Do early initialization using the flattened device
|
|
* tree, such as retrieving the physical memory map or
|
|
* calculating/retrieving the hash table size.
|
|
*/
|
|
early_init_devtree(__va(dt_ptr));
|
|
|
|
/* Now we know the logical id of our boot cpu, setup the paca. */
|
|
if (boot_cpuid != 0) {
|
|
/* Poison paca_ptrs[0] again if it's not the boot cpu */
|
|
memset(&paca_ptrs[0], 0x88, sizeof(paca_ptrs[0]));
|
|
}
|
|
setup_paca(paca_ptrs[boot_cpuid]);
|
|
fixup_boot_paca();
|
|
|
|
/*
|
|
* Configure exception handlers. This include setting up trampolines
|
|
* if needed, setting exception endian mode, etc...
|
|
*/
|
|
configure_exceptions();
|
|
|
|
/* Apply all the dynamic patching */
|
|
apply_feature_fixups();
|
|
setup_feature_keys();
|
|
|
|
/* Initialize the hash table or TLB handling */
|
|
early_init_mmu();
|
|
|
|
/*
|
|
* After firmware and early platform setup code has set things up,
|
|
* we note the SPR values for configurable control/performance
|
|
* registers, and use those as initial defaults.
|
|
*/
|
|
record_spr_defaults();
|
|
|
|
/*
|
|
* At this point, we can let interrupts switch to virtual mode
|
|
* (the MMU has been setup), so adjust the MSR in the PACA to
|
|
* have IR and DR set and enable AIL if it exists
|
|
*/
|
|
cpu_ready_for_interrupts();
|
|
|
|
/*
|
|
* We enable ftrace here, but since we only support DYNAMIC_FTRACE, it
|
|
* will only actually get enabled on the boot cpu much later once
|
|
* ftrace itself has been initialized.
|
|
*/
|
|
this_cpu_enable_ftrace();
|
|
|
|
DBG(" <- early_setup()\n");
|
|
|
|
#ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX
|
|
/*
|
|
* This needs to be done *last* (after the above DBG() even)
|
|
*
|
|
* Right after we return from this function, we turn on the MMU
|
|
* which means the real-mode access trick that btext does will
|
|
* no longer work, it needs to switch to using a real MMU
|
|
* mapping. This call will ensure that it does
|
|
*/
|
|
btext_map();
|
|
#endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
void early_setup_secondary(void)
|
|
{
|
|
/* Mark interrupts disabled in PACA */
|
|
irq_soft_mask_set(IRQS_DISABLED);
|
|
|
|
/* Initialize the hash table or TLB handling */
|
|
early_init_mmu_secondary();
|
|
|
|
/*
|
|
* At this point, we can let interrupts switch to virtual mode
|
|
* (the MMU has been setup), so adjust the MSR in the PACA to
|
|
* have IR and DR set.
|
|
*/
|
|
cpu_ready_for_interrupts();
|
|
}
|
|
|
|
#endif /* CONFIG_SMP */
|
|
|
|
void panic_smp_self_stop(void)
|
|
{
|
|
hard_irq_disable();
|
|
spin_begin();
|
|
while (1)
|
|
spin_cpu_relax();
|
|
}
|
|
|
|
#if defined(CONFIG_SMP) || defined(CONFIG_KEXEC_CORE)
|
|
static bool use_spinloop(void)
|
|
{
|
|
if (IS_ENABLED(CONFIG_PPC_BOOK3S)) {
|
|
/*
|
|
* See comments in head_64.S -- not all platforms insert
|
|
* secondaries at __secondary_hold and wait at the spin
|
|
* loop.
|
|
*/
|
|
if (firmware_has_feature(FW_FEATURE_OPAL))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* When book3e boots from kexec, the ePAPR spin table does
|
|
* not get used.
|
|
*/
|
|
return of_property_read_bool(of_chosen, "linux,booted-from-kexec");
|
|
}
|
|
|
|
void smp_release_cpus(void)
|
|
{
|
|
unsigned long *ptr;
|
|
int i;
|
|
|
|
if (!use_spinloop())
|
|
return;
|
|
|
|
DBG(" -> smp_release_cpus()\n");
|
|
|
|
/* All secondary cpus are spinning on a common spinloop, release them
|
|
* all now so they can start to spin on their individual paca
|
|
* spinloops. For non SMP kernels, the secondary cpus never get out
|
|
* of the common spinloop.
|
|
*/
|
|
|
|
ptr = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
|
|
- PHYSICAL_START);
|
|
*ptr = ppc_function_entry(generic_secondary_smp_init);
|
|
|
|
/* And wait a bit for them to catch up */
|
|
for (i = 0; i < 100000; i++) {
|
|
mb();
|
|
HMT_low();
|
|
if (spinning_secondaries == 0)
|
|
break;
|
|
udelay(1);
|
|
}
|
|
DBG("spinning_secondaries = %d\n", spinning_secondaries);
|
|
|
|
DBG(" <- smp_release_cpus()\n");
|
|
}
|
|
#endif /* CONFIG_SMP || CONFIG_KEXEC_CORE */
|
|
|
|
/*
|
|
* Initialize some remaining members of the ppc64_caches and systemcfg
|
|
* structures
|
|
* (at least until we get rid of them completely). This is mostly some
|
|
* cache informations about the CPU that will be used by cache flush
|
|
* routines and/or provided to userland
|
|
*/
|
|
|
|
static void init_cache_info(struct ppc_cache_info *info, u32 size, u32 lsize,
|
|
u32 bsize, u32 sets)
|
|
{
|
|
info->size = size;
|
|
info->sets = sets;
|
|
info->line_size = lsize;
|
|
info->block_size = bsize;
|
|
info->log_block_size = __ilog2(bsize);
|
|
if (bsize)
|
|
info->blocks_per_page = PAGE_SIZE / bsize;
|
|
else
|
|
info->blocks_per_page = 0;
|
|
|
|
if (sets == 0)
|
|
info->assoc = 0xffff;
|
|
else
|
|
info->assoc = size / (sets * lsize);
|
|
}
|
|
|
|
static bool __init parse_cache_info(struct device_node *np,
|
|
bool icache,
|
|
struct ppc_cache_info *info)
|
|
{
|
|
static const char *ipropnames[] __initdata = {
|
|
"i-cache-size",
|
|
"i-cache-sets",
|
|
"i-cache-block-size",
|
|
"i-cache-line-size",
|
|
};
|
|
static const char *dpropnames[] __initdata = {
|
|
"d-cache-size",
|
|
"d-cache-sets",
|
|
"d-cache-block-size",
|
|
"d-cache-line-size",
|
|
};
|
|
const char **propnames = icache ? ipropnames : dpropnames;
|
|
const __be32 *sizep, *lsizep, *bsizep, *setsp;
|
|
u32 size, lsize, bsize, sets;
|
|
bool success = true;
|
|
|
|
size = 0;
|
|
sets = -1u;
|
|
lsize = bsize = cur_cpu_spec->dcache_bsize;
|
|
sizep = of_get_property(np, propnames[0], NULL);
|
|
if (sizep != NULL)
|
|
size = be32_to_cpu(*sizep);
|
|
setsp = of_get_property(np, propnames[1], NULL);
|
|
if (setsp != NULL)
|
|
sets = be32_to_cpu(*setsp);
|
|
bsizep = of_get_property(np, propnames[2], NULL);
|
|
lsizep = of_get_property(np, propnames[3], NULL);
|
|
if (bsizep == NULL)
|
|
bsizep = lsizep;
|
|
if (lsizep != NULL)
|
|
lsize = be32_to_cpu(*lsizep);
|
|
if (bsizep != NULL)
|
|
bsize = be32_to_cpu(*bsizep);
|
|
if (sizep == NULL || bsizep == NULL || lsizep == NULL)
|
|
success = false;
|
|
|
|
/*
|
|
* OF is weird .. it represents fully associative caches
|
|
* as "1 way" which doesn't make much sense and doesn't
|
|
* leave room for direct mapped. We'll assume that 0
|
|
* in OF means direct mapped for that reason.
|
|
*/
|
|
if (sets == 1)
|
|
sets = 0;
|
|
else if (sets == 0)
|
|
sets = 1;
|
|
|
|
init_cache_info(info, size, lsize, bsize, sets);
|
|
|
|
return success;
|
|
}
|
|
|
|
void __init initialize_cache_info(void)
|
|
{
|
|
struct device_node *cpu = NULL, *l2, *l3 = NULL;
|
|
u32 pvr;
|
|
|
|
DBG(" -> initialize_cache_info()\n");
|
|
|
|
/*
|
|
* All shipping POWER8 machines have a firmware bug that
|
|
* puts incorrect information in the device-tree. This will
|
|
* be (hopefully) fixed for future chips but for now hard
|
|
* code the values if we are running on one of these
|
|
*/
|
|
pvr = PVR_VER(mfspr(SPRN_PVR));
|
|
if (pvr == PVR_POWER8 || pvr == PVR_POWER8E ||
|
|
pvr == PVR_POWER8NVL) {
|
|
/* size lsize blk sets */
|
|
init_cache_info(&ppc64_caches.l1i, 0x8000, 128, 128, 32);
|
|
init_cache_info(&ppc64_caches.l1d, 0x10000, 128, 128, 64);
|
|
init_cache_info(&ppc64_caches.l2, 0x80000, 128, 0, 512);
|
|
init_cache_info(&ppc64_caches.l3, 0x800000, 128, 0, 8192);
|
|
} else
|
|
cpu = of_find_node_by_type(NULL, "cpu");
|
|
|
|
/*
|
|
* We're assuming *all* of the CPUs have the same
|
|
* d-cache and i-cache sizes... -Peter
|
|
*/
|
|
if (cpu) {
|
|
if (!parse_cache_info(cpu, false, &ppc64_caches.l1d))
|
|
DBG("Argh, can't find dcache properties !\n");
|
|
|
|
if (!parse_cache_info(cpu, true, &ppc64_caches.l1i))
|
|
DBG("Argh, can't find icache properties !\n");
|
|
|
|
/*
|
|
* Try to find the L2 and L3 if any. Assume they are
|
|
* unified and use the D-side properties.
|
|
*/
|
|
l2 = of_find_next_cache_node(cpu);
|
|
of_node_put(cpu);
|
|
if (l2) {
|
|
parse_cache_info(l2, false, &ppc64_caches.l2);
|
|
l3 = of_find_next_cache_node(l2);
|
|
of_node_put(l2);
|
|
}
|
|
if (l3) {
|
|
parse_cache_info(l3, false, &ppc64_caches.l3);
|
|
of_node_put(l3);
|
|
}
|
|
}
|
|
|
|
/* For use by binfmt_elf */
|
|
dcache_bsize = ppc64_caches.l1d.block_size;
|
|
icache_bsize = ppc64_caches.l1i.block_size;
|
|
|
|
cur_cpu_spec->dcache_bsize = dcache_bsize;
|
|
cur_cpu_spec->icache_bsize = icache_bsize;
|
|
|
|
DBG(" <- initialize_cache_info()\n");
|
|
}
|
|
|
|
/*
|
|
* This returns the limit below which memory accesses to the linear
|
|
* mapping are guarnateed not to cause an architectural exception (e.g.,
|
|
* TLB or SLB miss fault).
|
|
*
|
|
* This is used to allocate PACAs and various interrupt stacks that
|
|
* that are accessed early in interrupt handlers that must not cause
|
|
* re-entrant interrupts.
|
|
*/
|
|
__init u64 ppc64_bolted_size(void)
|
|
{
|
|
#ifdef CONFIG_PPC_BOOK3E
|
|
/* Freescale BookE bolts the entire linear mapping */
|
|
/* XXX: BookE ppc64_rma_limit setup seems to disagree? */
|
|
if (early_mmu_has_feature(MMU_FTR_TYPE_FSL_E))
|
|
return linear_map_top;
|
|
/* Other BookE, we assume the first GB is bolted */
|
|
return 1ul << 30;
|
|
#else
|
|
/* BookS radix, does not take faults on linear mapping */
|
|
if (early_radix_enabled())
|
|
return ULONG_MAX;
|
|
|
|
/* BookS hash, the first segment is bolted */
|
|
if (early_mmu_has_feature(MMU_FTR_1T_SEGMENT))
|
|
return 1UL << SID_SHIFT_1T;
|
|
return 1UL << SID_SHIFT;
|
|
#endif
|
|
}
|
|
|
|
static void *__init alloc_stack(unsigned long limit, int cpu)
|
|
{
|
|
unsigned long pa;
|
|
|
|
pa = memblock_alloc_base_nid(THREAD_SIZE, THREAD_SIZE, limit,
|
|
early_cpu_to_node(cpu), MEMBLOCK_NONE);
|
|
if (!pa) {
|
|
pa = memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit);
|
|
if (!pa)
|
|
panic("cannot allocate stacks");
|
|
}
|
|
|
|
return __va(pa);
|
|
}
|
|
|
|
void __init irqstack_early_init(void)
|
|
{
|
|
u64 limit = ppc64_bolted_size();
|
|
unsigned int i;
|
|
|
|
/*
|
|
* Interrupt stacks must be in the first segment since we
|
|
* cannot afford to take SLB misses on them. They are not
|
|
* accessed in realmode.
|
|
*/
|
|
for_each_possible_cpu(i) {
|
|
softirq_ctx[i] = alloc_stack(limit, i);
|
|
hardirq_ctx[i] = alloc_stack(limit, i);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_PPC_BOOK3E
|
|
void __init exc_lvl_early_init(void)
|
|
{
|
|
unsigned int i;
|
|
|
|
for_each_possible_cpu(i) {
|
|
void *sp;
|
|
|
|
sp = alloc_stack(ULONG_MAX, i);
|
|
critirq_ctx[i] = sp;
|
|
paca_ptrs[i]->crit_kstack = sp + THREAD_SIZE;
|
|
|
|
sp = alloc_stack(ULONG_MAX, i);
|
|
dbgirq_ctx[i] = sp;
|
|
paca_ptrs[i]->dbg_kstack = sp + THREAD_SIZE;
|
|
|
|
sp = alloc_stack(ULONG_MAX, i);
|
|
mcheckirq_ctx[i] = sp;
|
|
paca_ptrs[i]->mc_kstack = sp + THREAD_SIZE;
|
|
}
|
|
|
|
if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
|
|
patch_exception(0x040, exc_debug_debug_book3e);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Emergency stacks are used for a range of things, from asynchronous
|
|
* NMIs (system reset, machine check) to synchronous, process context.
|
|
* We set preempt_count to zero, even though that isn't necessarily correct. To
|
|
* get the right value we'd need to copy it from the previous thread_info, but
|
|
* doing that might fault causing more problems.
|
|
* TODO: what to do with accounting?
|
|
*/
|
|
static void emerg_stack_init_thread_info(struct thread_info *ti, int cpu)
|
|
{
|
|
ti->task = NULL;
|
|
ti->cpu = cpu;
|
|
ti->preempt_count = 0;
|
|
ti->local_flags = 0;
|
|
ti->flags = 0;
|
|
klp_init_thread_info(ti);
|
|
}
|
|
|
|
/*
|
|
* Stack space used when we detect a bad kernel stack pointer, and
|
|
* early in SMP boots before relocation is enabled. Exclusive emergency
|
|
* stack for machine checks.
|
|
*/
|
|
void __init emergency_stack_init(void)
|
|
{
|
|
u64 limit;
|
|
unsigned int i;
|
|
|
|
/*
|
|
* Emergency stacks must be under 256MB, we cannot afford to take
|
|
* SLB misses on them. The ABI also requires them to be 128-byte
|
|
* aligned.
|
|
*
|
|
* Since we use these as temporary stacks during secondary CPU
|
|
* bringup, machine check, system reset, and HMI, we need to get
|
|
* at them in real mode. This means they must also be within the RMO
|
|
* region.
|
|
*
|
|
* The IRQ stacks allocated elsewhere in this file are zeroed and
|
|
* initialized in kernel/irq.c. These are initialized here in order
|
|
* to have emergency stacks available as early as possible.
|
|
*/
|
|
limit = min(ppc64_bolted_size(), ppc64_rma_size);
|
|
|
|
for_each_possible_cpu(i) {
|
|
struct thread_info *ti;
|
|
|
|
ti = alloc_stack(limit, i);
|
|
memset(ti, 0, THREAD_SIZE);
|
|
emerg_stack_init_thread_info(ti, i);
|
|
paca_ptrs[i]->emergency_sp = (void *)ti + THREAD_SIZE;
|
|
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
/* emergency stack for NMI exception handling. */
|
|
ti = alloc_stack(limit, i);
|
|
memset(ti, 0, THREAD_SIZE);
|
|
emerg_stack_init_thread_info(ti, i);
|
|
paca_ptrs[i]->nmi_emergency_sp = (void *)ti + THREAD_SIZE;
|
|
|
|
/* emergency stack for machine check exception handling. */
|
|
ti = alloc_stack(limit, i);
|
|
memset(ti, 0, THREAD_SIZE);
|
|
emerg_stack_init_thread_info(ti, i);
|
|
paca_ptrs[i]->mc_emergency_sp = (void *)ti + THREAD_SIZE;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
#define PCPU_DYN_SIZE ()
|
|
|
|
static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
|
|
{
|
|
return __alloc_bootmem_node(NODE_DATA(early_cpu_to_node(cpu)), size, align,
|
|
__pa(MAX_DMA_ADDRESS));
|
|
}
|
|
|
|
static void __init pcpu_fc_free(void *ptr, size_t size)
|
|
{
|
|
free_bootmem(__pa(ptr), size);
|
|
}
|
|
|
|
static int pcpu_cpu_distance(unsigned int from, unsigned int to)
|
|
{
|
|
if (early_cpu_to_node(from) == early_cpu_to_node(to))
|
|
return LOCAL_DISTANCE;
|
|
else
|
|
return REMOTE_DISTANCE;
|
|
}
|
|
|
|
unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
|
|
EXPORT_SYMBOL(__per_cpu_offset);
|
|
|
|
void __init setup_per_cpu_areas(void)
|
|
{
|
|
const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
|
|
size_t atom_size;
|
|
unsigned long delta;
|
|
unsigned int cpu;
|
|
int rc;
|
|
|
|
/*
|
|
* Linear mapping is one of 4K, 1M and 16M. For 4K, no need
|
|
* to group units. For larger mappings, use 1M atom which
|
|
* should be large enough to contain a number of units.
|
|
*/
|
|
if (mmu_linear_psize == MMU_PAGE_4K)
|
|
atom_size = PAGE_SIZE;
|
|
else
|
|
atom_size = 1 << 20;
|
|
|
|
rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
|
|
pcpu_fc_alloc, pcpu_fc_free);
|
|
if (rc < 0)
|
|
panic("cannot initialize percpu area (err=%d)", rc);
|
|
|
|
delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
|
|
for_each_possible_cpu(cpu) {
|
|
__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
|
|
paca_ptrs[cpu]->data_offset = __per_cpu_offset[cpu];
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
|
|
unsigned long memory_block_size_bytes(void)
|
|
{
|
|
if (ppc_md.memory_block_size)
|
|
return ppc_md.memory_block_size();
|
|
|
|
return MIN_MEMORY_BLOCK_SIZE;
|
|
}
|
|
#endif
|
|
|
|
#if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
|
|
struct ppc_pci_io ppc_pci_io;
|
|
EXPORT_SYMBOL(ppc_pci_io);
|
|
#endif
|
|
|
|
#ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
|
|
u64 hw_nmi_get_sample_period(int watchdog_thresh)
|
|
{
|
|
return ppc_proc_freq * watchdog_thresh;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* The perf based hardlockup detector breaks PMU event based branches, so
|
|
* disable it by default. Book3S has a soft-nmi hardlockup detector based
|
|
* on the decrementer interrupt, so it does not suffer from this problem.
|
|
*
|
|
* It is likely to get false positives in VM guests, so disable it there
|
|
* by default too.
|
|
*/
|
|
static int __init disable_hardlockup_detector(void)
|
|
{
|
|
#ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
|
|
hardlockup_detector_disable();
|
|
#else
|
|
if (firmware_has_feature(FW_FEATURE_LPAR))
|
|
hardlockup_detector_disable();
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
early_initcall(disable_hardlockup_detector);
|
|
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
static enum l1d_flush_type enabled_flush_types;
|
|
static void *l1d_flush_fallback_area;
|
|
static bool no_rfi_flush;
|
|
bool rfi_flush;
|
|
|
|
static int __init handle_no_rfi_flush(char *p)
|
|
{
|
|
pr_info("rfi-flush: disabled on command line.");
|
|
no_rfi_flush = true;
|
|
return 0;
|
|
}
|
|
early_param("no_rfi_flush", handle_no_rfi_flush);
|
|
|
|
/*
|
|
* The RFI flush is not KPTI, but because users will see doco that says to use
|
|
* nopti we hijack that option here to also disable the RFI flush.
|
|
*/
|
|
static int __init handle_no_pti(char *p)
|
|
{
|
|
pr_info("rfi-flush: disabling due to 'nopti' on command line.\n");
|
|
handle_no_rfi_flush(NULL);
|
|
return 0;
|
|
}
|
|
early_param("nopti", handle_no_pti);
|
|
|
|
static void do_nothing(void *unused)
|
|
{
|
|
/*
|
|
* We don't need to do the flush explicitly, just enter+exit kernel is
|
|
* sufficient, the RFI exit handlers will do the right thing.
|
|
*/
|
|
}
|
|
|
|
void rfi_flush_enable(bool enable)
|
|
{
|
|
if (enable) {
|
|
do_rfi_flush_fixups(enabled_flush_types);
|
|
on_each_cpu(do_nothing, NULL, 1);
|
|
} else
|
|
do_rfi_flush_fixups(L1D_FLUSH_NONE);
|
|
|
|
rfi_flush = enable;
|
|
}
|
|
|
|
static void __ref init_fallback_flush(void)
|
|
{
|
|
u64 l1d_size, limit;
|
|
int cpu;
|
|
|
|
/* Only allocate the fallback flush area once (at boot time). */
|
|
if (l1d_flush_fallback_area)
|
|
return;
|
|
|
|
l1d_size = ppc64_caches.l1d.size;
|
|
|
|
/*
|
|
* If there is no d-cache-size property in the device tree, l1d_size
|
|
* could be zero. That leads to the loop in the asm wrapping around to
|
|
* 2^64-1, and then walking off the end of the fallback area and
|
|
* eventually causing a page fault which is fatal. Just default to
|
|
* something vaguely sane.
|
|
*/
|
|
if (!l1d_size)
|
|
l1d_size = (64 * 1024);
|
|
|
|
limit = min(ppc64_bolted_size(), ppc64_rma_size);
|
|
|
|
/*
|
|
* Align to L1d size, and size it at 2x L1d size, to catch possible
|
|
* hardware prefetch runoff. We don't have a recipe for load patterns to
|
|
* reliably avoid the prefetcher.
|
|
*/
|
|
l1d_flush_fallback_area = __va(memblock_alloc_base(l1d_size * 2, l1d_size, limit));
|
|
memset(l1d_flush_fallback_area, 0, l1d_size * 2);
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
struct paca_struct *paca = paca_ptrs[cpu];
|
|
paca->rfi_flush_fallback_area = l1d_flush_fallback_area;
|
|
paca->l1d_flush_size = l1d_size;
|
|
}
|
|
}
|
|
|
|
void setup_rfi_flush(enum l1d_flush_type types, bool enable)
|
|
{
|
|
if (types & L1D_FLUSH_FALLBACK) {
|
|
pr_info("rfi-flush: fallback displacement flush available\n");
|
|
init_fallback_flush();
|
|
}
|
|
|
|
if (types & L1D_FLUSH_ORI)
|
|
pr_info("rfi-flush: ori type flush available\n");
|
|
|
|
if (types & L1D_FLUSH_MTTRIG)
|
|
pr_info("rfi-flush: mttrig type flush available\n");
|
|
|
|
enabled_flush_types = types;
|
|
|
|
if (!no_rfi_flush)
|
|
rfi_flush_enable(enable);
|
|
}
|
|
|
|
#ifdef CONFIG_DEBUG_FS
|
|
static int rfi_flush_set(void *data, u64 val)
|
|
{
|
|
bool enable;
|
|
|
|
if (val == 1)
|
|
enable = true;
|
|
else if (val == 0)
|
|
enable = false;
|
|
else
|
|
return -EINVAL;
|
|
|
|
/* Only do anything if we're changing state */
|
|
if (enable != rfi_flush)
|
|
rfi_flush_enable(enable);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int rfi_flush_get(void *data, u64 *val)
|
|
{
|
|
*val = rfi_flush ? 1 : 0;
|
|
return 0;
|
|
}
|
|
|
|
DEFINE_SIMPLE_ATTRIBUTE(fops_rfi_flush, rfi_flush_get, rfi_flush_set, "%llu\n");
|
|
|
|
static __init int rfi_flush_debugfs_init(void)
|
|
{
|
|
debugfs_create_file("rfi_flush", 0600, powerpc_debugfs_root, NULL, &fops_rfi_flush);
|
|
return 0;
|
|
}
|
|
device_initcall(rfi_flush_debugfs_init);
|
|
#endif
|
|
#endif /* CONFIG_PPC_BOOK3S_64 */
|