linux/drivers/memory/tegra/tegra210-emc-cc-r21021.c
Colin Ian King d71b90e363 memory: tegra: make the array list static const, makes object smaller
Don't populate the array list on the stack but instead it
static const. Makes the object code smaller by 110 bytes:

Before:
   text    data     bss     dec     hex filename
  37713   21992      64   59769    e979 .../tegra/tegra210-emc-cc-r21021.o

After:
   text    data     bss     dec     hex filename
  37539   22056      64   59659    e90b .../tegra/tegra210-emc-cc-r21021.o

(gcc version 10.3.0)

Signed-off-by: Colin Ian King <colin.king@canonical.com>
Acked-by: Thierry Reding <treding@nvidia.com>
Link: https://lore.kernel.org/r/20210819133155.10441-1-colin.king@canonical.com
Signed-off-by: Krzysztof Kozlowski <krzysztof.kozlowski@canonical.com>
2021-09-15 09:31:19 +02:00

1775 lines
51 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2014-2020, NVIDIA CORPORATION. All rights reserved.
*/
#include <linux/kernel.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/of.h>
#include <soc/tegra/mc.h>
#include "tegra210-emc.h"
#include "tegra210-mc.h"
/*
* Enable flags for specifying verbosity.
*/
#define INFO (1 << 0)
#define STEPS (1 << 1)
#define SUB_STEPS (1 << 2)
#define PRELOCK (1 << 3)
#define PRELOCK_STEPS (1 << 4)
#define ACTIVE_EN (1 << 5)
#define PRAMP_UP (1 << 6)
#define PRAMP_DN (1 << 7)
#define EMA_WRITES (1 << 10)
#define EMA_UPDATES (1 << 11)
#define PER_TRAIN (1 << 16)
#define CC_PRINT (1 << 17)
#define CCFIFO (1 << 29)
#define REGS (1 << 30)
#define REG_LISTS (1 << 31)
#define emc_dbg(emc, flags, ...) dev_dbg(emc->dev, __VA_ARGS__)
#define DVFS_CLOCK_CHANGE_VERSION 21021
#define EMC_PRELOCK_VERSION 2101
enum {
DVFS_SEQUENCE = 1,
WRITE_TRAINING_SEQUENCE = 2,
PERIODIC_TRAINING_SEQUENCE = 3,
DVFS_PT1 = 10,
DVFS_UPDATE = 11,
TRAINING_PT1 = 12,
TRAINING_UPDATE = 13,
PERIODIC_TRAINING_UPDATE = 14
};
/*
* PTFV defines - basically just indexes into the per table PTFV array.
*/
#define PTFV_DQSOSC_MOVAVG_C0D0U0_INDEX 0
#define PTFV_DQSOSC_MOVAVG_C0D0U1_INDEX 1
#define PTFV_DQSOSC_MOVAVG_C0D1U0_INDEX 2
#define PTFV_DQSOSC_MOVAVG_C0D1U1_INDEX 3
#define PTFV_DQSOSC_MOVAVG_C1D0U0_INDEX 4
#define PTFV_DQSOSC_MOVAVG_C1D0U1_INDEX 5
#define PTFV_DQSOSC_MOVAVG_C1D1U0_INDEX 6
#define PTFV_DQSOSC_MOVAVG_C1D1U1_INDEX 7
#define PTFV_DVFS_SAMPLES_INDEX 9
#define PTFV_MOVAVG_WEIGHT_INDEX 10
#define PTFV_CONFIG_CTRL_INDEX 11
#define PTFV_CONFIG_CTRL_USE_PREVIOUS_EMA (1 << 0)
/*
* Do arithmetic in fixed point.
*/
#define MOVAVG_PRECISION_FACTOR 100
/*
* The division portion of the average operation.
*/
#define __AVERAGE_PTFV(dev) \
({ next->ptfv_list[PTFV_DQSOSC_MOVAVG_ ## dev ## _INDEX] = \
next->ptfv_list[PTFV_DQSOSC_MOVAVG_ ## dev ## _INDEX] / \
next->ptfv_list[PTFV_DVFS_SAMPLES_INDEX]; })
/*
* Convert val to fixed point and add it to the temporary average.
*/
#define __INCREMENT_PTFV(dev, val) \
({ next->ptfv_list[PTFV_DQSOSC_MOVAVG_ ## dev ## _INDEX] += \
((val) * MOVAVG_PRECISION_FACTOR); })
/*
* Convert a moving average back to integral form and return the value.
*/
#define __MOVAVG_AC(timing, dev) \
((timing)->ptfv_list[PTFV_DQSOSC_MOVAVG_ ## dev ## _INDEX] / \
MOVAVG_PRECISION_FACTOR)
/* Weighted update. */
#define __WEIGHTED_UPDATE_PTFV(dev, nval) \
do { \
int w = PTFV_MOVAVG_WEIGHT_INDEX; \
int dqs = PTFV_DQSOSC_MOVAVG_ ## dev ## _INDEX; \
\
next->ptfv_list[dqs] = \
((nval * MOVAVG_PRECISION_FACTOR) + \
(next->ptfv_list[dqs] * \
next->ptfv_list[w])) / \
(next->ptfv_list[w] + 1); \
\
emc_dbg(emc, EMA_UPDATES, "%s: (s=%lu) EMA: %u\n", \
__stringify(dev), nval, next->ptfv_list[dqs]); \
} while (0)
/* Access a particular average. */
#define __MOVAVG(timing, dev) \
((timing)->ptfv_list[PTFV_DQSOSC_MOVAVG_ ## dev ## _INDEX])
static u32 update_clock_tree_delay(struct tegra210_emc *emc, int type)
{
bool periodic_training_update = type == PERIODIC_TRAINING_UPDATE;
struct tegra210_emc_timing *last = emc->last;
struct tegra210_emc_timing *next = emc->next;
u32 last_timing_rate_mhz = last->rate / 1000;
u32 next_timing_rate_mhz = next->rate / 1000;
bool dvfs_update = type == DVFS_UPDATE;
s32 tdel = 0, tmdel = 0, adel = 0;
bool dvfs_pt1 = type == DVFS_PT1;
unsigned long cval = 0;
u32 temp[2][2], value;
unsigned int i;
/*
* Dev0 MSB.
*/
if (dvfs_pt1 || periodic_training_update) {
value = tegra210_emc_mrr_read(emc, 2, 19);
for (i = 0; i < emc->num_channels; i++) {
temp[i][0] = (value & 0x00ff) << 8;
temp[i][1] = (value & 0xff00) << 0;
value >>= 16;
}
/*
* Dev0 LSB.
*/
value = tegra210_emc_mrr_read(emc, 2, 18);
for (i = 0; i < emc->num_channels; i++) {
temp[i][0] |= (value & 0x00ff) >> 0;
temp[i][1] |= (value & 0xff00) >> 8;
value >>= 16;
}
}
if (dvfs_pt1 || periodic_training_update) {
cval = tegra210_emc_actual_osc_clocks(last->run_clocks);
cval *= 1000000;
cval /= last_timing_rate_mhz * 2 * temp[0][0];
}
if (dvfs_pt1)
__INCREMENT_PTFV(C0D0U0, cval);
else if (dvfs_update)
__AVERAGE_PTFV(C0D0U0);
else if (periodic_training_update)
__WEIGHTED_UPDATE_PTFV(C0D0U0, cval);
if (dvfs_update || periodic_training_update) {
tdel = next->current_dram_clktree[C0D0U0] -
__MOVAVG_AC(next, C0D0U0);
tmdel = (tdel < 0) ? -1 * tdel : tdel;
adel = tmdel;
if (tmdel * 128 * next_timing_rate_mhz / 1000000 >
next->tree_margin)
next->current_dram_clktree[C0D0U0] =
__MOVAVG_AC(next, C0D0U0);
}
if (dvfs_pt1 || periodic_training_update) {
cval = tegra210_emc_actual_osc_clocks(last->run_clocks);
cval *= 1000000;
cval /= last_timing_rate_mhz * 2 * temp[0][1];
}
if (dvfs_pt1)
__INCREMENT_PTFV(C0D0U1, cval);
else if (dvfs_update)
__AVERAGE_PTFV(C0D0U1);
else if (periodic_training_update)
__WEIGHTED_UPDATE_PTFV(C0D0U1, cval);
if (dvfs_update || periodic_training_update) {
tdel = next->current_dram_clktree[C0D0U1] -
__MOVAVG_AC(next, C0D0U1);
tmdel = (tdel < 0) ? -1 * tdel : tdel;
if (tmdel > adel)
adel = tmdel;
if (tmdel * 128 * next_timing_rate_mhz / 1000000 >
next->tree_margin)
next->current_dram_clktree[C0D0U1] =
__MOVAVG_AC(next, C0D0U1);
}
if (emc->num_channels > 1) {
if (dvfs_pt1 || periodic_training_update) {
cval = tegra210_emc_actual_osc_clocks(last->run_clocks);
cval *= 1000000;
cval /= last_timing_rate_mhz * 2 * temp[1][0];
}
if (dvfs_pt1)
__INCREMENT_PTFV(C1D0U0, cval);
else if (dvfs_update)
__AVERAGE_PTFV(C1D0U0);
else if (periodic_training_update)
__WEIGHTED_UPDATE_PTFV(C1D0U0, cval);
if (dvfs_update || periodic_training_update) {
tdel = next->current_dram_clktree[C1D0U0] -
__MOVAVG_AC(next, C1D0U0);
tmdel = (tdel < 0) ? -1 * tdel : tdel;
if (tmdel > adel)
adel = tmdel;
if (tmdel * 128 * next_timing_rate_mhz / 1000000 >
next->tree_margin)
next->current_dram_clktree[C1D0U0] =
__MOVAVG_AC(next, C1D0U0);
}
if (dvfs_pt1 || periodic_training_update) {
cval = tegra210_emc_actual_osc_clocks(last->run_clocks);
cval *= 1000000;
cval /= last_timing_rate_mhz * 2 * temp[1][1];
}
if (dvfs_pt1)
__INCREMENT_PTFV(C1D0U1, cval);
else if (dvfs_update)
__AVERAGE_PTFV(C1D0U1);
else if (periodic_training_update)
__WEIGHTED_UPDATE_PTFV(C1D0U1, cval);
if (dvfs_update || periodic_training_update) {
tdel = next->current_dram_clktree[C1D0U1] -
__MOVAVG_AC(next, C1D0U1);
tmdel = (tdel < 0) ? -1 * tdel : tdel;
if (tmdel > adel)
adel = tmdel;
if (tmdel * 128 * next_timing_rate_mhz / 1000000 >
next->tree_margin)
next->current_dram_clktree[C1D0U1] =
__MOVAVG_AC(next, C1D0U1);
}
}
if (emc->num_devices < 2)
goto done;
/*
* Dev1 MSB.
*/
if (dvfs_pt1 || periodic_training_update) {
value = tegra210_emc_mrr_read(emc, 1, 19);
for (i = 0; i < emc->num_channels; i++) {
temp[i][0] = (value & 0x00ff) << 8;
temp[i][1] = (value & 0xff00) << 0;
value >>= 16;
}
/*
* Dev1 LSB.
*/
value = tegra210_emc_mrr_read(emc, 2, 18);
for (i = 0; i < emc->num_channels; i++) {
temp[i][0] |= (value & 0x00ff) >> 0;
temp[i][1] |= (value & 0xff00) >> 8;
value >>= 16;
}
}
if (dvfs_pt1 || periodic_training_update) {
cval = tegra210_emc_actual_osc_clocks(last->run_clocks);
cval *= 1000000;
cval /= last_timing_rate_mhz * 2 * temp[0][0];
}
if (dvfs_pt1)
__INCREMENT_PTFV(C0D1U0, cval);
else if (dvfs_update)
__AVERAGE_PTFV(C0D1U0);
else if (periodic_training_update)
__WEIGHTED_UPDATE_PTFV(C0D1U0, cval);
if (dvfs_update || periodic_training_update) {
tdel = next->current_dram_clktree[C0D1U0] -
__MOVAVG_AC(next, C0D1U0);
tmdel = (tdel < 0) ? -1 * tdel : tdel;
if (tmdel > adel)
adel = tmdel;
if (tmdel * 128 * next_timing_rate_mhz / 1000000 >
next->tree_margin)
next->current_dram_clktree[C0D1U0] =
__MOVAVG_AC(next, C0D1U0);
}
if (dvfs_pt1 || periodic_training_update) {
cval = tegra210_emc_actual_osc_clocks(last->run_clocks);
cval *= 1000000;
cval /= last_timing_rate_mhz * 2 * temp[0][1];
}
if (dvfs_pt1)
__INCREMENT_PTFV(C0D1U1, cval);
else if (dvfs_update)
__AVERAGE_PTFV(C0D1U1);
else if (periodic_training_update)
__WEIGHTED_UPDATE_PTFV(C0D1U1, cval);
if (dvfs_update || periodic_training_update) {
tdel = next->current_dram_clktree[C0D1U1] -
__MOVAVG_AC(next, C0D1U1);
tmdel = (tdel < 0) ? -1 * tdel : tdel;
if (tmdel > adel)
adel = tmdel;
if (tmdel * 128 * next_timing_rate_mhz / 1000000 >
next->tree_margin)
next->current_dram_clktree[C0D1U1] =
__MOVAVG_AC(next, C0D1U1);
}
if (emc->num_channels > 1) {
if (dvfs_pt1 || periodic_training_update) {
cval = tegra210_emc_actual_osc_clocks(last->run_clocks);
cval *= 1000000;
cval /= last_timing_rate_mhz * 2 * temp[1][0];
}
if (dvfs_pt1)
__INCREMENT_PTFV(C1D1U0, cval);
else if (dvfs_update)
__AVERAGE_PTFV(C1D1U0);
else if (periodic_training_update)
__WEIGHTED_UPDATE_PTFV(C1D1U0, cval);
if (dvfs_update || periodic_training_update) {
tdel = next->current_dram_clktree[C1D1U0] -
__MOVAVG_AC(next, C1D1U0);
tmdel = (tdel < 0) ? -1 * tdel : tdel;
if (tmdel > adel)
adel = tmdel;
if (tmdel * 128 * next_timing_rate_mhz / 1000000 >
next->tree_margin)
next->current_dram_clktree[C1D1U0] =
__MOVAVG_AC(next, C1D1U0);
}
if (dvfs_pt1 || periodic_training_update) {
cval = tegra210_emc_actual_osc_clocks(last->run_clocks);
cval *= 1000000;
cval /= last_timing_rate_mhz * 2 * temp[1][1];
}
if (dvfs_pt1)
__INCREMENT_PTFV(C1D1U1, cval);
else if (dvfs_update)
__AVERAGE_PTFV(C1D1U1);
else if (periodic_training_update)
__WEIGHTED_UPDATE_PTFV(C1D1U1, cval);
if (dvfs_update || periodic_training_update) {
tdel = next->current_dram_clktree[C1D1U1] -
__MOVAVG_AC(next, C1D1U1);
tmdel = (tdel < 0) ? -1 * tdel : tdel;
if (tmdel > adel)
adel = tmdel;
if (tmdel * 128 * next_timing_rate_mhz / 1000000 >
next->tree_margin)
next->current_dram_clktree[C1D1U1] =
__MOVAVG_AC(next, C1D1U1);
}
}
done:
return adel;
}
static u32 periodic_compensation_handler(struct tegra210_emc *emc, u32 type,
struct tegra210_emc_timing *last,
struct tegra210_emc_timing *next)
{
#define __COPY_EMA(nt, lt, dev) \
({ __MOVAVG(nt, dev) = __MOVAVG(lt, dev) * \
(nt)->ptfv_list[PTFV_DVFS_SAMPLES_INDEX]; })
u32 i, adel = 0, samples = next->ptfv_list[PTFV_DVFS_SAMPLES_INDEX];
u32 delay;
delay = tegra210_emc_actual_osc_clocks(last->run_clocks);
delay *= 1000;
delay = 2 + (delay / last->rate);
if (!next->periodic_training)
return 0;
if (type == DVFS_SEQUENCE) {
if (last->periodic_training &&
(next->ptfv_list[PTFV_CONFIG_CTRL_INDEX] &
PTFV_CONFIG_CTRL_USE_PREVIOUS_EMA)) {
/*
* If the previous frequency was using periodic
* calibration then we can reuse the previous
* frequencies EMA data.
*/
__COPY_EMA(next, last, C0D0U0);
__COPY_EMA(next, last, C0D0U1);
__COPY_EMA(next, last, C1D0U0);
__COPY_EMA(next, last, C1D0U1);
__COPY_EMA(next, last, C0D1U0);
__COPY_EMA(next, last, C0D1U1);
__COPY_EMA(next, last, C1D1U0);
__COPY_EMA(next, last, C1D1U1);
} else {
/* Reset the EMA.*/
__MOVAVG(next, C0D0U0) = 0;
__MOVAVG(next, C0D0U1) = 0;
__MOVAVG(next, C1D0U0) = 0;
__MOVAVG(next, C1D0U1) = 0;
__MOVAVG(next, C0D1U0) = 0;
__MOVAVG(next, C0D1U1) = 0;
__MOVAVG(next, C1D1U0) = 0;
__MOVAVG(next, C1D1U1) = 0;
for (i = 0; i < samples; i++) {
tegra210_emc_start_periodic_compensation(emc);
udelay(delay);
/*
* Generate next sample of data.
*/
adel = update_clock_tree_delay(emc, DVFS_PT1);
}
}
/*
* Seems like it should be part of the
* 'if (last_timing->periodic_training)' conditional
* since is already done for the else clause.
*/
adel = update_clock_tree_delay(emc, DVFS_UPDATE);
}
if (type == PERIODIC_TRAINING_SEQUENCE) {
tegra210_emc_start_periodic_compensation(emc);
udelay(delay);
adel = update_clock_tree_delay(emc, PERIODIC_TRAINING_UPDATE);
}
return adel;
}
static u32 tegra210_emc_r21021_periodic_compensation(struct tegra210_emc *emc)
{
u32 emc_cfg, emc_cfg_o, emc_cfg_update, del, value;
static const u32 list[] = {
EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_0,
EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_1,
EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_2,
EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_3,
EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_0,
EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_1,
EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_2,
EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_3,
EMC_DATA_BRLSHFT_0,
EMC_DATA_BRLSHFT_1
};
struct tegra210_emc_timing *last = emc->last;
unsigned int items = ARRAY_SIZE(list), i;
unsigned long delay;
if (last->periodic_training) {
emc_dbg(emc, PER_TRAIN, "Periodic training starting\n");
value = emc_readl(emc, EMC_DBG);
emc_cfg_o = emc_readl(emc, EMC_CFG);
emc_cfg = emc_cfg_o & ~(EMC_CFG_DYN_SELF_REF |
EMC_CFG_DRAM_ACPD |
EMC_CFG_DRAM_CLKSTOP_PD);
/*
* 1. Power optimizations should be off.
*/
emc_writel(emc, emc_cfg, EMC_CFG);
/* Does emc_timing_update() for above changes. */
tegra210_emc_dll_disable(emc);
for (i = 0; i < emc->num_channels; i++)
tegra210_emc_wait_for_update(emc, i, EMC_EMC_STATUS,
EMC_EMC_STATUS_DRAM_IN_POWERDOWN_MASK,
0);
for (i = 0; i < emc->num_channels; i++)
tegra210_emc_wait_for_update(emc, i, EMC_EMC_STATUS,
EMC_EMC_STATUS_DRAM_IN_SELF_REFRESH_MASK,
0);
emc_cfg_update = value = emc_readl(emc, EMC_CFG_UPDATE);
value &= ~EMC_CFG_UPDATE_UPDATE_DLL_IN_UPDATE_MASK;
value |= (2 << EMC_CFG_UPDATE_UPDATE_DLL_IN_UPDATE_SHIFT);
emc_writel(emc, value, EMC_CFG_UPDATE);
/*
* 2. osc kick off - this assumes training and dvfs have set
* correct MR23.
*/
tegra210_emc_start_periodic_compensation(emc);
/*
* 3. Let dram capture its clock tree delays.
*/
delay = tegra210_emc_actual_osc_clocks(last->run_clocks);
delay *= 1000;
delay /= last->rate + 1;
udelay(delay);
/*
* 4. Check delta wrt previous values (save value if margin
* exceeds what is set in table).
*/
del = periodic_compensation_handler(emc,
PERIODIC_TRAINING_SEQUENCE,
last, last);
/*
* 5. Apply compensation w.r.t. trained values (if clock tree
* has drifted more than the set margin).
*/
if (last->tree_margin < ((del * 128 * (last->rate / 1000)) / 1000000)) {
for (i = 0; i < items; i++) {
value = tegra210_emc_compensate(last, list[i]);
emc_dbg(emc, EMA_WRITES, "0x%08x <= 0x%08x\n",
list[i], value);
emc_writel(emc, value, list[i]);
}
}
emc_writel(emc, emc_cfg_o, EMC_CFG);
/*
* 6. Timing update actally applies the new trimmers.
*/
tegra210_emc_timing_update(emc);
/* 6.1. Restore the UPDATE_DLL_IN_UPDATE field. */
emc_writel(emc, emc_cfg_update, EMC_CFG_UPDATE);
/* 6.2. Restore the DLL. */
tegra210_emc_dll_enable(emc);
}
return 0;
}
/*
* Do the clock change sequence.
*/
static void tegra210_emc_r21021_set_clock(struct tegra210_emc *emc, u32 clksrc)
{
/* state variables */
static bool fsp_for_next_freq;
/* constant configuration parameters */
const bool save_restore_clkstop_pd = true;
const u32 zqcal_before_cc_cutoff = 2400;
const bool cya_allow_ref_cc = false;
const bool cya_issue_pc_ref = false;
const bool opt_cc_short_zcal = true;
const bool ref_b4_sref_en = false;
const u32 tZQCAL_lpddr4 = 1000000;
const bool opt_short_zcal = true;
const bool opt_do_sw_qrst = true;
const u32 opt_dvfs_mode = MAN_SR;
/*
* This is the timing table for the source frequency. It does _not_
* necessarily correspond to the actual timing values in the EMC at the
* moment. If the boot BCT differs from the table then this can happen.
* However, we need it for accessing the dram_timings (which are not
* really registers) array for the current frequency.
*/
struct tegra210_emc_timing *fake, *last = emc->last, *next = emc->next;
u32 tRTM, RP_war, R2P_war, TRPab_war, deltaTWATM, W2P_war, tRPST;
u32 mr13_flip_fspwr, mr13_flip_fspop, ramp_up_wait, ramp_down_wait;
u32 zq_wait_long, zq_latch_dvfs_wait_time, tZQCAL_lpddr4_fc_adj;
u32 emc_auto_cal_config, auto_cal_en, emc_cfg, emc_sel_dpd_ctrl;
u32 tFC_lpddr4 = 1000 * next->dram_timings[T_FC_LPDDR4];
u32 bg_reg_mode_change, enable_bglp_reg, enable_bg_reg;
bool opt_zcal_en_cc = false, is_lpddr3 = false;
bool compensate_trimmer_applicable = false;
u32 emc_dbg, emc_cfg_pipe_clk, emc_pin;
u32 src_clk_period, dst_clk_period; /* in picoseconds */
bool shared_zq_resistor = false;
u32 value, dram_type;
u32 opt_dll_mode = 0;
unsigned long delay;
unsigned int i;
emc_dbg(emc, INFO, "Running clock change.\n");
/* XXX fake == last */
fake = tegra210_emc_find_timing(emc, last->rate * 1000UL);
fsp_for_next_freq = !fsp_for_next_freq;
value = emc_readl(emc, EMC_FBIO_CFG5) & EMC_FBIO_CFG5_DRAM_TYPE_MASK;
dram_type = value >> EMC_FBIO_CFG5_DRAM_TYPE_SHIFT;
if (last->burst_regs[EMC_ZCAL_WAIT_CNT_INDEX] & BIT(31))
shared_zq_resistor = true;
if ((next->burst_regs[EMC_ZCAL_INTERVAL_INDEX] != 0 &&
last->burst_regs[EMC_ZCAL_INTERVAL_INDEX] == 0) ||
dram_type == DRAM_TYPE_LPDDR4)
opt_zcal_en_cc = true;
if (dram_type == DRAM_TYPE_DDR3)
opt_dll_mode = tegra210_emc_get_dll_state(next);
if ((next->burst_regs[EMC_FBIO_CFG5_INDEX] & BIT(25)) &&
(dram_type == DRAM_TYPE_LPDDR2))
is_lpddr3 = true;
emc_readl(emc, EMC_CFG);
emc_readl(emc, EMC_AUTO_CAL_CONFIG);
src_clk_period = 1000000000 / last->rate;
dst_clk_period = 1000000000 / next->rate;
if (dst_clk_period <= zqcal_before_cc_cutoff)
tZQCAL_lpddr4_fc_adj = tZQCAL_lpddr4 - tFC_lpddr4;
else
tZQCAL_lpddr4_fc_adj = tZQCAL_lpddr4;
tZQCAL_lpddr4_fc_adj /= dst_clk_period;
emc_dbg = emc_readl(emc, EMC_DBG);
emc_pin = emc_readl(emc, EMC_PIN);
emc_cfg_pipe_clk = emc_readl(emc, EMC_CFG_PIPE_CLK);
emc_cfg = next->burst_regs[EMC_CFG_INDEX];
emc_cfg &= ~(EMC_CFG_DYN_SELF_REF | EMC_CFG_DRAM_ACPD |
EMC_CFG_DRAM_CLKSTOP_SR | EMC_CFG_DRAM_CLKSTOP_PD);
emc_sel_dpd_ctrl = next->emc_sel_dpd_ctrl;
emc_sel_dpd_ctrl &= ~(EMC_SEL_DPD_CTRL_CLK_SEL_DPD_EN |
EMC_SEL_DPD_CTRL_CA_SEL_DPD_EN |
EMC_SEL_DPD_CTRL_RESET_SEL_DPD_EN |
EMC_SEL_DPD_CTRL_ODT_SEL_DPD_EN |
EMC_SEL_DPD_CTRL_DATA_SEL_DPD_EN);
emc_dbg(emc, INFO, "Clock change version: %d\n",
DVFS_CLOCK_CHANGE_VERSION);
emc_dbg(emc, INFO, "DRAM type = %d\n", dram_type);
emc_dbg(emc, INFO, "DRAM dev #: %u\n", emc->num_devices);
emc_dbg(emc, INFO, "Next EMC clksrc: 0x%08x\n", clksrc);
emc_dbg(emc, INFO, "DLL clksrc: 0x%08x\n", next->dll_clk_src);
emc_dbg(emc, INFO, "last rate: %u, next rate %u\n", last->rate,
next->rate);
emc_dbg(emc, INFO, "last period: %u, next period: %u\n",
src_clk_period, dst_clk_period);
emc_dbg(emc, INFO, " shared_zq_resistor: %d\n", !!shared_zq_resistor);
emc_dbg(emc, INFO, " num_channels: %u\n", emc->num_channels);
emc_dbg(emc, INFO, " opt_dll_mode: %d\n", opt_dll_mode);
/*
* Step 1:
* Pre DVFS SW sequence.
*/
emc_dbg(emc, STEPS, "Step 1\n");
emc_dbg(emc, STEPS, "Step 1.1: Disable DLL temporarily.\n");
value = emc_readl(emc, EMC_CFG_DIG_DLL);
value &= ~EMC_CFG_DIG_DLL_CFG_DLL_EN;
emc_writel(emc, value, EMC_CFG_DIG_DLL);
tegra210_emc_timing_update(emc);
for (i = 0; i < emc->num_channels; i++)
tegra210_emc_wait_for_update(emc, i, EMC_CFG_DIG_DLL,
EMC_CFG_DIG_DLL_CFG_DLL_EN, 0);
emc_dbg(emc, STEPS, "Step 1.2: Disable AUTOCAL temporarily.\n");
emc_auto_cal_config = next->emc_auto_cal_config;
auto_cal_en = emc_auto_cal_config & EMC_AUTO_CAL_CONFIG_AUTO_CAL_ENABLE;
emc_auto_cal_config &= ~EMC_AUTO_CAL_CONFIG_AUTO_CAL_START;
emc_auto_cal_config |= EMC_AUTO_CAL_CONFIG_AUTO_CAL_MEASURE_STALL;
emc_auto_cal_config |= EMC_AUTO_CAL_CONFIG_AUTO_CAL_UPDATE_STALL;
emc_auto_cal_config |= auto_cal_en;
emc_writel(emc, emc_auto_cal_config, EMC_AUTO_CAL_CONFIG);
emc_readl(emc, EMC_AUTO_CAL_CONFIG); /* Flush write. */
emc_dbg(emc, STEPS, "Step 1.3: Disable other power features.\n");
tegra210_emc_set_shadow_bypass(emc, ACTIVE);
emc_writel(emc, emc_cfg, EMC_CFG);
emc_writel(emc, emc_sel_dpd_ctrl, EMC_SEL_DPD_CTRL);
tegra210_emc_set_shadow_bypass(emc, ASSEMBLY);
if (next->periodic_training) {
tegra210_emc_reset_dram_clktree_values(next);
for (i = 0; i < emc->num_channels; i++)
tegra210_emc_wait_for_update(emc, i, EMC_EMC_STATUS,
EMC_EMC_STATUS_DRAM_IN_POWERDOWN_MASK,
0);
for (i = 0; i < emc->num_channels; i++)
tegra210_emc_wait_for_update(emc, i, EMC_EMC_STATUS,
EMC_EMC_STATUS_DRAM_IN_SELF_REFRESH_MASK,
0);
tegra210_emc_start_periodic_compensation(emc);
delay = 1000 * tegra210_emc_actual_osc_clocks(last->run_clocks);
udelay((delay / last->rate) + 2);
value = periodic_compensation_handler(emc, DVFS_SEQUENCE, fake,
next);
value = (value * 128 * next->rate / 1000) / 1000000;
if (next->periodic_training && value > next->tree_margin)
compensate_trimmer_applicable = true;
}
emc_writel(emc, EMC_INTSTATUS_CLKCHANGE_COMPLETE, EMC_INTSTATUS);
tegra210_emc_set_shadow_bypass(emc, ACTIVE);
emc_writel(emc, emc_cfg, EMC_CFG);
emc_writel(emc, emc_sel_dpd_ctrl, EMC_SEL_DPD_CTRL);
emc_writel(emc, emc_cfg_pipe_clk | EMC_CFG_PIPE_CLK_CLK_ALWAYS_ON,
EMC_CFG_PIPE_CLK);
emc_writel(emc, next->emc_fdpd_ctrl_cmd_no_ramp &
~EMC_FDPD_CTRL_CMD_NO_RAMP_CMD_DPD_NO_RAMP_ENABLE,
EMC_FDPD_CTRL_CMD_NO_RAMP);
bg_reg_mode_change =
((next->burst_regs[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] &
EMC_PMACRO_BG_BIAS_CTRL_0_BGLP_E_PWRD) ^
(last->burst_regs[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] &
EMC_PMACRO_BG_BIAS_CTRL_0_BGLP_E_PWRD)) ||
((next->burst_regs[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] &
EMC_PMACRO_BG_BIAS_CTRL_0_BG_E_PWRD) ^
(last->burst_regs[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] &
EMC_PMACRO_BG_BIAS_CTRL_0_BG_E_PWRD));
enable_bglp_reg =
(next->burst_regs[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] &
EMC_PMACRO_BG_BIAS_CTRL_0_BGLP_E_PWRD) == 0;
enable_bg_reg =
(next->burst_regs[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] &
EMC_PMACRO_BG_BIAS_CTRL_0_BG_E_PWRD) == 0;
if (bg_reg_mode_change) {
if (enable_bg_reg)
emc_writel(emc, last->burst_regs
[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] &
~EMC_PMACRO_BG_BIAS_CTRL_0_BG_E_PWRD,
EMC_PMACRO_BG_BIAS_CTRL_0);
if (enable_bglp_reg)
emc_writel(emc, last->burst_regs
[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] &
~EMC_PMACRO_BG_BIAS_CTRL_0_BGLP_E_PWRD,
EMC_PMACRO_BG_BIAS_CTRL_0);
}
/* Check if we need to turn on VREF generator. */
if ((((last->burst_regs[EMC_PMACRO_DATA_PAD_TX_CTRL_INDEX] &
EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQ_E_IVREF) == 0) &&
((next->burst_regs[EMC_PMACRO_DATA_PAD_TX_CTRL_INDEX] &
EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQ_E_IVREF) == 1)) ||
(((last->burst_regs[EMC_PMACRO_DATA_PAD_TX_CTRL_INDEX] &
EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQS_E_IVREF) == 0) &&
((next->burst_regs[EMC_PMACRO_DATA_PAD_TX_CTRL_INDEX] &
EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQS_E_IVREF) != 0))) {
u32 pad_tx_ctrl =
next->burst_regs[EMC_PMACRO_DATA_PAD_TX_CTRL_INDEX];
u32 last_pad_tx_ctrl =
last->burst_regs[EMC_PMACRO_DATA_PAD_TX_CTRL_INDEX];
u32 next_dq_e_ivref, next_dqs_e_ivref;
next_dqs_e_ivref = pad_tx_ctrl &
EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQS_E_IVREF;
next_dq_e_ivref = pad_tx_ctrl &
EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQ_E_IVREF;
value = (last_pad_tx_ctrl &
~EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQ_E_IVREF &
~EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQS_E_IVREF) |
next_dq_e_ivref | next_dqs_e_ivref;
emc_writel(emc, value, EMC_PMACRO_DATA_PAD_TX_CTRL);
udelay(1);
} else if (bg_reg_mode_change) {
udelay(1);
}
tegra210_emc_set_shadow_bypass(emc, ASSEMBLY);
/*
* Step 2:
* Prelock the DLL.
*/
emc_dbg(emc, STEPS, "Step 2\n");
if (next->burst_regs[EMC_CFG_DIG_DLL_INDEX] &
EMC_CFG_DIG_DLL_CFG_DLL_EN) {
emc_dbg(emc, INFO, "Prelock enabled for target frequency.\n");
value = tegra210_emc_dll_prelock(emc, clksrc);
emc_dbg(emc, INFO, "DLL out: 0x%03x\n", value);
} else {
emc_dbg(emc, INFO, "Disabling DLL for target frequency.\n");
tegra210_emc_dll_disable(emc);
}
/*
* Step 3:
* Prepare autocal for the clock change.
*/
emc_dbg(emc, STEPS, "Step 3\n");
tegra210_emc_set_shadow_bypass(emc, ACTIVE);
emc_writel(emc, next->emc_auto_cal_config2, EMC_AUTO_CAL_CONFIG2);
emc_writel(emc, next->emc_auto_cal_config3, EMC_AUTO_CAL_CONFIG3);
emc_writel(emc, next->emc_auto_cal_config4, EMC_AUTO_CAL_CONFIG4);
emc_writel(emc, next->emc_auto_cal_config5, EMC_AUTO_CAL_CONFIG5);
emc_writel(emc, next->emc_auto_cal_config6, EMC_AUTO_CAL_CONFIG6);
emc_writel(emc, next->emc_auto_cal_config7, EMC_AUTO_CAL_CONFIG7);
emc_writel(emc, next->emc_auto_cal_config8, EMC_AUTO_CAL_CONFIG8);
tegra210_emc_set_shadow_bypass(emc, ASSEMBLY);
emc_auto_cal_config |= (EMC_AUTO_CAL_CONFIG_AUTO_CAL_COMPUTE_START |
auto_cal_en);
emc_writel(emc, emc_auto_cal_config, EMC_AUTO_CAL_CONFIG);
/*
* Step 4:
* Update EMC_CFG. (??)
*/
emc_dbg(emc, STEPS, "Step 4\n");
if (src_clk_period > 50000 && dram_type == DRAM_TYPE_LPDDR4)
ccfifo_writel(emc, 1, EMC_SELF_REF, 0);
else
emc_writel(emc, next->emc_cfg_2, EMC_CFG_2);
/*
* Step 5:
* Prepare reference variables for ZQCAL regs.
*/
emc_dbg(emc, STEPS, "Step 5\n");
if (dram_type == DRAM_TYPE_LPDDR4)
zq_wait_long = max((u32)1, div_o3(1000000, dst_clk_period));
else if (dram_type == DRAM_TYPE_LPDDR2 || is_lpddr3)
zq_wait_long = max(next->min_mrs_wait,
div_o3(360000, dst_clk_period)) + 4;
else if (dram_type == DRAM_TYPE_DDR3)
zq_wait_long = max((u32)256,
div_o3(320000, dst_clk_period) + 2);
else
zq_wait_long = 0;
/*
* Step 6:
* Training code - removed.
*/
emc_dbg(emc, STEPS, "Step 6\n");
/*
* Step 7:
* Program FSP reference registers and send MRWs to new FSPWR.
*/
emc_dbg(emc, STEPS, "Step 7\n");
emc_dbg(emc, SUB_STEPS, "Step 7.1: Bug 200024907 - Patch RP R2P");
/* WAR 200024907 */
if (dram_type == DRAM_TYPE_LPDDR4) {
u32 nRTP = 16;
if (src_clk_period >= 1000000 / 1866) /* 535.91 ps */
nRTP = 14;
if (src_clk_period >= 1000000 / 1600) /* 625.00 ps */
nRTP = 12;
if (src_clk_period >= 1000000 / 1333) /* 750.19 ps */
nRTP = 10;
if (src_clk_period >= 1000000 / 1066) /* 938.09 ps */
nRTP = 8;
deltaTWATM = max_t(u32, div_o3(7500, src_clk_period), 8);
/*
* Originally there was a + .5 in the tRPST calculation.
* However since we can't do FP in the kernel and the tRTM
* computation was in a floating point ceiling function, adding
* one to tRTP should be ok. There is no other source of non
* integer values, so the result was always going to be
* something for the form: f_ceil(N + .5) = N + 1;
*/
tRPST = (last->emc_mrw & 0x80) >> 7;
tRTM = fake->dram_timings[RL] + div_o3(3600, src_clk_period) +
max_t(u32, div_o3(7500, src_clk_period), 8) + tRPST +
1 + nRTP;
emc_dbg(emc, INFO, "tRTM = %u, EMC_RP = %u\n", tRTM,
next->burst_regs[EMC_RP_INDEX]);
if (last->burst_regs[EMC_RP_INDEX] < tRTM) {
if (tRTM > (last->burst_regs[EMC_R2P_INDEX] +
last->burst_regs[EMC_RP_INDEX])) {
R2P_war = tRTM - last->burst_regs[EMC_RP_INDEX];
RP_war = last->burst_regs[EMC_RP_INDEX];
TRPab_war = last->burst_regs[EMC_TRPAB_INDEX];
if (R2P_war > 63) {
RP_war = R2P_war +
last->burst_regs[EMC_RP_INDEX] - 63;
if (TRPab_war < RP_war)
TRPab_war = RP_war;
R2P_war = 63;
}
} else {
R2P_war = last->burst_regs[EMC_R2P_INDEX];
RP_war = last->burst_regs[EMC_RP_INDEX];
TRPab_war = last->burst_regs[EMC_TRPAB_INDEX];
}
if (RP_war < deltaTWATM) {
W2P_war = last->burst_regs[EMC_W2P_INDEX]
+ deltaTWATM - RP_war;
if (W2P_war > 63) {
RP_war = RP_war + W2P_war - 63;
if (TRPab_war < RP_war)
TRPab_war = RP_war;
W2P_war = 63;
}
} else {
W2P_war = last->burst_regs[
EMC_W2P_INDEX];
}
if ((last->burst_regs[EMC_W2P_INDEX] ^ W2P_war) ||
(last->burst_regs[EMC_R2P_INDEX] ^ R2P_war) ||
(last->burst_regs[EMC_RP_INDEX] ^ RP_war) ||
(last->burst_regs[EMC_TRPAB_INDEX] ^ TRPab_war)) {
emc_writel(emc, RP_war, EMC_RP);
emc_writel(emc, R2P_war, EMC_R2P);
emc_writel(emc, W2P_war, EMC_W2P);
emc_writel(emc, TRPab_war, EMC_TRPAB);
}
tegra210_emc_timing_update(emc);
} else {
emc_dbg(emc, INFO, "Skipped WAR\n");
}
}
if (!fsp_for_next_freq) {
mr13_flip_fspwr = (next->emc_mrw3 & 0xffffff3f) | 0x80;
mr13_flip_fspop = (next->emc_mrw3 & 0xffffff3f) | 0x00;
} else {
mr13_flip_fspwr = (next->emc_mrw3 & 0xffffff3f) | 0x40;
mr13_flip_fspop = (next->emc_mrw3 & 0xffffff3f) | 0xc0;
}
if (dram_type == DRAM_TYPE_LPDDR4) {
emc_writel(emc, mr13_flip_fspwr, EMC_MRW3);
emc_writel(emc, next->emc_mrw, EMC_MRW);
emc_writel(emc, next->emc_mrw2, EMC_MRW2);
}
/*
* Step 8:
* Program the shadow registers.
*/
emc_dbg(emc, STEPS, "Step 8\n");
emc_dbg(emc, SUB_STEPS, "Writing burst_regs\n");
for (i = 0; i < next->num_burst; i++) {
const u16 *offsets = emc->offsets->burst;
u16 offset;
if (!offsets[i])
continue;
value = next->burst_regs[i];
offset = offsets[i];
if (dram_type != DRAM_TYPE_LPDDR4 &&
(offset == EMC_MRW6 || offset == EMC_MRW7 ||
offset == EMC_MRW8 || offset == EMC_MRW9 ||
offset == EMC_MRW10 || offset == EMC_MRW11 ||
offset == EMC_MRW12 || offset == EMC_MRW13 ||
offset == EMC_MRW14 || offset == EMC_MRW15 ||
offset == EMC_TRAINING_CTRL))
continue;
/* Pain... And suffering. */
if (offset == EMC_CFG) {
value &= ~EMC_CFG_DRAM_ACPD;
value &= ~EMC_CFG_DYN_SELF_REF;
if (dram_type == DRAM_TYPE_LPDDR4) {
value &= ~EMC_CFG_DRAM_CLKSTOP_SR;
value &= ~EMC_CFG_DRAM_CLKSTOP_PD;
}
} else if (offset == EMC_MRS_WAIT_CNT &&
dram_type == DRAM_TYPE_LPDDR2 &&
opt_zcal_en_cc && !opt_cc_short_zcal &&
opt_short_zcal) {
value = (value & ~(EMC_MRS_WAIT_CNT_SHORT_WAIT_MASK <<
EMC_MRS_WAIT_CNT_SHORT_WAIT_SHIFT)) |
((zq_wait_long & EMC_MRS_WAIT_CNT_SHORT_WAIT_MASK) <<
EMC_MRS_WAIT_CNT_SHORT_WAIT_SHIFT);
} else if (offset == EMC_ZCAL_WAIT_CNT &&
dram_type == DRAM_TYPE_DDR3 && opt_zcal_en_cc &&
!opt_cc_short_zcal && opt_short_zcal) {
value = (value & ~(EMC_ZCAL_WAIT_CNT_ZCAL_WAIT_CNT_MASK <<
EMC_ZCAL_WAIT_CNT_ZCAL_WAIT_CNT_SHIFT)) |
((zq_wait_long & EMC_ZCAL_WAIT_CNT_ZCAL_WAIT_CNT_MASK) <<
EMC_MRS_WAIT_CNT_SHORT_WAIT_SHIFT);
} else if (offset == EMC_ZCAL_INTERVAL && opt_zcal_en_cc) {
value = 0; /* EMC_ZCAL_INTERVAL reset value. */
} else if (offset == EMC_PMACRO_AUTOCAL_CFG_COMMON) {
value |= EMC_PMACRO_AUTOCAL_CFG_COMMON_E_CAL_BYPASS_DVFS;
} else if (offset == EMC_PMACRO_DATA_PAD_TX_CTRL) {
value &= ~(EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQSP_TX_E_DCC |
EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQSN_TX_E_DCC |
EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQ_TX_E_DCC |
EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_CMD_TX_E_DCC);
} else if (offset == EMC_PMACRO_CMD_PAD_TX_CTRL) {
value |= EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQ_TX_DRVFORCEON;
value &= ~(EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQSP_TX_E_DCC |
EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQSN_TX_E_DCC |
EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQ_TX_E_DCC |
EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_CMD_TX_E_DCC);
} else if (offset == EMC_PMACRO_BRICK_CTRL_RFU1) {
value &= 0xf800f800;
} else if (offset == EMC_PMACRO_COMMON_PAD_TX_CTRL) {
value &= 0xfffffff0;
}
emc_writel(emc, value, offset);
}
/* SW addition: do EMC refresh adjustment here. */
tegra210_emc_adjust_timing(emc, next);
if (dram_type == DRAM_TYPE_LPDDR4) {
value = (23 << EMC_MRW_MRW_MA_SHIFT) |
(next->run_clocks & EMC_MRW_MRW_OP_MASK);
emc_writel(emc, value, EMC_MRW);
}
/* Per channel burst registers. */
emc_dbg(emc, SUB_STEPS, "Writing burst_regs_per_ch\n");
for (i = 0; i < next->num_burst_per_ch; i++) {
const struct tegra210_emc_per_channel_regs *burst =
emc->offsets->burst_per_channel;
if (!burst[i].offset)
continue;
if (dram_type != DRAM_TYPE_LPDDR4 &&
(burst[i].offset == EMC_MRW6 ||
burst[i].offset == EMC_MRW7 ||
burst[i].offset == EMC_MRW8 ||
burst[i].offset == EMC_MRW9 ||
burst[i].offset == EMC_MRW10 ||
burst[i].offset == EMC_MRW11 ||
burst[i].offset == EMC_MRW12 ||
burst[i].offset == EMC_MRW13 ||
burst[i].offset == EMC_MRW14 ||
burst[i].offset == EMC_MRW15))
continue;
/* Filter out second channel if not in DUAL_CHANNEL mode. */
if (emc->num_channels < 2 && burst[i].bank >= 1)
continue;
emc_dbg(emc, REG_LISTS, "(%u) 0x%08x => 0x%08x\n", i,
next->burst_reg_per_ch[i], burst[i].offset);
emc_channel_writel(emc, burst[i].bank,
next->burst_reg_per_ch[i],
burst[i].offset);
}
/* Vref regs. */
emc_dbg(emc, SUB_STEPS, "Writing vref_regs\n");
for (i = 0; i < next->vref_num; i++) {
const struct tegra210_emc_per_channel_regs *vref =
emc->offsets->vref_per_channel;
if (!vref[i].offset)
continue;
if (emc->num_channels < 2 && vref[i].bank >= 1)
continue;
emc_dbg(emc, REG_LISTS, "(%u) 0x%08x => 0x%08x\n", i,
next->vref_perch_regs[i], vref[i].offset);
emc_channel_writel(emc, vref[i].bank, next->vref_perch_regs[i],
vref[i].offset);
}
/* Trimmers. */
emc_dbg(emc, SUB_STEPS, "Writing trim_regs\n");
for (i = 0; i < next->num_trim; i++) {
const u16 *offsets = emc->offsets->trim;
if (!offsets[i])
continue;
if (compensate_trimmer_applicable &&
(offsets[i] == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_0 ||
offsets[i] == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_1 ||
offsets[i] == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_2 ||
offsets[i] == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_3 ||
offsets[i] == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_0 ||
offsets[i] == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_1 ||
offsets[i] == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_2 ||
offsets[i] == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_3 ||
offsets[i] == EMC_DATA_BRLSHFT_0 ||
offsets[i] == EMC_DATA_BRLSHFT_1)) {
value = tegra210_emc_compensate(next, offsets[i]);
emc_dbg(emc, REG_LISTS, "(%u) 0x%08x => 0x%08x\n", i,
value, offsets[i]);
emc_dbg(emc, EMA_WRITES, "0x%08x <= 0x%08x\n",
(u32)(u64)offsets[i], value);
emc_writel(emc, value, offsets[i]);
} else {
emc_dbg(emc, REG_LISTS, "(%u) 0x%08x => 0x%08x\n", i,
next->trim_regs[i], offsets[i]);
emc_writel(emc, next->trim_regs[i], offsets[i]);
}
}
/* Per channel trimmers. */
emc_dbg(emc, SUB_STEPS, "Writing trim_regs_per_ch\n");
for (i = 0; i < next->num_trim_per_ch; i++) {
const struct tegra210_emc_per_channel_regs *trim =
&emc->offsets->trim_per_channel[0];
unsigned int offset;
if (!trim[i].offset)
continue;
if (emc->num_channels < 2 && trim[i].bank >= 1)
continue;
offset = trim[i].offset;
if (compensate_trimmer_applicable &&
(offset == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_0 ||
offset == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_1 ||
offset == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_2 ||
offset == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_3 ||
offset == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_0 ||
offset == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_1 ||
offset == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_2 ||
offset == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_3 ||
offset == EMC_DATA_BRLSHFT_0 ||
offset == EMC_DATA_BRLSHFT_1)) {
value = tegra210_emc_compensate(next, offset);
emc_dbg(emc, REG_LISTS, "(%u) 0x%08x => 0x%08x\n", i,
value, offset);
emc_dbg(emc, EMA_WRITES, "0x%08x <= 0x%08x\n", offset,
value);
emc_channel_writel(emc, trim[i].bank, value, offset);
} else {
emc_dbg(emc, REG_LISTS, "(%u) 0x%08x => 0x%08x\n", i,
next->trim_perch_regs[i], offset);
emc_channel_writel(emc, trim[i].bank,
next->trim_perch_regs[i], offset);
}
}
emc_dbg(emc, SUB_STEPS, "Writing burst_mc_regs\n");
for (i = 0; i < next->num_mc_regs; i++) {
const u16 *offsets = emc->offsets->burst_mc;
u32 *values = next->burst_mc_regs;
emc_dbg(emc, REG_LISTS, "(%u) 0x%08x => 0x%08x\n", i,
values[i], offsets[i]);
mc_writel(emc->mc, values[i], offsets[i]);
}
/* Registers to be programmed on the faster clock. */
if (next->rate < last->rate) {
const u16 *la = emc->offsets->la_scale;
emc_dbg(emc, SUB_STEPS, "Writing la_scale_regs\n");
for (i = 0; i < next->num_up_down; i++) {
emc_dbg(emc, REG_LISTS, "(%u) 0x%08x => 0x%08x\n", i,
next->la_scale_regs[i], la[i]);
mc_writel(emc->mc, next->la_scale_regs[i], la[i]);
}
}
/* Flush all the burst register writes. */
mc_readl(emc->mc, MC_EMEM_ADR_CFG);
/*
* Step 9:
* LPDDR4 section A.
*/
emc_dbg(emc, STEPS, "Step 9\n");
value = next->burst_regs[EMC_ZCAL_WAIT_CNT_INDEX];
value &= ~EMC_ZCAL_WAIT_CNT_ZCAL_WAIT_CNT_MASK;
if (dram_type == DRAM_TYPE_LPDDR4) {
emc_writel(emc, 0, EMC_ZCAL_INTERVAL);
emc_writel(emc, value, EMC_ZCAL_WAIT_CNT);
value = emc_dbg | (EMC_DBG_WRITE_MUX_ACTIVE |
EMC_DBG_WRITE_ACTIVE_ONLY);
emc_writel(emc, value, EMC_DBG);
emc_writel(emc, 0, EMC_ZCAL_INTERVAL);
emc_writel(emc, emc_dbg, EMC_DBG);
}
/*
* Step 10:
* LPDDR4 and DDR3 common section.
*/
emc_dbg(emc, STEPS, "Step 10\n");
if (opt_dvfs_mode == MAN_SR || dram_type == DRAM_TYPE_LPDDR4) {
if (dram_type == DRAM_TYPE_LPDDR4)
ccfifo_writel(emc, 0x101, EMC_SELF_REF, 0);
else
ccfifo_writel(emc, 0x1, EMC_SELF_REF, 0);
if (dram_type == DRAM_TYPE_LPDDR4 &&
dst_clk_period <= zqcal_before_cc_cutoff) {
ccfifo_writel(emc, mr13_flip_fspwr ^ 0x40, EMC_MRW3, 0);
ccfifo_writel(emc, (next->burst_regs[EMC_MRW6_INDEX] &
0xFFFF3F3F) |
(last->burst_regs[EMC_MRW6_INDEX] &
0x0000C0C0), EMC_MRW6, 0);
ccfifo_writel(emc, (next->burst_regs[EMC_MRW14_INDEX] &
0xFFFF0707) |
(last->burst_regs[EMC_MRW14_INDEX] &
0x00003838), EMC_MRW14, 0);
if (emc->num_devices > 1) {
ccfifo_writel(emc,
(next->burst_regs[EMC_MRW7_INDEX] &
0xFFFF3F3F) |
(last->burst_regs[EMC_MRW7_INDEX] &
0x0000C0C0), EMC_MRW7, 0);
ccfifo_writel(emc,
(next->burst_regs[EMC_MRW15_INDEX] &
0xFFFF0707) |
(last->burst_regs[EMC_MRW15_INDEX] &
0x00003838), EMC_MRW15, 0);
}
if (opt_zcal_en_cc) {
if (emc->num_devices < 2)
ccfifo_writel(emc,
2UL << EMC_ZQ_CAL_DEV_SEL_SHIFT
| EMC_ZQ_CAL_ZQ_CAL_CMD,
EMC_ZQ_CAL, 0);
else if (shared_zq_resistor)
ccfifo_writel(emc,
2UL << EMC_ZQ_CAL_DEV_SEL_SHIFT
| EMC_ZQ_CAL_ZQ_CAL_CMD,
EMC_ZQ_CAL, 0);
else
ccfifo_writel(emc,
EMC_ZQ_CAL_ZQ_CAL_CMD,
EMC_ZQ_CAL, 0);
}
}
}
if (dram_type == DRAM_TYPE_LPDDR4) {
value = (1000 * fake->dram_timings[T_RP]) / src_clk_period;
ccfifo_writel(emc, mr13_flip_fspop | 0x8, EMC_MRW3, value);
ccfifo_writel(emc, 0, 0, tFC_lpddr4 / src_clk_period);
}
if (dram_type == DRAM_TYPE_LPDDR4 || opt_dvfs_mode != MAN_SR) {
delay = 30;
if (cya_allow_ref_cc) {
delay += (1000 * fake->dram_timings[T_RP]) /
src_clk_period;
delay += 4000 * fake->dram_timings[T_RFC];
}
ccfifo_writel(emc, emc_pin & ~(EMC_PIN_PIN_CKE_PER_DEV |
EMC_PIN_PIN_CKEB |
EMC_PIN_PIN_CKE),
EMC_PIN, delay);
}
/* calculate reference delay multiplier */
value = 1;
if (ref_b4_sref_en)
value++;
if (cya_allow_ref_cc)
value++;
if (cya_issue_pc_ref)
value++;
if (dram_type != DRAM_TYPE_LPDDR4) {
delay = ((1000 * fake->dram_timings[T_RP] / src_clk_period) +
(1000 * fake->dram_timings[T_RFC] / src_clk_period));
delay = value * delay + 20;
} else {
delay = 0;
}
/*
* Step 11:
* Ramp down.
*/
emc_dbg(emc, STEPS, "Step 11\n");
ccfifo_writel(emc, 0x0, EMC_CFG_SYNC, delay);
value = emc_dbg | EMC_DBG_WRITE_MUX_ACTIVE | EMC_DBG_WRITE_ACTIVE_ONLY;
ccfifo_writel(emc, value, EMC_DBG, 0);
ramp_down_wait = tegra210_emc_dvfs_power_ramp_down(emc, src_clk_period,
0);
/*
* Step 12:
* And finally - trigger the clock change.
*/
emc_dbg(emc, STEPS, "Step 12\n");
ccfifo_writel(emc, 1, EMC_STALL_THEN_EXE_AFTER_CLKCHANGE, 0);
value &= ~EMC_DBG_WRITE_ACTIVE_ONLY;
ccfifo_writel(emc, value, EMC_DBG, 0);
/*
* Step 13:
* Ramp up.
*/
emc_dbg(emc, STEPS, "Step 13\n");
ramp_up_wait = tegra210_emc_dvfs_power_ramp_up(emc, dst_clk_period, 0);
ccfifo_writel(emc, emc_dbg, EMC_DBG, 0);
/*
* Step 14:
* Bringup CKE pins.
*/
emc_dbg(emc, STEPS, "Step 14\n");
if (dram_type == DRAM_TYPE_LPDDR4) {
value = emc_pin | EMC_PIN_PIN_CKE;
if (emc->num_devices <= 1)
value &= ~(EMC_PIN_PIN_CKEB | EMC_PIN_PIN_CKE_PER_DEV);
else
value |= EMC_PIN_PIN_CKEB | EMC_PIN_PIN_CKE_PER_DEV;
ccfifo_writel(emc, value, EMC_PIN, 0);
}
/*
* Step 15: (two step 15s ??)
* Calculate zqlatch wait time; has dependency on ramping times.
*/
emc_dbg(emc, STEPS, "Step 15\n");
if (dst_clk_period <= zqcal_before_cc_cutoff) {
s32 t = (s32)(ramp_up_wait + ramp_down_wait) /
(s32)dst_clk_period;
zq_latch_dvfs_wait_time = (s32)tZQCAL_lpddr4_fc_adj - t;
} else {
zq_latch_dvfs_wait_time = tZQCAL_lpddr4_fc_adj -
div_o3(1000 * next->dram_timings[T_PDEX],
dst_clk_period);
}
emc_dbg(emc, INFO, "tZQCAL_lpddr4_fc_adj = %u\n", tZQCAL_lpddr4_fc_adj);
emc_dbg(emc, INFO, "dst_clk_period = %u\n",
dst_clk_period);
emc_dbg(emc, INFO, "next->dram_timings[T_PDEX] = %u\n",
next->dram_timings[T_PDEX]);
emc_dbg(emc, INFO, "zq_latch_dvfs_wait_time = %d\n",
max_t(s32, 0, zq_latch_dvfs_wait_time));
if (dram_type == DRAM_TYPE_LPDDR4 && opt_zcal_en_cc) {
delay = div_o3(1000 * next->dram_timings[T_PDEX],
dst_clk_period);
if (emc->num_devices < 2) {
if (dst_clk_period > zqcal_before_cc_cutoff)
ccfifo_writel(emc,
2UL << EMC_ZQ_CAL_DEV_SEL_SHIFT |
EMC_ZQ_CAL_ZQ_CAL_CMD, EMC_ZQ_CAL,
delay);
value = (mr13_flip_fspop & 0xfffffff7) | 0x0c000000;
ccfifo_writel(emc, value, EMC_MRW3, delay);
ccfifo_writel(emc, 0, EMC_SELF_REF, 0);
ccfifo_writel(emc, 0, EMC_REF, 0);
ccfifo_writel(emc, 2UL << EMC_ZQ_CAL_DEV_SEL_SHIFT |
EMC_ZQ_CAL_ZQ_LATCH_CMD,
EMC_ZQ_CAL,
max_t(s32, 0, zq_latch_dvfs_wait_time));
} else if (shared_zq_resistor) {
if (dst_clk_period > zqcal_before_cc_cutoff)
ccfifo_writel(emc,
2UL << EMC_ZQ_CAL_DEV_SEL_SHIFT |
EMC_ZQ_CAL_ZQ_CAL_CMD, EMC_ZQ_CAL,
delay);
ccfifo_writel(emc, 2UL << EMC_ZQ_CAL_DEV_SEL_SHIFT |
EMC_ZQ_CAL_ZQ_LATCH_CMD, EMC_ZQ_CAL,
max_t(s32, 0, zq_latch_dvfs_wait_time) +
delay);
ccfifo_writel(emc, 1UL << EMC_ZQ_CAL_DEV_SEL_SHIFT |
EMC_ZQ_CAL_ZQ_LATCH_CMD,
EMC_ZQ_CAL, 0);
value = (mr13_flip_fspop & 0xfffffff7) | 0x0c000000;
ccfifo_writel(emc, value, EMC_MRW3, 0);
ccfifo_writel(emc, 0, EMC_SELF_REF, 0);
ccfifo_writel(emc, 0, EMC_REF, 0);
ccfifo_writel(emc, 1UL << EMC_ZQ_CAL_DEV_SEL_SHIFT |
EMC_ZQ_CAL_ZQ_LATCH_CMD, EMC_ZQ_CAL,
tZQCAL_lpddr4 / dst_clk_period);
} else {
if (dst_clk_period > zqcal_before_cc_cutoff)
ccfifo_writel(emc, EMC_ZQ_CAL_ZQ_CAL_CMD,
EMC_ZQ_CAL, delay);
value = (mr13_flip_fspop & 0xfffffff7) | 0x0c000000;
ccfifo_writel(emc, value, EMC_MRW3, delay);
ccfifo_writel(emc, 0, EMC_SELF_REF, 0);
ccfifo_writel(emc, 0, EMC_REF, 0);
ccfifo_writel(emc, EMC_ZQ_CAL_ZQ_LATCH_CMD, EMC_ZQ_CAL,
max_t(s32, 0, zq_latch_dvfs_wait_time));
}
}
/* WAR: delay for zqlatch */
ccfifo_writel(emc, 0, 0, 10);
/*
* Step 16:
* LPDDR4 Conditional Training Kickoff. Removed.
*/
/*
* Step 17:
* MANSR exit self refresh.
*/
emc_dbg(emc, STEPS, "Step 17\n");
if (opt_dvfs_mode == MAN_SR && dram_type != DRAM_TYPE_LPDDR4)
ccfifo_writel(emc, 0, EMC_SELF_REF, 0);
/*
* Step 18:
* Send MRWs to LPDDR3/DDR3.
*/
emc_dbg(emc, STEPS, "Step 18\n");
if (dram_type == DRAM_TYPE_LPDDR2) {
ccfifo_writel(emc, next->emc_mrw2, EMC_MRW2, 0);
ccfifo_writel(emc, next->emc_mrw, EMC_MRW, 0);
if (is_lpddr3)
ccfifo_writel(emc, next->emc_mrw4, EMC_MRW4, 0);
} else if (dram_type == DRAM_TYPE_DDR3) {
if (opt_dll_mode)
ccfifo_writel(emc, next->emc_emrs &
~EMC_EMRS_USE_EMRS_LONG_CNT, EMC_EMRS, 0);
ccfifo_writel(emc, next->emc_emrs2 &
~EMC_EMRS2_USE_EMRS2_LONG_CNT, EMC_EMRS2, 0);
ccfifo_writel(emc, next->emc_mrs |
EMC_EMRS_USE_EMRS_LONG_CNT, EMC_MRS, 0);
}
/*
* Step 19:
* ZQCAL for LPDDR3/DDR3
*/
emc_dbg(emc, STEPS, "Step 19\n");
if (opt_zcal_en_cc) {
if (dram_type == DRAM_TYPE_LPDDR2) {
value = opt_cc_short_zcal ? 90000 : 360000;
value = div_o3(value, dst_clk_period);
value = value <<
EMC_MRS_WAIT_CNT2_MRS_EXT2_WAIT_CNT_SHIFT |
value <<
EMC_MRS_WAIT_CNT2_MRS_EXT1_WAIT_CNT_SHIFT;
ccfifo_writel(emc, value, EMC_MRS_WAIT_CNT2, 0);
value = opt_cc_short_zcal ? 0x56 : 0xab;
ccfifo_writel(emc, 2 << EMC_MRW_MRW_DEV_SELECTN_SHIFT |
EMC_MRW_USE_MRW_EXT_CNT |
10 << EMC_MRW_MRW_MA_SHIFT |
value << EMC_MRW_MRW_OP_SHIFT,
EMC_MRW, 0);
if (emc->num_devices > 1) {
value = 1 << EMC_MRW_MRW_DEV_SELECTN_SHIFT |
EMC_MRW_USE_MRW_EXT_CNT |
10 << EMC_MRW_MRW_MA_SHIFT |
value << EMC_MRW_MRW_OP_SHIFT;
ccfifo_writel(emc, value, EMC_MRW, 0);
}
} else if (dram_type == DRAM_TYPE_DDR3) {
value = opt_cc_short_zcal ? 0 : EMC_ZQ_CAL_LONG;
ccfifo_writel(emc, value |
2 << EMC_ZQ_CAL_DEV_SEL_SHIFT |
EMC_ZQ_CAL_ZQ_CAL_CMD, EMC_ZQ_CAL,
0);
if (emc->num_devices > 1) {
value = value | 1 << EMC_ZQ_CAL_DEV_SEL_SHIFT |
EMC_ZQ_CAL_ZQ_CAL_CMD;
ccfifo_writel(emc, value, EMC_ZQ_CAL, 0);
}
}
}
if (bg_reg_mode_change) {
tegra210_emc_set_shadow_bypass(emc, ACTIVE);
if (ramp_up_wait <= 1250000)
delay = (1250000 - ramp_up_wait) / dst_clk_period;
else
delay = 0;
ccfifo_writel(emc,
next->burst_regs[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX],
EMC_PMACRO_BG_BIAS_CTRL_0, delay);
tegra210_emc_set_shadow_bypass(emc, ASSEMBLY);
}
/*
* Step 20:
* Issue ref and optional QRST.
*/
emc_dbg(emc, STEPS, "Step 20\n");
if (dram_type != DRAM_TYPE_LPDDR4)
ccfifo_writel(emc, 0, EMC_REF, 0);
if (opt_do_sw_qrst) {
ccfifo_writel(emc, 1, EMC_ISSUE_QRST, 0);
ccfifo_writel(emc, 0, EMC_ISSUE_QRST, 2);
}
/*
* Step 21:
* Restore ZCAL and ZCAL interval.
*/
emc_dbg(emc, STEPS, "Step 21\n");
if (save_restore_clkstop_pd || opt_zcal_en_cc) {
ccfifo_writel(emc, emc_dbg | EMC_DBG_WRITE_MUX_ACTIVE,
EMC_DBG, 0);
if (opt_zcal_en_cc && dram_type != DRAM_TYPE_LPDDR4)
ccfifo_writel(emc, next->burst_regs[EMC_ZCAL_INTERVAL_INDEX],
EMC_ZCAL_INTERVAL, 0);
if (save_restore_clkstop_pd)
ccfifo_writel(emc, next->burst_regs[EMC_CFG_INDEX] &
~EMC_CFG_DYN_SELF_REF,
EMC_CFG, 0);
ccfifo_writel(emc, emc_dbg, EMC_DBG, 0);
}
/*
* Step 22:
* Restore EMC_CFG_PIPE_CLK.
*/
emc_dbg(emc, STEPS, "Step 22\n");
ccfifo_writel(emc, emc_cfg_pipe_clk, EMC_CFG_PIPE_CLK, 0);
if (bg_reg_mode_change) {
if (enable_bg_reg)
emc_writel(emc,
next->burst_regs[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] &
~EMC_PMACRO_BG_BIAS_CTRL_0_BGLP_E_PWRD,
EMC_PMACRO_BG_BIAS_CTRL_0);
else
emc_writel(emc,
next->burst_regs[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] &
~EMC_PMACRO_BG_BIAS_CTRL_0_BG_E_PWRD,
EMC_PMACRO_BG_BIAS_CTRL_0);
}
/*
* Step 23:
*/
emc_dbg(emc, STEPS, "Step 23\n");
value = emc_readl(emc, EMC_CFG_DIG_DLL);
value |= EMC_CFG_DIG_DLL_CFG_DLL_STALL_ALL_TRAFFIC;
value &= ~EMC_CFG_DIG_DLL_CFG_DLL_STALL_RW_UNTIL_LOCK;
value &= ~EMC_CFG_DIG_DLL_CFG_DLL_STALL_ALL_UNTIL_LOCK;
value &= ~EMC_CFG_DIG_DLL_CFG_DLL_EN;
value = (value & ~EMC_CFG_DIG_DLL_CFG_DLL_MODE_MASK) |
(2 << EMC_CFG_DIG_DLL_CFG_DLL_MODE_SHIFT);
emc_writel(emc, value, EMC_CFG_DIG_DLL);
tegra210_emc_do_clock_change(emc, clksrc);
/*
* Step 24:
* Save training results. Removed.
*/
/*
* Step 25:
* Program MC updown registers.
*/
emc_dbg(emc, STEPS, "Step 25\n");
if (next->rate > last->rate) {
for (i = 0; i < next->num_up_down; i++)
mc_writel(emc->mc, next->la_scale_regs[i],
emc->offsets->la_scale[i]);
tegra210_emc_timing_update(emc);
}
/*
* Step 26:
* Restore ZCAL registers.
*/
emc_dbg(emc, STEPS, "Step 26\n");
if (dram_type == DRAM_TYPE_LPDDR4) {
tegra210_emc_set_shadow_bypass(emc, ACTIVE);
emc_writel(emc, next->burst_regs[EMC_ZCAL_WAIT_CNT_INDEX],
EMC_ZCAL_WAIT_CNT);
emc_writel(emc, next->burst_regs[EMC_ZCAL_INTERVAL_INDEX],
EMC_ZCAL_INTERVAL);
tegra210_emc_set_shadow_bypass(emc, ASSEMBLY);
}
if (dram_type != DRAM_TYPE_LPDDR4 && opt_zcal_en_cc &&
!opt_short_zcal && opt_cc_short_zcal) {
udelay(2);
tegra210_emc_set_shadow_bypass(emc, ACTIVE);
if (dram_type == DRAM_TYPE_LPDDR2)
emc_writel(emc, next->burst_regs[EMC_MRS_WAIT_CNT_INDEX],
EMC_MRS_WAIT_CNT);
else if (dram_type == DRAM_TYPE_DDR3)
emc_writel(emc, next->burst_regs[EMC_ZCAL_WAIT_CNT_INDEX],
EMC_ZCAL_WAIT_CNT);
tegra210_emc_set_shadow_bypass(emc, ASSEMBLY);
}
/*
* Step 27:
* Restore EMC_CFG, FDPD registers.
*/
emc_dbg(emc, STEPS, "Step 27\n");
tegra210_emc_set_shadow_bypass(emc, ACTIVE);
emc_writel(emc, next->burst_regs[EMC_CFG_INDEX], EMC_CFG);
tegra210_emc_set_shadow_bypass(emc, ASSEMBLY);
emc_writel(emc, next->emc_fdpd_ctrl_cmd_no_ramp,
EMC_FDPD_CTRL_CMD_NO_RAMP);
emc_writel(emc, next->emc_sel_dpd_ctrl, EMC_SEL_DPD_CTRL);
/*
* Step 28:
* Training recover. Removed.
*/
emc_dbg(emc, STEPS, "Step 28\n");
tegra210_emc_set_shadow_bypass(emc, ACTIVE);
emc_writel(emc,
next->burst_regs[EMC_PMACRO_AUTOCAL_CFG_COMMON_INDEX],
EMC_PMACRO_AUTOCAL_CFG_COMMON);
tegra210_emc_set_shadow_bypass(emc, ASSEMBLY);
/*
* Step 29:
* Power fix WAR.
*/
emc_dbg(emc, STEPS, "Step 29\n");
emc_writel(emc, EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE0 |
EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE1 |
EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE2 |
EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE3 |
EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE4 |
EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE5 |
EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE6 |
EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE7,
EMC_PMACRO_CFG_PM_GLOBAL_0);
emc_writel(emc, EMC_PMACRO_TRAINING_CTRL_0_CH0_TRAINING_E_WRPTR,
EMC_PMACRO_TRAINING_CTRL_0);
emc_writel(emc, EMC_PMACRO_TRAINING_CTRL_1_CH1_TRAINING_E_WRPTR,
EMC_PMACRO_TRAINING_CTRL_1);
emc_writel(emc, 0, EMC_PMACRO_CFG_PM_GLOBAL_0);
/*
* Step 30:
* Re-enable autocal.
*/
emc_dbg(emc, STEPS, "Step 30: Re-enable DLL and AUTOCAL\n");
if (next->burst_regs[EMC_CFG_DIG_DLL_INDEX] & EMC_CFG_DIG_DLL_CFG_DLL_EN) {
value = emc_readl(emc, EMC_CFG_DIG_DLL);
value |= EMC_CFG_DIG_DLL_CFG_DLL_STALL_ALL_TRAFFIC;
value |= EMC_CFG_DIG_DLL_CFG_DLL_EN;
value &= ~EMC_CFG_DIG_DLL_CFG_DLL_STALL_RW_UNTIL_LOCK;
value &= ~EMC_CFG_DIG_DLL_CFG_DLL_STALL_ALL_UNTIL_LOCK;
value = (value & ~EMC_CFG_DIG_DLL_CFG_DLL_MODE_MASK) |
(2 << EMC_CFG_DIG_DLL_CFG_DLL_MODE_SHIFT);
emc_writel(emc, value, EMC_CFG_DIG_DLL);
tegra210_emc_timing_update(emc);
}
emc_writel(emc, next->emc_auto_cal_config, EMC_AUTO_CAL_CONFIG);
/* Done! Yay. */
}
const struct tegra210_emc_sequence tegra210_emc_r21021 = {
.revision = 0x7,
.set_clock = tegra210_emc_r21021_set_clock,
.periodic_compensation = tegra210_emc_r21021_periodic_compensation,
};