Add the initial dirty ring buffer test. The current test implements the userspace dirty ring collection, by only reaping the dirty ring when the ring is full. So it's still running synchronously like this: vcpu main thread 1. vcpu dirties pages 2. vcpu gets dirty ring full (userspace exit) 3. main thread waits until full (so hardware buffers flushed) 4. main thread collects 5. main thread continues vcpu 6. vcpu continues, goes back to 1 We can't directly collects dirty bits during vcpu execution because otherwise we can't guarantee the hardware dirty bits were flushed when we collect and we're very strict on the dirty bits so otherwise we can fail the future verify procedure. A follow up patch will make this test to support async just like the existing dirty log test, by adding a vcpu kick mechanism. Signed-off-by: Peter Xu <peterx@redhat.com> Message-Id: <20201001012237.6111-1-peterx@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
1960 lines
50 KiB
C
1960 lines
50 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* tools/testing/selftests/kvm/lib/kvm_util.c
|
|
*
|
|
* Copyright (C) 2018, Google LLC.
|
|
*/
|
|
|
|
#include "test_util.h"
|
|
#include "kvm_util.h"
|
|
#include "kvm_util_internal.h"
|
|
#include "processor.h"
|
|
|
|
#include <assert.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/types.h>
|
|
#include <sys/stat.h>
|
|
#include <unistd.h>
|
|
#include <linux/kernel.h>
|
|
|
|
#define KVM_UTIL_PGS_PER_HUGEPG 512
|
|
#define KVM_UTIL_MIN_PFN 2
|
|
|
|
/* Aligns x up to the next multiple of size. Size must be a power of 2. */
|
|
static void *align(void *x, size_t size)
|
|
{
|
|
size_t mask = size - 1;
|
|
TEST_ASSERT(size != 0 && !(size & (size - 1)),
|
|
"size not a power of 2: %lu", size);
|
|
return (void *) (((size_t) x + mask) & ~mask);
|
|
}
|
|
|
|
/*
|
|
* Capability
|
|
*
|
|
* Input Args:
|
|
* cap - Capability
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Return:
|
|
* On success, the Value corresponding to the capability (KVM_CAP_*)
|
|
* specified by the value of cap. On failure a TEST_ASSERT failure
|
|
* is produced.
|
|
*
|
|
* Looks up and returns the value corresponding to the capability
|
|
* (KVM_CAP_*) given by cap.
|
|
*/
|
|
int kvm_check_cap(long cap)
|
|
{
|
|
int ret;
|
|
int kvm_fd;
|
|
|
|
kvm_fd = open(KVM_DEV_PATH, O_RDONLY);
|
|
if (kvm_fd < 0)
|
|
exit(KSFT_SKIP);
|
|
|
|
ret = ioctl(kvm_fd, KVM_CHECK_EXTENSION, cap);
|
|
TEST_ASSERT(ret != -1, "KVM_CHECK_EXTENSION IOCTL failed,\n"
|
|
" rc: %i errno: %i", ret, errno);
|
|
|
|
close(kvm_fd);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* VM Enable Capability
|
|
*
|
|
* Input Args:
|
|
* vm - Virtual Machine
|
|
* cap - Capability
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Return: On success, 0. On failure a TEST_ASSERT failure is produced.
|
|
*
|
|
* Enables a capability (KVM_CAP_*) on the VM.
|
|
*/
|
|
int vm_enable_cap(struct kvm_vm *vm, struct kvm_enable_cap *cap)
|
|
{
|
|
int ret;
|
|
|
|
ret = ioctl(vm->fd, KVM_ENABLE_CAP, cap);
|
|
TEST_ASSERT(ret == 0, "KVM_ENABLE_CAP IOCTL failed,\n"
|
|
" rc: %i errno: %i", ret, errno);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* VCPU Enable Capability
|
|
*
|
|
* Input Args:
|
|
* vm - Virtual Machine
|
|
* vcpu_id - VCPU
|
|
* cap - Capability
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Return: On success, 0. On failure a TEST_ASSERT failure is produced.
|
|
*
|
|
* Enables a capability (KVM_CAP_*) on the VCPU.
|
|
*/
|
|
int vcpu_enable_cap(struct kvm_vm *vm, uint32_t vcpu_id,
|
|
struct kvm_enable_cap *cap)
|
|
{
|
|
struct vcpu *vcpu = vcpu_find(vm, vcpu_id);
|
|
int r;
|
|
|
|
TEST_ASSERT(vcpu, "cannot find vcpu %d", vcpu_id);
|
|
|
|
r = ioctl(vcpu->fd, KVM_ENABLE_CAP, cap);
|
|
TEST_ASSERT(!r, "KVM_ENABLE_CAP vCPU ioctl failed,\n"
|
|
" rc: %i, errno: %i", r, errno);
|
|
|
|
return r;
|
|
}
|
|
|
|
void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size)
|
|
{
|
|
struct kvm_enable_cap cap = { 0 };
|
|
|
|
cap.cap = KVM_CAP_DIRTY_LOG_RING;
|
|
cap.args[0] = ring_size;
|
|
vm_enable_cap(vm, &cap);
|
|
vm->dirty_ring_size = ring_size;
|
|
}
|
|
|
|
static void vm_open(struct kvm_vm *vm, int perm)
|
|
{
|
|
vm->kvm_fd = open(KVM_DEV_PATH, perm);
|
|
if (vm->kvm_fd < 0)
|
|
exit(KSFT_SKIP);
|
|
|
|
if (!kvm_check_cap(KVM_CAP_IMMEDIATE_EXIT)) {
|
|
print_skip("immediate_exit not available");
|
|
exit(KSFT_SKIP);
|
|
}
|
|
|
|
vm->fd = ioctl(vm->kvm_fd, KVM_CREATE_VM, vm->type);
|
|
TEST_ASSERT(vm->fd >= 0, "KVM_CREATE_VM ioctl failed, "
|
|
"rc: %i errno: %i", vm->fd, errno);
|
|
}
|
|
|
|
const char * const vm_guest_mode_string[] = {
|
|
"PA-bits:52, VA-bits:48, 4K pages",
|
|
"PA-bits:52, VA-bits:48, 64K pages",
|
|
"PA-bits:48, VA-bits:48, 4K pages",
|
|
"PA-bits:48, VA-bits:48, 64K pages",
|
|
"PA-bits:40, VA-bits:48, 4K pages",
|
|
"PA-bits:40, VA-bits:48, 64K pages",
|
|
"PA-bits:ANY, VA-bits:48, 4K pages",
|
|
};
|
|
_Static_assert(sizeof(vm_guest_mode_string)/sizeof(char *) == NUM_VM_MODES,
|
|
"Missing new mode strings?");
|
|
|
|
struct vm_guest_mode_params {
|
|
unsigned int pa_bits;
|
|
unsigned int va_bits;
|
|
unsigned int page_size;
|
|
unsigned int page_shift;
|
|
};
|
|
|
|
static const struct vm_guest_mode_params vm_guest_mode_params[] = {
|
|
{ 52, 48, 0x1000, 12 },
|
|
{ 52, 48, 0x10000, 16 },
|
|
{ 48, 48, 0x1000, 12 },
|
|
{ 48, 48, 0x10000, 16 },
|
|
{ 40, 48, 0x1000, 12 },
|
|
{ 40, 48, 0x10000, 16 },
|
|
{ 0, 0, 0x1000, 12 },
|
|
};
|
|
_Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES,
|
|
"Missing new mode params?");
|
|
|
|
/*
|
|
* VM Create
|
|
*
|
|
* Input Args:
|
|
* mode - VM Mode (e.g. VM_MODE_P52V48_4K)
|
|
* phy_pages - Physical memory pages
|
|
* perm - permission
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Return:
|
|
* Pointer to opaque structure that describes the created VM.
|
|
*
|
|
* Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K).
|
|
* When phy_pages is non-zero, a memory region of phy_pages physical pages
|
|
* is created and mapped starting at guest physical address 0. The file
|
|
* descriptor to control the created VM is created with the permissions
|
|
* given by perm (e.g. O_RDWR).
|
|
*/
|
|
struct kvm_vm *vm_create(enum vm_guest_mode mode, uint64_t phy_pages, int perm)
|
|
{
|
|
struct kvm_vm *vm;
|
|
|
|
pr_debug("%s: mode='%s' pages='%ld' perm='%d'\n", __func__,
|
|
vm_guest_mode_string(mode), phy_pages, perm);
|
|
|
|
vm = calloc(1, sizeof(*vm));
|
|
TEST_ASSERT(vm != NULL, "Insufficient Memory");
|
|
|
|
INIT_LIST_HEAD(&vm->vcpus);
|
|
INIT_LIST_HEAD(&vm->userspace_mem_regions);
|
|
|
|
vm->mode = mode;
|
|
vm->type = 0;
|
|
|
|
vm->pa_bits = vm_guest_mode_params[mode].pa_bits;
|
|
vm->va_bits = vm_guest_mode_params[mode].va_bits;
|
|
vm->page_size = vm_guest_mode_params[mode].page_size;
|
|
vm->page_shift = vm_guest_mode_params[mode].page_shift;
|
|
|
|
/* Setup mode specific traits. */
|
|
switch (vm->mode) {
|
|
case VM_MODE_P52V48_4K:
|
|
vm->pgtable_levels = 4;
|
|
break;
|
|
case VM_MODE_P52V48_64K:
|
|
vm->pgtable_levels = 3;
|
|
break;
|
|
case VM_MODE_P48V48_4K:
|
|
vm->pgtable_levels = 4;
|
|
break;
|
|
case VM_MODE_P48V48_64K:
|
|
vm->pgtable_levels = 3;
|
|
break;
|
|
case VM_MODE_P40V48_4K:
|
|
vm->pgtable_levels = 4;
|
|
break;
|
|
case VM_MODE_P40V48_64K:
|
|
vm->pgtable_levels = 3;
|
|
break;
|
|
case VM_MODE_PXXV48_4K:
|
|
#ifdef __x86_64__
|
|
kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits);
|
|
/*
|
|
* Ignore KVM support for 5-level paging (vm->va_bits == 57),
|
|
* it doesn't take effect unless a CR4.LA57 is set, which it
|
|
* isn't for this VM_MODE.
|
|
*/
|
|
TEST_ASSERT(vm->va_bits == 48 || vm->va_bits == 57,
|
|
"Linear address width (%d bits) not supported",
|
|
vm->va_bits);
|
|
pr_debug("Guest physical address width detected: %d\n",
|
|
vm->pa_bits);
|
|
vm->pgtable_levels = 4;
|
|
vm->va_bits = 48;
|
|
#else
|
|
TEST_FAIL("VM_MODE_PXXV48_4K not supported on non-x86 platforms");
|
|
#endif
|
|
break;
|
|
default:
|
|
TEST_FAIL("Unknown guest mode, mode: 0x%x", mode);
|
|
}
|
|
|
|
#ifdef __aarch64__
|
|
if (vm->pa_bits != 40)
|
|
vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits);
|
|
#endif
|
|
|
|
vm_open(vm, perm);
|
|
|
|
/* Limit to VA-bit canonical virtual addresses. */
|
|
vm->vpages_valid = sparsebit_alloc();
|
|
sparsebit_set_num(vm->vpages_valid,
|
|
0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
|
|
sparsebit_set_num(vm->vpages_valid,
|
|
(~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift,
|
|
(1ULL << (vm->va_bits - 1)) >> vm->page_shift);
|
|
|
|
/* Limit physical addresses to PA-bits. */
|
|
vm->max_gfn = ((1ULL << vm->pa_bits) >> vm->page_shift) - 1;
|
|
|
|
/* Allocate and setup memory for guest. */
|
|
vm->vpages_mapped = sparsebit_alloc();
|
|
if (phy_pages != 0)
|
|
vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS,
|
|
0, 0, phy_pages, 0);
|
|
|
|
return vm;
|
|
}
|
|
|
|
/*
|
|
* VM Restart
|
|
*
|
|
* Input Args:
|
|
* vm - VM that has been released before
|
|
* perm - permission
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Reopens the file descriptors associated to the VM and reinstates the
|
|
* global state, such as the irqchip and the memory regions that are mapped
|
|
* into the guest.
|
|
*/
|
|
void kvm_vm_restart(struct kvm_vm *vmp, int perm)
|
|
{
|
|
struct userspace_mem_region *region;
|
|
|
|
vm_open(vmp, perm);
|
|
if (vmp->has_irqchip)
|
|
vm_create_irqchip(vmp);
|
|
|
|
list_for_each_entry(region, &vmp->userspace_mem_regions, list) {
|
|
int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region);
|
|
TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
|
|
" rc: %i errno: %i\n"
|
|
" slot: %u flags: 0x%x\n"
|
|
" guest_phys_addr: 0x%llx size: 0x%llx",
|
|
ret, errno, region->region.slot,
|
|
region->region.flags,
|
|
region->region.guest_phys_addr,
|
|
region->region.memory_size);
|
|
}
|
|
}
|
|
|
|
void kvm_vm_get_dirty_log(struct kvm_vm *vm, int slot, void *log)
|
|
{
|
|
struct kvm_dirty_log args = { .dirty_bitmap = log, .slot = slot };
|
|
int ret;
|
|
|
|
ret = ioctl(vm->fd, KVM_GET_DIRTY_LOG, &args);
|
|
TEST_ASSERT(ret == 0, "%s: KVM_GET_DIRTY_LOG failed: %s",
|
|
__func__, strerror(-ret));
|
|
}
|
|
|
|
void kvm_vm_clear_dirty_log(struct kvm_vm *vm, int slot, void *log,
|
|
uint64_t first_page, uint32_t num_pages)
|
|
{
|
|
struct kvm_clear_dirty_log args = { .dirty_bitmap = log, .slot = slot,
|
|
.first_page = first_page,
|
|
.num_pages = num_pages };
|
|
int ret;
|
|
|
|
ret = ioctl(vm->fd, KVM_CLEAR_DIRTY_LOG, &args);
|
|
TEST_ASSERT(ret == 0, "%s: KVM_CLEAR_DIRTY_LOG failed: %s",
|
|
__func__, strerror(-ret));
|
|
}
|
|
|
|
uint32_t kvm_vm_reset_dirty_ring(struct kvm_vm *vm)
|
|
{
|
|
return ioctl(vm->fd, KVM_RESET_DIRTY_RINGS);
|
|
}
|
|
|
|
/*
|
|
* Userspace Memory Region Find
|
|
*
|
|
* Input Args:
|
|
* vm - Virtual Machine
|
|
* start - Starting VM physical address
|
|
* end - Ending VM physical address, inclusive.
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Return:
|
|
* Pointer to overlapping region, NULL if no such region.
|
|
*
|
|
* Searches for a region with any physical memory that overlaps with
|
|
* any portion of the guest physical addresses from start to end
|
|
* inclusive. If multiple overlapping regions exist, a pointer to any
|
|
* of the regions is returned. Null is returned only when no overlapping
|
|
* region exists.
|
|
*/
|
|
static struct userspace_mem_region *
|
|
userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end)
|
|
{
|
|
struct userspace_mem_region *region;
|
|
|
|
list_for_each_entry(region, &vm->userspace_mem_regions, list) {
|
|
uint64_t existing_start = region->region.guest_phys_addr;
|
|
uint64_t existing_end = region->region.guest_phys_addr
|
|
+ region->region.memory_size - 1;
|
|
if (start <= existing_end && end >= existing_start)
|
|
return region;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* KVM Userspace Memory Region Find
|
|
*
|
|
* Input Args:
|
|
* vm - Virtual Machine
|
|
* start - Starting VM physical address
|
|
* end - Ending VM physical address, inclusive.
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Return:
|
|
* Pointer to overlapping region, NULL if no such region.
|
|
*
|
|
* Public interface to userspace_mem_region_find. Allows tests to look up
|
|
* the memslot datastructure for a given range of guest physical memory.
|
|
*/
|
|
struct kvm_userspace_memory_region *
|
|
kvm_userspace_memory_region_find(struct kvm_vm *vm, uint64_t start,
|
|
uint64_t end)
|
|
{
|
|
struct userspace_mem_region *region;
|
|
|
|
region = userspace_mem_region_find(vm, start, end);
|
|
if (!region)
|
|
return NULL;
|
|
|
|
return ®ion->region;
|
|
}
|
|
|
|
/*
|
|
* VCPU Find
|
|
*
|
|
* Input Args:
|
|
* vm - Virtual Machine
|
|
* vcpuid - VCPU ID
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Return:
|
|
* Pointer to VCPU structure
|
|
*
|
|
* Locates a vcpu structure that describes the VCPU specified by vcpuid and
|
|
* returns a pointer to it. Returns NULL if the VM doesn't contain a VCPU
|
|
* for the specified vcpuid.
|
|
*/
|
|
struct vcpu *vcpu_find(struct kvm_vm *vm, uint32_t vcpuid)
|
|
{
|
|
struct vcpu *vcpu;
|
|
|
|
list_for_each_entry(vcpu, &vm->vcpus, list) {
|
|
if (vcpu->id == vcpuid)
|
|
return vcpu;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* VM VCPU Remove
|
|
*
|
|
* Input Args:
|
|
* vcpu - VCPU to remove
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Return: None, TEST_ASSERT failures for all error conditions
|
|
*
|
|
* Removes a vCPU from a VM and frees its resources.
|
|
*/
|
|
static void vm_vcpu_rm(struct kvm_vm *vm, struct vcpu *vcpu)
|
|
{
|
|
int ret;
|
|
|
|
if (vcpu->dirty_gfns) {
|
|
ret = munmap(vcpu->dirty_gfns, vm->dirty_ring_size);
|
|
TEST_ASSERT(ret == 0, "munmap of VCPU dirty ring failed, "
|
|
"rc: %i errno: %i", ret, errno);
|
|
vcpu->dirty_gfns = NULL;
|
|
}
|
|
|
|
ret = munmap(vcpu->state, sizeof(*vcpu->state));
|
|
TEST_ASSERT(ret == 0, "munmap of VCPU fd failed, rc: %i "
|
|
"errno: %i", ret, errno);
|
|
close(vcpu->fd);
|
|
TEST_ASSERT(ret == 0, "Close of VCPU fd failed, rc: %i "
|
|
"errno: %i", ret, errno);
|
|
|
|
list_del(&vcpu->list);
|
|
free(vcpu);
|
|
}
|
|
|
|
void kvm_vm_release(struct kvm_vm *vmp)
|
|
{
|
|
struct vcpu *vcpu, *tmp;
|
|
int ret;
|
|
|
|
list_for_each_entry_safe(vcpu, tmp, &vmp->vcpus, list)
|
|
vm_vcpu_rm(vmp, vcpu);
|
|
|
|
ret = close(vmp->fd);
|
|
TEST_ASSERT(ret == 0, "Close of vm fd failed,\n"
|
|
" vmp->fd: %i rc: %i errno: %i", vmp->fd, ret, errno);
|
|
|
|
close(vmp->kvm_fd);
|
|
TEST_ASSERT(ret == 0, "Close of /dev/kvm fd failed,\n"
|
|
" vmp->kvm_fd: %i rc: %i errno: %i", vmp->kvm_fd, ret, errno);
|
|
}
|
|
|
|
static void __vm_mem_region_delete(struct kvm_vm *vm,
|
|
struct userspace_mem_region *region)
|
|
{
|
|
int ret;
|
|
|
|
list_del(®ion->list);
|
|
|
|
region->region.memory_size = 0;
|
|
ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region);
|
|
TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed, "
|
|
"rc: %i errno: %i", ret, errno);
|
|
|
|
sparsebit_free(®ion->unused_phy_pages);
|
|
ret = munmap(region->mmap_start, region->mmap_size);
|
|
TEST_ASSERT(ret == 0, "munmap failed, rc: %i errno: %i", ret, errno);
|
|
|
|
free(region);
|
|
}
|
|
|
|
/*
|
|
* Destroys and frees the VM pointed to by vmp.
|
|
*/
|
|
void kvm_vm_free(struct kvm_vm *vmp)
|
|
{
|
|
struct userspace_mem_region *region, *tmp;
|
|
|
|
if (vmp == NULL)
|
|
return;
|
|
|
|
/* Free userspace_mem_regions. */
|
|
list_for_each_entry_safe(region, tmp, &vmp->userspace_mem_regions, list)
|
|
__vm_mem_region_delete(vmp, region);
|
|
|
|
/* Free sparsebit arrays. */
|
|
sparsebit_free(&vmp->vpages_valid);
|
|
sparsebit_free(&vmp->vpages_mapped);
|
|
|
|
kvm_vm_release(vmp);
|
|
|
|
/* Free the structure describing the VM. */
|
|
free(vmp);
|
|
}
|
|
|
|
/*
|
|
* Memory Compare, host virtual to guest virtual
|
|
*
|
|
* Input Args:
|
|
* hva - Starting host virtual address
|
|
* vm - Virtual Machine
|
|
* gva - Starting guest virtual address
|
|
* len - number of bytes to compare
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Input/Output Args: None
|
|
*
|
|
* Return:
|
|
* Returns 0 if the bytes starting at hva for a length of len
|
|
* are equal the guest virtual bytes starting at gva. Returns
|
|
* a value < 0, if bytes at hva are less than those at gva.
|
|
* Otherwise a value > 0 is returned.
|
|
*
|
|
* Compares the bytes starting at the host virtual address hva, for
|
|
* a length of len, to the guest bytes starting at the guest virtual
|
|
* address given by gva.
|
|
*/
|
|
int kvm_memcmp_hva_gva(void *hva, struct kvm_vm *vm, vm_vaddr_t gva, size_t len)
|
|
{
|
|
size_t amt;
|
|
|
|
/*
|
|
* Compare a batch of bytes until either a match is found
|
|
* or all the bytes have been compared.
|
|
*/
|
|
for (uintptr_t offset = 0; offset < len; offset += amt) {
|
|
uintptr_t ptr1 = (uintptr_t)hva + offset;
|
|
|
|
/*
|
|
* Determine host address for guest virtual address
|
|
* at offset.
|
|
*/
|
|
uintptr_t ptr2 = (uintptr_t)addr_gva2hva(vm, gva + offset);
|
|
|
|
/*
|
|
* Determine amount to compare on this pass.
|
|
* Don't allow the comparsion to cross a page boundary.
|
|
*/
|
|
amt = len - offset;
|
|
if ((ptr1 >> vm->page_shift) != ((ptr1 + amt) >> vm->page_shift))
|
|
amt = vm->page_size - (ptr1 % vm->page_size);
|
|
if ((ptr2 >> vm->page_shift) != ((ptr2 + amt) >> vm->page_shift))
|
|
amt = vm->page_size - (ptr2 % vm->page_size);
|
|
|
|
assert((ptr1 >> vm->page_shift) == ((ptr1 + amt - 1) >> vm->page_shift));
|
|
assert((ptr2 >> vm->page_shift) == ((ptr2 + amt - 1) >> vm->page_shift));
|
|
|
|
/*
|
|
* Perform the comparison. If there is a difference
|
|
* return that result to the caller, otherwise need
|
|
* to continue on looking for a mismatch.
|
|
*/
|
|
int ret = memcmp((void *)ptr1, (void *)ptr2, amt);
|
|
if (ret != 0)
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* No mismatch found. Let the caller know the two memory
|
|
* areas are equal.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* VM Userspace Memory Region Add
|
|
*
|
|
* Input Args:
|
|
* vm - Virtual Machine
|
|
* backing_src - Storage source for this region.
|
|
* NULL to use anonymous memory.
|
|
* guest_paddr - Starting guest physical address
|
|
* slot - KVM region slot
|
|
* npages - Number of physical pages
|
|
* flags - KVM memory region flags (e.g. KVM_MEM_LOG_DIRTY_PAGES)
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Return: None
|
|
*
|
|
* Allocates a memory area of the number of pages specified by npages
|
|
* and maps it to the VM specified by vm, at a starting physical address
|
|
* given by guest_paddr. The region is created with a KVM region slot
|
|
* given by slot, which must be unique and < KVM_MEM_SLOTS_NUM. The
|
|
* region is created with the flags given by flags.
|
|
*/
|
|
void vm_userspace_mem_region_add(struct kvm_vm *vm,
|
|
enum vm_mem_backing_src_type src_type,
|
|
uint64_t guest_paddr, uint32_t slot, uint64_t npages,
|
|
uint32_t flags)
|
|
{
|
|
int ret;
|
|
struct userspace_mem_region *region;
|
|
size_t huge_page_size = KVM_UTIL_PGS_PER_HUGEPG * vm->page_size;
|
|
size_t alignment;
|
|
|
|
TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages,
|
|
"Number of guest pages is not compatible with the host. "
|
|
"Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages));
|
|
|
|
TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical "
|
|
"address not on a page boundary.\n"
|
|
" guest_paddr: 0x%lx vm->page_size: 0x%x",
|
|
guest_paddr, vm->page_size);
|
|
TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1)
|
|
<= vm->max_gfn, "Physical range beyond maximum "
|
|
"supported physical address,\n"
|
|
" guest_paddr: 0x%lx npages: 0x%lx\n"
|
|
" vm->max_gfn: 0x%lx vm->page_size: 0x%x",
|
|
guest_paddr, npages, vm->max_gfn, vm->page_size);
|
|
|
|
/*
|
|
* Confirm a mem region with an overlapping address doesn't
|
|
* already exist.
|
|
*/
|
|
region = (struct userspace_mem_region *) userspace_mem_region_find(
|
|
vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1);
|
|
if (region != NULL)
|
|
TEST_FAIL("overlapping userspace_mem_region already "
|
|
"exists\n"
|
|
" requested guest_paddr: 0x%lx npages: 0x%lx "
|
|
"page_size: 0x%x\n"
|
|
" existing guest_paddr: 0x%lx size: 0x%lx",
|
|
guest_paddr, npages, vm->page_size,
|
|
(uint64_t) region->region.guest_phys_addr,
|
|
(uint64_t) region->region.memory_size);
|
|
|
|
/* Confirm no region with the requested slot already exists. */
|
|
list_for_each_entry(region, &vm->userspace_mem_regions, list) {
|
|
if (region->region.slot != slot)
|
|
continue;
|
|
|
|
TEST_FAIL("A mem region with the requested slot "
|
|
"already exists.\n"
|
|
" requested slot: %u paddr: 0x%lx npages: 0x%lx\n"
|
|
" existing slot: %u paddr: 0x%lx size: 0x%lx",
|
|
slot, guest_paddr, npages,
|
|
region->region.slot,
|
|
(uint64_t) region->region.guest_phys_addr,
|
|
(uint64_t) region->region.memory_size);
|
|
}
|
|
|
|
/* Allocate and initialize new mem region structure. */
|
|
region = calloc(1, sizeof(*region));
|
|
TEST_ASSERT(region != NULL, "Insufficient Memory");
|
|
region->mmap_size = npages * vm->page_size;
|
|
|
|
#ifdef __s390x__
|
|
/* On s390x, the host address must be aligned to 1M (due to PGSTEs) */
|
|
alignment = 0x100000;
|
|
#else
|
|
alignment = 1;
|
|
#endif
|
|
|
|
if (src_type == VM_MEM_SRC_ANONYMOUS_THP)
|
|
alignment = max(huge_page_size, alignment);
|
|
|
|
/* Add enough memory to align up if necessary */
|
|
if (alignment > 1)
|
|
region->mmap_size += alignment;
|
|
|
|
region->mmap_start = mmap(NULL, region->mmap_size,
|
|
PROT_READ | PROT_WRITE,
|
|
MAP_PRIVATE | MAP_ANONYMOUS
|
|
| (src_type == VM_MEM_SRC_ANONYMOUS_HUGETLB ? MAP_HUGETLB : 0),
|
|
-1, 0);
|
|
TEST_ASSERT(region->mmap_start != MAP_FAILED,
|
|
"test_malloc failed, mmap_start: %p errno: %i",
|
|
region->mmap_start, errno);
|
|
|
|
/* Align host address */
|
|
region->host_mem = align(region->mmap_start, alignment);
|
|
|
|
/* As needed perform madvise */
|
|
if (src_type == VM_MEM_SRC_ANONYMOUS || src_type == VM_MEM_SRC_ANONYMOUS_THP) {
|
|
struct stat statbuf;
|
|
|
|
ret = stat("/sys/kernel/mm/transparent_hugepage", &statbuf);
|
|
TEST_ASSERT(ret == 0 || (ret == -1 && errno == ENOENT),
|
|
"stat /sys/kernel/mm/transparent_hugepage");
|
|
|
|
TEST_ASSERT(ret == 0 || src_type != VM_MEM_SRC_ANONYMOUS_THP,
|
|
"VM_MEM_SRC_ANONYMOUS_THP requires THP to be configured in the host kernel");
|
|
|
|
if (ret == 0) {
|
|
ret = madvise(region->host_mem, npages * vm->page_size,
|
|
src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE);
|
|
TEST_ASSERT(ret == 0, "madvise failed, addr: %p length: 0x%lx src_type: %x",
|
|
region->host_mem, npages * vm->page_size, src_type);
|
|
}
|
|
}
|
|
|
|
region->unused_phy_pages = sparsebit_alloc();
|
|
sparsebit_set_num(region->unused_phy_pages,
|
|
guest_paddr >> vm->page_shift, npages);
|
|
region->region.slot = slot;
|
|
region->region.flags = flags;
|
|
region->region.guest_phys_addr = guest_paddr;
|
|
region->region.memory_size = npages * vm->page_size;
|
|
region->region.userspace_addr = (uintptr_t) region->host_mem;
|
|
ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region);
|
|
TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
|
|
" rc: %i errno: %i\n"
|
|
" slot: %u flags: 0x%x\n"
|
|
" guest_phys_addr: 0x%lx size: 0x%lx",
|
|
ret, errno, slot, flags,
|
|
guest_paddr, (uint64_t) region->region.memory_size);
|
|
|
|
/* Add to linked-list of memory regions. */
|
|
list_add(®ion->list, &vm->userspace_mem_regions);
|
|
}
|
|
|
|
/*
|
|
* Memslot to region
|
|
*
|
|
* Input Args:
|
|
* vm - Virtual Machine
|
|
* memslot - KVM memory slot ID
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Return:
|
|
* Pointer to memory region structure that describe memory region
|
|
* using kvm memory slot ID given by memslot. TEST_ASSERT failure
|
|
* on error (e.g. currently no memory region using memslot as a KVM
|
|
* memory slot ID).
|
|
*/
|
|
struct userspace_mem_region *
|
|
memslot2region(struct kvm_vm *vm, uint32_t memslot)
|
|
{
|
|
struct userspace_mem_region *region;
|
|
|
|
list_for_each_entry(region, &vm->userspace_mem_regions, list) {
|
|
if (region->region.slot == memslot)
|
|
return region;
|
|
}
|
|
|
|
fprintf(stderr, "No mem region with the requested slot found,\n"
|
|
" requested slot: %u\n", memslot);
|
|
fputs("---- vm dump ----\n", stderr);
|
|
vm_dump(stderr, vm, 2);
|
|
TEST_FAIL("Mem region not found");
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* VM Memory Region Flags Set
|
|
*
|
|
* Input Args:
|
|
* vm - Virtual Machine
|
|
* flags - Starting guest physical address
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Return: None
|
|
*
|
|
* Sets the flags of the memory region specified by the value of slot,
|
|
* to the values given by flags.
|
|
*/
|
|
void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags)
|
|
{
|
|
int ret;
|
|
struct userspace_mem_region *region;
|
|
|
|
region = memslot2region(vm, slot);
|
|
|
|
region->region.flags = flags;
|
|
|
|
ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region);
|
|
|
|
TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
|
|
" rc: %i errno: %i slot: %u flags: 0x%x",
|
|
ret, errno, slot, flags);
|
|
}
|
|
|
|
/*
|
|
* VM Memory Region Move
|
|
*
|
|
* Input Args:
|
|
* vm - Virtual Machine
|
|
* slot - Slot of the memory region to move
|
|
* new_gpa - Starting guest physical address
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Return: None
|
|
*
|
|
* Change the gpa of a memory region.
|
|
*/
|
|
void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa)
|
|
{
|
|
struct userspace_mem_region *region;
|
|
int ret;
|
|
|
|
region = memslot2region(vm, slot);
|
|
|
|
region->region.guest_phys_addr = new_gpa;
|
|
|
|
ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region);
|
|
|
|
TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed\n"
|
|
"ret: %i errno: %i slot: %u new_gpa: 0x%lx",
|
|
ret, errno, slot, new_gpa);
|
|
}
|
|
|
|
/*
|
|
* VM Memory Region Delete
|
|
*
|
|
* Input Args:
|
|
* vm - Virtual Machine
|
|
* slot - Slot of the memory region to delete
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Return: None
|
|
*
|
|
* Delete a memory region.
|
|
*/
|
|
void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot)
|
|
{
|
|
__vm_mem_region_delete(vm, memslot2region(vm, slot));
|
|
}
|
|
|
|
/*
|
|
* VCPU mmap Size
|
|
*
|
|
* Input Args: None
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Return:
|
|
* Size of VCPU state
|
|
*
|
|
* Returns the size of the structure pointed to by the return value
|
|
* of vcpu_state().
|
|
*/
|
|
static int vcpu_mmap_sz(void)
|
|
{
|
|
int dev_fd, ret;
|
|
|
|
dev_fd = open(KVM_DEV_PATH, O_RDONLY);
|
|
if (dev_fd < 0)
|
|
exit(KSFT_SKIP);
|
|
|
|
ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL);
|
|
TEST_ASSERT(ret >= sizeof(struct kvm_run),
|
|
"%s KVM_GET_VCPU_MMAP_SIZE ioctl failed, rc: %i errno: %i",
|
|
__func__, ret, errno);
|
|
|
|
close(dev_fd);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* VM VCPU Add
|
|
*
|
|
* Input Args:
|
|
* vm - Virtual Machine
|
|
* vcpuid - VCPU ID
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Return: None
|
|
*
|
|
* Adds a virtual CPU to the VM specified by vm with the ID given by vcpuid.
|
|
* No additional VCPU setup is done.
|
|
*/
|
|
void vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpuid)
|
|
{
|
|
struct vcpu *vcpu;
|
|
|
|
/* Confirm a vcpu with the specified id doesn't already exist. */
|
|
vcpu = vcpu_find(vm, vcpuid);
|
|
if (vcpu != NULL)
|
|
TEST_FAIL("vcpu with the specified id "
|
|
"already exists,\n"
|
|
" requested vcpuid: %u\n"
|
|
" existing vcpuid: %u state: %p",
|
|
vcpuid, vcpu->id, vcpu->state);
|
|
|
|
/* Allocate and initialize new vcpu structure. */
|
|
vcpu = calloc(1, sizeof(*vcpu));
|
|
TEST_ASSERT(vcpu != NULL, "Insufficient Memory");
|
|
vcpu->id = vcpuid;
|
|
vcpu->fd = ioctl(vm->fd, KVM_CREATE_VCPU, vcpuid);
|
|
TEST_ASSERT(vcpu->fd >= 0, "KVM_CREATE_VCPU failed, rc: %i errno: %i",
|
|
vcpu->fd, errno);
|
|
|
|
TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->state), "vcpu mmap size "
|
|
"smaller than expected, vcpu_mmap_sz: %i expected_min: %zi",
|
|
vcpu_mmap_sz(), sizeof(*vcpu->state));
|
|
vcpu->state = (struct kvm_run *) mmap(NULL, sizeof(*vcpu->state),
|
|
PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0);
|
|
TEST_ASSERT(vcpu->state != MAP_FAILED, "mmap vcpu_state failed, "
|
|
"vcpu id: %u errno: %i", vcpuid, errno);
|
|
|
|
/* Add to linked-list of VCPUs. */
|
|
list_add(&vcpu->list, &vm->vcpus);
|
|
}
|
|
|
|
/*
|
|
* VM Virtual Address Unused Gap
|
|
*
|
|
* Input Args:
|
|
* vm - Virtual Machine
|
|
* sz - Size (bytes)
|
|
* vaddr_min - Minimum Virtual Address
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Return:
|
|
* Lowest virtual address at or below vaddr_min, with at least
|
|
* sz unused bytes. TEST_ASSERT failure if no area of at least
|
|
* size sz is available.
|
|
*
|
|
* Within the VM specified by vm, locates the lowest starting virtual
|
|
* address >= vaddr_min, that has at least sz unallocated bytes. A
|
|
* TEST_ASSERT failure occurs for invalid input or no area of at least
|
|
* sz unallocated bytes >= vaddr_min is available.
|
|
*/
|
|
static vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz,
|
|
vm_vaddr_t vaddr_min)
|
|
{
|
|
uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift;
|
|
|
|
/* Determine lowest permitted virtual page index. */
|
|
uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift;
|
|
if ((pgidx_start * vm->page_size) < vaddr_min)
|
|
goto no_va_found;
|
|
|
|
/* Loop over section with enough valid virtual page indexes. */
|
|
if (!sparsebit_is_set_num(vm->vpages_valid,
|
|
pgidx_start, pages))
|
|
pgidx_start = sparsebit_next_set_num(vm->vpages_valid,
|
|
pgidx_start, pages);
|
|
do {
|
|
/*
|
|
* Are there enough unused virtual pages available at
|
|
* the currently proposed starting virtual page index.
|
|
* If not, adjust proposed starting index to next
|
|
* possible.
|
|
*/
|
|
if (sparsebit_is_clear_num(vm->vpages_mapped,
|
|
pgidx_start, pages))
|
|
goto va_found;
|
|
pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped,
|
|
pgidx_start, pages);
|
|
if (pgidx_start == 0)
|
|
goto no_va_found;
|
|
|
|
/*
|
|
* If needed, adjust proposed starting virtual address,
|
|
* to next range of valid virtual addresses.
|
|
*/
|
|
if (!sparsebit_is_set_num(vm->vpages_valid,
|
|
pgidx_start, pages)) {
|
|
pgidx_start = sparsebit_next_set_num(
|
|
vm->vpages_valid, pgidx_start, pages);
|
|
if (pgidx_start == 0)
|
|
goto no_va_found;
|
|
}
|
|
} while (pgidx_start != 0);
|
|
|
|
no_va_found:
|
|
TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages);
|
|
|
|
/* NOT REACHED */
|
|
return -1;
|
|
|
|
va_found:
|
|
TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid,
|
|
pgidx_start, pages),
|
|
"Unexpected, invalid virtual page index range,\n"
|
|
" pgidx_start: 0x%lx\n"
|
|
" pages: 0x%lx",
|
|
pgidx_start, pages);
|
|
TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped,
|
|
pgidx_start, pages),
|
|
"Unexpected, pages already mapped,\n"
|
|
" pgidx_start: 0x%lx\n"
|
|
" pages: 0x%lx",
|
|
pgidx_start, pages);
|
|
|
|
return pgidx_start * vm->page_size;
|
|
}
|
|
|
|
/*
|
|
* VM Virtual Address Allocate
|
|
*
|
|
* Input Args:
|
|
* vm - Virtual Machine
|
|
* sz - Size in bytes
|
|
* vaddr_min - Minimum starting virtual address
|
|
* data_memslot - Memory region slot for data pages
|
|
* pgd_memslot - Memory region slot for new virtual translation tables
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Return:
|
|
* Starting guest virtual address
|
|
*
|
|
* Allocates at least sz bytes within the virtual address space of the vm
|
|
* given by vm. The allocated bytes are mapped to a virtual address >=
|
|
* the address given by vaddr_min. Note that each allocation uses a
|
|
* a unique set of pages, with the minimum real allocation being at least
|
|
* a page.
|
|
*/
|
|
vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
|
|
uint32_t data_memslot, uint32_t pgd_memslot)
|
|
{
|
|
uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0);
|
|
|
|
virt_pgd_alloc(vm, pgd_memslot);
|
|
|
|
/*
|
|
* Find an unused range of virtual page addresses of at least
|
|
* pages in length.
|
|
*/
|
|
vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min);
|
|
|
|
/* Map the virtual pages. */
|
|
for (vm_vaddr_t vaddr = vaddr_start; pages > 0;
|
|
pages--, vaddr += vm->page_size) {
|
|
vm_paddr_t paddr;
|
|
|
|
paddr = vm_phy_page_alloc(vm,
|
|
KVM_UTIL_MIN_PFN * vm->page_size, data_memslot);
|
|
|
|
virt_pg_map(vm, vaddr, paddr, pgd_memslot);
|
|
|
|
sparsebit_set(vm->vpages_mapped,
|
|
vaddr >> vm->page_shift);
|
|
}
|
|
|
|
return vaddr_start;
|
|
}
|
|
|
|
/*
|
|
* Map a range of VM virtual address to the VM's physical address
|
|
*
|
|
* Input Args:
|
|
* vm - Virtual Machine
|
|
* vaddr - Virtuall address to map
|
|
* paddr - VM Physical Address
|
|
* npages - The number of pages to map
|
|
* pgd_memslot - Memory region slot for new virtual translation tables
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Return: None
|
|
*
|
|
* Within the VM given by @vm, creates a virtual translation for
|
|
* @npages starting at @vaddr to the page range starting at @paddr.
|
|
*/
|
|
void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
|
|
unsigned int npages, uint32_t pgd_memslot)
|
|
{
|
|
size_t page_size = vm->page_size;
|
|
size_t size = npages * page_size;
|
|
|
|
TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow");
|
|
TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
|
|
|
|
while (npages--) {
|
|
virt_pg_map(vm, vaddr, paddr, pgd_memslot);
|
|
vaddr += page_size;
|
|
paddr += page_size;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Address VM Physical to Host Virtual
|
|
*
|
|
* Input Args:
|
|
* vm - Virtual Machine
|
|
* gpa - VM physical address
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Return:
|
|
* Equivalent host virtual address
|
|
*
|
|
* Locates the memory region containing the VM physical address given
|
|
* by gpa, within the VM given by vm. When found, the host virtual
|
|
* address providing the memory to the vm physical address is returned.
|
|
* A TEST_ASSERT failure occurs if no region containing gpa exists.
|
|
*/
|
|
void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa)
|
|
{
|
|
struct userspace_mem_region *region;
|
|
|
|
list_for_each_entry(region, &vm->userspace_mem_regions, list) {
|
|
if ((gpa >= region->region.guest_phys_addr)
|
|
&& (gpa <= (region->region.guest_phys_addr
|
|
+ region->region.memory_size - 1)))
|
|
return (void *) ((uintptr_t) region->host_mem
|
|
+ (gpa - region->region.guest_phys_addr));
|
|
}
|
|
|
|
TEST_FAIL("No vm physical memory at 0x%lx", gpa);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Address Host Virtual to VM Physical
|
|
*
|
|
* Input Args:
|
|
* vm - Virtual Machine
|
|
* hva - Host virtual address
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Return:
|
|
* Equivalent VM physical address
|
|
*
|
|
* Locates the memory region containing the host virtual address given
|
|
* by hva, within the VM given by vm. When found, the equivalent
|
|
* VM physical address is returned. A TEST_ASSERT failure occurs if no
|
|
* region containing hva exists.
|
|
*/
|
|
vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva)
|
|
{
|
|
struct userspace_mem_region *region;
|
|
|
|
list_for_each_entry(region, &vm->userspace_mem_regions, list) {
|
|
if ((hva >= region->host_mem)
|
|
&& (hva <= (region->host_mem
|
|
+ region->region.memory_size - 1)))
|
|
return (vm_paddr_t) ((uintptr_t)
|
|
region->region.guest_phys_addr
|
|
+ (hva - (uintptr_t) region->host_mem));
|
|
}
|
|
|
|
TEST_FAIL("No mapping to a guest physical address, hva: %p", hva);
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* VM Create IRQ Chip
|
|
*
|
|
* Input Args:
|
|
* vm - Virtual Machine
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Return: None
|
|
*
|
|
* Creates an interrupt controller chip for the VM specified by vm.
|
|
*/
|
|
void vm_create_irqchip(struct kvm_vm *vm)
|
|
{
|
|
int ret;
|
|
|
|
ret = ioctl(vm->fd, KVM_CREATE_IRQCHIP, 0);
|
|
TEST_ASSERT(ret == 0, "KVM_CREATE_IRQCHIP IOCTL failed, "
|
|
"rc: %i errno: %i", ret, errno);
|
|
|
|
vm->has_irqchip = true;
|
|
}
|
|
|
|
/*
|
|
* VM VCPU State
|
|
*
|
|
* Input Args:
|
|
* vm - Virtual Machine
|
|
* vcpuid - VCPU ID
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Return:
|
|
* Pointer to structure that describes the state of the VCPU.
|
|
*
|
|
* Locates and returns a pointer to a structure that describes the
|
|
* state of the VCPU with the given vcpuid.
|
|
*/
|
|
struct kvm_run *vcpu_state(struct kvm_vm *vm, uint32_t vcpuid)
|
|
{
|
|
struct vcpu *vcpu = vcpu_find(vm, vcpuid);
|
|
TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
|
|
|
|
return vcpu->state;
|
|
}
|
|
|
|
/*
|
|
* VM VCPU Run
|
|
*
|
|
* Input Args:
|
|
* vm - Virtual Machine
|
|
* vcpuid - VCPU ID
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Return: None
|
|
*
|
|
* Switch to executing the code for the VCPU given by vcpuid, within the VM
|
|
* given by vm.
|
|
*/
|
|
void vcpu_run(struct kvm_vm *vm, uint32_t vcpuid)
|
|
{
|
|
int ret = _vcpu_run(vm, vcpuid);
|
|
TEST_ASSERT(ret == 0, "KVM_RUN IOCTL failed, "
|
|
"rc: %i errno: %i", ret, errno);
|
|
}
|
|
|
|
int _vcpu_run(struct kvm_vm *vm, uint32_t vcpuid)
|
|
{
|
|
struct vcpu *vcpu = vcpu_find(vm, vcpuid);
|
|
int rc;
|
|
|
|
TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
|
|
do {
|
|
rc = ioctl(vcpu->fd, KVM_RUN, NULL);
|
|
} while (rc == -1 && errno == EINTR);
|
|
|
|
assert_on_unhandled_exception(vm, vcpuid);
|
|
|
|
return rc;
|
|
}
|
|
|
|
int vcpu_get_fd(struct kvm_vm *vm, uint32_t vcpuid)
|
|
{
|
|
struct vcpu *vcpu = vcpu_find(vm, vcpuid);
|
|
|
|
TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
|
|
|
|
return vcpu->fd;
|
|
}
|
|
|
|
void vcpu_run_complete_io(struct kvm_vm *vm, uint32_t vcpuid)
|
|
{
|
|
struct vcpu *vcpu = vcpu_find(vm, vcpuid);
|
|
int ret;
|
|
|
|
TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
|
|
|
|
vcpu->state->immediate_exit = 1;
|
|
ret = ioctl(vcpu->fd, KVM_RUN, NULL);
|
|
vcpu->state->immediate_exit = 0;
|
|
|
|
TEST_ASSERT(ret == -1 && errno == EINTR,
|
|
"KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i",
|
|
ret, errno);
|
|
}
|
|
|
|
void vcpu_set_guest_debug(struct kvm_vm *vm, uint32_t vcpuid,
|
|
struct kvm_guest_debug *debug)
|
|
{
|
|
struct vcpu *vcpu = vcpu_find(vm, vcpuid);
|
|
int ret = ioctl(vcpu->fd, KVM_SET_GUEST_DEBUG, debug);
|
|
|
|
TEST_ASSERT(ret == 0, "KVM_SET_GUEST_DEBUG failed: %d", ret);
|
|
}
|
|
|
|
/*
|
|
* VM VCPU Set MP State
|
|
*
|
|
* Input Args:
|
|
* vm - Virtual Machine
|
|
* vcpuid - VCPU ID
|
|
* mp_state - mp_state to be set
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Return: None
|
|
*
|
|
* Sets the MP state of the VCPU given by vcpuid, to the state given
|
|
* by mp_state.
|
|
*/
|
|
void vcpu_set_mp_state(struct kvm_vm *vm, uint32_t vcpuid,
|
|
struct kvm_mp_state *mp_state)
|
|
{
|
|
struct vcpu *vcpu = vcpu_find(vm, vcpuid);
|
|
int ret;
|
|
|
|
TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
|
|
|
|
ret = ioctl(vcpu->fd, KVM_SET_MP_STATE, mp_state);
|
|
TEST_ASSERT(ret == 0, "KVM_SET_MP_STATE IOCTL failed, "
|
|
"rc: %i errno: %i", ret, errno);
|
|
}
|
|
|
|
/*
|
|
* VM VCPU Get Reg List
|
|
*
|
|
* Input Args:
|
|
* vm - Virtual Machine
|
|
* vcpuid - VCPU ID
|
|
*
|
|
* Output Args:
|
|
* None
|
|
*
|
|
* Return:
|
|
* A pointer to an allocated struct kvm_reg_list
|
|
*
|
|
* Get the list of guest registers which are supported for
|
|
* KVM_GET_ONE_REG/KVM_SET_ONE_REG calls
|
|
*/
|
|
struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vm *vm, uint32_t vcpuid)
|
|
{
|
|
struct kvm_reg_list reg_list_n = { .n = 0 }, *reg_list;
|
|
int ret;
|
|
|
|
ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_REG_LIST, ®_list_n);
|
|
TEST_ASSERT(ret == -1 && errno == E2BIG, "KVM_GET_REG_LIST n=0");
|
|
reg_list = calloc(1, sizeof(*reg_list) + reg_list_n.n * sizeof(__u64));
|
|
reg_list->n = reg_list_n.n;
|
|
vcpu_ioctl(vm, vcpuid, KVM_GET_REG_LIST, reg_list);
|
|
return reg_list;
|
|
}
|
|
|
|
/*
|
|
* VM VCPU Regs Get
|
|
*
|
|
* Input Args:
|
|
* vm - Virtual Machine
|
|
* vcpuid - VCPU ID
|
|
*
|
|
* Output Args:
|
|
* regs - current state of VCPU regs
|
|
*
|
|
* Return: None
|
|
*
|
|
* Obtains the current register state for the VCPU specified by vcpuid
|
|
* and stores it at the location given by regs.
|
|
*/
|
|
void vcpu_regs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs)
|
|
{
|
|
struct vcpu *vcpu = vcpu_find(vm, vcpuid);
|
|
int ret;
|
|
|
|
TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
|
|
|
|
ret = ioctl(vcpu->fd, KVM_GET_REGS, regs);
|
|
TEST_ASSERT(ret == 0, "KVM_GET_REGS failed, rc: %i errno: %i",
|
|
ret, errno);
|
|
}
|
|
|
|
/*
|
|
* VM VCPU Regs Set
|
|
*
|
|
* Input Args:
|
|
* vm - Virtual Machine
|
|
* vcpuid - VCPU ID
|
|
* regs - Values to set VCPU regs to
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Return: None
|
|
*
|
|
* Sets the regs of the VCPU specified by vcpuid to the values
|
|
* given by regs.
|
|
*/
|
|
void vcpu_regs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs)
|
|
{
|
|
struct vcpu *vcpu = vcpu_find(vm, vcpuid);
|
|
int ret;
|
|
|
|
TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
|
|
|
|
ret = ioctl(vcpu->fd, KVM_SET_REGS, regs);
|
|
TEST_ASSERT(ret == 0, "KVM_SET_REGS failed, rc: %i errno: %i",
|
|
ret, errno);
|
|
}
|
|
|
|
#ifdef __KVM_HAVE_VCPU_EVENTS
|
|
void vcpu_events_get(struct kvm_vm *vm, uint32_t vcpuid,
|
|
struct kvm_vcpu_events *events)
|
|
{
|
|
struct vcpu *vcpu = vcpu_find(vm, vcpuid);
|
|
int ret;
|
|
|
|
TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
|
|
|
|
ret = ioctl(vcpu->fd, KVM_GET_VCPU_EVENTS, events);
|
|
TEST_ASSERT(ret == 0, "KVM_GET_VCPU_EVENTS, failed, rc: %i errno: %i",
|
|
ret, errno);
|
|
}
|
|
|
|
void vcpu_events_set(struct kvm_vm *vm, uint32_t vcpuid,
|
|
struct kvm_vcpu_events *events)
|
|
{
|
|
struct vcpu *vcpu = vcpu_find(vm, vcpuid);
|
|
int ret;
|
|
|
|
TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
|
|
|
|
ret = ioctl(vcpu->fd, KVM_SET_VCPU_EVENTS, events);
|
|
TEST_ASSERT(ret == 0, "KVM_SET_VCPU_EVENTS, failed, rc: %i errno: %i",
|
|
ret, errno);
|
|
}
|
|
#endif
|
|
|
|
#ifdef __x86_64__
|
|
void vcpu_nested_state_get(struct kvm_vm *vm, uint32_t vcpuid,
|
|
struct kvm_nested_state *state)
|
|
{
|
|
struct vcpu *vcpu = vcpu_find(vm, vcpuid);
|
|
int ret;
|
|
|
|
TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
|
|
|
|
ret = ioctl(vcpu->fd, KVM_GET_NESTED_STATE, state);
|
|
TEST_ASSERT(ret == 0,
|
|
"KVM_SET_NESTED_STATE failed, ret: %i errno: %i",
|
|
ret, errno);
|
|
}
|
|
|
|
int vcpu_nested_state_set(struct kvm_vm *vm, uint32_t vcpuid,
|
|
struct kvm_nested_state *state, bool ignore_error)
|
|
{
|
|
struct vcpu *vcpu = vcpu_find(vm, vcpuid);
|
|
int ret;
|
|
|
|
TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
|
|
|
|
ret = ioctl(vcpu->fd, KVM_SET_NESTED_STATE, state);
|
|
if (!ignore_error) {
|
|
TEST_ASSERT(ret == 0,
|
|
"KVM_SET_NESTED_STATE failed, ret: %i errno: %i",
|
|
ret, errno);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* VM VCPU System Regs Get
|
|
*
|
|
* Input Args:
|
|
* vm - Virtual Machine
|
|
* vcpuid - VCPU ID
|
|
*
|
|
* Output Args:
|
|
* sregs - current state of VCPU system regs
|
|
*
|
|
* Return: None
|
|
*
|
|
* Obtains the current system register state for the VCPU specified by
|
|
* vcpuid and stores it at the location given by sregs.
|
|
*/
|
|
void vcpu_sregs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
|
|
{
|
|
struct vcpu *vcpu = vcpu_find(vm, vcpuid);
|
|
int ret;
|
|
|
|
TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
|
|
|
|
ret = ioctl(vcpu->fd, KVM_GET_SREGS, sregs);
|
|
TEST_ASSERT(ret == 0, "KVM_GET_SREGS failed, rc: %i errno: %i",
|
|
ret, errno);
|
|
}
|
|
|
|
/*
|
|
* VM VCPU System Regs Set
|
|
*
|
|
* Input Args:
|
|
* vm - Virtual Machine
|
|
* vcpuid - VCPU ID
|
|
* sregs - Values to set VCPU system regs to
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Return: None
|
|
*
|
|
* Sets the system regs of the VCPU specified by vcpuid to the values
|
|
* given by sregs.
|
|
*/
|
|
void vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
|
|
{
|
|
int ret = _vcpu_sregs_set(vm, vcpuid, sregs);
|
|
TEST_ASSERT(ret == 0, "KVM_RUN IOCTL failed, "
|
|
"rc: %i errno: %i", ret, errno);
|
|
}
|
|
|
|
int _vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
|
|
{
|
|
struct vcpu *vcpu = vcpu_find(vm, vcpuid);
|
|
|
|
TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
|
|
|
|
return ioctl(vcpu->fd, KVM_SET_SREGS, sregs);
|
|
}
|
|
|
|
void vcpu_fpu_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_fpu *fpu)
|
|
{
|
|
int ret;
|
|
|
|
ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_FPU, fpu);
|
|
TEST_ASSERT(ret == 0, "KVM_GET_FPU failed, rc: %i errno: %i (%s)",
|
|
ret, errno, strerror(errno));
|
|
}
|
|
|
|
void vcpu_fpu_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_fpu *fpu)
|
|
{
|
|
int ret;
|
|
|
|
ret = _vcpu_ioctl(vm, vcpuid, KVM_SET_FPU, fpu);
|
|
TEST_ASSERT(ret == 0, "KVM_SET_FPU failed, rc: %i errno: %i (%s)",
|
|
ret, errno, strerror(errno));
|
|
}
|
|
|
|
void vcpu_get_reg(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_one_reg *reg)
|
|
{
|
|
int ret;
|
|
|
|
ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_ONE_REG, reg);
|
|
TEST_ASSERT(ret == 0, "KVM_GET_ONE_REG failed, rc: %i errno: %i (%s)",
|
|
ret, errno, strerror(errno));
|
|
}
|
|
|
|
void vcpu_set_reg(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_one_reg *reg)
|
|
{
|
|
int ret;
|
|
|
|
ret = _vcpu_ioctl(vm, vcpuid, KVM_SET_ONE_REG, reg);
|
|
TEST_ASSERT(ret == 0, "KVM_SET_ONE_REG failed, rc: %i errno: %i (%s)",
|
|
ret, errno, strerror(errno));
|
|
}
|
|
|
|
/*
|
|
* VCPU Ioctl
|
|
*
|
|
* Input Args:
|
|
* vm - Virtual Machine
|
|
* vcpuid - VCPU ID
|
|
* cmd - Ioctl number
|
|
* arg - Argument to pass to the ioctl
|
|
*
|
|
* Return: None
|
|
*
|
|
* Issues an arbitrary ioctl on a VCPU fd.
|
|
*/
|
|
void vcpu_ioctl(struct kvm_vm *vm, uint32_t vcpuid,
|
|
unsigned long cmd, void *arg)
|
|
{
|
|
int ret;
|
|
|
|
ret = _vcpu_ioctl(vm, vcpuid, cmd, arg);
|
|
TEST_ASSERT(ret == 0, "vcpu ioctl %lu failed, rc: %i errno: %i (%s)",
|
|
cmd, ret, errno, strerror(errno));
|
|
}
|
|
|
|
int _vcpu_ioctl(struct kvm_vm *vm, uint32_t vcpuid,
|
|
unsigned long cmd, void *arg)
|
|
{
|
|
struct vcpu *vcpu = vcpu_find(vm, vcpuid);
|
|
int ret;
|
|
|
|
TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
|
|
|
|
ret = ioctl(vcpu->fd, cmd, arg);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void *vcpu_map_dirty_ring(struct kvm_vm *vm, uint32_t vcpuid)
|
|
{
|
|
struct vcpu *vcpu;
|
|
uint32_t size = vm->dirty_ring_size;
|
|
|
|
TEST_ASSERT(size > 0, "Should enable dirty ring first");
|
|
|
|
vcpu = vcpu_find(vm, vcpuid);
|
|
|
|
TEST_ASSERT(vcpu, "Cannot find vcpu %u", vcpuid);
|
|
|
|
if (!vcpu->dirty_gfns) {
|
|
void *addr;
|
|
|
|
addr = mmap(NULL, size, PROT_READ,
|
|
MAP_PRIVATE, vcpu->fd,
|
|
vm->page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
|
|
TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped private");
|
|
|
|
addr = mmap(NULL, size, PROT_READ | PROT_EXEC,
|
|
MAP_PRIVATE, vcpu->fd,
|
|
vm->page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
|
|
TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped exec");
|
|
|
|
addr = mmap(NULL, size, PROT_READ | PROT_WRITE,
|
|
MAP_SHARED, vcpu->fd,
|
|
vm->page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
|
|
TEST_ASSERT(addr != MAP_FAILED, "Dirty ring map failed");
|
|
|
|
vcpu->dirty_gfns = addr;
|
|
vcpu->dirty_gfns_count = size / sizeof(struct kvm_dirty_gfn);
|
|
}
|
|
|
|
return vcpu->dirty_gfns;
|
|
}
|
|
|
|
/*
|
|
* VM Ioctl
|
|
*
|
|
* Input Args:
|
|
* vm - Virtual Machine
|
|
* cmd - Ioctl number
|
|
* arg - Argument to pass to the ioctl
|
|
*
|
|
* Return: None
|
|
*
|
|
* Issues an arbitrary ioctl on a VM fd.
|
|
*/
|
|
void vm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
|
|
{
|
|
int ret;
|
|
|
|
ret = ioctl(vm->fd, cmd, arg);
|
|
TEST_ASSERT(ret == 0, "vm ioctl %lu failed, rc: %i errno: %i (%s)",
|
|
cmd, ret, errno, strerror(errno));
|
|
}
|
|
|
|
/*
|
|
* KVM system ioctl
|
|
*
|
|
* Input Args:
|
|
* vm - Virtual Machine
|
|
* cmd - Ioctl number
|
|
* arg - Argument to pass to the ioctl
|
|
*
|
|
* Return: None
|
|
*
|
|
* Issues an arbitrary ioctl on a KVM fd.
|
|
*/
|
|
void kvm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
|
|
{
|
|
int ret;
|
|
|
|
ret = ioctl(vm->kvm_fd, cmd, arg);
|
|
TEST_ASSERT(ret == 0, "KVM ioctl %lu failed, rc: %i errno: %i (%s)",
|
|
cmd, ret, errno, strerror(errno));
|
|
}
|
|
|
|
int _kvm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
|
|
{
|
|
return ioctl(vm->kvm_fd, cmd, arg);
|
|
}
|
|
|
|
/*
|
|
* VM Dump
|
|
*
|
|
* Input Args:
|
|
* vm - Virtual Machine
|
|
* indent - Left margin indent amount
|
|
*
|
|
* Output Args:
|
|
* stream - Output FILE stream
|
|
*
|
|
* Return: None
|
|
*
|
|
* Dumps the current state of the VM given by vm, to the FILE stream
|
|
* given by stream.
|
|
*/
|
|
void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
|
|
{
|
|
struct userspace_mem_region *region;
|
|
struct vcpu *vcpu;
|
|
|
|
fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode);
|
|
fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd);
|
|
fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size);
|
|
fprintf(stream, "%*sMem Regions:\n", indent, "");
|
|
list_for_each_entry(region, &vm->userspace_mem_regions, list) {
|
|
fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx "
|
|
"host_virt: %p\n", indent + 2, "",
|
|
(uint64_t) region->region.guest_phys_addr,
|
|
(uint64_t) region->region.memory_size,
|
|
region->host_mem);
|
|
fprintf(stream, "%*sunused_phy_pages: ", indent + 2, "");
|
|
sparsebit_dump(stream, region->unused_phy_pages, 0);
|
|
}
|
|
fprintf(stream, "%*sMapped Virtual Pages:\n", indent, "");
|
|
sparsebit_dump(stream, vm->vpages_mapped, indent + 2);
|
|
fprintf(stream, "%*spgd_created: %u\n", indent, "",
|
|
vm->pgd_created);
|
|
if (vm->pgd_created) {
|
|
fprintf(stream, "%*sVirtual Translation Tables:\n",
|
|
indent + 2, "");
|
|
virt_dump(stream, vm, indent + 4);
|
|
}
|
|
fprintf(stream, "%*sVCPUs:\n", indent, "");
|
|
list_for_each_entry(vcpu, &vm->vcpus, list)
|
|
vcpu_dump(stream, vm, vcpu->id, indent + 2);
|
|
}
|
|
|
|
/* Known KVM exit reasons */
|
|
static struct exit_reason {
|
|
unsigned int reason;
|
|
const char *name;
|
|
} exit_reasons_known[] = {
|
|
{KVM_EXIT_UNKNOWN, "UNKNOWN"},
|
|
{KVM_EXIT_EXCEPTION, "EXCEPTION"},
|
|
{KVM_EXIT_IO, "IO"},
|
|
{KVM_EXIT_HYPERCALL, "HYPERCALL"},
|
|
{KVM_EXIT_DEBUG, "DEBUG"},
|
|
{KVM_EXIT_HLT, "HLT"},
|
|
{KVM_EXIT_MMIO, "MMIO"},
|
|
{KVM_EXIT_IRQ_WINDOW_OPEN, "IRQ_WINDOW_OPEN"},
|
|
{KVM_EXIT_SHUTDOWN, "SHUTDOWN"},
|
|
{KVM_EXIT_FAIL_ENTRY, "FAIL_ENTRY"},
|
|
{KVM_EXIT_INTR, "INTR"},
|
|
{KVM_EXIT_SET_TPR, "SET_TPR"},
|
|
{KVM_EXIT_TPR_ACCESS, "TPR_ACCESS"},
|
|
{KVM_EXIT_S390_SIEIC, "S390_SIEIC"},
|
|
{KVM_EXIT_S390_RESET, "S390_RESET"},
|
|
{KVM_EXIT_DCR, "DCR"},
|
|
{KVM_EXIT_NMI, "NMI"},
|
|
{KVM_EXIT_INTERNAL_ERROR, "INTERNAL_ERROR"},
|
|
{KVM_EXIT_OSI, "OSI"},
|
|
{KVM_EXIT_PAPR_HCALL, "PAPR_HCALL"},
|
|
{KVM_EXIT_DIRTY_RING_FULL, "DIRTY_RING_FULL"},
|
|
#ifdef KVM_EXIT_MEMORY_NOT_PRESENT
|
|
{KVM_EXIT_MEMORY_NOT_PRESENT, "MEMORY_NOT_PRESENT"},
|
|
#endif
|
|
};
|
|
|
|
/*
|
|
* Exit Reason String
|
|
*
|
|
* Input Args:
|
|
* exit_reason - Exit reason
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Return:
|
|
* Constant string pointer describing the exit reason.
|
|
*
|
|
* Locates and returns a constant string that describes the KVM exit
|
|
* reason given by exit_reason. If no such string is found, a constant
|
|
* string of "Unknown" is returned.
|
|
*/
|
|
const char *exit_reason_str(unsigned int exit_reason)
|
|
{
|
|
unsigned int n1;
|
|
|
|
for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) {
|
|
if (exit_reason == exit_reasons_known[n1].reason)
|
|
return exit_reasons_known[n1].name;
|
|
}
|
|
|
|
return "Unknown";
|
|
}
|
|
|
|
/*
|
|
* Physical Contiguous Page Allocator
|
|
*
|
|
* Input Args:
|
|
* vm - Virtual Machine
|
|
* num - number of pages
|
|
* paddr_min - Physical address minimum
|
|
* memslot - Memory region to allocate page from
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Return:
|
|
* Starting physical address
|
|
*
|
|
* Within the VM specified by vm, locates a range of available physical
|
|
* pages at or above paddr_min. If found, the pages are marked as in use
|
|
* and their base address is returned. A TEST_ASSERT failure occurs if
|
|
* not enough pages are available at or above paddr_min.
|
|
*/
|
|
vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
|
|
vm_paddr_t paddr_min, uint32_t memslot)
|
|
{
|
|
struct userspace_mem_region *region;
|
|
sparsebit_idx_t pg, base;
|
|
|
|
TEST_ASSERT(num > 0, "Must allocate at least one page");
|
|
|
|
TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address "
|
|
"not divisible by page size.\n"
|
|
" paddr_min: 0x%lx page_size: 0x%x",
|
|
paddr_min, vm->page_size);
|
|
|
|
region = memslot2region(vm, memslot);
|
|
base = pg = paddr_min >> vm->page_shift;
|
|
|
|
do {
|
|
for (; pg < base + num; ++pg) {
|
|
if (!sparsebit_is_set(region->unused_phy_pages, pg)) {
|
|
base = pg = sparsebit_next_set(region->unused_phy_pages, pg);
|
|
break;
|
|
}
|
|
}
|
|
} while (pg && pg != base + num);
|
|
|
|
if (pg == 0) {
|
|
fprintf(stderr, "No guest physical page available, "
|
|
"paddr_min: 0x%lx page_size: 0x%x memslot: %u\n",
|
|
paddr_min, vm->page_size, memslot);
|
|
fputs("---- vm dump ----\n", stderr);
|
|
vm_dump(stderr, vm, 2);
|
|
abort();
|
|
}
|
|
|
|
for (pg = base; pg < base + num; ++pg)
|
|
sparsebit_clear(region->unused_phy_pages, pg);
|
|
|
|
return base * vm->page_size;
|
|
}
|
|
|
|
vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
|
|
uint32_t memslot)
|
|
{
|
|
return vm_phy_pages_alloc(vm, 1, paddr_min, memslot);
|
|
}
|
|
|
|
/*
|
|
* Address Guest Virtual to Host Virtual
|
|
*
|
|
* Input Args:
|
|
* vm - Virtual Machine
|
|
* gva - VM virtual address
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Return:
|
|
* Equivalent host virtual address
|
|
*/
|
|
void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva)
|
|
{
|
|
return addr_gpa2hva(vm, addr_gva2gpa(vm, gva));
|
|
}
|
|
|
|
/*
|
|
* Is Unrestricted Guest
|
|
*
|
|
* Input Args:
|
|
* vm - Virtual Machine
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Return: True if the unrestricted guest is set to 'Y', otherwise return false.
|
|
*
|
|
* Check if the unrestricted guest flag is enabled.
|
|
*/
|
|
bool vm_is_unrestricted_guest(struct kvm_vm *vm)
|
|
{
|
|
char val = 'N';
|
|
size_t count;
|
|
FILE *f;
|
|
|
|
if (vm == NULL) {
|
|
/* Ensure that the KVM vendor-specific module is loaded. */
|
|
f = fopen(KVM_DEV_PATH, "r");
|
|
TEST_ASSERT(f != NULL, "Error in opening KVM dev file: %d",
|
|
errno);
|
|
fclose(f);
|
|
}
|
|
|
|
f = fopen("/sys/module/kvm_intel/parameters/unrestricted_guest", "r");
|
|
if (f) {
|
|
count = fread(&val, sizeof(char), 1, f);
|
|
TEST_ASSERT(count == 1, "Unable to read from param file.");
|
|
fclose(f);
|
|
}
|
|
|
|
return val == 'Y';
|
|
}
|
|
|
|
unsigned int vm_get_page_size(struct kvm_vm *vm)
|
|
{
|
|
return vm->page_size;
|
|
}
|
|
|
|
unsigned int vm_get_page_shift(struct kvm_vm *vm)
|
|
{
|
|
return vm->page_shift;
|
|
}
|
|
|
|
unsigned int vm_get_max_gfn(struct kvm_vm *vm)
|
|
{
|
|
return vm->max_gfn;
|
|
}
|
|
|
|
int vm_get_fd(struct kvm_vm *vm)
|
|
{
|
|
return vm->fd;
|
|
}
|
|
|
|
static unsigned int vm_calc_num_pages(unsigned int num_pages,
|
|
unsigned int page_shift,
|
|
unsigned int new_page_shift,
|
|
bool ceil)
|
|
{
|
|
unsigned int n = 1 << (new_page_shift - page_shift);
|
|
|
|
if (page_shift >= new_page_shift)
|
|
return num_pages * (1 << (page_shift - new_page_shift));
|
|
|
|
return num_pages / n + !!(ceil && num_pages % n);
|
|
}
|
|
|
|
static inline int getpageshift(void)
|
|
{
|
|
return __builtin_ffs(getpagesize()) - 1;
|
|
}
|
|
|
|
unsigned int
|
|
vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages)
|
|
{
|
|
return vm_calc_num_pages(num_guest_pages,
|
|
vm_guest_mode_params[mode].page_shift,
|
|
getpageshift(), true);
|
|
}
|
|
|
|
unsigned int
|
|
vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages)
|
|
{
|
|
return vm_calc_num_pages(num_host_pages, getpageshift(),
|
|
vm_guest_mode_params[mode].page_shift, false);
|
|
}
|
|
|
|
unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size)
|
|
{
|
|
unsigned int n;
|
|
n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size);
|
|
return vm_adjust_num_guest_pages(mode, n);
|
|
}
|