linux/drivers/infiniband/sw/siw/siw_qp_tx.c
Guoqing Jiang 79844118d6 RDMA/siw: Update comments for siw_qp_sq_process
There is no siw_sq_work_handler in code, change it with siw_tx_thread
since siw_run_sq -> siw_sq_resume -> siw_qp_sq_process.

Acked-by: Bernard Metzler <bmt@zurich.ibm.com>
Signed-off-by: Guoqing Jiang <guoqing.jiang@linux.dev>
Link: https://lore.kernel.org/r/20231113115726.12762-18-guoqing.jiang@linux.dev
Signed-off-by: Leon Romanovsky <leon@kernel.org>
2023-11-15 15:58:14 +02:00

1302 lines
31 KiB
C

// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
/* Authors: Bernard Metzler <bmt@zurich.ibm.com> */
/* Copyright (c) 2008-2019, IBM Corporation */
#include <linux/errno.h>
#include <linux/types.h>
#include <linux/net.h>
#include <linux/scatterlist.h>
#include <linux/highmem.h>
#include <net/tcp.h>
#include <rdma/iw_cm.h>
#include <rdma/ib_verbs.h>
#include <rdma/ib_user_verbs.h>
#include "siw.h"
#include "siw_verbs.h"
#include "siw_mem.h"
#define MAX_HDR_INLINE \
(((uint32_t)(sizeof(struct siw_rreq_pkt) - \
sizeof(struct iwarp_send))) & 0xF8)
static struct page *siw_get_pblpage(struct siw_mem *mem, u64 addr, int *idx)
{
struct siw_pbl *pbl = mem->pbl;
u64 offset = addr - mem->va;
dma_addr_t paddr = siw_pbl_get_buffer(pbl, offset, NULL, idx);
if (paddr)
return ib_virt_dma_to_page(paddr);
return NULL;
}
static struct page *siw_get_page(struct siw_mem *mem, struct siw_sge *sge,
unsigned long offset, int *pbl_idx)
{
if (!mem->is_pbl)
return siw_get_upage(mem->umem, sge->laddr + offset);
else
return siw_get_pblpage(mem, sge->laddr + offset, pbl_idx);
}
/*
* Copy short payload at provided destination payload address
*/
static int siw_try_1seg(struct siw_iwarp_tx *c_tx, void *paddr)
{
struct siw_wqe *wqe = &c_tx->wqe_active;
struct siw_sge *sge = &wqe->sqe.sge[0];
u32 bytes = sge->length;
if (bytes > MAX_HDR_INLINE || wqe->sqe.num_sge != 1)
return MAX_HDR_INLINE + 1;
if (!bytes)
return 0;
if (tx_flags(wqe) & SIW_WQE_INLINE) {
memcpy(paddr, &wqe->sqe.sge[1], bytes);
} else {
struct siw_mem *mem = wqe->mem[0];
if (!mem->mem_obj) {
/* Kernel client using kva */
memcpy(paddr, ib_virt_dma_to_ptr(sge->laddr), bytes);
} else if (c_tx->in_syscall) {
if (copy_from_user(paddr, u64_to_user_ptr(sge->laddr),
bytes))
return -EFAULT;
} else {
unsigned int off = sge->laddr & ~PAGE_MASK;
struct page *p;
char *buffer;
int pbl_idx = 0;
p = siw_get_page(mem, sge, 0, &pbl_idx);
if (unlikely(!p))
return -EFAULT;
buffer = kmap_local_page(p);
if (likely(PAGE_SIZE - off >= bytes)) {
memcpy(paddr, buffer + off, bytes);
} else {
unsigned long part = bytes - (PAGE_SIZE - off);
memcpy(paddr, buffer + off, part);
kunmap_local(buffer);
p = siw_get_page(mem, sge, part, &pbl_idx);
if (unlikely(!p))
return -EFAULT;
buffer = kmap_local_page(p);
memcpy(paddr + part, buffer, bytes - part);
}
kunmap_local(buffer);
}
}
return (int)bytes;
}
#define PKT_FRAGMENTED 1
#define PKT_COMPLETE 0
/*
* siw_qp_prepare_tx()
*
* Prepare tx state for sending out one fpdu. Builds complete pkt
* if no user data or only immediate data are present.
*
* returns PKT_COMPLETE if complete pkt built, PKT_FRAGMENTED otherwise.
*/
static int siw_qp_prepare_tx(struct siw_iwarp_tx *c_tx)
{
struct siw_wqe *wqe = &c_tx->wqe_active;
char *crc = NULL;
int data = 0;
switch (tx_type(wqe)) {
case SIW_OP_READ:
case SIW_OP_READ_LOCAL_INV:
memcpy(&c_tx->pkt.ctrl,
&iwarp_pktinfo[RDMAP_RDMA_READ_REQ].ctrl,
sizeof(struct iwarp_ctrl));
c_tx->pkt.rreq.rsvd = 0;
c_tx->pkt.rreq.ddp_qn = htonl(RDMAP_UNTAGGED_QN_RDMA_READ);
c_tx->pkt.rreq.ddp_msn =
htonl(++c_tx->ddp_msn[RDMAP_UNTAGGED_QN_RDMA_READ]);
c_tx->pkt.rreq.ddp_mo = 0;
c_tx->pkt.rreq.sink_stag = htonl(wqe->sqe.sge[0].lkey);
c_tx->pkt.rreq.sink_to =
cpu_to_be64(wqe->sqe.sge[0].laddr);
c_tx->pkt.rreq.source_stag = htonl(wqe->sqe.rkey);
c_tx->pkt.rreq.source_to = cpu_to_be64(wqe->sqe.raddr);
c_tx->pkt.rreq.read_size = htonl(wqe->sqe.sge[0].length);
c_tx->ctrl_len = sizeof(struct iwarp_rdma_rreq);
crc = (char *)&c_tx->pkt.rreq_pkt.crc;
break;
case SIW_OP_SEND:
if (tx_flags(wqe) & SIW_WQE_SOLICITED)
memcpy(&c_tx->pkt.ctrl,
&iwarp_pktinfo[RDMAP_SEND_SE].ctrl,
sizeof(struct iwarp_ctrl));
else
memcpy(&c_tx->pkt.ctrl, &iwarp_pktinfo[RDMAP_SEND].ctrl,
sizeof(struct iwarp_ctrl));
c_tx->pkt.send.ddp_qn = RDMAP_UNTAGGED_QN_SEND;
c_tx->pkt.send.ddp_msn =
htonl(++c_tx->ddp_msn[RDMAP_UNTAGGED_QN_SEND]);
c_tx->pkt.send.ddp_mo = 0;
c_tx->pkt.send_inv.inval_stag = 0;
c_tx->ctrl_len = sizeof(struct iwarp_send);
crc = (char *)&c_tx->pkt.send_pkt.crc;
data = siw_try_1seg(c_tx, crc);
break;
case SIW_OP_SEND_REMOTE_INV:
if (tx_flags(wqe) & SIW_WQE_SOLICITED)
memcpy(&c_tx->pkt.ctrl,
&iwarp_pktinfo[RDMAP_SEND_SE_INVAL].ctrl,
sizeof(struct iwarp_ctrl));
else
memcpy(&c_tx->pkt.ctrl,
&iwarp_pktinfo[RDMAP_SEND_INVAL].ctrl,
sizeof(struct iwarp_ctrl));
c_tx->pkt.send.ddp_qn = RDMAP_UNTAGGED_QN_SEND;
c_tx->pkt.send.ddp_msn =
htonl(++c_tx->ddp_msn[RDMAP_UNTAGGED_QN_SEND]);
c_tx->pkt.send.ddp_mo = 0;
c_tx->pkt.send_inv.inval_stag = cpu_to_be32(wqe->sqe.rkey);
c_tx->ctrl_len = sizeof(struct iwarp_send_inv);
crc = (char *)&c_tx->pkt.send_pkt.crc;
data = siw_try_1seg(c_tx, crc);
break;
case SIW_OP_WRITE:
memcpy(&c_tx->pkt.ctrl, &iwarp_pktinfo[RDMAP_RDMA_WRITE].ctrl,
sizeof(struct iwarp_ctrl));
c_tx->pkt.rwrite.sink_stag = htonl(wqe->sqe.rkey);
c_tx->pkt.rwrite.sink_to = cpu_to_be64(wqe->sqe.raddr);
c_tx->ctrl_len = sizeof(struct iwarp_rdma_write);
crc = (char *)&c_tx->pkt.write_pkt.crc;
data = siw_try_1seg(c_tx, crc);
break;
case SIW_OP_READ_RESPONSE:
memcpy(&c_tx->pkt.ctrl,
&iwarp_pktinfo[RDMAP_RDMA_READ_RESP].ctrl,
sizeof(struct iwarp_ctrl));
/* NBO */
c_tx->pkt.rresp.sink_stag = cpu_to_be32(wqe->sqe.rkey);
c_tx->pkt.rresp.sink_to = cpu_to_be64(wqe->sqe.raddr);
c_tx->ctrl_len = sizeof(struct iwarp_rdma_rresp);
crc = (char *)&c_tx->pkt.write_pkt.crc;
data = siw_try_1seg(c_tx, crc);
break;
default:
siw_dbg_qp(tx_qp(c_tx), "stale wqe type %d\n", tx_type(wqe));
return -EOPNOTSUPP;
}
if (unlikely(data < 0))
return data;
c_tx->ctrl_sent = 0;
if (data <= MAX_HDR_INLINE) {
if (data) {
wqe->processed = data;
c_tx->pkt.ctrl.mpa_len =
htons(c_tx->ctrl_len + data - MPA_HDR_SIZE);
/* Add pad, if needed */
data += -(int)data & 0x3;
/* advance CRC location after payload */
crc += data;
c_tx->ctrl_len += data;
if (!(c_tx->pkt.ctrl.ddp_rdmap_ctrl & DDP_FLAG_TAGGED))
c_tx->pkt.c_untagged.ddp_mo = 0;
else
c_tx->pkt.c_tagged.ddp_to =
cpu_to_be64(wqe->sqe.raddr);
}
*(u32 *)crc = 0;
/*
* Do complete CRC if enabled and short packet
*/
if (c_tx->mpa_crc_hd &&
crypto_shash_digest(c_tx->mpa_crc_hd, (u8 *)&c_tx->pkt,
c_tx->ctrl_len, (u8 *)crc) != 0)
return -EINVAL;
c_tx->ctrl_len += MPA_CRC_SIZE;
return PKT_COMPLETE;
}
c_tx->ctrl_len += MPA_CRC_SIZE;
c_tx->sge_idx = 0;
c_tx->sge_off = 0;
c_tx->pbl_idx = 0;
/*
* Allow direct sending out of user buffer if WR is non signalled
* and payload is over threshold.
* Per RDMA verbs, the application should not change the send buffer
* until the work completed. In iWarp, work completion is only
* local delivery to TCP. TCP may reuse the buffer for
* retransmission. Changing unsent data also breaks the CRC,
* if applied.
*/
if (c_tx->zcopy_tx && wqe->bytes >= SENDPAGE_THRESH &&
!(tx_flags(wqe) & SIW_WQE_SIGNALLED))
c_tx->use_sendpage = 1;
else
c_tx->use_sendpage = 0;
return PKT_FRAGMENTED;
}
/*
* Send out one complete control type FPDU, or header of FPDU carrying
* data. Used for fixed sized packets like Read.Requests or zero length
* SENDs, WRITEs, READ.Responses, or header only.
*/
static int siw_tx_ctrl(struct siw_iwarp_tx *c_tx, struct socket *s,
int flags)
{
struct msghdr msg = { .msg_flags = flags };
struct kvec iov = { .iov_base =
(char *)&c_tx->pkt.ctrl + c_tx->ctrl_sent,
.iov_len = c_tx->ctrl_len - c_tx->ctrl_sent };
int rv = kernel_sendmsg(s, &msg, &iov, 1, iov.iov_len);
if (rv >= 0) {
c_tx->ctrl_sent += rv;
if (c_tx->ctrl_sent == c_tx->ctrl_len)
rv = 0;
else
rv = -EAGAIN;
}
return rv;
}
/*
* 0copy TCP transmit interface: Use MSG_SPLICE_PAGES.
*
* Using sendpage to push page by page appears to be less efficient
* than using sendmsg, even if data are copied.
*
* A general performance limitation might be the extra four bytes
* trailer checksum segment to be pushed after user data.
*/
static int siw_tcp_sendpages(struct socket *s, struct page **page, int offset,
size_t size)
{
struct bio_vec bvec;
struct msghdr msg = {
.msg_flags = (MSG_MORE | MSG_DONTWAIT | MSG_SPLICE_PAGES),
};
struct sock *sk = s->sk;
int i = 0, rv = 0, sent = 0;
while (size) {
size_t bytes = min_t(size_t, PAGE_SIZE - offset, size);
if (size + offset <= PAGE_SIZE)
msg.msg_flags &= ~MSG_MORE;
tcp_rate_check_app_limited(sk);
bvec_set_page(&bvec, page[i], bytes, offset);
iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, size);
try_page_again:
lock_sock(sk);
rv = tcp_sendmsg_locked(sk, &msg, size);
release_sock(sk);
if (rv > 0) {
size -= rv;
sent += rv;
if (rv != bytes) {
offset += rv;
bytes -= rv;
goto try_page_again;
}
offset = 0;
} else {
if (rv == -EAGAIN || rv == 0)
break;
return rv;
}
i++;
}
return sent;
}
/*
* siw_0copy_tx()
*
* Pushes list of pages to TCP socket. If pages from multiple
* SGE's, all referenced pages of each SGE are pushed in one
* shot.
*/
static int siw_0copy_tx(struct socket *s, struct page **page,
struct siw_sge *sge, unsigned int offset,
unsigned int size)
{
int i = 0, sent = 0, rv;
int sge_bytes = min(sge->length - offset, size);
offset = (sge->laddr + offset) & ~PAGE_MASK;
while (sent != size) {
rv = siw_tcp_sendpages(s, &page[i], offset, sge_bytes);
if (rv >= 0) {
sent += rv;
if (size == sent || sge_bytes > rv)
break;
i += PAGE_ALIGN(sge_bytes + offset) >> PAGE_SHIFT;
sge++;
sge_bytes = min(sge->length, size - sent);
offset = sge->laddr & ~PAGE_MASK;
} else {
sent = rv;
break;
}
}
return sent;
}
#define MAX_TRAILER (MPA_CRC_SIZE + 4)
static void siw_unmap_pages(struct kvec *iov, unsigned long kmap_mask, int len)
{
int i;
/*
* Work backwards through the array to honor the kmap_local_page()
* ordering requirements.
*/
for (i = (len-1); i >= 0; i--) {
if (kmap_mask & BIT(i)) {
unsigned long addr = (unsigned long)iov[i].iov_base;
kunmap_local((void *)(addr & PAGE_MASK));
}
}
}
/*
* siw_tx_hdt() tries to push a complete packet to TCP where all
* packet fragments are referenced by the elements of one iovec.
* For the data portion, each involved page must be referenced by
* one extra element. All sge's data can be non-aligned to page
* boundaries. Two more elements are referencing iWARP header
* and trailer:
* MAX_ARRAY = 64KB/PAGE_SIZE + 1 + (2 * (SIW_MAX_SGE - 1) + HDR + TRL
*/
#define MAX_ARRAY ((0xffff / PAGE_SIZE) + 1 + (2 * (SIW_MAX_SGE - 1) + 2))
/*
* Write out iov referencing hdr, data and trailer of current FPDU.
* Update transmit state dependent on write return status
*/
static int siw_tx_hdt(struct siw_iwarp_tx *c_tx, struct socket *s)
{
struct siw_wqe *wqe = &c_tx->wqe_active;
struct siw_sge *sge = &wqe->sqe.sge[c_tx->sge_idx];
struct kvec iov[MAX_ARRAY];
struct page *page_array[MAX_ARRAY];
struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_EOR };
int seg = 0, do_crc = c_tx->do_crc, is_kva = 0, rv;
unsigned int data_len = c_tx->bytes_unsent, hdr_len = 0, trl_len = 0,
sge_off = c_tx->sge_off, sge_idx = c_tx->sge_idx,
pbl_idx = c_tx->pbl_idx;
unsigned long kmap_mask = 0L;
if (c_tx->state == SIW_SEND_HDR) {
if (c_tx->use_sendpage) {
rv = siw_tx_ctrl(c_tx, s, MSG_DONTWAIT | MSG_MORE);
if (rv)
goto done;
c_tx->state = SIW_SEND_DATA;
} else {
iov[0].iov_base =
(char *)&c_tx->pkt.ctrl + c_tx->ctrl_sent;
iov[0].iov_len = hdr_len =
c_tx->ctrl_len - c_tx->ctrl_sent;
seg = 1;
}
}
wqe->processed += data_len;
while (data_len) { /* walk the list of SGE's */
unsigned int sge_len = min(sge->length - sge_off, data_len);
unsigned int fp_off = (sge->laddr + sge_off) & ~PAGE_MASK;
struct siw_mem *mem;
if (!(tx_flags(wqe) & SIW_WQE_INLINE)) {
mem = wqe->mem[sge_idx];
is_kva = mem->mem_obj == NULL ? 1 : 0;
} else {
is_kva = 1;
}
if (is_kva && !c_tx->use_sendpage) {
/*
* tx from kernel virtual address: either inline data
* or memory region with assigned kernel buffer
*/
iov[seg].iov_base =
ib_virt_dma_to_ptr(sge->laddr + sge_off);
iov[seg].iov_len = sge_len;
if (do_crc)
crypto_shash_update(c_tx->mpa_crc_hd,
iov[seg].iov_base,
sge_len);
sge_off += sge_len;
data_len -= sge_len;
seg++;
goto sge_done;
}
while (sge_len) {
size_t plen = min((int)PAGE_SIZE - fp_off, sge_len);
void *kaddr;
if (!is_kva) {
struct page *p;
p = siw_get_page(mem, sge, sge_off, &pbl_idx);
if (unlikely(!p)) {
siw_unmap_pages(iov, kmap_mask, seg);
wqe->processed -= c_tx->bytes_unsent;
rv = -EFAULT;
goto done_crc;
}
page_array[seg] = p;
if (!c_tx->use_sendpage) {
void *kaddr = kmap_local_page(p);
/* Remember for later kunmap() */
kmap_mask |= BIT(seg);
iov[seg].iov_base = kaddr + fp_off;
iov[seg].iov_len = plen;
if (do_crc)
crypto_shash_update(
c_tx->mpa_crc_hd,
iov[seg].iov_base,
plen);
} else if (do_crc) {
kaddr = kmap_local_page(p);
crypto_shash_update(c_tx->mpa_crc_hd,
kaddr + fp_off,
plen);
kunmap_local(kaddr);
}
} else {
/*
* Cast to an uintptr_t to preserve all 64 bits
* in sge->laddr.
*/
u64 va = sge->laddr + sge_off;
page_array[seg] = ib_virt_dma_to_page(va);
if (do_crc)
crypto_shash_update(
c_tx->mpa_crc_hd,
ib_virt_dma_to_ptr(va),
plen);
}
sge_len -= plen;
sge_off += plen;
data_len -= plen;
fp_off = 0;
if (++seg >= (int)MAX_ARRAY) {
siw_dbg_qp(tx_qp(c_tx), "to many fragments\n");
siw_unmap_pages(iov, kmap_mask, seg-1);
wqe->processed -= c_tx->bytes_unsent;
rv = -EMSGSIZE;
goto done_crc;
}
}
sge_done:
/* Update SGE variables at end of SGE */
if (sge_off == sge->length &&
(data_len != 0 || wqe->processed < wqe->bytes)) {
sge_idx++;
sge++;
sge_off = 0;
}
}
/* trailer */
if (likely(c_tx->state != SIW_SEND_TRAILER)) {
iov[seg].iov_base = &c_tx->trailer.pad[4 - c_tx->pad];
iov[seg].iov_len = trl_len = MAX_TRAILER - (4 - c_tx->pad);
} else {
iov[seg].iov_base = &c_tx->trailer.pad[c_tx->ctrl_sent];
iov[seg].iov_len = trl_len = MAX_TRAILER - c_tx->ctrl_sent;
}
if (c_tx->pad) {
*(u32 *)c_tx->trailer.pad = 0;
if (do_crc)
crypto_shash_update(c_tx->mpa_crc_hd,
(u8 *)&c_tx->trailer.crc - c_tx->pad,
c_tx->pad);
}
if (!c_tx->mpa_crc_hd)
c_tx->trailer.crc = 0;
else if (do_crc)
crypto_shash_final(c_tx->mpa_crc_hd, (u8 *)&c_tx->trailer.crc);
data_len = c_tx->bytes_unsent;
if (c_tx->use_sendpage) {
rv = siw_0copy_tx(s, page_array, &wqe->sqe.sge[c_tx->sge_idx],
c_tx->sge_off, data_len);
if (rv == data_len) {
rv = kernel_sendmsg(s, &msg, &iov[seg], 1, trl_len);
if (rv > 0)
rv += data_len;
else
rv = data_len;
}
} else {
rv = kernel_sendmsg(s, &msg, iov, seg + 1,
hdr_len + data_len + trl_len);
siw_unmap_pages(iov, kmap_mask, seg);
}
if (rv < (int)hdr_len) {
/* Not even complete hdr pushed or negative rv */
wqe->processed -= data_len;
if (rv >= 0) {
c_tx->ctrl_sent += rv;
rv = -EAGAIN;
}
goto done_crc;
}
rv -= hdr_len;
if (rv >= (int)data_len) {
/* all user data pushed to TCP or no data to push */
if (data_len > 0 && wqe->processed < wqe->bytes) {
/* Save the current state for next tx */
c_tx->sge_idx = sge_idx;
c_tx->sge_off = sge_off;
c_tx->pbl_idx = pbl_idx;
}
rv -= data_len;
if (rv == trl_len) /* all pushed */
rv = 0;
else {
c_tx->state = SIW_SEND_TRAILER;
c_tx->ctrl_len = MAX_TRAILER;
c_tx->ctrl_sent = rv + 4 - c_tx->pad;
c_tx->bytes_unsent = 0;
rv = -EAGAIN;
}
} else if (data_len > 0) {
/* Maybe some user data pushed to TCP */
c_tx->state = SIW_SEND_DATA;
wqe->processed -= data_len - rv;
if (rv) {
/*
* Some bytes out. Recompute tx state based
* on old state and bytes pushed
*/
unsigned int sge_unsent;
c_tx->bytes_unsent -= rv;
sge = &wqe->sqe.sge[c_tx->sge_idx];
sge_unsent = sge->length - c_tx->sge_off;
while (sge_unsent <= rv) {
rv -= sge_unsent;
c_tx->sge_idx++;
c_tx->sge_off = 0;
sge++;
sge_unsent = sge->length;
}
c_tx->sge_off += rv;
}
rv = -EAGAIN;
}
done_crc:
c_tx->do_crc = 0;
done:
return rv;
}
static void siw_update_tcpseg(struct siw_iwarp_tx *c_tx,
struct socket *s)
{
struct tcp_sock *tp = tcp_sk(s->sk);
if (tp->gso_segs) {
if (c_tx->gso_seg_limit == 0)
c_tx->tcp_seglen = tp->mss_cache * tp->gso_segs;
else
c_tx->tcp_seglen =
tp->mss_cache *
min_t(u16, c_tx->gso_seg_limit, tp->gso_segs);
} else {
c_tx->tcp_seglen = tp->mss_cache;
}
/* Loopback may give odd numbers */
c_tx->tcp_seglen &= 0xfffffff8;
}
/*
* siw_prepare_fpdu()
*
* Prepares transmit context to send out one FPDU if FPDU will contain
* user data and user data are not immediate data.
* Computes maximum FPDU length to fill up TCP MSS if possible.
*
* @qp: QP from which to transmit
* @wqe: Current WQE causing transmission
*
* TODO: Take into account real available sendspace on socket
* to avoid header misalignment due to send pausing within
* fpdu transmission
*/
static void siw_prepare_fpdu(struct siw_qp *qp, struct siw_wqe *wqe)
{
struct siw_iwarp_tx *c_tx = &qp->tx_ctx;
int data_len;
c_tx->ctrl_len =
iwarp_pktinfo[__rdmap_get_opcode(&c_tx->pkt.ctrl)].hdr_len;
c_tx->ctrl_sent = 0;
/*
* Update target buffer offset if any
*/
if (!(c_tx->pkt.ctrl.ddp_rdmap_ctrl & DDP_FLAG_TAGGED))
/* Untagged message */
c_tx->pkt.c_untagged.ddp_mo = cpu_to_be32(wqe->processed);
else /* Tagged message */
c_tx->pkt.c_tagged.ddp_to =
cpu_to_be64(wqe->sqe.raddr + wqe->processed);
data_len = wqe->bytes - wqe->processed;
if (data_len + c_tx->ctrl_len + MPA_CRC_SIZE > c_tx->tcp_seglen) {
/* Trim DDP payload to fit into current TCP segment */
data_len = c_tx->tcp_seglen - (c_tx->ctrl_len + MPA_CRC_SIZE);
c_tx->pkt.ctrl.ddp_rdmap_ctrl &= ~DDP_FLAG_LAST;
c_tx->pad = 0;
} else {
c_tx->pkt.ctrl.ddp_rdmap_ctrl |= DDP_FLAG_LAST;
c_tx->pad = -data_len & 0x3;
}
c_tx->bytes_unsent = data_len;
c_tx->pkt.ctrl.mpa_len =
htons(c_tx->ctrl_len + data_len - MPA_HDR_SIZE);
/*
* Init MPA CRC computation
*/
if (c_tx->mpa_crc_hd) {
crypto_shash_init(c_tx->mpa_crc_hd);
crypto_shash_update(c_tx->mpa_crc_hd, (u8 *)&c_tx->pkt,
c_tx->ctrl_len);
c_tx->do_crc = 1;
}
}
/*
* siw_check_sgl_tx()
*
* Check permissions for a list of SGE's (SGL).
* A successful check will have all memory referenced
* for transmission resolved and assigned to the WQE.
*
* @pd: Protection Domain SGL should belong to
* @wqe: WQE to be checked
* @perms: requested access permissions
*
*/
static int siw_check_sgl_tx(struct ib_pd *pd, struct siw_wqe *wqe,
enum ib_access_flags perms)
{
struct siw_sge *sge = &wqe->sqe.sge[0];
int i, len, num_sge = wqe->sqe.num_sge;
if (unlikely(num_sge > SIW_MAX_SGE))
return -EINVAL;
for (i = 0, len = 0; num_sge; num_sge--, i++, sge++) {
/*
* rdma verbs: do not check stag for a zero length sge
*/
if (sge->length) {
int rv = siw_check_sge(pd, sge, &wqe->mem[i], perms, 0,
sge->length);
if (unlikely(rv != E_ACCESS_OK))
return rv;
}
len += sge->length;
}
return len;
}
/*
* siw_qp_sq_proc_tx()
*
* Process one WQE which needs transmission on the wire.
*/
static int siw_qp_sq_proc_tx(struct siw_qp *qp, struct siw_wqe *wqe)
{
struct siw_iwarp_tx *c_tx = &qp->tx_ctx;
struct socket *s = qp->attrs.sk;
int rv = 0, burst_len = qp->tx_ctx.burst;
enum rdmap_ecode ecode = RDMAP_ECODE_CATASTROPHIC_STREAM;
if (unlikely(wqe->wr_status == SIW_WR_IDLE))
return 0;
if (!burst_len)
burst_len = SQ_USER_MAXBURST;
if (wqe->wr_status == SIW_WR_QUEUED) {
if (!(wqe->sqe.flags & SIW_WQE_INLINE)) {
if (tx_type(wqe) == SIW_OP_READ_RESPONSE)
wqe->sqe.num_sge = 1;
if (tx_type(wqe) != SIW_OP_READ &&
tx_type(wqe) != SIW_OP_READ_LOCAL_INV) {
/*
* Reference memory to be tx'd w/o checking
* access for LOCAL_READ permission, since
* not defined in RDMA core.
*/
rv = siw_check_sgl_tx(qp->pd, wqe, 0);
if (rv < 0) {
if (tx_type(wqe) ==
SIW_OP_READ_RESPONSE)
ecode = siw_rdmap_error(-rv);
rv = -EINVAL;
goto tx_error;
}
wqe->bytes = rv;
} else {
wqe->bytes = 0;
}
} else {
wqe->bytes = wqe->sqe.sge[0].length;
if (!rdma_is_kernel_res(&qp->base_qp.res)) {
if (wqe->bytes > SIW_MAX_INLINE) {
rv = -EINVAL;
goto tx_error;
}
wqe->sqe.sge[0].laddr =
(u64)(uintptr_t)&wqe->sqe.sge[1];
}
}
wqe->wr_status = SIW_WR_INPROGRESS;
wqe->processed = 0;
siw_update_tcpseg(c_tx, s);
rv = siw_qp_prepare_tx(c_tx);
if (rv == PKT_FRAGMENTED) {
c_tx->state = SIW_SEND_HDR;
siw_prepare_fpdu(qp, wqe);
} else if (rv == PKT_COMPLETE) {
c_tx->state = SIW_SEND_SHORT_FPDU;
} else {
goto tx_error;
}
}
next_segment:
siw_dbg_qp(qp, "wr type %d, state %d, data %u, sent %u, id %llx\n",
tx_type(wqe), wqe->wr_status, wqe->bytes, wqe->processed,
wqe->sqe.id);
if (--burst_len == 0) {
rv = -EINPROGRESS;
goto tx_done;
}
if (c_tx->state == SIW_SEND_SHORT_FPDU) {
enum siw_opcode tx_type = tx_type(wqe);
unsigned int msg_flags;
if (siw_sq_empty(qp) || !siw_tcp_nagle || burst_len == 1)
/*
* End current TCP segment, if SQ runs empty,
* or siw_tcp_nagle is not set, or we bail out
* soon due to no burst credit left.
*/
msg_flags = MSG_DONTWAIT;
else
msg_flags = MSG_DONTWAIT | MSG_MORE;
rv = siw_tx_ctrl(c_tx, s, msg_flags);
if (!rv && tx_type != SIW_OP_READ &&
tx_type != SIW_OP_READ_LOCAL_INV)
wqe->processed = wqe->bytes;
goto tx_done;
} else {
rv = siw_tx_hdt(c_tx, s);
}
if (!rv) {
/*
* One segment sent. Processing completed if last
* segment, Do next segment otherwise.
*/
if (unlikely(c_tx->tx_suspend)) {
/*
* Verbs, 6.4.: Try stopping sending after a full
* DDP segment if the connection goes down
* (== peer halfclose)
*/
rv = -ECONNABORTED;
goto tx_done;
}
if (c_tx->pkt.ctrl.ddp_rdmap_ctrl & DDP_FLAG_LAST) {
siw_dbg_qp(qp, "WQE completed\n");
goto tx_done;
}
c_tx->state = SIW_SEND_HDR;
siw_update_tcpseg(c_tx, s);
siw_prepare_fpdu(qp, wqe);
goto next_segment;
}
tx_done:
qp->tx_ctx.burst = burst_len;
return rv;
tx_error:
if (ecode != RDMAP_ECODE_CATASTROPHIC_STREAM)
siw_init_terminate(qp, TERM_ERROR_LAYER_RDMAP,
RDMAP_ETYPE_REMOTE_PROTECTION, ecode, 1);
else
siw_init_terminate(qp, TERM_ERROR_LAYER_RDMAP,
RDMAP_ETYPE_CATASTROPHIC,
RDMAP_ECODE_UNSPECIFIED, 1);
return rv;
}
static int siw_fastreg_mr(struct ib_pd *pd, struct siw_sqe *sqe)
{
struct ib_mr *base_mr = (struct ib_mr *)(uintptr_t)sqe->base_mr;
struct siw_device *sdev = to_siw_dev(pd->device);
struct siw_mem *mem;
int rv = 0;
siw_dbg_pd(pd, "STag 0x%08x\n", sqe->rkey);
if (unlikely(!base_mr)) {
pr_warn("siw: fastreg: STag 0x%08x unknown\n", sqe->rkey);
return -EINVAL;
}
if (unlikely(base_mr->rkey >> 8 != sqe->rkey >> 8)) {
pr_warn("siw: fastreg: STag 0x%08x: bad MR\n", sqe->rkey);
return -EINVAL;
}
mem = siw_mem_id2obj(sdev, sqe->rkey >> 8);
if (unlikely(!mem)) {
pr_warn("siw: fastreg: STag 0x%08x unknown\n", sqe->rkey);
return -EINVAL;
}
if (unlikely(mem->pd != pd)) {
pr_warn("siw: fastreg: PD mismatch\n");
rv = -EINVAL;
goto out;
}
if (unlikely(mem->stag_valid)) {
pr_warn("siw: fastreg: STag 0x%08x already valid\n", sqe->rkey);
rv = -EINVAL;
goto out;
}
/* Refresh STag since user may have changed key part */
mem->stag = sqe->rkey;
mem->perms = sqe->access;
siw_dbg_mem(mem, "STag 0x%08x now valid\n", sqe->rkey);
mem->va = base_mr->iova;
mem->stag_valid = 1;
out:
siw_mem_put(mem);
return rv;
}
static int siw_qp_sq_proc_local(struct siw_qp *qp, struct siw_wqe *wqe)
{
int rv;
switch (tx_type(wqe)) {
case SIW_OP_REG_MR:
rv = siw_fastreg_mr(qp->pd, &wqe->sqe);
break;
case SIW_OP_INVAL_STAG:
rv = siw_invalidate_stag(qp->pd, wqe->sqe.rkey);
break;
default:
rv = -EINVAL;
}
return rv;
}
/*
* siw_qp_sq_process()
*
* Core TX path routine for RDMAP/DDP/MPA using a TCP kernel socket.
* Sends RDMAP payload for the current SQ WR @wqe of @qp in one or more
* MPA FPDUs, each containing a DDP segment.
*
* SQ processing may occur in user context as a result of posting
* new WQE's or from siw_tx_thread context. Processing in
* user context is limited to non-kernel verbs users.
*
* SQ processing may get paused anytime, possibly in the middle of a WR
* or FPDU, if insufficient send space is available. SQ processing
* gets resumed from siw_tx_thread, if send space becomes available again.
*
* Must be called with the QP state read-locked.
*
* Note:
* An outbound RREQ can be satisfied by the corresponding RRESP
* _before_ it gets assigned to the ORQ. This happens regularly
* in RDMA READ via loopback case. Since both outbound RREQ and
* inbound RRESP can be handled by the same CPU, locking the ORQ
* is dead-lock prone and thus not an option. With that, the
* RREQ gets assigned to the ORQ _before_ being sent - see
* siw_activate_tx() - and pulled back in case of send failure.
*/
int siw_qp_sq_process(struct siw_qp *qp)
{
struct siw_wqe *wqe = tx_wqe(qp);
enum siw_opcode tx_type;
unsigned long flags;
int rv = 0;
siw_dbg_qp(qp, "enter for type %d\n", tx_type(wqe));
next_wqe:
/*
* Stop QP processing if SQ state changed
*/
if (unlikely(qp->tx_ctx.tx_suspend)) {
siw_dbg_qp(qp, "tx suspended\n");
goto done;
}
tx_type = tx_type(wqe);
if (tx_type <= SIW_OP_READ_RESPONSE)
rv = siw_qp_sq_proc_tx(qp, wqe);
else
rv = siw_qp_sq_proc_local(qp, wqe);
if (!rv) {
/*
* WQE processing done
*/
switch (tx_type) {
case SIW_OP_SEND:
case SIW_OP_SEND_REMOTE_INV:
case SIW_OP_WRITE:
siw_wqe_put_mem(wqe, tx_type);
fallthrough;
case SIW_OP_INVAL_STAG:
case SIW_OP_REG_MR:
if (tx_flags(wqe) & SIW_WQE_SIGNALLED)
siw_sqe_complete(qp, &wqe->sqe, wqe->bytes,
SIW_WC_SUCCESS);
break;
case SIW_OP_READ:
case SIW_OP_READ_LOCAL_INV:
/*
* already enqueued to ORQ queue
*/
break;
case SIW_OP_READ_RESPONSE:
siw_wqe_put_mem(wqe, tx_type);
break;
default:
WARN(1, "undefined WQE type %d\n", tx_type);
rv = -EINVAL;
goto done;
}
spin_lock_irqsave(&qp->sq_lock, flags);
wqe->wr_status = SIW_WR_IDLE;
rv = siw_activate_tx(qp);
spin_unlock_irqrestore(&qp->sq_lock, flags);
if (rv <= 0)
goto done;
goto next_wqe;
} else if (rv == -EAGAIN) {
siw_dbg_qp(qp, "sq paused: hd/tr %d of %d, data %d\n",
qp->tx_ctx.ctrl_sent, qp->tx_ctx.ctrl_len,
qp->tx_ctx.bytes_unsent);
rv = 0;
goto done;
} else if (rv == -EINPROGRESS) {
rv = siw_sq_start(qp);
goto done;
} else {
/*
* WQE processing failed.
* Verbs 8.3.2:
* o It turns any WQE into a signalled WQE.
* o Local catastrophic error must be surfaced
* o QP must be moved into Terminate state: done by code
* doing socket state change processing
*
* o TODO: Termination message must be sent.
* o TODO: Implement more precise work completion errors,
* see enum ib_wc_status in ib_verbs.h
*/
siw_dbg_qp(qp, "wqe type %d processing failed: %d\n",
tx_type(wqe), rv);
spin_lock_irqsave(&qp->sq_lock, flags);
/*
* RREQ may have already been completed by inbound RRESP!
*/
if ((tx_type == SIW_OP_READ ||
tx_type == SIW_OP_READ_LOCAL_INV) && qp->attrs.orq_size) {
/* Cleanup pending entry in ORQ */
qp->orq_put--;
qp->orq[qp->orq_put % qp->attrs.orq_size].flags = 0;
}
spin_unlock_irqrestore(&qp->sq_lock, flags);
/*
* immediately suspends further TX processing
*/
if (!qp->tx_ctx.tx_suspend)
siw_qp_cm_drop(qp, 0);
switch (tx_type) {
case SIW_OP_SEND:
case SIW_OP_SEND_REMOTE_INV:
case SIW_OP_SEND_WITH_IMM:
case SIW_OP_WRITE:
case SIW_OP_READ:
case SIW_OP_READ_LOCAL_INV:
siw_wqe_put_mem(wqe, tx_type);
fallthrough;
case SIW_OP_INVAL_STAG:
case SIW_OP_REG_MR:
siw_sqe_complete(qp, &wqe->sqe, wqe->bytes,
SIW_WC_LOC_QP_OP_ERR);
siw_qp_event(qp, IB_EVENT_QP_FATAL);
break;
case SIW_OP_READ_RESPONSE:
siw_dbg_qp(qp, "proc. read.response failed: %d\n", rv);
siw_qp_event(qp, IB_EVENT_QP_REQ_ERR);
siw_wqe_put_mem(wqe, SIW_OP_READ_RESPONSE);
break;
default:
WARN(1, "undefined WQE type %d\n", tx_type);
rv = -EINVAL;
}
wqe->wr_status = SIW_WR_IDLE;
}
done:
return rv;
}
static void siw_sq_resume(struct siw_qp *qp)
{
if (down_read_trylock(&qp->state_lock)) {
if (likely(qp->attrs.state == SIW_QP_STATE_RTS &&
!qp->tx_ctx.tx_suspend)) {
int rv = siw_qp_sq_process(qp);
up_read(&qp->state_lock);
if (unlikely(rv < 0)) {
siw_dbg_qp(qp, "SQ task failed: err %d\n", rv);
if (!qp->tx_ctx.tx_suspend)
siw_qp_cm_drop(qp, 0);
}
} else {
up_read(&qp->state_lock);
}
} else {
siw_dbg_qp(qp, "Resume SQ while QP locked\n");
}
siw_qp_put(qp);
}
struct tx_task_t {
struct llist_head active;
wait_queue_head_t waiting;
};
static DEFINE_PER_CPU(struct tx_task_t, siw_tx_task_g);
int siw_create_tx_threads(void)
{
int cpu, assigned = 0;
for_each_online_cpu(cpu) {
struct tx_task_t *tx_task;
/* Skip HT cores */
if (cpu % cpumask_weight(topology_sibling_cpumask(cpu)))
continue;
tx_task = &per_cpu(siw_tx_task_g, cpu);
init_llist_head(&tx_task->active);
init_waitqueue_head(&tx_task->waiting);
siw_tx_thread[cpu] =
kthread_run_on_cpu(siw_run_sq,
(unsigned long *)(long)cpu,
cpu, "siw_tx/%u");
if (IS_ERR(siw_tx_thread[cpu])) {
siw_tx_thread[cpu] = NULL;
continue;
}
assigned++;
}
return assigned;
}
void siw_stop_tx_threads(void)
{
int cpu;
for_each_possible_cpu(cpu) {
if (siw_tx_thread[cpu]) {
kthread_stop(siw_tx_thread[cpu]);
wake_up(&per_cpu(siw_tx_task_g, cpu).waiting);
siw_tx_thread[cpu] = NULL;
}
}
}
int siw_run_sq(void *data)
{
const int nr_cpu = (unsigned int)(long)data;
struct llist_node *active;
struct siw_qp *qp;
struct tx_task_t *tx_task = &per_cpu(siw_tx_task_g, nr_cpu);
while (1) {
struct llist_node *fifo_list = NULL;
wait_event_interruptible(tx_task->waiting,
!llist_empty(&tx_task->active) ||
kthread_should_stop());
if (kthread_should_stop())
break;
active = llist_del_all(&tx_task->active);
/*
* llist_del_all returns a list with newest entry first.
* Re-order list for fairness among QP's.
*/
fifo_list = llist_reverse_order(active);
while (fifo_list) {
qp = container_of(fifo_list, struct siw_qp, tx_list);
fifo_list = llist_next(fifo_list);
qp->tx_list.next = NULL;
siw_sq_resume(qp);
}
}
active = llist_del_all(&tx_task->active);
if (active) {
llist_for_each_entry(qp, active, tx_list) {
qp->tx_list.next = NULL;
siw_sq_resume(qp);
}
}
return 0;
}
int siw_sq_start(struct siw_qp *qp)
{
if (tx_wqe(qp)->wr_status == SIW_WR_IDLE)
return 0;
if (unlikely(!cpu_online(qp->tx_cpu))) {
siw_put_tx_cpu(qp->tx_cpu);
qp->tx_cpu = siw_get_tx_cpu(qp->sdev);
if (qp->tx_cpu < 0) {
pr_warn("siw: no tx cpu available\n");
return -EIO;
}
}
siw_qp_get(qp);
llist_add(&qp->tx_list, &per_cpu(siw_tx_task_g, qp->tx_cpu).active);
wake_up(&per_cpu(siw_tx_task_g, qp->tx_cpu).waiting);
return 0;
}