3dc167ba57
People report that utime and stime from /proc/<pid>/stat become very wrong when the numbers are big enough, especially if you watch these counters incrementally. Specifically, the current implementation of: stime*rtime/total, results in a saw-tooth function on top of the desired line, where the teeth grow in size the larger the values become. IOW, it has a relative error. The result is that, when watching incrementally as time progresses (for large values), we'll see periods of pure stime or utime increase, irrespective of the actual ratio we're striving for. Replace scale_stime() with a math64.h helper: mul_u64_u64_div_u64() that is far more accurate. This also allows architectures to override the implementation -- for instance they can opt for the old algorithm if this new one turns out to be too expensive for them. Signed-off-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20200519172506.GA317395@hirez.programming.kicks-ass.net
1081 lines
26 KiB
C
1081 lines
26 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Simple CPU accounting cgroup controller
|
|
*/
|
|
#include "sched.h"
|
|
|
|
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
|
|
|
|
/*
|
|
* There are no locks covering percpu hardirq/softirq time.
|
|
* They are only modified in vtime_account, on corresponding CPU
|
|
* with interrupts disabled. So, writes are safe.
|
|
* They are read and saved off onto struct rq in update_rq_clock().
|
|
* This may result in other CPU reading this CPU's irq time and can
|
|
* race with irq/vtime_account on this CPU. We would either get old
|
|
* or new value with a side effect of accounting a slice of irq time to wrong
|
|
* task when irq is in progress while we read rq->clock. That is a worthy
|
|
* compromise in place of having locks on each irq in account_system_time.
|
|
*/
|
|
DEFINE_PER_CPU(struct irqtime, cpu_irqtime);
|
|
|
|
static int sched_clock_irqtime;
|
|
|
|
void enable_sched_clock_irqtime(void)
|
|
{
|
|
sched_clock_irqtime = 1;
|
|
}
|
|
|
|
void disable_sched_clock_irqtime(void)
|
|
{
|
|
sched_clock_irqtime = 0;
|
|
}
|
|
|
|
static void irqtime_account_delta(struct irqtime *irqtime, u64 delta,
|
|
enum cpu_usage_stat idx)
|
|
{
|
|
u64 *cpustat = kcpustat_this_cpu->cpustat;
|
|
|
|
u64_stats_update_begin(&irqtime->sync);
|
|
cpustat[idx] += delta;
|
|
irqtime->total += delta;
|
|
irqtime->tick_delta += delta;
|
|
u64_stats_update_end(&irqtime->sync);
|
|
}
|
|
|
|
/*
|
|
* Called before incrementing preempt_count on {soft,}irq_enter
|
|
* and before decrementing preempt_count on {soft,}irq_exit.
|
|
*/
|
|
void irqtime_account_irq(struct task_struct *curr)
|
|
{
|
|
struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
|
|
s64 delta;
|
|
int cpu;
|
|
|
|
if (!sched_clock_irqtime)
|
|
return;
|
|
|
|
cpu = smp_processor_id();
|
|
delta = sched_clock_cpu(cpu) - irqtime->irq_start_time;
|
|
irqtime->irq_start_time += delta;
|
|
|
|
/*
|
|
* We do not account for softirq time from ksoftirqd here.
|
|
* We want to continue accounting softirq time to ksoftirqd thread
|
|
* in that case, so as not to confuse scheduler with a special task
|
|
* that do not consume any time, but still wants to run.
|
|
*/
|
|
if (hardirq_count())
|
|
irqtime_account_delta(irqtime, delta, CPUTIME_IRQ);
|
|
else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
|
|
irqtime_account_delta(irqtime, delta, CPUTIME_SOFTIRQ);
|
|
}
|
|
EXPORT_SYMBOL_GPL(irqtime_account_irq);
|
|
|
|
static u64 irqtime_tick_accounted(u64 maxtime)
|
|
{
|
|
struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
|
|
u64 delta;
|
|
|
|
delta = min(irqtime->tick_delta, maxtime);
|
|
irqtime->tick_delta -= delta;
|
|
|
|
return delta;
|
|
}
|
|
|
|
#else /* CONFIG_IRQ_TIME_ACCOUNTING */
|
|
|
|
#define sched_clock_irqtime (0)
|
|
|
|
static u64 irqtime_tick_accounted(u64 dummy)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
#endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
|
|
|
|
static inline void task_group_account_field(struct task_struct *p, int index,
|
|
u64 tmp)
|
|
{
|
|
/*
|
|
* Since all updates are sure to touch the root cgroup, we
|
|
* get ourselves ahead and touch it first. If the root cgroup
|
|
* is the only cgroup, then nothing else should be necessary.
|
|
*
|
|
*/
|
|
__this_cpu_add(kernel_cpustat.cpustat[index], tmp);
|
|
|
|
cgroup_account_cputime_field(p, index, tmp);
|
|
}
|
|
|
|
/*
|
|
* Account user CPU time to a process.
|
|
* @p: the process that the CPU time gets accounted to
|
|
* @cputime: the CPU time spent in user space since the last update
|
|
*/
|
|
void account_user_time(struct task_struct *p, u64 cputime)
|
|
{
|
|
int index;
|
|
|
|
/* Add user time to process. */
|
|
p->utime += cputime;
|
|
account_group_user_time(p, cputime);
|
|
|
|
index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
|
|
|
|
/* Add user time to cpustat. */
|
|
task_group_account_field(p, index, cputime);
|
|
|
|
/* Account for user time used */
|
|
acct_account_cputime(p);
|
|
}
|
|
|
|
/*
|
|
* Account guest CPU time to a process.
|
|
* @p: the process that the CPU time gets accounted to
|
|
* @cputime: the CPU time spent in virtual machine since the last update
|
|
*/
|
|
void account_guest_time(struct task_struct *p, u64 cputime)
|
|
{
|
|
u64 *cpustat = kcpustat_this_cpu->cpustat;
|
|
|
|
/* Add guest time to process. */
|
|
p->utime += cputime;
|
|
account_group_user_time(p, cputime);
|
|
p->gtime += cputime;
|
|
|
|
/* Add guest time to cpustat. */
|
|
if (task_nice(p) > 0) {
|
|
cpustat[CPUTIME_NICE] += cputime;
|
|
cpustat[CPUTIME_GUEST_NICE] += cputime;
|
|
} else {
|
|
cpustat[CPUTIME_USER] += cputime;
|
|
cpustat[CPUTIME_GUEST] += cputime;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Account system CPU time to a process and desired cpustat field
|
|
* @p: the process that the CPU time gets accounted to
|
|
* @cputime: the CPU time spent in kernel space since the last update
|
|
* @index: pointer to cpustat field that has to be updated
|
|
*/
|
|
void account_system_index_time(struct task_struct *p,
|
|
u64 cputime, enum cpu_usage_stat index)
|
|
{
|
|
/* Add system time to process. */
|
|
p->stime += cputime;
|
|
account_group_system_time(p, cputime);
|
|
|
|
/* Add system time to cpustat. */
|
|
task_group_account_field(p, index, cputime);
|
|
|
|
/* Account for system time used */
|
|
acct_account_cputime(p);
|
|
}
|
|
|
|
/*
|
|
* Account system CPU time to a process.
|
|
* @p: the process that the CPU time gets accounted to
|
|
* @hardirq_offset: the offset to subtract from hardirq_count()
|
|
* @cputime: the CPU time spent in kernel space since the last update
|
|
*/
|
|
void account_system_time(struct task_struct *p, int hardirq_offset, u64 cputime)
|
|
{
|
|
int index;
|
|
|
|
if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
|
|
account_guest_time(p, cputime);
|
|
return;
|
|
}
|
|
|
|
if (hardirq_count() - hardirq_offset)
|
|
index = CPUTIME_IRQ;
|
|
else if (in_serving_softirq())
|
|
index = CPUTIME_SOFTIRQ;
|
|
else
|
|
index = CPUTIME_SYSTEM;
|
|
|
|
account_system_index_time(p, cputime, index);
|
|
}
|
|
|
|
/*
|
|
* Account for involuntary wait time.
|
|
* @cputime: the CPU time spent in involuntary wait
|
|
*/
|
|
void account_steal_time(u64 cputime)
|
|
{
|
|
u64 *cpustat = kcpustat_this_cpu->cpustat;
|
|
|
|
cpustat[CPUTIME_STEAL] += cputime;
|
|
}
|
|
|
|
/*
|
|
* Account for idle time.
|
|
* @cputime: the CPU time spent in idle wait
|
|
*/
|
|
void account_idle_time(u64 cputime)
|
|
{
|
|
u64 *cpustat = kcpustat_this_cpu->cpustat;
|
|
struct rq *rq = this_rq();
|
|
|
|
if (atomic_read(&rq->nr_iowait) > 0)
|
|
cpustat[CPUTIME_IOWAIT] += cputime;
|
|
else
|
|
cpustat[CPUTIME_IDLE] += cputime;
|
|
}
|
|
|
|
/*
|
|
* When a guest is interrupted for a longer amount of time, missed clock
|
|
* ticks are not redelivered later. Due to that, this function may on
|
|
* occasion account more time than the calling functions think elapsed.
|
|
*/
|
|
static __always_inline u64 steal_account_process_time(u64 maxtime)
|
|
{
|
|
#ifdef CONFIG_PARAVIRT
|
|
if (static_key_false(¶virt_steal_enabled)) {
|
|
u64 steal;
|
|
|
|
steal = paravirt_steal_clock(smp_processor_id());
|
|
steal -= this_rq()->prev_steal_time;
|
|
steal = min(steal, maxtime);
|
|
account_steal_time(steal);
|
|
this_rq()->prev_steal_time += steal;
|
|
|
|
return steal;
|
|
}
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Account how much elapsed time was spent in steal, irq, or softirq time.
|
|
*/
|
|
static inline u64 account_other_time(u64 max)
|
|
{
|
|
u64 accounted;
|
|
|
|
lockdep_assert_irqs_disabled();
|
|
|
|
accounted = steal_account_process_time(max);
|
|
|
|
if (accounted < max)
|
|
accounted += irqtime_tick_accounted(max - accounted);
|
|
|
|
return accounted;
|
|
}
|
|
|
|
#ifdef CONFIG_64BIT
|
|
static inline u64 read_sum_exec_runtime(struct task_struct *t)
|
|
{
|
|
return t->se.sum_exec_runtime;
|
|
}
|
|
#else
|
|
static u64 read_sum_exec_runtime(struct task_struct *t)
|
|
{
|
|
u64 ns;
|
|
struct rq_flags rf;
|
|
struct rq *rq;
|
|
|
|
rq = task_rq_lock(t, &rf);
|
|
ns = t->se.sum_exec_runtime;
|
|
task_rq_unlock(rq, t, &rf);
|
|
|
|
return ns;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Accumulate raw cputime values of dead tasks (sig->[us]time) and live
|
|
* tasks (sum on group iteration) belonging to @tsk's group.
|
|
*/
|
|
void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
|
|
{
|
|
struct signal_struct *sig = tsk->signal;
|
|
u64 utime, stime;
|
|
struct task_struct *t;
|
|
unsigned int seq, nextseq;
|
|
unsigned long flags;
|
|
|
|
/*
|
|
* Update current task runtime to account pending time since last
|
|
* scheduler action or thread_group_cputime() call. This thread group
|
|
* might have other running tasks on different CPUs, but updating
|
|
* their runtime can affect syscall performance, so we skip account
|
|
* those pending times and rely only on values updated on tick or
|
|
* other scheduler action.
|
|
*/
|
|
if (same_thread_group(current, tsk))
|
|
(void) task_sched_runtime(current);
|
|
|
|
rcu_read_lock();
|
|
/* Attempt a lockless read on the first round. */
|
|
nextseq = 0;
|
|
do {
|
|
seq = nextseq;
|
|
flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
|
|
times->utime = sig->utime;
|
|
times->stime = sig->stime;
|
|
times->sum_exec_runtime = sig->sum_sched_runtime;
|
|
|
|
for_each_thread(tsk, t) {
|
|
task_cputime(t, &utime, &stime);
|
|
times->utime += utime;
|
|
times->stime += stime;
|
|
times->sum_exec_runtime += read_sum_exec_runtime(t);
|
|
}
|
|
/* If lockless access failed, take the lock. */
|
|
nextseq = 1;
|
|
} while (need_seqretry(&sig->stats_lock, seq));
|
|
done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
|
|
/*
|
|
* Account a tick to a process and cpustat
|
|
* @p: the process that the CPU time gets accounted to
|
|
* @user_tick: is the tick from userspace
|
|
* @rq: the pointer to rq
|
|
*
|
|
* Tick demultiplexing follows the order
|
|
* - pending hardirq update
|
|
* - pending softirq update
|
|
* - user_time
|
|
* - idle_time
|
|
* - system time
|
|
* - check for guest_time
|
|
* - else account as system_time
|
|
*
|
|
* Check for hardirq is done both for system and user time as there is
|
|
* no timer going off while we are on hardirq and hence we may never get an
|
|
* opportunity to update it solely in system time.
|
|
* p->stime and friends are only updated on system time and not on irq
|
|
* softirq as those do not count in task exec_runtime any more.
|
|
*/
|
|
static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
|
|
int ticks)
|
|
{
|
|
u64 other, cputime = TICK_NSEC * ticks;
|
|
|
|
/*
|
|
* When returning from idle, many ticks can get accounted at
|
|
* once, including some ticks of steal, irq, and softirq time.
|
|
* Subtract those ticks from the amount of time accounted to
|
|
* idle, or potentially user or system time. Due to rounding,
|
|
* other time can exceed ticks occasionally.
|
|
*/
|
|
other = account_other_time(ULONG_MAX);
|
|
if (other >= cputime)
|
|
return;
|
|
|
|
cputime -= other;
|
|
|
|
if (this_cpu_ksoftirqd() == p) {
|
|
/*
|
|
* ksoftirqd time do not get accounted in cpu_softirq_time.
|
|
* So, we have to handle it separately here.
|
|
* Also, p->stime needs to be updated for ksoftirqd.
|
|
*/
|
|
account_system_index_time(p, cputime, CPUTIME_SOFTIRQ);
|
|
} else if (user_tick) {
|
|
account_user_time(p, cputime);
|
|
} else if (p == this_rq()->idle) {
|
|
account_idle_time(cputime);
|
|
} else if (p->flags & PF_VCPU) { /* System time or guest time */
|
|
account_guest_time(p, cputime);
|
|
} else {
|
|
account_system_index_time(p, cputime, CPUTIME_SYSTEM);
|
|
}
|
|
}
|
|
|
|
static void irqtime_account_idle_ticks(int ticks)
|
|
{
|
|
irqtime_account_process_tick(current, 0, ticks);
|
|
}
|
|
#else /* CONFIG_IRQ_TIME_ACCOUNTING */
|
|
static inline void irqtime_account_idle_ticks(int ticks) { }
|
|
static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
|
|
int nr_ticks) { }
|
|
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
|
|
|
|
/*
|
|
* Use precise platform statistics if available:
|
|
*/
|
|
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
|
|
|
|
# ifndef __ARCH_HAS_VTIME_TASK_SWITCH
|
|
void vtime_task_switch(struct task_struct *prev)
|
|
{
|
|
if (is_idle_task(prev))
|
|
vtime_account_idle(prev);
|
|
else
|
|
vtime_account_kernel(prev);
|
|
|
|
vtime_flush(prev);
|
|
arch_vtime_task_switch(prev);
|
|
}
|
|
# endif
|
|
|
|
/*
|
|
* Archs that account the whole time spent in the idle task
|
|
* (outside irq) as idle time can rely on this and just implement
|
|
* vtime_account_kernel() and vtime_account_idle(). Archs that
|
|
* have other meaning of the idle time (s390 only includes the
|
|
* time spent by the CPU when it's in low power mode) must override
|
|
* vtime_account().
|
|
*/
|
|
#ifndef __ARCH_HAS_VTIME_ACCOUNT
|
|
void vtime_account_irq_enter(struct task_struct *tsk)
|
|
{
|
|
if (!in_interrupt() && is_idle_task(tsk))
|
|
vtime_account_idle(tsk);
|
|
else
|
|
vtime_account_kernel(tsk);
|
|
}
|
|
EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
|
|
#endif /* __ARCH_HAS_VTIME_ACCOUNT */
|
|
|
|
void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
|
|
u64 *ut, u64 *st)
|
|
{
|
|
*ut = curr->utime;
|
|
*st = curr->stime;
|
|
}
|
|
|
|
void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
|
|
{
|
|
*ut = p->utime;
|
|
*st = p->stime;
|
|
}
|
|
EXPORT_SYMBOL_GPL(task_cputime_adjusted);
|
|
|
|
void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
|
|
{
|
|
struct task_cputime cputime;
|
|
|
|
thread_group_cputime(p, &cputime);
|
|
|
|
*ut = cputime.utime;
|
|
*st = cputime.stime;
|
|
}
|
|
|
|
#else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE: */
|
|
|
|
/*
|
|
* Account a single tick of CPU time.
|
|
* @p: the process that the CPU time gets accounted to
|
|
* @user_tick: indicates if the tick is a user or a system tick
|
|
*/
|
|
void account_process_tick(struct task_struct *p, int user_tick)
|
|
{
|
|
u64 cputime, steal;
|
|
|
|
if (vtime_accounting_enabled_this_cpu())
|
|
return;
|
|
|
|
if (sched_clock_irqtime) {
|
|
irqtime_account_process_tick(p, user_tick, 1);
|
|
return;
|
|
}
|
|
|
|
cputime = TICK_NSEC;
|
|
steal = steal_account_process_time(ULONG_MAX);
|
|
|
|
if (steal >= cputime)
|
|
return;
|
|
|
|
cputime -= steal;
|
|
|
|
if (user_tick)
|
|
account_user_time(p, cputime);
|
|
else if ((p != this_rq()->idle) || (irq_count() != HARDIRQ_OFFSET))
|
|
account_system_time(p, HARDIRQ_OFFSET, cputime);
|
|
else
|
|
account_idle_time(cputime);
|
|
}
|
|
|
|
/*
|
|
* Account multiple ticks of idle time.
|
|
* @ticks: number of stolen ticks
|
|
*/
|
|
void account_idle_ticks(unsigned long ticks)
|
|
{
|
|
u64 cputime, steal;
|
|
|
|
if (sched_clock_irqtime) {
|
|
irqtime_account_idle_ticks(ticks);
|
|
return;
|
|
}
|
|
|
|
cputime = ticks * TICK_NSEC;
|
|
steal = steal_account_process_time(ULONG_MAX);
|
|
|
|
if (steal >= cputime)
|
|
return;
|
|
|
|
cputime -= steal;
|
|
account_idle_time(cputime);
|
|
}
|
|
|
|
/*
|
|
* Adjust tick based cputime random precision against scheduler runtime
|
|
* accounting.
|
|
*
|
|
* Tick based cputime accounting depend on random scheduling timeslices of a
|
|
* task to be interrupted or not by the timer. Depending on these
|
|
* circumstances, the number of these interrupts may be over or
|
|
* under-optimistic, matching the real user and system cputime with a variable
|
|
* precision.
|
|
*
|
|
* Fix this by scaling these tick based values against the total runtime
|
|
* accounted by the CFS scheduler.
|
|
*
|
|
* This code provides the following guarantees:
|
|
*
|
|
* stime + utime == rtime
|
|
* stime_i+1 >= stime_i, utime_i+1 >= utime_i
|
|
*
|
|
* Assuming that rtime_i+1 >= rtime_i.
|
|
*/
|
|
void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
|
|
u64 *ut, u64 *st)
|
|
{
|
|
u64 rtime, stime, utime;
|
|
unsigned long flags;
|
|
|
|
/* Serialize concurrent callers such that we can honour our guarantees */
|
|
raw_spin_lock_irqsave(&prev->lock, flags);
|
|
rtime = curr->sum_exec_runtime;
|
|
|
|
/*
|
|
* This is possible under two circumstances:
|
|
* - rtime isn't monotonic after all (a bug);
|
|
* - we got reordered by the lock.
|
|
*
|
|
* In both cases this acts as a filter such that the rest of the code
|
|
* can assume it is monotonic regardless of anything else.
|
|
*/
|
|
if (prev->stime + prev->utime >= rtime)
|
|
goto out;
|
|
|
|
stime = curr->stime;
|
|
utime = curr->utime;
|
|
|
|
/*
|
|
* If either stime or utime are 0, assume all runtime is userspace.
|
|
* Once a task gets some ticks, the monotonicy code at 'update:'
|
|
* will ensure things converge to the observed ratio.
|
|
*/
|
|
if (stime == 0) {
|
|
utime = rtime;
|
|
goto update;
|
|
}
|
|
|
|
if (utime == 0) {
|
|
stime = rtime;
|
|
goto update;
|
|
}
|
|
|
|
stime = mul_u64_u64_div_u64(stime, rtime, stime + utime);
|
|
|
|
update:
|
|
/*
|
|
* Make sure stime doesn't go backwards; this preserves monotonicity
|
|
* for utime because rtime is monotonic.
|
|
*
|
|
* utime_i+1 = rtime_i+1 - stime_i
|
|
* = rtime_i+1 - (rtime_i - utime_i)
|
|
* = (rtime_i+1 - rtime_i) + utime_i
|
|
* >= utime_i
|
|
*/
|
|
if (stime < prev->stime)
|
|
stime = prev->stime;
|
|
utime = rtime - stime;
|
|
|
|
/*
|
|
* Make sure utime doesn't go backwards; this still preserves
|
|
* monotonicity for stime, analogous argument to above.
|
|
*/
|
|
if (utime < prev->utime) {
|
|
utime = prev->utime;
|
|
stime = rtime - utime;
|
|
}
|
|
|
|
prev->stime = stime;
|
|
prev->utime = utime;
|
|
out:
|
|
*ut = prev->utime;
|
|
*st = prev->stime;
|
|
raw_spin_unlock_irqrestore(&prev->lock, flags);
|
|
}
|
|
|
|
void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
|
|
{
|
|
struct task_cputime cputime = {
|
|
.sum_exec_runtime = p->se.sum_exec_runtime,
|
|
};
|
|
|
|
task_cputime(p, &cputime.utime, &cputime.stime);
|
|
cputime_adjust(&cputime, &p->prev_cputime, ut, st);
|
|
}
|
|
EXPORT_SYMBOL_GPL(task_cputime_adjusted);
|
|
|
|
void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
|
|
{
|
|
struct task_cputime cputime;
|
|
|
|
thread_group_cputime(p, &cputime);
|
|
cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
|
|
}
|
|
#endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
|
|
|
|
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
|
|
static u64 vtime_delta(struct vtime *vtime)
|
|
{
|
|
unsigned long long clock;
|
|
|
|
clock = sched_clock();
|
|
if (clock < vtime->starttime)
|
|
return 0;
|
|
|
|
return clock - vtime->starttime;
|
|
}
|
|
|
|
static u64 get_vtime_delta(struct vtime *vtime)
|
|
{
|
|
u64 delta = vtime_delta(vtime);
|
|
u64 other;
|
|
|
|
/*
|
|
* Unlike tick based timing, vtime based timing never has lost
|
|
* ticks, and no need for steal time accounting to make up for
|
|
* lost ticks. Vtime accounts a rounded version of actual
|
|
* elapsed time. Limit account_other_time to prevent rounding
|
|
* errors from causing elapsed vtime to go negative.
|
|
*/
|
|
other = account_other_time(delta);
|
|
WARN_ON_ONCE(vtime->state == VTIME_INACTIVE);
|
|
vtime->starttime += delta;
|
|
|
|
return delta - other;
|
|
}
|
|
|
|
static void vtime_account_system(struct task_struct *tsk,
|
|
struct vtime *vtime)
|
|
{
|
|
vtime->stime += get_vtime_delta(vtime);
|
|
if (vtime->stime >= TICK_NSEC) {
|
|
account_system_time(tsk, irq_count(), vtime->stime);
|
|
vtime->stime = 0;
|
|
}
|
|
}
|
|
|
|
static void vtime_account_guest(struct task_struct *tsk,
|
|
struct vtime *vtime)
|
|
{
|
|
vtime->gtime += get_vtime_delta(vtime);
|
|
if (vtime->gtime >= TICK_NSEC) {
|
|
account_guest_time(tsk, vtime->gtime);
|
|
vtime->gtime = 0;
|
|
}
|
|
}
|
|
|
|
static void __vtime_account_kernel(struct task_struct *tsk,
|
|
struct vtime *vtime)
|
|
{
|
|
/* We might have scheduled out from guest path */
|
|
if (vtime->state == VTIME_GUEST)
|
|
vtime_account_guest(tsk, vtime);
|
|
else
|
|
vtime_account_system(tsk, vtime);
|
|
}
|
|
|
|
void vtime_account_kernel(struct task_struct *tsk)
|
|
{
|
|
struct vtime *vtime = &tsk->vtime;
|
|
|
|
if (!vtime_delta(vtime))
|
|
return;
|
|
|
|
write_seqcount_begin(&vtime->seqcount);
|
|
__vtime_account_kernel(tsk, vtime);
|
|
write_seqcount_end(&vtime->seqcount);
|
|
}
|
|
|
|
void vtime_user_enter(struct task_struct *tsk)
|
|
{
|
|
struct vtime *vtime = &tsk->vtime;
|
|
|
|
write_seqcount_begin(&vtime->seqcount);
|
|
vtime_account_system(tsk, vtime);
|
|
vtime->state = VTIME_USER;
|
|
write_seqcount_end(&vtime->seqcount);
|
|
}
|
|
|
|
void vtime_user_exit(struct task_struct *tsk)
|
|
{
|
|
struct vtime *vtime = &tsk->vtime;
|
|
|
|
write_seqcount_begin(&vtime->seqcount);
|
|
vtime->utime += get_vtime_delta(vtime);
|
|
if (vtime->utime >= TICK_NSEC) {
|
|
account_user_time(tsk, vtime->utime);
|
|
vtime->utime = 0;
|
|
}
|
|
vtime->state = VTIME_SYS;
|
|
write_seqcount_end(&vtime->seqcount);
|
|
}
|
|
|
|
void vtime_guest_enter(struct task_struct *tsk)
|
|
{
|
|
struct vtime *vtime = &tsk->vtime;
|
|
/*
|
|
* The flags must be updated under the lock with
|
|
* the vtime_starttime flush and update.
|
|
* That enforces a right ordering and update sequence
|
|
* synchronization against the reader (task_gtime())
|
|
* that can thus safely catch up with a tickless delta.
|
|
*/
|
|
write_seqcount_begin(&vtime->seqcount);
|
|
vtime_account_system(tsk, vtime);
|
|
tsk->flags |= PF_VCPU;
|
|
vtime->state = VTIME_GUEST;
|
|
write_seqcount_end(&vtime->seqcount);
|
|
}
|
|
EXPORT_SYMBOL_GPL(vtime_guest_enter);
|
|
|
|
void vtime_guest_exit(struct task_struct *tsk)
|
|
{
|
|
struct vtime *vtime = &tsk->vtime;
|
|
|
|
write_seqcount_begin(&vtime->seqcount);
|
|
vtime_account_guest(tsk, vtime);
|
|
tsk->flags &= ~PF_VCPU;
|
|
vtime->state = VTIME_SYS;
|
|
write_seqcount_end(&vtime->seqcount);
|
|
}
|
|
EXPORT_SYMBOL_GPL(vtime_guest_exit);
|
|
|
|
void vtime_account_idle(struct task_struct *tsk)
|
|
{
|
|
account_idle_time(get_vtime_delta(&tsk->vtime));
|
|
}
|
|
|
|
void vtime_task_switch_generic(struct task_struct *prev)
|
|
{
|
|
struct vtime *vtime = &prev->vtime;
|
|
|
|
write_seqcount_begin(&vtime->seqcount);
|
|
if (vtime->state == VTIME_IDLE)
|
|
vtime_account_idle(prev);
|
|
else
|
|
__vtime_account_kernel(prev, vtime);
|
|
vtime->state = VTIME_INACTIVE;
|
|
vtime->cpu = -1;
|
|
write_seqcount_end(&vtime->seqcount);
|
|
|
|
vtime = ¤t->vtime;
|
|
|
|
write_seqcount_begin(&vtime->seqcount);
|
|
if (is_idle_task(current))
|
|
vtime->state = VTIME_IDLE;
|
|
else if (current->flags & PF_VCPU)
|
|
vtime->state = VTIME_GUEST;
|
|
else
|
|
vtime->state = VTIME_SYS;
|
|
vtime->starttime = sched_clock();
|
|
vtime->cpu = smp_processor_id();
|
|
write_seqcount_end(&vtime->seqcount);
|
|
}
|
|
|
|
void vtime_init_idle(struct task_struct *t, int cpu)
|
|
{
|
|
struct vtime *vtime = &t->vtime;
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
write_seqcount_begin(&vtime->seqcount);
|
|
vtime->state = VTIME_IDLE;
|
|
vtime->starttime = sched_clock();
|
|
vtime->cpu = cpu;
|
|
write_seqcount_end(&vtime->seqcount);
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
u64 task_gtime(struct task_struct *t)
|
|
{
|
|
struct vtime *vtime = &t->vtime;
|
|
unsigned int seq;
|
|
u64 gtime;
|
|
|
|
if (!vtime_accounting_enabled())
|
|
return t->gtime;
|
|
|
|
do {
|
|
seq = read_seqcount_begin(&vtime->seqcount);
|
|
|
|
gtime = t->gtime;
|
|
if (vtime->state == VTIME_GUEST)
|
|
gtime += vtime->gtime + vtime_delta(vtime);
|
|
|
|
} while (read_seqcount_retry(&vtime->seqcount, seq));
|
|
|
|
return gtime;
|
|
}
|
|
|
|
/*
|
|
* Fetch cputime raw values from fields of task_struct and
|
|
* add up the pending nohz execution time since the last
|
|
* cputime snapshot.
|
|
*/
|
|
void task_cputime(struct task_struct *t, u64 *utime, u64 *stime)
|
|
{
|
|
struct vtime *vtime = &t->vtime;
|
|
unsigned int seq;
|
|
u64 delta;
|
|
|
|
if (!vtime_accounting_enabled()) {
|
|
*utime = t->utime;
|
|
*stime = t->stime;
|
|
return;
|
|
}
|
|
|
|
do {
|
|
seq = read_seqcount_begin(&vtime->seqcount);
|
|
|
|
*utime = t->utime;
|
|
*stime = t->stime;
|
|
|
|
/* Task is sleeping or idle, nothing to add */
|
|
if (vtime->state < VTIME_SYS)
|
|
continue;
|
|
|
|
delta = vtime_delta(vtime);
|
|
|
|
/*
|
|
* Task runs either in user (including guest) or kernel space,
|
|
* add pending nohz time to the right place.
|
|
*/
|
|
if (vtime->state == VTIME_SYS)
|
|
*stime += vtime->stime + delta;
|
|
else
|
|
*utime += vtime->utime + delta;
|
|
} while (read_seqcount_retry(&vtime->seqcount, seq));
|
|
}
|
|
|
|
static int vtime_state_fetch(struct vtime *vtime, int cpu)
|
|
{
|
|
int state = READ_ONCE(vtime->state);
|
|
|
|
/*
|
|
* We raced against a context switch, fetch the
|
|
* kcpustat task again.
|
|
*/
|
|
if (vtime->cpu != cpu && vtime->cpu != -1)
|
|
return -EAGAIN;
|
|
|
|
/*
|
|
* Two possible things here:
|
|
* 1) We are seeing the scheduling out task (prev) or any past one.
|
|
* 2) We are seeing the scheduling in task (next) but it hasn't
|
|
* passed though vtime_task_switch() yet so the pending
|
|
* cputime of the prev task may not be flushed yet.
|
|
*
|
|
* Case 1) is ok but 2) is not. So wait for a safe VTIME state.
|
|
*/
|
|
if (state == VTIME_INACTIVE)
|
|
return -EAGAIN;
|
|
|
|
return state;
|
|
}
|
|
|
|
static u64 kcpustat_user_vtime(struct vtime *vtime)
|
|
{
|
|
if (vtime->state == VTIME_USER)
|
|
return vtime->utime + vtime_delta(vtime);
|
|
else if (vtime->state == VTIME_GUEST)
|
|
return vtime->gtime + vtime_delta(vtime);
|
|
return 0;
|
|
}
|
|
|
|
static int kcpustat_field_vtime(u64 *cpustat,
|
|
struct task_struct *tsk,
|
|
enum cpu_usage_stat usage,
|
|
int cpu, u64 *val)
|
|
{
|
|
struct vtime *vtime = &tsk->vtime;
|
|
unsigned int seq;
|
|
|
|
do {
|
|
int state;
|
|
|
|
seq = read_seqcount_begin(&vtime->seqcount);
|
|
|
|
state = vtime_state_fetch(vtime, cpu);
|
|
if (state < 0)
|
|
return state;
|
|
|
|
*val = cpustat[usage];
|
|
|
|
/*
|
|
* Nice VS unnice cputime accounting may be inaccurate if
|
|
* the nice value has changed since the last vtime update.
|
|
* But proper fix would involve interrupting target on nice
|
|
* updates which is a no go on nohz_full (although the scheduler
|
|
* may still interrupt the target if rescheduling is needed...)
|
|
*/
|
|
switch (usage) {
|
|
case CPUTIME_SYSTEM:
|
|
if (state == VTIME_SYS)
|
|
*val += vtime->stime + vtime_delta(vtime);
|
|
break;
|
|
case CPUTIME_USER:
|
|
if (task_nice(tsk) <= 0)
|
|
*val += kcpustat_user_vtime(vtime);
|
|
break;
|
|
case CPUTIME_NICE:
|
|
if (task_nice(tsk) > 0)
|
|
*val += kcpustat_user_vtime(vtime);
|
|
break;
|
|
case CPUTIME_GUEST:
|
|
if (state == VTIME_GUEST && task_nice(tsk) <= 0)
|
|
*val += vtime->gtime + vtime_delta(vtime);
|
|
break;
|
|
case CPUTIME_GUEST_NICE:
|
|
if (state == VTIME_GUEST && task_nice(tsk) > 0)
|
|
*val += vtime->gtime + vtime_delta(vtime);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
} while (read_seqcount_retry(&vtime->seqcount, seq));
|
|
|
|
return 0;
|
|
}
|
|
|
|
u64 kcpustat_field(struct kernel_cpustat *kcpustat,
|
|
enum cpu_usage_stat usage, int cpu)
|
|
{
|
|
u64 *cpustat = kcpustat->cpustat;
|
|
u64 val = cpustat[usage];
|
|
struct rq *rq;
|
|
int err;
|
|
|
|
if (!vtime_accounting_enabled_cpu(cpu))
|
|
return val;
|
|
|
|
rq = cpu_rq(cpu);
|
|
|
|
for (;;) {
|
|
struct task_struct *curr;
|
|
|
|
rcu_read_lock();
|
|
curr = rcu_dereference(rq->curr);
|
|
if (WARN_ON_ONCE(!curr)) {
|
|
rcu_read_unlock();
|
|
return cpustat[usage];
|
|
}
|
|
|
|
err = kcpustat_field_vtime(cpustat, curr, usage, cpu, &val);
|
|
rcu_read_unlock();
|
|
|
|
if (!err)
|
|
return val;
|
|
|
|
cpu_relax();
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(kcpustat_field);
|
|
|
|
static int kcpustat_cpu_fetch_vtime(struct kernel_cpustat *dst,
|
|
const struct kernel_cpustat *src,
|
|
struct task_struct *tsk, int cpu)
|
|
{
|
|
struct vtime *vtime = &tsk->vtime;
|
|
unsigned int seq;
|
|
|
|
do {
|
|
u64 *cpustat;
|
|
u64 delta;
|
|
int state;
|
|
|
|
seq = read_seqcount_begin(&vtime->seqcount);
|
|
|
|
state = vtime_state_fetch(vtime, cpu);
|
|
if (state < 0)
|
|
return state;
|
|
|
|
*dst = *src;
|
|
cpustat = dst->cpustat;
|
|
|
|
/* Task is sleeping, dead or idle, nothing to add */
|
|
if (state < VTIME_SYS)
|
|
continue;
|
|
|
|
delta = vtime_delta(vtime);
|
|
|
|
/*
|
|
* Task runs either in user (including guest) or kernel space,
|
|
* add pending nohz time to the right place.
|
|
*/
|
|
if (state == VTIME_SYS) {
|
|
cpustat[CPUTIME_SYSTEM] += vtime->stime + delta;
|
|
} else if (state == VTIME_USER) {
|
|
if (task_nice(tsk) > 0)
|
|
cpustat[CPUTIME_NICE] += vtime->utime + delta;
|
|
else
|
|
cpustat[CPUTIME_USER] += vtime->utime + delta;
|
|
} else {
|
|
WARN_ON_ONCE(state != VTIME_GUEST);
|
|
if (task_nice(tsk) > 0) {
|
|
cpustat[CPUTIME_GUEST_NICE] += vtime->gtime + delta;
|
|
cpustat[CPUTIME_NICE] += vtime->gtime + delta;
|
|
} else {
|
|
cpustat[CPUTIME_GUEST] += vtime->gtime + delta;
|
|
cpustat[CPUTIME_USER] += vtime->gtime + delta;
|
|
}
|
|
}
|
|
} while (read_seqcount_retry(&vtime->seqcount, seq));
|
|
|
|
return 0;
|
|
}
|
|
|
|
void kcpustat_cpu_fetch(struct kernel_cpustat *dst, int cpu)
|
|
{
|
|
const struct kernel_cpustat *src = &kcpustat_cpu(cpu);
|
|
struct rq *rq;
|
|
int err;
|
|
|
|
if (!vtime_accounting_enabled_cpu(cpu)) {
|
|
*dst = *src;
|
|
return;
|
|
}
|
|
|
|
rq = cpu_rq(cpu);
|
|
|
|
for (;;) {
|
|
struct task_struct *curr;
|
|
|
|
rcu_read_lock();
|
|
curr = rcu_dereference(rq->curr);
|
|
if (WARN_ON_ONCE(!curr)) {
|
|
rcu_read_unlock();
|
|
*dst = *src;
|
|
return;
|
|
}
|
|
|
|
err = kcpustat_cpu_fetch_vtime(dst, src, curr, cpu);
|
|
rcu_read_unlock();
|
|
|
|
if (!err)
|
|
return;
|
|
|
|
cpu_relax();
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(kcpustat_cpu_fetch);
|
|
|
|
#endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
|