linux/drivers/tty/tty_buffer.c
Qi Zheng 6b9dbedbe3 tty: fix deadlock caused by calling printk() under tty_port->lock
pty_write() invokes kmalloc() which may invoke a normal printk() to print
failure message.  This can cause a deadlock in the scenario reported by
syz-bot below:

       CPU0              CPU1                    CPU2
       ----              ----                    ----
                         lock(console_owner);
                                                 lock(&port_lock_key);
  lock(&port->lock);
                         lock(&port_lock_key);
                                                 lock(&port->lock);
  lock(console_owner);

As commit dbdda842fe96 ("printk: Add console owner and waiter logic to
load balance console writes") said, such deadlock can be prevented by
using printk_deferred() in kmalloc() (which is invoked in the section
guarded by the port->lock).  But there are too many printk() on the
kmalloc() path, and kmalloc() can be called from anywhere, so changing
printk() to printk_deferred() is too complicated and inelegant.

Therefore, this patch chooses to specify __GFP_NOWARN to kmalloc(), so
that printk() will not be called, and this deadlock problem can be
avoided.

Syzbot reported the following lockdep error:

======================================================
WARNING: possible circular locking dependency detected
5.4.143-00237-g08ccc19a-dirty #10 Not tainted
------------------------------------------------------
syz-executor.4/29420 is trying to acquire lock:
ffffffff8aedb2a0 (console_owner){....}-{0:0}, at: console_trylock_spinning kernel/printk/printk.c:1752 [inline]
ffffffff8aedb2a0 (console_owner){....}-{0:0}, at: vprintk_emit+0x2ca/0x470 kernel/printk/printk.c:2023

but task is already holding lock:
ffff8880119c9158 (&port->lock){-.-.}-{2:2}, at: pty_write+0xf4/0x1f0 drivers/tty/pty.c:120

which lock already depends on the new lock.

the existing dependency chain (in reverse order) is:

-> #2 (&port->lock){-.-.}-{2:2}:
       __raw_spin_lock_irqsave include/linux/spinlock_api_smp.h:110 [inline]
       _raw_spin_lock_irqsave+0x35/0x50 kernel/locking/spinlock.c:159
       tty_port_tty_get drivers/tty/tty_port.c:288 [inline]          		<-- lock(&port->lock);
       tty_port_default_wakeup+0x1d/0xb0 drivers/tty/tty_port.c:47
       serial8250_tx_chars+0x530/0xa80 drivers/tty/serial/8250/8250_port.c:1767
       serial8250_handle_irq.part.0+0x31f/0x3d0 drivers/tty/serial/8250/8250_port.c:1854
       serial8250_handle_irq drivers/tty/serial/8250/8250_port.c:1827 [inline] 	<-- lock(&port_lock_key);
       serial8250_default_handle_irq+0xb2/0x220 drivers/tty/serial/8250/8250_port.c:1870
       serial8250_interrupt+0xfd/0x200 drivers/tty/serial/8250/8250_core.c:126
       __handle_irq_event_percpu+0x109/0xa50 kernel/irq/handle.c:156
       [...]

-> #1 (&port_lock_key){-.-.}-{2:2}:
       __raw_spin_lock_irqsave include/linux/spinlock_api_smp.h:110 [inline]
       _raw_spin_lock_irqsave+0x35/0x50 kernel/locking/spinlock.c:159
       serial8250_console_write+0x184/0xa40 drivers/tty/serial/8250/8250_port.c:3198
										<-- lock(&port_lock_key);
       call_console_drivers kernel/printk/printk.c:1819 [inline]
       console_unlock+0x8cb/0xd00 kernel/printk/printk.c:2504
       vprintk_emit+0x1b5/0x470 kernel/printk/printk.c:2024			<-- lock(console_owner);
       vprintk_func+0x8d/0x250 kernel/printk/printk_safe.c:394
       printk+0xba/0xed kernel/printk/printk.c:2084
       register_console+0x8b3/0xc10 kernel/printk/printk.c:2829
       univ8250_console_init+0x3a/0x46 drivers/tty/serial/8250/8250_core.c:681
       console_init+0x49d/0x6d3 kernel/printk/printk.c:2915
       start_kernel+0x5e9/0x879 init/main.c:713
       secondary_startup_64+0xa4/0xb0 arch/x86/kernel/head_64.S:241

-> #0 (console_owner){....}-{0:0}:
       [...]
       lock_acquire+0x127/0x340 kernel/locking/lockdep.c:4734
       console_trylock_spinning kernel/printk/printk.c:1773 [inline]		<-- lock(console_owner);
       vprintk_emit+0x307/0x470 kernel/printk/printk.c:2023
       vprintk_func+0x8d/0x250 kernel/printk/printk_safe.c:394
       printk+0xba/0xed kernel/printk/printk.c:2084
       fail_dump lib/fault-inject.c:45 [inline]
       should_fail+0x67b/0x7c0 lib/fault-inject.c:144
       __should_failslab+0x152/0x1c0 mm/failslab.c:33
       should_failslab+0x5/0x10 mm/slab_common.c:1224
       slab_pre_alloc_hook mm/slab.h:468 [inline]
       slab_alloc_node mm/slub.c:2723 [inline]
       slab_alloc mm/slub.c:2807 [inline]
       __kmalloc+0x72/0x300 mm/slub.c:3871
       kmalloc include/linux/slab.h:582 [inline]
       tty_buffer_alloc+0x23f/0x2a0 drivers/tty/tty_buffer.c:175
       __tty_buffer_request_room+0x156/0x2a0 drivers/tty/tty_buffer.c:273
       tty_insert_flip_string_fixed_flag+0x93/0x250 drivers/tty/tty_buffer.c:318
       tty_insert_flip_string include/linux/tty_flip.h:37 [inline]
       pty_write+0x126/0x1f0 drivers/tty/pty.c:122				<-- lock(&port->lock);
       n_tty_write+0xa7a/0xfc0 drivers/tty/n_tty.c:2356
       do_tty_write drivers/tty/tty_io.c:961 [inline]
       tty_write+0x512/0x930 drivers/tty/tty_io.c:1045
       __vfs_write+0x76/0x100 fs/read_write.c:494
       [...]

other info that might help us debug this:

Chain exists of:
  console_owner --> &port_lock_key --> &port->lock

Link: https://lkml.kernel.org/r/20220511061951.1114-2-zhengqi.arch@bytedance.com
Link: https://lkml.kernel.org/r/20220510113809.80626-2-zhengqi.arch@bytedance.com
Fixes: b6da31b2c07c ("tty: Fix data race in tty_insert_flip_string_fixed_flag")
Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com>
Acked-by: Jiri Slaby <jirislaby@kernel.org>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Akinobu Mita <akinobu.mita@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-12 20:38:37 -07:00

618 lines
16 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Tty buffer allocation management
*/
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/tty.h>
#include <linux/tty_driver.h>
#include <linux/tty_flip.h>
#include <linux/timer.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/wait.h>
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/ratelimit.h>
#include "tty.h"
#define MIN_TTYB_SIZE 256
#define TTYB_ALIGN_MASK 255
/*
* Byte threshold to limit memory consumption for flip buffers.
* The actual memory limit is > 2x this amount.
*/
#define TTYB_DEFAULT_MEM_LIMIT (640 * 1024UL)
/*
* We default to dicing tty buffer allocations to this many characters
* in order to avoid multiple page allocations. We know the size of
* tty_buffer itself but it must also be taken into account that the
* buffer is 256 byte aligned. See tty_buffer_find for the allocation
* logic this must match.
*/
#define TTY_BUFFER_PAGE (((PAGE_SIZE - sizeof(struct tty_buffer)) / 2) & ~0xFF)
/**
* tty_buffer_lock_exclusive - gain exclusive access to buffer
* @port: tty port owning the flip buffer
*
* Guarantees safe use of the &tty_ldisc_ops.receive_buf() method by excluding
* the buffer work and any pending flush from using the flip buffer. Data can
* continue to be added concurrently to the flip buffer from the driver side.
*
* See also tty_buffer_unlock_exclusive().
*/
void tty_buffer_lock_exclusive(struct tty_port *port)
{
struct tty_bufhead *buf = &port->buf;
atomic_inc(&buf->priority);
mutex_lock(&buf->lock);
}
EXPORT_SYMBOL_GPL(tty_buffer_lock_exclusive);
/**
* tty_buffer_unlock_exclusive - release exclusive access
* @port: tty port owning the flip buffer
*
* The buffer work is restarted if there is data in the flip buffer.
*
* See also tty_buffer_lock_exclusive().
*/
void tty_buffer_unlock_exclusive(struct tty_port *port)
{
struct tty_bufhead *buf = &port->buf;
int restart;
restart = buf->head->commit != buf->head->read;
atomic_dec(&buf->priority);
mutex_unlock(&buf->lock);
if (restart)
queue_work(system_unbound_wq, &buf->work);
}
EXPORT_SYMBOL_GPL(tty_buffer_unlock_exclusive);
/**
* tty_buffer_space_avail - return unused buffer space
* @port: tty port owning the flip buffer
*
* Returns: the # of bytes which can be written by the driver without reaching
* the buffer limit.
*
* Note: this does not guarantee that memory is available to write the returned
* # of bytes (use tty_prepare_flip_string() to pre-allocate if memory
* guarantee is required).
*/
unsigned int tty_buffer_space_avail(struct tty_port *port)
{
int space = port->buf.mem_limit - atomic_read(&port->buf.mem_used);
return max(space, 0);
}
EXPORT_SYMBOL_GPL(tty_buffer_space_avail);
static void tty_buffer_reset(struct tty_buffer *p, size_t size)
{
p->used = 0;
p->size = size;
p->next = NULL;
p->commit = 0;
p->read = 0;
p->flags = 0;
}
/**
* tty_buffer_free_all - free buffers used by a tty
* @port: tty port to free from
*
* Remove all the buffers pending on a tty whether queued with data or in the
* free ring. Must be called when the tty is no longer in use.
*/
void tty_buffer_free_all(struct tty_port *port)
{
struct tty_bufhead *buf = &port->buf;
struct tty_buffer *p, *next;
struct llist_node *llist;
unsigned int freed = 0;
int still_used;
while ((p = buf->head) != NULL) {
buf->head = p->next;
freed += p->size;
if (p->size > 0)
kfree(p);
}
llist = llist_del_all(&buf->free);
llist_for_each_entry_safe(p, next, llist, free)
kfree(p);
tty_buffer_reset(&buf->sentinel, 0);
buf->head = &buf->sentinel;
buf->tail = &buf->sentinel;
still_used = atomic_xchg(&buf->mem_used, 0);
WARN(still_used != freed, "we still have not freed %d bytes!",
still_used - freed);
}
/**
* tty_buffer_alloc - allocate a tty buffer
* @port: tty port
* @size: desired size (characters)
*
* Allocate a new tty buffer to hold the desired number of characters. We
* round our buffers off in 256 character chunks to get better allocation
* behaviour.
*
* Returns: %NULL if out of memory or the allocation would exceed the per
* device queue.
*/
static struct tty_buffer *tty_buffer_alloc(struct tty_port *port, size_t size)
{
struct llist_node *free;
struct tty_buffer *p;
/* Round the buffer size out */
size = __ALIGN_MASK(size, TTYB_ALIGN_MASK);
if (size <= MIN_TTYB_SIZE) {
free = llist_del_first(&port->buf.free);
if (free) {
p = llist_entry(free, struct tty_buffer, free);
goto found;
}
}
/* Should possibly check if this fails for the largest buffer we
* have queued and recycle that ?
*/
if (atomic_read(&port->buf.mem_used) > port->buf.mem_limit)
return NULL;
p = kmalloc(sizeof(struct tty_buffer) + 2 * size,
GFP_ATOMIC | __GFP_NOWARN);
if (p == NULL)
return NULL;
found:
tty_buffer_reset(p, size);
atomic_add(size, &port->buf.mem_used);
return p;
}
/**
* tty_buffer_free - free a tty buffer
* @port: tty port owning the buffer
* @b: the buffer to free
*
* Free a tty buffer, or add it to the free list according to our internal
* strategy.
*/
static void tty_buffer_free(struct tty_port *port, struct tty_buffer *b)
{
struct tty_bufhead *buf = &port->buf;
/* Dumb strategy for now - should keep some stats */
WARN_ON(atomic_sub_return(b->size, &buf->mem_used) < 0);
if (b->size > MIN_TTYB_SIZE)
kfree(b);
else if (b->size > 0)
llist_add(&b->free, &buf->free);
}
/**
* tty_buffer_flush - flush full tty buffers
* @tty: tty to flush
* @ld: optional ldisc ptr (must be referenced)
*
* Flush all the buffers containing receive data. If @ld != %NULL, flush the
* ldisc input buffer.
*
* Locking: takes buffer lock to ensure single-threaded flip buffer 'consumer'.
*/
void tty_buffer_flush(struct tty_struct *tty, struct tty_ldisc *ld)
{
struct tty_port *port = tty->port;
struct tty_bufhead *buf = &port->buf;
struct tty_buffer *next;
atomic_inc(&buf->priority);
mutex_lock(&buf->lock);
/* paired w/ release in __tty_buffer_request_room; ensures there are
* no pending memory accesses to the freed buffer
*/
while ((next = smp_load_acquire(&buf->head->next)) != NULL) {
tty_buffer_free(port, buf->head);
buf->head = next;
}
buf->head->read = buf->head->commit;
if (ld && ld->ops->flush_buffer)
ld->ops->flush_buffer(tty);
atomic_dec(&buf->priority);
mutex_unlock(&buf->lock);
}
/**
* __tty_buffer_request_room - grow tty buffer if needed
* @port: tty port
* @size: size desired
* @flags: buffer flags if new buffer allocated (default = 0)
*
* Make at least @size bytes of linear space available for the tty buffer.
*
* Will change over to a new buffer if the current buffer is encoded as
* %TTY_NORMAL (so has no flags buffer) and the new buffer requires a flags
* buffer.
*
* Returns: the size we managed to find.
*/
static int __tty_buffer_request_room(struct tty_port *port, size_t size,
int flags)
{
struct tty_bufhead *buf = &port->buf;
struct tty_buffer *b, *n;
int left, change;
b = buf->tail;
if (b->flags & TTYB_NORMAL)
left = 2 * b->size - b->used;
else
left = b->size - b->used;
change = (b->flags & TTYB_NORMAL) && (~flags & TTYB_NORMAL);
if (change || left < size) {
/* This is the slow path - looking for new buffers to use */
n = tty_buffer_alloc(port, size);
if (n != NULL) {
n->flags = flags;
buf->tail = n;
/* paired w/ acquire in flush_to_ldisc(); ensures
* flush_to_ldisc() sees buffer data.
*/
smp_store_release(&b->commit, b->used);
/* paired w/ acquire in flush_to_ldisc(); ensures the
* latest commit value can be read before the head is
* advanced to the next buffer
*/
smp_store_release(&b->next, n);
} else if (change)
size = 0;
else
size = left;
}
return size;
}
int tty_buffer_request_room(struct tty_port *port, size_t size)
{
return __tty_buffer_request_room(port, size, 0);
}
EXPORT_SYMBOL_GPL(tty_buffer_request_room);
/**
* tty_insert_flip_string_fixed_flag - add characters to the tty buffer
* @port: tty port
* @chars: characters
* @flag: flag value for each character
* @size: size
*
* Queue a series of bytes to the tty buffering. All the characters passed are
* marked with the supplied flag.
*
* Returns: the number added.
*/
int tty_insert_flip_string_fixed_flag(struct tty_port *port,
const unsigned char *chars, char flag, size_t size)
{
int copied = 0;
do {
int goal = min_t(size_t, size - copied, TTY_BUFFER_PAGE);
int flags = (flag == TTY_NORMAL) ? TTYB_NORMAL : 0;
int space = __tty_buffer_request_room(port, goal, flags);
struct tty_buffer *tb = port->buf.tail;
if (unlikely(space == 0))
break;
memcpy(char_buf_ptr(tb, tb->used), chars, space);
if (~tb->flags & TTYB_NORMAL)
memset(flag_buf_ptr(tb, tb->used), flag, space);
tb->used += space;
copied += space;
chars += space;
/* There is a small chance that we need to split the data over
* several buffers. If this is the case we must loop.
*/
} while (unlikely(size > copied));
return copied;
}
EXPORT_SYMBOL(tty_insert_flip_string_fixed_flag);
/**
* tty_insert_flip_string_flags - add characters to the tty buffer
* @port: tty port
* @chars: characters
* @flags: flag bytes
* @size: size
*
* Queue a series of bytes to the tty buffering. For each character the flags
* array indicates the status of the character.
*
* Returns: the number added.
*/
int tty_insert_flip_string_flags(struct tty_port *port,
const unsigned char *chars, const char *flags, size_t size)
{
int copied = 0;
do {
int goal = min_t(size_t, size - copied, TTY_BUFFER_PAGE);
int space = tty_buffer_request_room(port, goal);
struct tty_buffer *tb = port->buf.tail;
if (unlikely(space == 0))
break;
memcpy(char_buf_ptr(tb, tb->used), chars, space);
memcpy(flag_buf_ptr(tb, tb->used), flags, space);
tb->used += space;
copied += space;
chars += space;
flags += space;
/* There is a small chance that we need to split the data over
* several buffers. If this is the case we must loop.
*/
} while (unlikely(size > copied));
return copied;
}
EXPORT_SYMBOL(tty_insert_flip_string_flags);
/**
* __tty_insert_flip_char - add one character to the tty buffer
* @port: tty port
* @ch: character
* @flag: flag byte
*
* Queue a single byte @ch to the tty buffering, with an optional flag. This is
* the slow path of tty_insert_flip_char().
*/
int __tty_insert_flip_char(struct tty_port *port, unsigned char ch, char flag)
{
struct tty_buffer *tb;
int flags = (flag == TTY_NORMAL) ? TTYB_NORMAL : 0;
if (!__tty_buffer_request_room(port, 1, flags))
return 0;
tb = port->buf.tail;
if (~tb->flags & TTYB_NORMAL)
*flag_buf_ptr(tb, tb->used) = flag;
*char_buf_ptr(tb, tb->used++) = ch;
return 1;
}
EXPORT_SYMBOL(__tty_insert_flip_char);
/**
* tty_prepare_flip_string - make room for characters
* @port: tty port
* @chars: return pointer for character write area
* @size: desired size
*
* Prepare a block of space in the buffer for data.
*
* This is used for drivers that need their own block copy routines into the
* buffer. There is no guarantee the buffer is a DMA target!
*
* Returns: the length available and buffer pointer (@chars) to the space which
* is now allocated and accounted for as ready for normal characters.
*/
int tty_prepare_flip_string(struct tty_port *port, unsigned char **chars,
size_t size)
{
int space = __tty_buffer_request_room(port, size, TTYB_NORMAL);
if (likely(space)) {
struct tty_buffer *tb = port->buf.tail;
*chars = char_buf_ptr(tb, tb->used);
if (~tb->flags & TTYB_NORMAL)
memset(flag_buf_ptr(tb, tb->used), TTY_NORMAL, space);
tb->used += space;
}
return space;
}
EXPORT_SYMBOL_GPL(tty_prepare_flip_string);
/**
* tty_ldisc_receive_buf - forward data to line discipline
* @ld: line discipline to process input
* @p: char buffer
* @f: %TTY_NORMAL, %TTY_BREAK, etc. flags buffer
* @count: number of bytes to process
*
* Callers other than flush_to_ldisc() need to exclude the kworker from
* concurrent use of the line discipline, see paste_selection().
*
* Returns: the number of bytes processed.
*/
int tty_ldisc_receive_buf(struct tty_ldisc *ld, const unsigned char *p,
const char *f, int count)
{
if (ld->ops->receive_buf2)
count = ld->ops->receive_buf2(ld->tty, p, f, count);
else {
count = min_t(int, count, ld->tty->receive_room);
if (count && ld->ops->receive_buf)
ld->ops->receive_buf(ld->tty, p, f, count);
}
return count;
}
EXPORT_SYMBOL_GPL(tty_ldisc_receive_buf);
static int
receive_buf(struct tty_port *port, struct tty_buffer *head, int count)
{
unsigned char *p = char_buf_ptr(head, head->read);
const char *f = NULL;
int n;
if (~head->flags & TTYB_NORMAL)
f = flag_buf_ptr(head, head->read);
n = port->client_ops->receive_buf(port, p, f, count);
if (n > 0)
memset(p, 0, n);
return n;
}
/**
* flush_to_ldisc - flush data from buffer to ldisc
* @work: tty structure passed from work queue.
*
* This routine is called out of the software interrupt to flush data from the
* buffer chain to the line discipline.
*
* The receive_buf() method is single threaded for each tty instance.
*
* Locking: takes buffer lock to ensure single-threaded flip buffer 'consumer'.
*/
static void flush_to_ldisc(struct work_struct *work)
{
struct tty_port *port = container_of(work, struct tty_port, buf.work);
struct tty_bufhead *buf = &port->buf;
mutex_lock(&buf->lock);
while (1) {
struct tty_buffer *head = buf->head;
struct tty_buffer *next;
int count;
/* Ldisc or user is trying to gain exclusive access */
if (atomic_read(&buf->priority))
break;
/* paired w/ release in __tty_buffer_request_room();
* ensures commit value read is not stale if the head
* is advancing to the next buffer
*/
next = smp_load_acquire(&head->next);
/* paired w/ release in __tty_buffer_request_room() or in
* tty_buffer_flush(); ensures we see the committed buffer data
*/
count = smp_load_acquire(&head->commit) - head->read;
if (!count) {
if (next == NULL)
break;
buf->head = next;
tty_buffer_free(port, head);
continue;
}
count = receive_buf(port, head, count);
if (!count)
break;
head->read += count;
if (need_resched())
cond_resched();
}
mutex_unlock(&buf->lock);
}
/**
* tty_flip_buffer_push - push terminal buffers
* @port: tty port to push
*
* Queue a push of the terminal flip buffers to the line discipline. Can be
* called from IRQ/atomic context.
*
* In the event of the queue being busy for flipping the work will be held off
* and retried later.
*/
void tty_flip_buffer_push(struct tty_port *port)
{
struct tty_bufhead *buf = &port->buf;
/*
* Paired w/ acquire in flush_to_ldisc(); ensures flush_to_ldisc() sees
* buffer data.
*/
smp_store_release(&buf->tail->commit, buf->tail->used);
queue_work(system_unbound_wq, &buf->work);
}
EXPORT_SYMBOL(tty_flip_buffer_push);
/**
* tty_buffer_init - prepare a tty buffer structure
* @port: tty port to initialise
*
* Set up the initial state of the buffer management for a tty device. Must be
* called before the other tty buffer functions are used.
*/
void tty_buffer_init(struct tty_port *port)
{
struct tty_bufhead *buf = &port->buf;
mutex_init(&buf->lock);
tty_buffer_reset(&buf->sentinel, 0);
buf->head = &buf->sentinel;
buf->tail = &buf->sentinel;
init_llist_head(&buf->free);
atomic_set(&buf->mem_used, 0);
atomic_set(&buf->priority, 0);
INIT_WORK(&buf->work, flush_to_ldisc);
buf->mem_limit = TTYB_DEFAULT_MEM_LIMIT;
}
/**
* tty_buffer_set_limit - change the tty buffer memory limit
* @port: tty port to change
* @limit: memory limit to set
*
* Change the tty buffer memory limit.
*
* Must be called before the other tty buffer functions are used.
*/
int tty_buffer_set_limit(struct tty_port *port, int limit)
{
if (limit < MIN_TTYB_SIZE)
return -EINVAL;
port->buf.mem_limit = limit;
return 0;
}
EXPORT_SYMBOL_GPL(tty_buffer_set_limit);
/* slave ptys can claim nested buffer lock when handling BRK and INTR */
void tty_buffer_set_lock_subclass(struct tty_port *port)
{
lockdep_set_subclass(&port->buf.lock, TTY_LOCK_SLAVE);
}
bool tty_buffer_restart_work(struct tty_port *port)
{
return queue_work(system_unbound_wq, &port->buf.work);
}
bool tty_buffer_cancel_work(struct tty_port *port)
{
return cancel_work_sync(&port->buf.work);
}
void tty_buffer_flush_work(struct tty_port *port)
{
flush_work(&port->buf.work);
}