aa32f11691
This is another round of bug fixing and cleanup. This time the focus is on the driver pattern to use mmu notifiers to monitor a VA range. This code is lifted out of many drivers and hmm_mirror directly into the mmu_notifier core and written using the best ideas from all the driver implementations. This removes many bugs from the drivers and has a very pleasing diffstat. More drivers can still be converted, but that is for another cycle. - A shared branch with RDMA reworking the RDMA ODP implementation - New mmu_interval_notifier API. This is focused on the use case of monitoring a VA and simplifies the process for drivers - A common seq-count locking scheme built into the mmu_interval_notifier API usable by drivers that call get_user_pages() or hmm_range_fault() with the VA range - Conversion of mlx5 ODP, hfi1, radeon, nouveau, AMD GPU, and Xen GntDev drivers to the new API. This deletes a lot of wonky driver code. - Two improvements for hmm_range_fault(), from testing done by Ralph -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEfB7FMLh+8QxL+6i3OG33FX4gmxoFAl3cCjQACgkQOG33FX4g mxpp8xAAiR9iOdT28m/tx1GF31XludrMhRZVIiz0vmCIxIiAkWekWEfAEVm9PDnh wdrxTJohSs+B65AK3sfToOM3AIuNCuFVWmbbHI5qmOO76vaSvcZa905Z++pNsawO Bn8mgRCprYoFHcxWLvTvnA5U0g1S2BSSOwBSZI43CbEnVvHjYAR6MnvRqfGMk+NF bf8fTk/x+fl0DCemhynlBLuJkogzoE2Hgl0yPY5bFna4PktOxdpa1yPaQsiqZ7e6 2s2NtM3pbMBJk0W42q5BU+aPhiqfxFFszasPSLBduXrD2xDsG76HJdHj5VydKmfL nelG4BvqJozXTEZWvTEePYhCqaZ41eJZ7Asw8BXtmacVqE5mDlTXo/Zdgbz7yEOR mI5MVyjD5rauZJldUOWXbwrPoWVFRvboauehiSgqvxvT9HvlFp9GKObSuu4gubBQ mzxs4t48tPhA7bswLmw0/pETSogFuVDfaB7hsyY0gi8EwxMFMpw2qFypm1PEEF+C BuUxCSShzvNKrraNe5PWaNNFd3AzIwAOWJHE+poH4bCoXQVr5nA+rq2gnHkdY5vq /xrBCyxkf0U05YoFGYembPVCInMehzp9Xjy8V+SueSvCg2/TYwGDCgGfsbe9dNOP Bc40JpS7BDn5w9nyLUJmOx7jfruNV6kx1QslA7NDDrB/rzOlsEc= =Hj8a -----END PGP SIGNATURE----- Merge tag 'for-linus-hmm' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma Pull hmm updates from Jason Gunthorpe: "This is another round of bug fixing and cleanup. This time the focus is on the driver pattern to use mmu notifiers to monitor a VA range. This code is lifted out of many drivers and hmm_mirror directly into the mmu_notifier core and written using the best ideas from all the driver implementations. This removes many bugs from the drivers and has a very pleasing diffstat. More drivers can still be converted, but that is for another cycle. - A shared branch with RDMA reworking the RDMA ODP implementation - New mmu_interval_notifier API. This is focused on the use case of monitoring a VA and simplifies the process for drivers - A common seq-count locking scheme built into the mmu_interval_notifier API usable by drivers that call get_user_pages() or hmm_range_fault() with the VA range - Conversion of mlx5 ODP, hfi1, radeon, nouveau, AMD GPU, and Xen GntDev drivers to the new API. This deletes a lot of wonky driver code. - Two improvements for hmm_range_fault(), from testing done by Ralph" * tag 'for-linus-hmm' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma: mm/hmm: remove hmm_range_dma_map and hmm_range_dma_unmap mm/hmm: make full use of walk_page_range() xen/gntdev: use mmu_interval_notifier_insert mm/hmm: remove hmm_mirror and related drm/amdgpu: Use mmu_interval_notifier instead of hmm_mirror drm/amdgpu: Use mmu_interval_insert instead of hmm_mirror drm/amdgpu: Call find_vma under mmap_sem nouveau: use mmu_interval_notifier instead of hmm_mirror nouveau: use mmu_notifier directly for invalidate_range_start drm/radeon: use mmu_interval_notifier_insert RDMA/hfi1: Use mmu_interval_notifier_insert for user_exp_rcv RDMA/odp: Use mmu_interval_notifier_insert() mm/hmm: define the pre-processor related parts of hmm.h even if disabled mm/hmm: allow hmm_range to be used with a mmu_interval_notifier or hmm_mirror mm/mmu_notifier: add an interval tree notifier mm/mmu_notifier: define the header pre-processor parts even if disabled mm/hmm: allow snapshot of the special zero page
1817 lines
48 KiB
C
1817 lines
48 KiB
C
/*
|
|
* Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
|
|
*
|
|
* This software is available to you under a choice of one of two
|
|
* licenses. You may choose to be licensed under the terms of the GNU
|
|
* General Public License (GPL) Version 2, available from the file
|
|
* COPYING in the main directory of this source tree, or the
|
|
* OpenIB.org BSD license below:
|
|
*
|
|
* Redistribution and use in source and binary forms, with or
|
|
* without modification, are permitted provided that the following
|
|
* conditions are met:
|
|
*
|
|
* - Redistributions of source code must retain the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer.
|
|
*
|
|
* - Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and/or other materials
|
|
* provided with the distribution.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
|
|
#include <rdma/ib_umem.h>
|
|
#include <rdma/ib_umem_odp.h>
|
|
#include <linux/kernel.h>
|
|
|
|
#include "mlx5_ib.h"
|
|
#include "cmd.h"
|
|
|
|
#include <linux/mlx5/eq.h>
|
|
|
|
/* Contains the details of a pagefault. */
|
|
struct mlx5_pagefault {
|
|
u32 bytes_committed;
|
|
u32 token;
|
|
u8 event_subtype;
|
|
u8 type;
|
|
union {
|
|
/* Initiator or send message responder pagefault details. */
|
|
struct {
|
|
/* Received packet size, only valid for responders. */
|
|
u32 packet_size;
|
|
/*
|
|
* Number of resource holding WQE, depends on type.
|
|
*/
|
|
u32 wq_num;
|
|
/*
|
|
* WQE index. Refers to either the send queue or
|
|
* receive queue, according to event_subtype.
|
|
*/
|
|
u16 wqe_index;
|
|
} wqe;
|
|
/* RDMA responder pagefault details */
|
|
struct {
|
|
u32 r_key;
|
|
/*
|
|
* Received packet size, minimal size page fault
|
|
* resolution required for forward progress.
|
|
*/
|
|
u32 packet_size;
|
|
u32 rdma_op_len;
|
|
u64 rdma_va;
|
|
} rdma;
|
|
};
|
|
|
|
struct mlx5_ib_pf_eq *eq;
|
|
struct work_struct work;
|
|
};
|
|
|
|
#define MAX_PREFETCH_LEN (4*1024*1024U)
|
|
|
|
/* Timeout in ms to wait for an active mmu notifier to complete when handling
|
|
* a pagefault. */
|
|
#define MMU_NOTIFIER_TIMEOUT 1000
|
|
|
|
#define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT)
|
|
#define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT)
|
|
#define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS)
|
|
#define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT)
|
|
#define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1))
|
|
|
|
#define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT
|
|
|
|
static u64 mlx5_imr_ksm_entries;
|
|
|
|
void mlx5_odp_populate_klm(struct mlx5_klm *pklm, size_t idx, size_t nentries,
|
|
struct mlx5_ib_mr *imr, int flags)
|
|
{
|
|
struct mlx5_klm *end = pklm + nentries;
|
|
|
|
if (flags & MLX5_IB_UPD_XLT_ZAP) {
|
|
for (; pklm != end; pklm++, idx++) {
|
|
pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
|
|
pklm->key = cpu_to_be32(imr->dev->null_mkey);
|
|
pklm->va = 0;
|
|
}
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* The locking here is pretty subtle. Ideally the implicit_children
|
|
* xarray would be protected by the umem_mutex, however that is not
|
|
* possible. Instead this uses a weaker update-then-lock pattern:
|
|
*
|
|
* srcu_read_lock()
|
|
* xa_store()
|
|
* mutex_lock(umem_mutex)
|
|
* mlx5_ib_update_xlt()
|
|
* mutex_unlock(umem_mutex)
|
|
* destroy lkey
|
|
*
|
|
* ie any change the xarray must be followed by the locked update_xlt
|
|
* before destroying.
|
|
*
|
|
* The umem_mutex provides the acquire/release semantic needed to make
|
|
* the xa_store() visible to a racing thread. While SRCU is not
|
|
* technically required, using it gives consistent use of the SRCU
|
|
* locking around the xarray.
|
|
*/
|
|
lockdep_assert_held(&to_ib_umem_odp(imr->umem)->umem_mutex);
|
|
lockdep_assert_held(&imr->dev->odp_srcu);
|
|
|
|
for (; pklm != end; pklm++, idx++) {
|
|
struct mlx5_ib_mr *mtt = xa_load(&imr->implicit_children, idx);
|
|
|
|
pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
|
|
if (mtt) {
|
|
pklm->key = cpu_to_be32(mtt->ibmr.lkey);
|
|
pklm->va = cpu_to_be64(idx * MLX5_IMR_MTT_SIZE);
|
|
} else {
|
|
pklm->key = cpu_to_be32(imr->dev->null_mkey);
|
|
pklm->va = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void dma_fence_odp_mr(struct mlx5_ib_mr *mr)
|
|
{
|
|
struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
|
|
|
|
/* Ensure mlx5_ib_invalidate_range() will not touch the MR any more */
|
|
mutex_lock(&odp->umem_mutex);
|
|
if (odp->npages) {
|
|
mlx5_mr_cache_invalidate(mr);
|
|
ib_umem_odp_unmap_dma_pages(odp, ib_umem_start(odp),
|
|
ib_umem_end(odp));
|
|
WARN_ON(odp->npages);
|
|
}
|
|
odp->private = NULL;
|
|
mutex_unlock(&odp->umem_mutex);
|
|
|
|
if (!mr->allocated_from_cache) {
|
|
mlx5_core_destroy_mkey(mr->dev->mdev, &mr->mmkey);
|
|
WARN_ON(mr->descs);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This must be called after the mr has been removed from implicit_children
|
|
* and the SRCU synchronized. NOTE: The MR does not necessarily have to be
|
|
* empty here, parallel page faults could have raced with the free process and
|
|
* added pages to it.
|
|
*/
|
|
static void free_implicit_child_mr(struct mlx5_ib_mr *mr, bool need_imr_xlt)
|
|
{
|
|
struct mlx5_ib_mr *imr = mr->parent;
|
|
struct ib_umem_odp *odp_imr = to_ib_umem_odp(imr->umem);
|
|
struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
|
|
unsigned long idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT;
|
|
int srcu_key;
|
|
|
|
/* implicit_child_mr's are not allowed to have deferred work */
|
|
WARN_ON(atomic_read(&mr->num_deferred_work));
|
|
|
|
if (need_imr_xlt) {
|
|
srcu_key = srcu_read_lock(&mr->dev->odp_srcu);
|
|
mutex_lock(&odp_imr->umem_mutex);
|
|
mlx5_ib_update_xlt(mr->parent, idx, 1, 0,
|
|
MLX5_IB_UPD_XLT_INDIRECT |
|
|
MLX5_IB_UPD_XLT_ATOMIC);
|
|
mutex_unlock(&odp_imr->umem_mutex);
|
|
srcu_read_unlock(&mr->dev->odp_srcu, srcu_key);
|
|
}
|
|
|
|
dma_fence_odp_mr(mr);
|
|
|
|
mr->parent = NULL;
|
|
mlx5_mr_cache_free(mr->dev, mr);
|
|
ib_umem_odp_release(odp);
|
|
atomic_dec(&imr->num_deferred_work);
|
|
}
|
|
|
|
static void free_implicit_child_mr_work(struct work_struct *work)
|
|
{
|
|
struct mlx5_ib_mr *mr =
|
|
container_of(work, struct mlx5_ib_mr, odp_destroy.work);
|
|
|
|
free_implicit_child_mr(mr, true);
|
|
}
|
|
|
|
static void free_implicit_child_mr_rcu(struct rcu_head *head)
|
|
{
|
|
struct mlx5_ib_mr *mr =
|
|
container_of(head, struct mlx5_ib_mr, odp_destroy.rcu);
|
|
|
|
/* Freeing a MR is a sleeping operation, so bounce to a work queue */
|
|
INIT_WORK(&mr->odp_destroy.work, free_implicit_child_mr_work);
|
|
queue_work(system_unbound_wq, &mr->odp_destroy.work);
|
|
}
|
|
|
|
static void destroy_unused_implicit_child_mr(struct mlx5_ib_mr *mr)
|
|
{
|
|
struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
|
|
unsigned long idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT;
|
|
struct mlx5_ib_mr *imr = mr->parent;
|
|
|
|
xa_lock(&imr->implicit_children);
|
|
/*
|
|
* This can race with mlx5_ib_free_implicit_mr(), the first one to
|
|
* reach the xa lock wins the race and destroys the MR.
|
|
*/
|
|
if (__xa_cmpxchg(&imr->implicit_children, idx, mr, NULL, GFP_ATOMIC) !=
|
|
mr)
|
|
goto out_unlock;
|
|
|
|
atomic_inc(&imr->num_deferred_work);
|
|
call_srcu(&mr->dev->odp_srcu, &mr->odp_destroy.rcu,
|
|
free_implicit_child_mr_rcu);
|
|
|
|
out_unlock:
|
|
xa_unlock(&imr->implicit_children);
|
|
}
|
|
|
|
static bool mlx5_ib_invalidate_range(struct mmu_interval_notifier *mni,
|
|
const struct mmu_notifier_range *range,
|
|
unsigned long cur_seq)
|
|
{
|
|
struct ib_umem_odp *umem_odp =
|
|
container_of(mni, struct ib_umem_odp, notifier);
|
|
struct mlx5_ib_mr *mr;
|
|
const u64 umr_block_mask = (MLX5_UMR_MTT_ALIGNMENT /
|
|
sizeof(struct mlx5_mtt)) - 1;
|
|
u64 idx = 0, blk_start_idx = 0;
|
|
u64 invalidations = 0;
|
|
unsigned long start;
|
|
unsigned long end;
|
|
int in_block = 0;
|
|
u64 addr;
|
|
|
|
if (!mmu_notifier_range_blockable(range))
|
|
return false;
|
|
|
|
mutex_lock(&umem_odp->umem_mutex);
|
|
mmu_interval_set_seq(mni, cur_seq);
|
|
/*
|
|
* If npages is zero then umem_odp->private may not be setup yet. This
|
|
* does not complete until after the first page is mapped for DMA.
|
|
*/
|
|
if (!umem_odp->npages)
|
|
goto out;
|
|
mr = umem_odp->private;
|
|
|
|
start = max_t(u64, ib_umem_start(umem_odp), range->start);
|
|
end = min_t(u64, ib_umem_end(umem_odp), range->end);
|
|
|
|
/*
|
|
* Iteration one - zap the HW's MTTs. The notifiers_count ensures that
|
|
* while we are doing the invalidation, no page fault will attempt to
|
|
* overwrite the same MTTs. Concurent invalidations might race us,
|
|
* but they will write 0s as well, so no difference in the end result.
|
|
*/
|
|
for (addr = start; addr < end; addr += BIT(umem_odp->page_shift)) {
|
|
idx = (addr - ib_umem_start(umem_odp)) >> umem_odp->page_shift;
|
|
/*
|
|
* Strive to write the MTTs in chunks, but avoid overwriting
|
|
* non-existing MTTs. The huristic here can be improved to
|
|
* estimate the cost of another UMR vs. the cost of bigger
|
|
* UMR.
|
|
*/
|
|
if (umem_odp->dma_list[idx] &
|
|
(ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) {
|
|
if (!in_block) {
|
|
blk_start_idx = idx;
|
|
in_block = 1;
|
|
}
|
|
|
|
/* Count page invalidations */
|
|
invalidations += idx - blk_start_idx + 1;
|
|
} else {
|
|
u64 umr_offset = idx & umr_block_mask;
|
|
|
|
if (in_block && umr_offset == 0) {
|
|
mlx5_ib_update_xlt(mr, blk_start_idx,
|
|
idx - blk_start_idx, 0,
|
|
MLX5_IB_UPD_XLT_ZAP |
|
|
MLX5_IB_UPD_XLT_ATOMIC);
|
|
in_block = 0;
|
|
}
|
|
}
|
|
}
|
|
if (in_block)
|
|
mlx5_ib_update_xlt(mr, blk_start_idx,
|
|
idx - blk_start_idx + 1, 0,
|
|
MLX5_IB_UPD_XLT_ZAP |
|
|
MLX5_IB_UPD_XLT_ATOMIC);
|
|
|
|
mlx5_update_odp_stats(mr, invalidations, invalidations);
|
|
|
|
/*
|
|
* We are now sure that the device will not access the
|
|
* memory. We can safely unmap it, and mark it as dirty if
|
|
* needed.
|
|
*/
|
|
|
|
ib_umem_odp_unmap_dma_pages(umem_odp, start, end);
|
|
|
|
if (unlikely(!umem_odp->npages && mr->parent))
|
|
destroy_unused_implicit_child_mr(mr);
|
|
out:
|
|
mutex_unlock(&umem_odp->umem_mutex);
|
|
return true;
|
|
}
|
|
|
|
const struct mmu_interval_notifier_ops mlx5_mn_ops = {
|
|
.invalidate = mlx5_ib_invalidate_range,
|
|
};
|
|
|
|
void mlx5_ib_internal_fill_odp_caps(struct mlx5_ib_dev *dev)
|
|
{
|
|
struct ib_odp_caps *caps = &dev->odp_caps;
|
|
|
|
memset(caps, 0, sizeof(*caps));
|
|
|
|
if (!MLX5_CAP_GEN(dev->mdev, pg) ||
|
|
!mlx5_ib_can_use_umr(dev, true))
|
|
return;
|
|
|
|
caps->general_caps = IB_ODP_SUPPORT;
|
|
|
|
if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
|
|
dev->odp_max_size = U64_MAX;
|
|
else
|
|
dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT);
|
|
|
|
if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.send))
|
|
caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND;
|
|
|
|
if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.srq_receive))
|
|
caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
|
|
|
|
if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.send))
|
|
caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND;
|
|
|
|
if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.receive))
|
|
caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV;
|
|
|
|
if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.write))
|
|
caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE;
|
|
|
|
if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.read))
|
|
caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ;
|
|
|
|
if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.atomic))
|
|
caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
|
|
|
|
if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.srq_receive))
|
|
caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
|
|
|
|
if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.send))
|
|
caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SEND;
|
|
|
|
if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.receive))
|
|
caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_RECV;
|
|
|
|
if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.write))
|
|
caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_WRITE;
|
|
|
|
if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.read))
|
|
caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_READ;
|
|
|
|
if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.atomic))
|
|
caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
|
|
|
|
if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.srq_receive))
|
|
caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
|
|
|
|
if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) &&
|
|
MLX5_CAP_GEN(dev->mdev, null_mkey) &&
|
|
MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset) &&
|
|
!MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled))
|
|
caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT;
|
|
}
|
|
|
|
static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev,
|
|
struct mlx5_pagefault *pfault,
|
|
int error)
|
|
{
|
|
int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ?
|
|
pfault->wqe.wq_num : pfault->token;
|
|
u32 out[MLX5_ST_SZ_DW(page_fault_resume_out)] = { };
|
|
u32 in[MLX5_ST_SZ_DW(page_fault_resume_in)] = { };
|
|
int err;
|
|
|
|
MLX5_SET(page_fault_resume_in, in, opcode, MLX5_CMD_OP_PAGE_FAULT_RESUME);
|
|
MLX5_SET(page_fault_resume_in, in, page_fault_type, pfault->type);
|
|
MLX5_SET(page_fault_resume_in, in, token, pfault->token);
|
|
MLX5_SET(page_fault_resume_in, in, wq_number, wq_num);
|
|
MLX5_SET(page_fault_resume_in, in, error, !!error);
|
|
|
|
err = mlx5_cmd_exec(dev->mdev, in, sizeof(in), out, sizeof(out));
|
|
if (err)
|
|
mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x err %d\n",
|
|
wq_num, err);
|
|
}
|
|
|
|
static struct mlx5_ib_mr *implicit_get_child_mr(struct mlx5_ib_mr *imr,
|
|
unsigned long idx)
|
|
{
|
|
struct ib_umem_odp *odp;
|
|
struct mlx5_ib_mr *mr;
|
|
struct mlx5_ib_mr *ret;
|
|
int err;
|
|
|
|
odp = ib_umem_odp_alloc_child(to_ib_umem_odp(imr->umem),
|
|
idx * MLX5_IMR_MTT_SIZE,
|
|
MLX5_IMR_MTT_SIZE, &mlx5_mn_ops);
|
|
if (IS_ERR(odp))
|
|
return ERR_CAST(odp);
|
|
|
|
ret = mr = mlx5_mr_cache_alloc(imr->dev, MLX5_IMR_MTT_CACHE_ENTRY);
|
|
if (IS_ERR(mr))
|
|
goto out_umem;
|
|
|
|
mr->ibmr.pd = imr->ibmr.pd;
|
|
mr->access_flags = imr->access_flags;
|
|
mr->umem = &odp->umem;
|
|
mr->ibmr.lkey = mr->mmkey.key;
|
|
mr->ibmr.rkey = mr->mmkey.key;
|
|
mr->mmkey.iova = idx * MLX5_IMR_MTT_SIZE;
|
|
mr->parent = imr;
|
|
odp->private = mr;
|
|
|
|
err = mlx5_ib_update_xlt(mr, 0,
|
|
MLX5_IMR_MTT_ENTRIES,
|
|
PAGE_SHIFT,
|
|
MLX5_IB_UPD_XLT_ZAP |
|
|
MLX5_IB_UPD_XLT_ENABLE);
|
|
if (err) {
|
|
ret = ERR_PTR(err);
|
|
goto out_mr;
|
|
}
|
|
|
|
/*
|
|
* Once the store to either xarray completes any error unwind has to
|
|
* use synchronize_srcu(). Avoid this with xa_reserve()
|
|
*/
|
|
ret = xa_cmpxchg(&imr->implicit_children, idx, NULL, mr,
|
|
GFP_KERNEL);
|
|
if (unlikely(ret)) {
|
|
if (xa_is_err(ret)) {
|
|
ret = ERR_PTR(xa_err(ret));
|
|
goto out_mr;
|
|
}
|
|
/*
|
|
* Another thread beat us to creating the child mr, use
|
|
* theirs.
|
|
*/
|
|
goto out_mr;
|
|
}
|
|
|
|
mlx5_ib_dbg(imr->dev, "key %x mr %p\n", mr->mmkey.key, mr);
|
|
return mr;
|
|
|
|
out_mr:
|
|
mlx5_mr_cache_free(imr->dev, mr);
|
|
out_umem:
|
|
ib_umem_odp_release(odp);
|
|
return ret;
|
|
}
|
|
|
|
struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd,
|
|
struct ib_udata *udata,
|
|
int access_flags)
|
|
{
|
|
struct mlx5_ib_dev *dev = to_mdev(pd->ibpd.device);
|
|
struct ib_umem_odp *umem_odp;
|
|
struct mlx5_ib_mr *imr;
|
|
int err;
|
|
|
|
umem_odp = ib_umem_odp_alloc_implicit(udata, access_flags);
|
|
if (IS_ERR(umem_odp))
|
|
return ERR_CAST(umem_odp);
|
|
|
|
imr = mlx5_mr_cache_alloc(dev, MLX5_IMR_KSM_CACHE_ENTRY);
|
|
if (IS_ERR(imr)) {
|
|
err = PTR_ERR(imr);
|
|
goto out_umem;
|
|
}
|
|
|
|
imr->ibmr.pd = &pd->ibpd;
|
|
imr->access_flags = access_flags;
|
|
imr->mmkey.iova = 0;
|
|
imr->umem = &umem_odp->umem;
|
|
imr->ibmr.lkey = imr->mmkey.key;
|
|
imr->ibmr.rkey = imr->mmkey.key;
|
|
imr->umem = &umem_odp->umem;
|
|
imr->is_odp_implicit = true;
|
|
atomic_set(&imr->num_deferred_work, 0);
|
|
xa_init(&imr->implicit_children);
|
|
|
|
err = mlx5_ib_update_xlt(imr, 0,
|
|
mlx5_imr_ksm_entries,
|
|
MLX5_KSM_PAGE_SHIFT,
|
|
MLX5_IB_UPD_XLT_INDIRECT |
|
|
MLX5_IB_UPD_XLT_ZAP |
|
|
MLX5_IB_UPD_XLT_ENABLE);
|
|
if (err)
|
|
goto out_mr;
|
|
|
|
err = xa_err(xa_store(&dev->odp_mkeys, mlx5_base_mkey(imr->mmkey.key),
|
|
&imr->mmkey, GFP_KERNEL));
|
|
if (err)
|
|
goto out_mr;
|
|
|
|
mlx5_ib_dbg(dev, "key %x mr %p\n", imr->mmkey.key, imr);
|
|
return imr;
|
|
out_mr:
|
|
mlx5_ib_err(dev, "Failed to register MKEY %d\n", err);
|
|
mlx5_mr_cache_free(dev, imr);
|
|
out_umem:
|
|
ib_umem_odp_release(umem_odp);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
void mlx5_ib_free_implicit_mr(struct mlx5_ib_mr *imr)
|
|
{
|
|
struct ib_umem_odp *odp_imr = to_ib_umem_odp(imr->umem);
|
|
struct mlx5_ib_dev *dev = imr->dev;
|
|
struct list_head destroy_list;
|
|
struct mlx5_ib_mr *mtt;
|
|
struct mlx5_ib_mr *tmp;
|
|
unsigned long idx;
|
|
|
|
INIT_LIST_HEAD(&destroy_list);
|
|
|
|
xa_erase(&dev->odp_mkeys, mlx5_base_mkey(imr->mmkey.key));
|
|
/*
|
|
* This stops the SRCU protected page fault path from touching either
|
|
* the imr or any children. The page fault path can only reach the
|
|
* children xarray via the imr.
|
|
*/
|
|
synchronize_srcu(&dev->odp_srcu);
|
|
|
|
xa_lock(&imr->implicit_children);
|
|
xa_for_each (&imr->implicit_children, idx, mtt) {
|
|
__xa_erase(&imr->implicit_children, idx);
|
|
list_add(&mtt->odp_destroy.elm, &destroy_list);
|
|
}
|
|
xa_unlock(&imr->implicit_children);
|
|
|
|
/*
|
|
* num_deferred_work can only be incremented inside the odp_srcu, or
|
|
* under xa_lock while the child is in the xarray. Thus at this point
|
|
* it is only decreasing, and all work holding it is now on the wq.
|
|
*/
|
|
if (atomic_read(&imr->num_deferred_work)) {
|
|
flush_workqueue(system_unbound_wq);
|
|
WARN_ON(atomic_read(&imr->num_deferred_work));
|
|
}
|
|
|
|
/*
|
|
* Fence the imr before we destroy the children. This allows us to
|
|
* skip updating the XLT of the imr during destroy of the child mkey
|
|
* the imr points to.
|
|
*/
|
|
mlx5_mr_cache_invalidate(imr);
|
|
|
|
list_for_each_entry_safe (mtt, tmp, &destroy_list, odp_destroy.elm)
|
|
free_implicit_child_mr(mtt, false);
|
|
|
|
mlx5_mr_cache_free(dev, imr);
|
|
ib_umem_odp_release(odp_imr);
|
|
}
|
|
|
|
/**
|
|
* mlx5_ib_fence_odp_mr - Stop all access to the ODP MR
|
|
* @mr: to fence
|
|
*
|
|
* On return no parallel threads will be touching this MR and no DMA will be
|
|
* active.
|
|
*/
|
|
void mlx5_ib_fence_odp_mr(struct mlx5_ib_mr *mr)
|
|
{
|
|
/* Prevent new page faults and prefetch requests from succeeding */
|
|
xa_erase(&mr->dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key));
|
|
|
|
/* Wait for all running page-fault handlers to finish. */
|
|
synchronize_srcu(&mr->dev->odp_srcu);
|
|
|
|
if (atomic_read(&mr->num_deferred_work)) {
|
|
flush_workqueue(system_unbound_wq);
|
|
WARN_ON(atomic_read(&mr->num_deferred_work));
|
|
}
|
|
|
|
dma_fence_odp_mr(mr);
|
|
}
|
|
|
|
#define MLX5_PF_FLAGS_DOWNGRADE BIT(1)
|
|
static int pagefault_real_mr(struct mlx5_ib_mr *mr, struct ib_umem_odp *odp,
|
|
u64 user_va, size_t bcnt, u32 *bytes_mapped,
|
|
u32 flags)
|
|
{
|
|
int page_shift, ret, np;
|
|
bool downgrade = flags & MLX5_PF_FLAGS_DOWNGRADE;
|
|
unsigned long current_seq;
|
|
u64 access_mask;
|
|
u64 start_idx, page_mask;
|
|
|
|
page_shift = odp->page_shift;
|
|
page_mask = ~(BIT(page_shift) - 1);
|
|
start_idx = (user_va - (mr->mmkey.iova & page_mask)) >> page_shift;
|
|
access_mask = ODP_READ_ALLOWED_BIT;
|
|
|
|
if (odp->umem.writable && !downgrade)
|
|
access_mask |= ODP_WRITE_ALLOWED_BIT;
|
|
|
|
current_seq = mmu_interval_read_begin(&odp->notifier);
|
|
|
|
np = ib_umem_odp_map_dma_pages(odp, user_va, bcnt, access_mask,
|
|
current_seq);
|
|
if (np < 0)
|
|
return np;
|
|
|
|
mutex_lock(&odp->umem_mutex);
|
|
if (!mmu_interval_read_retry(&odp->notifier, current_seq)) {
|
|
/*
|
|
* No need to check whether the MTTs really belong to
|
|
* this MR, since ib_umem_odp_map_dma_pages already
|
|
* checks this.
|
|
*/
|
|
ret = mlx5_ib_update_xlt(mr, start_idx, np,
|
|
page_shift, MLX5_IB_UPD_XLT_ATOMIC);
|
|
} else {
|
|
ret = -EAGAIN;
|
|
}
|
|
mutex_unlock(&odp->umem_mutex);
|
|
|
|
if (ret < 0) {
|
|
if (ret != -EAGAIN)
|
|
mlx5_ib_err(mr->dev,
|
|
"Failed to update mkey page tables\n");
|
|
goto out;
|
|
}
|
|
|
|
if (bytes_mapped) {
|
|
u32 new_mappings = (np << page_shift) -
|
|
(user_va - round_down(user_va, 1 << page_shift));
|
|
|
|
*bytes_mapped += min_t(u32, new_mappings, bcnt);
|
|
}
|
|
|
|
return np << (page_shift - PAGE_SHIFT);
|
|
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static int pagefault_implicit_mr(struct mlx5_ib_mr *imr,
|
|
struct ib_umem_odp *odp_imr, u64 user_va,
|
|
size_t bcnt, u32 *bytes_mapped, u32 flags)
|
|
{
|
|
unsigned long end_idx = (user_va + bcnt - 1) >> MLX5_IMR_MTT_SHIFT;
|
|
unsigned long upd_start_idx = end_idx + 1;
|
|
unsigned long upd_len = 0;
|
|
unsigned long npages = 0;
|
|
int err;
|
|
int ret;
|
|
|
|
if (unlikely(user_va >= mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE ||
|
|
mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE - user_va < bcnt))
|
|
return -EFAULT;
|
|
|
|
/* Fault each child mr that intersects with our interval. */
|
|
while (bcnt) {
|
|
unsigned long idx = user_va >> MLX5_IMR_MTT_SHIFT;
|
|
struct ib_umem_odp *umem_odp;
|
|
struct mlx5_ib_mr *mtt;
|
|
u64 len;
|
|
|
|
mtt = xa_load(&imr->implicit_children, idx);
|
|
if (unlikely(!mtt)) {
|
|
mtt = implicit_get_child_mr(imr, idx);
|
|
if (IS_ERR(mtt)) {
|
|
ret = PTR_ERR(mtt);
|
|
goto out;
|
|
}
|
|
upd_start_idx = min(upd_start_idx, idx);
|
|
upd_len = idx - upd_start_idx + 1;
|
|
}
|
|
|
|
umem_odp = to_ib_umem_odp(mtt->umem);
|
|
len = min_t(u64, user_va + bcnt, ib_umem_end(umem_odp)) -
|
|
user_va;
|
|
|
|
ret = pagefault_real_mr(mtt, umem_odp, user_va, len,
|
|
bytes_mapped, flags);
|
|
if (ret < 0)
|
|
goto out;
|
|
user_va += len;
|
|
bcnt -= len;
|
|
npages += ret;
|
|
}
|
|
|
|
ret = npages;
|
|
|
|
/*
|
|
* Any time the implicit_children are changed we must perform an
|
|
* update of the xlt before exiting to ensure the HW and the
|
|
* implicit_children remains synchronized.
|
|
*/
|
|
out:
|
|
if (likely(!upd_len))
|
|
return ret;
|
|
|
|
/*
|
|
* Notice this is not strictly ordered right, the KSM is updated after
|
|
* the implicit_children is updated, so a parallel page fault could
|
|
* see a MR that is not yet visible in the KSM. This is similar to a
|
|
* parallel page fault seeing a MR that is being concurrently removed
|
|
* from the KSM. Both of these improbable situations are resolved
|
|
* safely by resuming the HW and then taking another page fault. The
|
|
* next pagefault handler will see the new information.
|
|
*/
|
|
mutex_lock(&odp_imr->umem_mutex);
|
|
err = mlx5_ib_update_xlt(imr, upd_start_idx, upd_len, 0,
|
|
MLX5_IB_UPD_XLT_INDIRECT |
|
|
MLX5_IB_UPD_XLT_ATOMIC);
|
|
mutex_unlock(&odp_imr->umem_mutex);
|
|
if (err) {
|
|
mlx5_ib_err(imr->dev, "Failed to update PAS\n");
|
|
return err;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Returns:
|
|
* -EFAULT: The io_virt->bcnt is not within the MR, it covers pages that are
|
|
* not accessible, or the MR is no longer valid.
|
|
* -EAGAIN/-ENOMEM: The operation should be retried
|
|
*
|
|
* -EINVAL/others: General internal malfunction
|
|
* >0: Number of pages mapped
|
|
*/
|
|
static int pagefault_mr(struct mlx5_ib_mr *mr, u64 io_virt, size_t bcnt,
|
|
u32 *bytes_mapped, u32 flags)
|
|
{
|
|
struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
|
|
|
|
if (!odp->is_implicit_odp) {
|
|
if (unlikely(io_virt < ib_umem_start(odp) ||
|
|
ib_umem_end(odp) - io_virt < bcnt))
|
|
return -EFAULT;
|
|
return pagefault_real_mr(mr, odp, io_virt, bcnt, bytes_mapped,
|
|
flags);
|
|
}
|
|
return pagefault_implicit_mr(mr, odp, io_virt, bcnt, bytes_mapped,
|
|
flags);
|
|
}
|
|
|
|
struct pf_frame {
|
|
struct pf_frame *next;
|
|
u32 key;
|
|
u64 io_virt;
|
|
size_t bcnt;
|
|
int depth;
|
|
};
|
|
|
|
static bool mkey_is_eq(struct mlx5_core_mkey *mmkey, u32 key)
|
|
{
|
|
if (!mmkey)
|
|
return false;
|
|
if (mmkey->type == MLX5_MKEY_MW)
|
|
return mlx5_base_mkey(mmkey->key) == mlx5_base_mkey(key);
|
|
return mmkey->key == key;
|
|
}
|
|
|
|
static int get_indirect_num_descs(struct mlx5_core_mkey *mmkey)
|
|
{
|
|
struct mlx5_ib_mw *mw;
|
|
struct mlx5_ib_devx_mr *devx_mr;
|
|
|
|
if (mmkey->type == MLX5_MKEY_MW) {
|
|
mw = container_of(mmkey, struct mlx5_ib_mw, mmkey);
|
|
return mw->ndescs;
|
|
}
|
|
|
|
devx_mr = container_of(mmkey, struct mlx5_ib_devx_mr,
|
|
mmkey);
|
|
return devx_mr->ndescs;
|
|
}
|
|
|
|
/*
|
|
* Handle a single data segment in a page-fault WQE or RDMA region.
|
|
*
|
|
* Returns number of OS pages retrieved on success. The caller may continue to
|
|
* the next data segment.
|
|
* Can return the following error codes:
|
|
* -EAGAIN to designate a temporary error. The caller will abort handling the
|
|
* page fault and resolve it.
|
|
* -EFAULT when there's an error mapping the requested pages. The caller will
|
|
* abort the page fault handling.
|
|
*/
|
|
static int pagefault_single_data_segment(struct mlx5_ib_dev *dev,
|
|
struct ib_pd *pd, u32 key,
|
|
u64 io_virt, size_t bcnt,
|
|
u32 *bytes_committed,
|
|
u32 *bytes_mapped)
|
|
{
|
|
int npages = 0, srcu_key, ret, i, outlen, cur_outlen = 0, depth = 0;
|
|
struct pf_frame *head = NULL, *frame;
|
|
struct mlx5_core_mkey *mmkey;
|
|
struct mlx5_ib_mr *mr;
|
|
struct mlx5_klm *pklm;
|
|
u32 *out = NULL;
|
|
size_t offset;
|
|
int ndescs;
|
|
|
|
srcu_key = srcu_read_lock(&dev->odp_srcu);
|
|
|
|
io_virt += *bytes_committed;
|
|
bcnt -= *bytes_committed;
|
|
|
|
next_mr:
|
|
mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(key));
|
|
if (!mmkey) {
|
|
mlx5_ib_dbg(
|
|
dev,
|
|
"skipping non ODP MR (lkey=0x%06x) in page fault handler.\n",
|
|
key);
|
|
if (bytes_mapped)
|
|
*bytes_mapped += bcnt;
|
|
/*
|
|
* The user could specify a SGL with multiple lkeys and only
|
|
* some of them are ODP. Treat the non-ODP ones as fully
|
|
* faulted.
|
|
*/
|
|
ret = 0;
|
|
goto srcu_unlock;
|
|
}
|
|
if (!mkey_is_eq(mmkey, key)) {
|
|
mlx5_ib_dbg(dev, "failed to find mkey %x\n", key);
|
|
ret = -EFAULT;
|
|
goto srcu_unlock;
|
|
}
|
|
|
|
switch (mmkey->type) {
|
|
case MLX5_MKEY_MR:
|
|
mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
|
|
|
|
ret = pagefault_mr(mr, io_virt, bcnt, bytes_mapped, 0);
|
|
if (ret < 0)
|
|
goto srcu_unlock;
|
|
|
|
/*
|
|
* When prefetching a page, page fault is generated
|
|
* in order to bring the page to the main memory.
|
|
* In the current flow, page faults are being counted.
|
|
*/
|
|
mlx5_update_odp_stats(mr, faults, ret);
|
|
|
|
npages += ret;
|
|
ret = 0;
|
|
break;
|
|
|
|
case MLX5_MKEY_MW:
|
|
case MLX5_MKEY_INDIRECT_DEVX:
|
|
ndescs = get_indirect_num_descs(mmkey);
|
|
|
|
if (depth >= MLX5_CAP_GEN(dev->mdev, max_indirection)) {
|
|
mlx5_ib_dbg(dev, "indirection level exceeded\n");
|
|
ret = -EFAULT;
|
|
goto srcu_unlock;
|
|
}
|
|
|
|
outlen = MLX5_ST_SZ_BYTES(query_mkey_out) +
|
|
sizeof(*pklm) * (ndescs - 2);
|
|
|
|
if (outlen > cur_outlen) {
|
|
kfree(out);
|
|
out = kzalloc(outlen, GFP_KERNEL);
|
|
if (!out) {
|
|
ret = -ENOMEM;
|
|
goto srcu_unlock;
|
|
}
|
|
cur_outlen = outlen;
|
|
}
|
|
|
|
pklm = (struct mlx5_klm *)MLX5_ADDR_OF(query_mkey_out, out,
|
|
bsf0_klm0_pas_mtt0_1);
|
|
|
|
ret = mlx5_core_query_mkey(dev->mdev, mmkey, out, outlen);
|
|
if (ret)
|
|
goto srcu_unlock;
|
|
|
|
offset = io_virt - MLX5_GET64(query_mkey_out, out,
|
|
memory_key_mkey_entry.start_addr);
|
|
|
|
for (i = 0; bcnt && i < ndescs; i++, pklm++) {
|
|
if (offset >= be32_to_cpu(pklm->bcount)) {
|
|
offset -= be32_to_cpu(pklm->bcount);
|
|
continue;
|
|
}
|
|
|
|
frame = kzalloc(sizeof(*frame), GFP_KERNEL);
|
|
if (!frame) {
|
|
ret = -ENOMEM;
|
|
goto srcu_unlock;
|
|
}
|
|
|
|
frame->key = be32_to_cpu(pklm->key);
|
|
frame->io_virt = be64_to_cpu(pklm->va) + offset;
|
|
frame->bcnt = min_t(size_t, bcnt,
|
|
be32_to_cpu(pklm->bcount) - offset);
|
|
frame->depth = depth + 1;
|
|
frame->next = head;
|
|
head = frame;
|
|
|
|
bcnt -= frame->bcnt;
|
|
offset = 0;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
mlx5_ib_dbg(dev, "wrong mkey type %d\n", mmkey->type);
|
|
ret = -EFAULT;
|
|
goto srcu_unlock;
|
|
}
|
|
|
|
if (head) {
|
|
frame = head;
|
|
head = frame->next;
|
|
|
|
key = frame->key;
|
|
io_virt = frame->io_virt;
|
|
bcnt = frame->bcnt;
|
|
depth = frame->depth;
|
|
kfree(frame);
|
|
|
|
goto next_mr;
|
|
}
|
|
|
|
srcu_unlock:
|
|
while (head) {
|
|
frame = head;
|
|
head = frame->next;
|
|
kfree(frame);
|
|
}
|
|
kfree(out);
|
|
|
|
srcu_read_unlock(&dev->odp_srcu, srcu_key);
|
|
*bytes_committed = 0;
|
|
return ret ? ret : npages;
|
|
}
|
|
|
|
/**
|
|
* Parse a series of data segments for page fault handling.
|
|
*
|
|
* @pfault contains page fault information.
|
|
* @wqe points at the first data segment in the WQE.
|
|
* @wqe_end points after the end of the WQE.
|
|
* @bytes_mapped receives the number of bytes that the function was able to
|
|
* map. This allows the caller to decide intelligently whether
|
|
* enough memory was mapped to resolve the page fault
|
|
* successfully (e.g. enough for the next MTU, or the entire
|
|
* WQE).
|
|
* @total_wqe_bytes receives the total data size of this WQE in bytes (minus
|
|
* the committed bytes).
|
|
*
|
|
* Returns the number of pages loaded if positive, zero for an empty WQE, or a
|
|
* negative error code.
|
|
*/
|
|
static int pagefault_data_segments(struct mlx5_ib_dev *dev,
|
|
struct mlx5_pagefault *pfault,
|
|
void *wqe,
|
|
void *wqe_end, u32 *bytes_mapped,
|
|
u32 *total_wqe_bytes, bool receive_queue)
|
|
{
|
|
int ret = 0, npages = 0;
|
|
u64 io_virt;
|
|
u32 key;
|
|
u32 byte_count;
|
|
size_t bcnt;
|
|
int inline_segment;
|
|
|
|
if (bytes_mapped)
|
|
*bytes_mapped = 0;
|
|
if (total_wqe_bytes)
|
|
*total_wqe_bytes = 0;
|
|
|
|
while (wqe < wqe_end) {
|
|
struct mlx5_wqe_data_seg *dseg = wqe;
|
|
|
|
io_virt = be64_to_cpu(dseg->addr);
|
|
key = be32_to_cpu(dseg->lkey);
|
|
byte_count = be32_to_cpu(dseg->byte_count);
|
|
inline_segment = !!(byte_count & MLX5_INLINE_SEG);
|
|
bcnt = byte_count & ~MLX5_INLINE_SEG;
|
|
|
|
if (inline_segment) {
|
|
bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK;
|
|
wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt,
|
|
16);
|
|
} else {
|
|
wqe += sizeof(*dseg);
|
|
}
|
|
|
|
/* receive WQE end of sg list. */
|
|
if (receive_queue && bcnt == 0 && key == MLX5_INVALID_LKEY &&
|
|
io_virt == 0)
|
|
break;
|
|
|
|
if (!inline_segment && total_wqe_bytes) {
|
|
*total_wqe_bytes += bcnt - min_t(size_t, bcnt,
|
|
pfault->bytes_committed);
|
|
}
|
|
|
|
/* A zero length data segment designates a length of 2GB. */
|
|
if (bcnt == 0)
|
|
bcnt = 1U << 31;
|
|
|
|
if (inline_segment || bcnt <= pfault->bytes_committed) {
|
|
pfault->bytes_committed -=
|
|
min_t(size_t, bcnt,
|
|
pfault->bytes_committed);
|
|
continue;
|
|
}
|
|
|
|
ret = pagefault_single_data_segment(dev, NULL, key,
|
|
io_virt, bcnt,
|
|
&pfault->bytes_committed,
|
|
bytes_mapped);
|
|
if (ret < 0)
|
|
break;
|
|
npages += ret;
|
|
}
|
|
|
|
return ret < 0 ? ret : npages;
|
|
}
|
|
|
|
/*
|
|
* Parse initiator WQE. Advances the wqe pointer to point at the
|
|
* scatter-gather list, and set wqe_end to the end of the WQE.
|
|
*/
|
|
static int mlx5_ib_mr_initiator_pfault_handler(
|
|
struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
|
|
struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
|
|
{
|
|
struct mlx5_wqe_ctrl_seg *ctrl = *wqe;
|
|
u16 wqe_index = pfault->wqe.wqe_index;
|
|
struct mlx5_base_av *av;
|
|
unsigned ds, opcode;
|
|
u32 qpn = qp->trans_qp.base.mqp.qpn;
|
|
|
|
ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK;
|
|
if (ds * MLX5_WQE_DS_UNITS > wqe_length) {
|
|
mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n",
|
|
ds, wqe_length);
|
|
return -EFAULT;
|
|
}
|
|
|
|
if (ds == 0) {
|
|
mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n",
|
|
wqe_index, qpn);
|
|
return -EFAULT;
|
|
}
|
|
|
|
*wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS;
|
|
*wqe += sizeof(*ctrl);
|
|
|
|
opcode = be32_to_cpu(ctrl->opmod_idx_opcode) &
|
|
MLX5_WQE_CTRL_OPCODE_MASK;
|
|
|
|
if (qp->ibqp.qp_type == IB_QPT_XRC_INI)
|
|
*wqe += sizeof(struct mlx5_wqe_xrc_seg);
|
|
|
|
if (qp->ibqp.qp_type == IB_QPT_UD ||
|
|
qp->qp_sub_type == MLX5_IB_QPT_DCI) {
|
|
av = *wqe;
|
|
if (av->dqp_dct & cpu_to_be32(MLX5_EXTENDED_UD_AV))
|
|
*wqe += sizeof(struct mlx5_av);
|
|
else
|
|
*wqe += sizeof(struct mlx5_base_av);
|
|
}
|
|
|
|
switch (opcode) {
|
|
case MLX5_OPCODE_RDMA_WRITE:
|
|
case MLX5_OPCODE_RDMA_WRITE_IMM:
|
|
case MLX5_OPCODE_RDMA_READ:
|
|
*wqe += sizeof(struct mlx5_wqe_raddr_seg);
|
|
break;
|
|
case MLX5_OPCODE_ATOMIC_CS:
|
|
case MLX5_OPCODE_ATOMIC_FA:
|
|
*wqe += sizeof(struct mlx5_wqe_raddr_seg);
|
|
*wqe += sizeof(struct mlx5_wqe_atomic_seg);
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Parse responder WQE and set wqe_end to the end of the WQE.
|
|
*/
|
|
static int mlx5_ib_mr_responder_pfault_handler_srq(struct mlx5_ib_dev *dev,
|
|
struct mlx5_ib_srq *srq,
|
|
void **wqe, void **wqe_end,
|
|
int wqe_length)
|
|
{
|
|
int wqe_size = 1 << srq->msrq.wqe_shift;
|
|
|
|
if (wqe_size > wqe_length) {
|
|
mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
|
|
return -EFAULT;
|
|
}
|
|
|
|
*wqe_end = *wqe + wqe_size;
|
|
*wqe += sizeof(struct mlx5_wqe_srq_next_seg);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mlx5_ib_mr_responder_pfault_handler_rq(struct mlx5_ib_dev *dev,
|
|
struct mlx5_ib_qp *qp,
|
|
void *wqe, void **wqe_end,
|
|
int wqe_length)
|
|
{
|
|
struct mlx5_ib_wq *wq = &qp->rq;
|
|
int wqe_size = 1 << wq->wqe_shift;
|
|
|
|
if (qp->wq_sig) {
|
|
mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n");
|
|
return -EFAULT;
|
|
}
|
|
|
|
if (wqe_size > wqe_length) {
|
|
mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
|
|
return -EFAULT;
|
|
}
|
|
|
|
*wqe_end = wqe + wqe_size;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline struct mlx5_core_rsc_common *odp_get_rsc(struct mlx5_ib_dev *dev,
|
|
u32 wq_num, int pf_type)
|
|
{
|
|
struct mlx5_core_rsc_common *common = NULL;
|
|
struct mlx5_core_srq *srq;
|
|
|
|
switch (pf_type) {
|
|
case MLX5_WQE_PF_TYPE_RMP:
|
|
srq = mlx5_cmd_get_srq(dev, wq_num);
|
|
if (srq)
|
|
common = &srq->common;
|
|
break;
|
|
case MLX5_WQE_PF_TYPE_REQ_SEND_OR_WRITE:
|
|
case MLX5_WQE_PF_TYPE_RESP:
|
|
case MLX5_WQE_PF_TYPE_REQ_READ_OR_ATOMIC:
|
|
common = mlx5_core_res_hold(dev->mdev, wq_num, MLX5_RES_QP);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return common;
|
|
}
|
|
|
|
static inline struct mlx5_ib_qp *res_to_qp(struct mlx5_core_rsc_common *res)
|
|
{
|
|
struct mlx5_core_qp *mqp = (struct mlx5_core_qp *)res;
|
|
|
|
return to_mibqp(mqp);
|
|
}
|
|
|
|
static inline struct mlx5_ib_srq *res_to_srq(struct mlx5_core_rsc_common *res)
|
|
{
|
|
struct mlx5_core_srq *msrq =
|
|
container_of(res, struct mlx5_core_srq, common);
|
|
|
|
return to_mibsrq(msrq);
|
|
}
|
|
|
|
static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev,
|
|
struct mlx5_pagefault *pfault)
|
|
{
|
|
bool sq = pfault->type & MLX5_PFAULT_REQUESTOR;
|
|
u16 wqe_index = pfault->wqe.wqe_index;
|
|
void *wqe, *wqe_start = NULL, *wqe_end = NULL;
|
|
u32 bytes_mapped, total_wqe_bytes;
|
|
struct mlx5_core_rsc_common *res;
|
|
int resume_with_error = 1;
|
|
struct mlx5_ib_qp *qp;
|
|
size_t bytes_copied;
|
|
int ret = 0;
|
|
|
|
res = odp_get_rsc(dev, pfault->wqe.wq_num, pfault->type);
|
|
if (!res) {
|
|
mlx5_ib_dbg(dev, "wqe page fault for missing resource %d\n", pfault->wqe.wq_num);
|
|
return;
|
|
}
|
|
|
|
if (res->res != MLX5_RES_QP && res->res != MLX5_RES_SRQ &&
|
|
res->res != MLX5_RES_XSRQ) {
|
|
mlx5_ib_err(dev, "wqe page fault for unsupported type %d\n",
|
|
pfault->type);
|
|
goto resolve_page_fault;
|
|
}
|
|
|
|
wqe_start = (void *)__get_free_page(GFP_KERNEL);
|
|
if (!wqe_start) {
|
|
mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n");
|
|
goto resolve_page_fault;
|
|
}
|
|
|
|
wqe = wqe_start;
|
|
qp = (res->res == MLX5_RES_QP) ? res_to_qp(res) : NULL;
|
|
if (qp && sq) {
|
|
ret = mlx5_ib_read_user_wqe_sq(qp, wqe_index, wqe, PAGE_SIZE,
|
|
&bytes_copied);
|
|
if (ret)
|
|
goto read_user;
|
|
ret = mlx5_ib_mr_initiator_pfault_handler(
|
|
dev, pfault, qp, &wqe, &wqe_end, bytes_copied);
|
|
} else if (qp && !sq) {
|
|
ret = mlx5_ib_read_user_wqe_rq(qp, wqe_index, wqe, PAGE_SIZE,
|
|
&bytes_copied);
|
|
if (ret)
|
|
goto read_user;
|
|
ret = mlx5_ib_mr_responder_pfault_handler_rq(
|
|
dev, qp, wqe, &wqe_end, bytes_copied);
|
|
} else if (!qp) {
|
|
struct mlx5_ib_srq *srq = res_to_srq(res);
|
|
|
|
ret = mlx5_ib_read_user_wqe_srq(srq, wqe_index, wqe, PAGE_SIZE,
|
|
&bytes_copied);
|
|
if (ret)
|
|
goto read_user;
|
|
ret = mlx5_ib_mr_responder_pfault_handler_srq(
|
|
dev, srq, &wqe, &wqe_end, bytes_copied);
|
|
}
|
|
|
|
if (ret < 0 || wqe >= wqe_end)
|
|
goto resolve_page_fault;
|
|
|
|
ret = pagefault_data_segments(dev, pfault, wqe, wqe_end, &bytes_mapped,
|
|
&total_wqe_bytes, !sq);
|
|
if (ret == -EAGAIN)
|
|
goto out;
|
|
|
|
if (ret < 0 || total_wqe_bytes > bytes_mapped)
|
|
goto resolve_page_fault;
|
|
|
|
out:
|
|
ret = 0;
|
|
resume_with_error = 0;
|
|
|
|
read_user:
|
|
if (ret)
|
|
mlx5_ib_err(
|
|
dev,
|
|
"Failed reading a WQE following page fault, error %d, wqe_index %x, qpn %x\n",
|
|
ret, wqe_index, pfault->token);
|
|
|
|
resolve_page_fault:
|
|
mlx5_ib_page_fault_resume(dev, pfault, resume_with_error);
|
|
mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n",
|
|
pfault->wqe.wq_num, resume_with_error,
|
|
pfault->type);
|
|
mlx5_core_res_put(res);
|
|
free_page((unsigned long)wqe_start);
|
|
}
|
|
|
|
static int pages_in_range(u64 address, u32 length)
|
|
{
|
|
return (ALIGN(address + length, PAGE_SIZE) -
|
|
(address & PAGE_MASK)) >> PAGE_SHIFT;
|
|
}
|
|
|
|
static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev,
|
|
struct mlx5_pagefault *pfault)
|
|
{
|
|
u64 address;
|
|
u32 length;
|
|
u32 prefetch_len = pfault->bytes_committed;
|
|
int prefetch_activated = 0;
|
|
u32 rkey = pfault->rdma.r_key;
|
|
int ret;
|
|
|
|
/* The RDMA responder handler handles the page fault in two parts.
|
|
* First it brings the necessary pages for the current packet
|
|
* (and uses the pfault context), and then (after resuming the QP)
|
|
* prefetches more pages. The second operation cannot use the pfault
|
|
* context and therefore uses the dummy_pfault context allocated on
|
|
* the stack */
|
|
pfault->rdma.rdma_va += pfault->bytes_committed;
|
|
pfault->rdma.rdma_op_len -= min(pfault->bytes_committed,
|
|
pfault->rdma.rdma_op_len);
|
|
pfault->bytes_committed = 0;
|
|
|
|
address = pfault->rdma.rdma_va;
|
|
length = pfault->rdma.rdma_op_len;
|
|
|
|
/* For some operations, the hardware cannot tell the exact message
|
|
* length, and in those cases it reports zero. Use prefetch
|
|
* logic. */
|
|
if (length == 0) {
|
|
prefetch_activated = 1;
|
|
length = pfault->rdma.packet_size;
|
|
prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len);
|
|
}
|
|
|
|
ret = pagefault_single_data_segment(dev, NULL, rkey, address, length,
|
|
&pfault->bytes_committed, NULL);
|
|
if (ret == -EAGAIN) {
|
|
/* We're racing with an invalidation, don't prefetch */
|
|
prefetch_activated = 0;
|
|
} else if (ret < 0 || pages_in_range(address, length) > ret) {
|
|
mlx5_ib_page_fault_resume(dev, pfault, 1);
|
|
if (ret != -ENOENT)
|
|
mlx5_ib_dbg(dev, "PAGE FAULT error %d. QP 0x%x, type: 0x%x\n",
|
|
ret, pfault->token, pfault->type);
|
|
return;
|
|
}
|
|
|
|
mlx5_ib_page_fault_resume(dev, pfault, 0);
|
|
mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x, type: 0x%x, prefetch_activated: %d\n",
|
|
pfault->token, pfault->type,
|
|
prefetch_activated);
|
|
|
|
/* At this point, there might be a new pagefault already arriving in
|
|
* the eq, switch to the dummy pagefault for the rest of the
|
|
* processing. We're still OK with the objects being alive as the
|
|
* work-queue is being fenced. */
|
|
|
|
if (prefetch_activated) {
|
|
u32 bytes_committed = 0;
|
|
|
|
ret = pagefault_single_data_segment(dev, NULL, rkey, address,
|
|
prefetch_len,
|
|
&bytes_committed, NULL);
|
|
if (ret < 0 && ret != -EAGAIN) {
|
|
mlx5_ib_dbg(dev, "Prefetch failed. ret: %d, QP 0x%x, address: 0x%.16llx, length = 0x%.16x\n",
|
|
ret, pfault->token, address, prefetch_len);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void mlx5_ib_pfault(struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault)
|
|
{
|
|
u8 event_subtype = pfault->event_subtype;
|
|
|
|
switch (event_subtype) {
|
|
case MLX5_PFAULT_SUBTYPE_WQE:
|
|
mlx5_ib_mr_wqe_pfault_handler(dev, pfault);
|
|
break;
|
|
case MLX5_PFAULT_SUBTYPE_RDMA:
|
|
mlx5_ib_mr_rdma_pfault_handler(dev, pfault);
|
|
break;
|
|
default:
|
|
mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n",
|
|
event_subtype);
|
|
mlx5_ib_page_fault_resume(dev, pfault, 1);
|
|
}
|
|
}
|
|
|
|
static void mlx5_ib_eqe_pf_action(struct work_struct *work)
|
|
{
|
|
struct mlx5_pagefault *pfault = container_of(work,
|
|
struct mlx5_pagefault,
|
|
work);
|
|
struct mlx5_ib_pf_eq *eq = pfault->eq;
|
|
|
|
mlx5_ib_pfault(eq->dev, pfault);
|
|
mempool_free(pfault, eq->pool);
|
|
}
|
|
|
|
static void mlx5_ib_eq_pf_process(struct mlx5_ib_pf_eq *eq)
|
|
{
|
|
struct mlx5_eqe_page_fault *pf_eqe;
|
|
struct mlx5_pagefault *pfault;
|
|
struct mlx5_eqe *eqe;
|
|
int cc = 0;
|
|
|
|
while ((eqe = mlx5_eq_get_eqe(eq->core, cc))) {
|
|
pfault = mempool_alloc(eq->pool, GFP_ATOMIC);
|
|
if (!pfault) {
|
|
schedule_work(&eq->work);
|
|
break;
|
|
}
|
|
|
|
pf_eqe = &eqe->data.page_fault;
|
|
pfault->event_subtype = eqe->sub_type;
|
|
pfault->bytes_committed = be32_to_cpu(pf_eqe->bytes_committed);
|
|
|
|
mlx5_ib_dbg(eq->dev,
|
|
"PAGE_FAULT: subtype: 0x%02x, bytes_committed: 0x%06x\n",
|
|
eqe->sub_type, pfault->bytes_committed);
|
|
|
|
switch (eqe->sub_type) {
|
|
case MLX5_PFAULT_SUBTYPE_RDMA:
|
|
/* RDMA based event */
|
|
pfault->type =
|
|
be32_to_cpu(pf_eqe->rdma.pftype_token) >> 24;
|
|
pfault->token =
|
|
be32_to_cpu(pf_eqe->rdma.pftype_token) &
|
|
MLX5_24BIT_MASK;
|
|
pfault->rdma.r_key =
|
|
be32_to_cpu(pf_eqe->rdma.r_key);
|
|
pfault->rdma.packet_size =
|
|
be16_to_cpu(pf_eqe->rdma.packet_length);
|
|
pfault->rdma.rdma_op_len =
|
|
be32_to_cpu(pf_eqe->rdma.rdma_op_len);
|
|
pfault->rdma.rdma_va =
|
|
be64_to_cpu(pf_eqe->rdma.rdma_va);
|
|
mlx5_ib_dbg(eq->dev,
|
|
"PAGE_FAULT: type:0x%x, token: 0x%06x, r_key: 0x%08x\n",
|
|
pfault->type, pfault->token,
|
|
pfault->rdma.r_key);
|
|
mlx5_ib_dbg(eq->dev,
|
|
"PAGE_FAULT: rdma_op_len: 0x%08x, rdma_va: 0x%016llx\n",
|
|
pfault->rdma.rdma_op_len,
|
|
pfault->rdma.rdma_va);
|
|
break;
|
|
|
|
case MLX5_PFAULT_SUBTYPE_WQE:
|
|
/* WQE based event */
|
|
pfault->type =
|
|
(be32_to_cpu(pf_eqe->wqe.pftype_wq) >> 24) & 0x7;
|
|
pfault->token =
|
|
be32_to_cpu(pf_eqe->wqe.token);
|
|
pfault->wqe.wq_num =
|
|
be32_to_cpu(pf_eqe->wqe.pftype_wq) &
|
|
MLX5_24BIT_MASK;
|
|
pfault->wqe.wqe_index =
|
|
be16_to_cpu(pf_eqe->wqe.wqe_index);
|
|
pfault->wqe.packet_size =
|
|
be16_to_cpu(pf_eqe->wqe.packet_length);
|
|
mlx5_ib_dbg(eq->dev,
|
|
"PAGE_FAULT: type:0x%x, token: 0x%06x, wq_num: 0x%06x, wqe_index: 0x%04x\n",
|
|
pfault->type, pfault->token,
|
|
pfault->wqe.wq_num,
|
|
pfault->wqe.wqe_index);
|
|
break;
|
|
|
|
default:
|
|
mlx5_ib_warn(eq->dev,
|
|
"Unsupported page fault event sub-type: 0x%02hhx\n",
|
|
eqe->sub_type);
|
|
/* Unsupported page faults should still be
|
|
* resolved by the page fault handler
|
|
*/
|
|
}
|
|
|
|
pfault->eq = eq;
|
|
INIT_WORK(&pfault->work, mlx5_ib_eqe_pf_action);
|
|
queue_work(eq->wq, &pfault->work);
|
|
|
|
cc = mlx5_eq_update_cc(eq->core, ++cc);
|
|
}
|
|
|
|
mlx5_eq_update_ci(eq->core, cc, 1);
|
|
}
|
|
|
|
static int mlx5_ib_eq_pf_int(struct notifier_block *nb, unsigned long type,
|
|
void *data)
|
|
{
|
|
struct mlx5_ib_pf_eq *eq =
|
|
container_of(nb, struct mlx5_ib_pf_eq, irq_nb);
|
|
unsigned long flags;
|
|
|
|
if (spin_trylock_irqsave(&eq->lock, flags)) {
|
|
mlx5_ib_eq_pf_process(eq);
|
|
spin_unlock_irqrestore(&eq->lock, flags);
|
|
} else {
|
|
schedule_work(&eq->work);
|
|
}
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/* mempool_refill() was proposed but unfortunately wasn't accepted
|
|
* http://lkml.iu.edu/hypermail/linux/kernel/1512.1/05073.html
|
|
* Cheap workaround.
|
|
*/
|
|
static void mempool_refill(mempool_t *pool)
|
|
{
|
|
while (pool->curr_nr < pool->min_nr)
|
|
mempool_free(mempool_alloc(pool, GFP_KERNEL), pool);
|
|
}
|
|
|
|
static void mlx5_ib_eq_pf_action(struct work_struct *work)
|
|
{
|
|
struct mlx5_ib_pf_eq *eq =
|
|
container_of(work, struct mlx5_ib_pf_eq, work);
|
|
|
|
mempool_refill(eq->pool);
|
|
|
|
spin_lock_irq(&eq->lock);
|
|
mlx5_ib_eq_pf_process(eq);
|
|
spin_unlock_irq(&eq->lock);
|
|
}
|
|
|
|
enum {
|
|
MLX5_IB_NUM_PF_EQE = 0x1000,
|
|
MLX5_IB_NUM_PF_DRAIN = 64,
|
|
};
|
|
|
|
static int
|
|
mlx5_ib_create_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
|
|
{
|
|
struct mlx5_eq_param param = {};
|
|
int err;
|
|
|
|
INIT_WORK(&eq->work, mlx5_ib_eq_pf_action);
|
|
spin_lock_init(&eq->lock);
|
|
eq->dev = dev;
|
|
|
|
eq->pool = mempool_create_kmalloc_pool(MLX5_IB_NUM_PF_DRAIN,
|
|
sizeof(struct mlx5_pagefault));
|
|
if (!eq->pool)
|
|
return -ENOMEM;
|
|
|
|
eq->wq = alloc_workqueue("mlx5_ib_page_fault",
|
|
WQ_HIGHPRI | WQ_UNBOUND | WQ_MEM_RECLAIM,
|
|
MLX5_NUM_CMD_EQE);
|
|
if (!eq->wq) {
|
|
err = -ENOMEM;
|
|
goto err_mempool;
|
|
}
|
|
|
|
eq->irq_nb.notifier_call = mlx5_ib_eq_pf_int;
|
|
param = (struct mlx5_eq_param) {
|
|
.irq_index = 0,
|
|
.nent = MLX5_IB_NUM_PF_EQE,
|
|
};
|
|
param.mask[0] = 1ull << MLX5_EVENT_TYPE_PAGE_FAULT;
|
|
eq->core = mlx5_eq_create_generic(dev->mdev, ¶m);
|
|
if (IS_ERR(eq->core)) {
|
|
err = PTR_ERR(eq->core);
|
|
goto err_wq;
|
|
}
|
|
err = mlx5_eq_enable(dev->mdev, eq->core, &eq->irq_nb);
|
|
if (err) {
|
|
mlx5_ib_err(dev, "failed to enable odp EQ %d\n", err);
|
|
goto err_eq;
|
|
}
|
|
|
|
return 0;
|
|
err_eq:
|
|
mlx5_eq_destroy_generic(dev->mdev, eq->core);
|
|
err_wq:
|
|
destroy_workqueue(eq->wq);
|
|
err_mempool:
|
|
mempool_destroy(eq->pool);
|
|
return err;
|
|
}
|
|
|
|
static int
|
|
mlx5_ib_destroy_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
|
|
{
|
|
int err;
|
|
|
|
mlx5_eq_disable(dev->mdev, eq->core, &eq->irq_nb);
|
|
err = mlx5_eq_destroy_generic(dev->mdev, eq->core);
|
|
cancel_work_sync(&eq->work);
|
|
destroy_workqueue(eq->wq);
|
|
mempool_destroy(eq->pool);
|
|
|
|
return err;
|
|
}
|
|
|
|
void mlx5_odp_init_mr_cache_entry(struct mlx5_cache_ent *ent)
|
|
{
|
|
if (!(ent->dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
|
|
return;
|
|
|
|
switch (ent->order - 2) {
|
|
case MLX5_IMR_MTT_CACHE_ENTRY:
|
|
ent->page = PAGE_SHIFT;
|
|
ent->xlt = MLX5_IMR_MTT_ENTRIES *
|
|
sizeof(struct mlx5_mtt) /
|
|
MLX5_IB_UMR_OCTOWORD;
|
|
ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT;
|
|
ent->limit = 0;
|
|
break;
|
|
|
|
case MLX5_IMR_KSM_CACHE_ENTRY:
|
|
ent->page = MLX5_KSM_PAGE_SHIFT;
|
|
ent->xlt = mlx5_imr_ksm_entries *
|
|
sizeof(struct mlx5_klm) /
|
|
MLX5_IB_UMR_OCTOWORD;
|
|
ent->access_mode = MLX5_MKC_ACCESS_MODE_KSM;
|
|
ent->limit = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
static const struct ib_device_ops mlx5_ib_dev_odp_ops = {
|
|
.advise_mr = mlx5_ib_advise_mr,
|
|
};
|
|
|
|
int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT))
|
|
return ret;
|
|
|
|
ib_set_device_ops(&dev->ib_dev, &mlx5_ib_dev_odp_ops);
|
|
|
|
if (dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT) {
|
|
ret = mlx5_cmd_null_mkey(dev->mdev, &dev->null_mkey);
|
|
if (ret) {
|
|
mlx5_ib_err(dev, "Error getting null_mkey %d\n", ret);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
ret = mlx5_ib_create_pf_eq(dev, &dev->odp_pf_eq);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void mlx5_ib_odp_cleanup_one(struct mlx5_ib_dev *dev)
|
|
{
|
|
if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT))
|
|
return;
|
|
|
|
mlx5_ib_destroy_pf_eq(dev, &dev->odp_pf_eq);
|
|
}
|
|
|
|
int mlx5_ib_odp_init(void)
|
|
{
|
|
mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) -
|
|
MLX5_IMR_MTT_BITS);
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct prefetch_mr_work {
|
|
struct work_struct work;
|
|
u32 pf_flags;
|
|
u32 num_sge;
|
|
struct {
|
|
u64 io_virt;
|
|
struct mlx5_ib_mr *mr;
|
|
size_t length;
|
|
} frags[];
|
|
};
|
|
|
|
static void destroy_prefetch_work(struct prefetch_mr_work *work)
|
|
{
|
|
u32 i;
|
|
|
|
for (i = 0; i < work->num_sge; ++i)
|
|
atomic_dec(&work->frags[i].mr->num_deferred_work);
|
|
kvfree(work);
|
|
}
|
|
|
|
static struct mlx5_ib_mr *
|
|
get_prefetchable_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
|
|
u32 lkey)
|
|
{
|
|
struct mlx5_ib_dev *dev = to_mdev(pd->device);
|
|
struct mlx5_core_mkey *mmkey;
|
|
struct ib_umem_odp *odp;
|
|
struct mlx5_ib_mr *mr;
|
|
|
|
lockdep_assert_held(&dev->odp_srcu);
|
|
|
|
mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(lkey));
|
|
if (!mmkey || mmkey->key != lkey || mmkey->type != MLX5_MKEY_MR)
|
|
return NULL;
|
|
|
|
mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
|
|
|
|
if (mr->ibmr.pd != pd)
|
|
return NULL;
|
|
|
|
odp = to_ib_umem_odp(mr->umem);
|
|
|
|
/* prefetch with write-access must be supported by the MR */
|
|
if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE &&
|
|
!odp->umem.writable)
|
|
return NULL;
|
|
|
|
return mr;
|
|
}
|
|
|
|
static void mlx5_ib_prefetch_mr_work(struct work_struct *w)
|
|
{
|
|
struct prefetch_mr_work *work =
|
|
container_of(w, struct prefetch_mr_work, work);
|
|
u32 bytes_mapped = 0;
|
|
u32 i;
|
|
|
|
for (i = 0; i < work->num_sge; ++i)
|
|
pagefault_mr(work->frags[i].mr, work->frags[i].io_virt,
|
|
work->frags[i].length, &bytes_mapped,
|
|
work->pf_flags);
|
|
|
|
destroy_prefetch_work(work);
|
|
}
|
|
|
|
static bool init_prefetch_work(struct ib_pd *pd,
|
|
enum ib_uverbs_advise_mr_advice advice,
|
|
u32 pf_flags, struct prefetch_mr_work *work,
|
|
struct ib_sge *sg_list, u32 num_sge)
|
|
{
|
|
u32 i;
|
|
|
|
INIT_WORK(&work->work, mlx5_ib_prefetch_mr_work);
|
|
work->pf_flags = pf_flags;
|
|
|
|
for (i = 0; i < num_sge; ++i) {
|
|
work->frags[i].io_virt = sg_list[i].addr;
|
|
work->frags[i].length = sg_list[i].length;
|
|
work->frags[i].mr =
|
|
get_prefetchable_mr(pd, advice, sg_list[i].lkey);
|
|
if (!work->frags[i].mr) {
|
|
work->num_sge = i - 1;
|
|
if (i)
|
|
destroy_prefetch_work(work);
|
|
return false;
|
|
}
|
|
|
|
/* Keep the MR pointer will valid outside the SRCU */
|
|
atomic_inc(&work->frags[i].mr->num_deferred_work);
|
|
}
|
|
work->num_sge = num_sge;
|
|
return true;
|
|
}
|
|
|
|
static int mlx5_ib_prefetch_sg_list(struct ib_pd *pd,
|
|
enum ib_uverbs_advise_mr_advice advice,
|
|
u32 pf_flags, struct ib_sge *sg_list,
|
|
u32 num_sge)
|
|
{
|
|
struct mlx5_ib_dev *dev = to_mdev(pd->device);
|
|
u32 bytes_mapped = 0;
|
|
int srcu_key;
|
|
int ret = 0;
|
|
u32 i;
|
|
|
|
srcu_key = srcu_read_lock(&dev->odp_srcu);
|
|
for (i = 0; i < num_sge; ++i) {
|
|
struct mlx5_ib_mr *mr;
|
|
|
|
mr = get_prefetchable_mr(pd, advice, sg_list[i].lkey);
|
|
if (!mr) {
|
|
ret = -ENOENT;
|
|
goto out;
|
|
}
|
|
ret = pagefault_mr(mr, sg_list[i].addr, sg_list[i].length,
|
|
&bytes_mapped, pf_flags);
|
|
if (ret < 0)
|
|
goto out;
|
|
}
|
|
ret = 0;
|
|
|
|
out:
|
|
srcu_read_unlock(&dev->odp_srcu, srcu_key);
|
|
return ret;
|
|
}
|
|
|
|
int mlx5_ib_advise_mr_prefetch(struct ib_pd *pd,
|
|
enum ib_uverbs_advise_mr_advice advice,
|
|
u32 flags, struct ib_sge *sg_list, u32 num_sge)
|
|
{
|
|
struct mlx5_ib_dev *dev = to_mdev(pd->device);
|
|
u32 pf_flags = 0;
|
|
struct prefetch_mr_work *work;
|
|
int srcu_key;
|
|
|
|
if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH)
|
|
pf_flags |= MLX5_PF_FLAGS_DOWNGRADE;
|
|
|
|
if (flags & IB_UVERBS_ADVISE_MR_FLAG_FLUSH)
|
|
return mlx5_ib_prefetch_sg_list(pd, advice, pf_flags, sg_list,
|
|
num_sge);
|
|
|
|
work = kvzalloc(struct_size(work, frags, num_sge), GFP_KERNEL);
|
|
if (!work)
|
|
return -ENOMEM;
|
|
|
|
srcu_key = srcu_read_lock(&dev->odp_srcu);
|
|
if (!init_prefetch_work(pd, advice, pf_flags, work, sg_list, num_sge)) {
|
|
srcu_read_unlock(&dev->odp_srcu, srcu_key);
|
|
return -EINVAL;
|
|
}
|
|
queue_work(system_unbound_wq, &work->work);
|
|
srcu_read_unlock(&dev->odp_srcu, srcu_key);
|
|
return 0;
|
|
}
|