fe90f3967b
Many architectures' switch_mm() (e.g. arm64) do not have an smp_mb() which the core scheduler code has depended upon since commit: commit 223baf9d17f25 ("sched: Fix performance regression introduced by mm_cid") If switch_mm() doesn't call smp_mb(), sched_mm_cid_remote_clear() can unset the actively used cid when it fails to observe active task after it sets lazy_put. There *is* a memory barrier between storing to rq->curr and _return to userspace_ (as required by membarrier), but the rseq mm_cid has stricter requirements: the barrier needs to be issued between store to rq->curr and switch_mm_cid(), which happens earlier than: - spin_unlock(), - switch_to(). So it's fine when the architecture switch_mm() happens to have that barrier already, but less so when the architecture only provides the full barrier in switch_to() or spin_unlock(). It is a bug in the rseq switch_mm_cid() implementation. All architectures that don't have memory barriers in switch_mm(), but rather have the full barrier either in finish_lock_switch() or switch_to() have them too late for the needs of switch_mm_cid(). Introduce a new smp_mb__after_switch_mm(), defined as smp_mb() in the generic barrier.h header, and use it in switch_mm_cid() for scheduler transitions where switch_mm() is expected to provide a memory barrier. Architectures can override smp_mb__after_switch_mm() if their switch_mm() implementation provides an implicit memory barrier. Override it with a no-op on x86 which implicitly provide this memory barrier by writing to CR3. Fixes: 223baf9d17f2 ("sched: Fix performance regression introduced by mm_cid") Reported-by: levi.yun <yeoreum.yun@arm.com> Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> # for arm64 Acked-by: Dave Hansen <dave.hansen@linux.intel.com> # for x86 Cc: <stable@vger.kernel.org> # 6.4.x Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: https://lore.kernel.org/r/20240415152114.59122-2-mathieu.desnoyers@efficios.com