d810d367ec
Currently NIC packet receiving performance based on page pool deteriorates occasionally. To analysis the causes of this problem page allocation stats are collected. Here are the stats when NIC rx performance deteriorates: bandwidth(Gbits/s) 16.8 6.91 rx_pp_alloc_fast 13794308 21141869 rx_pp_alloc_slow 108625 166481 rx_pp_alloc_slow_h 0 0 rx_pp_alloc_empty 8192 8192 rx_pp_alloc_refill 0 0 rx_pp_alloc_waive 100433 158289 rx_pp_recycle_cached 0 0 rx_pp_recycle_cache_full 0 0 rx_pp_recycle_ring 362400 420281 rx_pp_recycle_ring_full 6064893 9709724 rx_pp_recycle_released_ref 0 0 The rx_pp_alloc_waive count indicates that a large number of pages' numa node are inconsistent with the NIC device numa node. Therefore these pages can't be reused by the page pool. As a result, many new pages would be allocated by __page_pool_alloc_pages_slow which is time consuming. This causes the NIC rx performance fluctuations. The main reason of huge numa mismatch pages in page pool is that page pool uses alloc_pages_bulk_array to allocate original pages. This function is not suitable for page allocation in NUMA scenario. So this patch uses alloc_pages_bulk_array_node which has a NUMA id input parameter to ensure the NUMA consistent between NIC device and allocated pages. Repeated NIC rx performance tests are performed 40 times. NIC rx bandwidth is higher and more stable compared to the datas above. Here are three test stats, the rx_pp_alloc_waive count is zero and rx_pp_alloc_slow which indicates pages allocated from slow patch is relatively low. bandwidth(Gbits/s) 93 93.9 93.8 rx_pp_alloc_fast 60066264 61266386 60938254 rx_pp_alloc_slow 16512 16517 16539 rx_pp_alloc_slow_ho 0 0 0 rx_pp_alloc_empty 16512 16517 16539 rx_pp_alloc_refill 473841 481910 481585 rx_pp_alloc_waive 0 0 0 rx_pp_recycle_cached 0 0 0 rx_pp_recycle_cache_full 0 0 0 rx_pp_recycle_ring 29754145 30358243 30194023 rx_pp_recycle_ring_full 0 0 0 rx_pp_recycle_released_ref 0 0 0 Signed-off-by: Jie Wang <wangjie125@huawei.com> Acked-by: Jesper Dangaard Brouer <brouer@redhat.com> Acked-by: Ilias Apalodimas <ilias.apalodimas@linaro.org> Link: https://lore.kernel.org/r/20220705113515.54342-1-huangguangbin2@huawei.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
905 lines
24 KiB
C
905 lines
24 KiB
C
/* SPDX-License-Identifier: GPL-2.0
|
|
*
|
|
* page_pool.c
|
|
* Author: Jesper Dangaard Brouer <netoptimizer@brouer.com>
|
|
* Copyright (C) 2016 Red Hat, Inc.
|
|
*/
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/device.h>
|
|
|
|
#include <net/page_pool.h>
|
|
#include <net/xdp.h>
|
|
|
|
#include <linux/dma-direction.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/page-flags.h>
|
|
#include <linux/mm.h> /* for __put_page() */
|
|
#include <linux/poison.h>
|
|
#include <linux/ethtool.h>
|
|
|
|
#include <trace/events/page_pool.h>
|
|
|
|
#define DEFER_TIME (msecs_to_jiffies(1000))
|
|
#define DEFER_WARN_INTERVAL (60 * HZ)
|
|
|
|
#define BIAS_MAX LONG_MAX
|
|
|
|
#ifdef CONFIG_PAGE_POOL_STATS
|
|
/* alloc_stat_inc is intended to be used in softirq context */
|
|
#define alloc_stat_inc(pool, __stat) (pool->alloc_stats.__stat++)
|
|
/* recycle_stat_inc is safe to use when preemption is possible. */
|
|
#define recycle_stat_inc(pool, __stat) \
|
|
do { \
|
|
struct page_pool_recycle_stats __percpu *s = pool->recycle_stats; \
|
|
this_cpu_inc(s->__stat); \
|
|
} while (0)
|
|
|
|
#define recycle_stat_add(pool, __stat, val) \
|
|
do { \
|
|
struct page_pool_recycle_stats __percpu *s = pool->recycle_stats; \
|
|
this_cpu_add(s->__stat, val); \
|
|
} while (0)
|
|
|
|
static const char pp_stats[][ETH_GSTRING_LEN] = {
|
|
"rx_pp_alloc_fast",
|
|
"rx_pp_alloc_slow",
|
|
"rx_pp_alloc_slow_ho",
|
|
"rx_pp_alloc_empty",
|
|
"rx_pp_alloc_refill",
|
|
"rx_pp_alloc_waive",
|
|
"rx_pp_recycle_cached",
|
|
"rx_pp_recycle_cache_full",
|
|
"rx_pp_recycle_ring",
|
|
"rx_pp_recycle_ring_full",
|
|
"rx_pp_recycle_released_ref",
|
|
};
|
|
|
|
bool page_pool_get_stats(struct page_pool *pool,
|
|
struct page_pool_stats *stats)
|
|
{
|
|
int cpu = 0;
|
|
|
|
if (!stats)
|
|
return false;
|
|
|
|
/* The caller is responsible to initialize stats. */
|
|
stats->alloc_stats.fast += pool->alloc_stats.fast;
|
|
stats->alloc_stats.slow += pool->alloc_stats.slow;
|
|
stats->alloc_stats.slow_high_order += pool->alloc_stats.slow_high_order;
|
|
stats->alloc_stats.empty += pool->alloc_stats.empty;
|
|
stats->alloc_stats.refill += pool->alloc_stats.refill;
|
|
stats->alloc_stats.waive += pool->alloc_stats.waive;
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
const struct page_pool_recycle_stats *pcpu =
|
|
per_cpu_ptr(pool->recycle_stats, cpu);
|
|
|
|
stats->recycle_stats.cached += pcpu->cached;
|
|
stats->recycle_stats.cache_full += pcpu->cache_full;
|
|
stats->recycle_stats.ring += pcpu->ring;
|
|
stats->recycle_stats.ring_full += pcpu->ring_full;
|
|
stats->recycle_stats.released_refcnt += pcpu->released_refcnt;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
EXPORT_SYMBOL(page_pool_get_stats);
|
|
|
|
u8 *page_pool_ethtool_stats_get_strings(u8 *data)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(pp_stats); i++) {
|
|
memcpy(data, pp_stats[i], ETH_GSTRING_LEN);
|
|
data += ETH_GSTRING_LEN;
|
|
}
|
|
|
|
return data;
|
|
}
|
|
EXPORT_SYMBOL(page_pool_ethtool_stats_get_strings);
|
|
|
|
int page_pool_ethtool_stats_get_count(void)
|
|
{
|
|
return ARRAY_SIZE(pp_stats);
|
|
}
|
|
EXPORT_SYMBOL(page_pool_ethtool_stats_get_count);
|
|
|
|
u64 *page_pool_ethtool_stats_get(u64 *data, void *stats)
|
|
{
|
|
struct page_pool_stats *pool_stats = stats;
|
|
|
|
*data++ = pool_stats->alloc_stats.fast;
|
|
*data++ = pool_stats->alloc_stats.slow;
|
|
*data++ = pool_stats->alloc_stats.slow_high_order;
|
|
*data++ = pool_stats->alloc_stats.empty;
|
|
*data++ = pool_stats->alloc_stats.refill;
|
|
*data++ = pool_stats->alloc_stats.waive;
|
|
*data++ = pool_stats->recycle_stats.cached;
|
|
*data++ = pool_stats->recycle_stats.cache_full;
|
|
*data++ = pool_stats->recycle_stats.ring;
|
|
*data++ = pool_stats->recycle_stats.ring_full;
|
|
*data++ = pool_stats->recycle_stats.released_refcnt;
|
|
|
|
return data;
|
|
}
|
|
EXPORT_SYMBOL(page_pool_ethtool_stats_get);
|
|
|
|
#else
|
|
#define alloc_stat_inc(pool, __stat)
|
|
#define recycle_stat_inc(pool, __stat)
|
|
#define recycle_stat_add(pool, __stat, val)
|
|
#endif
|
|
|
|
static int page_pool_init(struct page_pool *pool,
|
|
const struct page_pool_params *params)
|
|
{
|
|
unsigned int ring_qsize = 1024; /* Default */
|
|
|
|
memcpy(&pool->p, params, sizeof(pool->p));
|
|
|
|
/* Validate only known flags were used */
|
|
if (pool->p.flags & ~(PP_FLAG_ALL))
|
|
return -EINVAL;
|
|
|
|
if (pool->p.pool_size)
|
|
ring_qsize = pool->p.pool_size;
|
|
|
|
/* Sanity limit mem that can be pinned down */
|
|
if (ring_qsize > 32768)
|
|
return -E2BIG;
|
|
|
|
/* DMA direction is either DMA_FROM_DEVICE or DMA_BIDIRECTIONAL.
|
|
* DMA_BIDIRECTIONAL is for allowing page used for DMA sending,
|
|
* which is the XDP_TX use-case.
|
|
*/
|
|
if (pool->p.flags & PP_FLAG_DMA_MAP) {
|
|
if ((pool->p.dma_dir != DMA_FROM_DEVICE) &&
|
|
(pool->p.dma_dir != DMA_BIDIRECTIONAL))
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV) {
|
|
/* In order to request DMA-sync-for-device the page
|
|
* needs to be mapped
|
|
*/
|
|
if (!(pool->p.flags & PP_FLAG_DMA_MAP))
|
|
return -EINVAL;
|
|
|
|
if (!pool->p.max_len)
|
|
return -EINVAL;
|
|
|
|
/* pool->p.offset has to be set according to the address
|
|
* offset used by the DMA engine to start copying rx data
|
|
*/
|
|
}
|
|
|
|
if (PAGE_POOL_DMA_USE_PP_FRAG_COUNT &&
|
|
pool->p.flags & PP_FLAG_PAGE_FRAG)
|
|
return -EINVAL;
|
|
|
|
#ifdef CONFIG_PAGE_POOL_STATS
|
|
pool->recycle_stats = alloc_percpu(struct page_pool_recycle_stats);
|
|
if (!pool->recycle_stats)
|
|
return -ENOMEM;
|
|
#endif
|
|
|
|
if (ptr_ring_init(&pool->ring, ring_qsize, GFP_KERNEL) < 0)
|
|
return -ENOMEM;
|
|
|
|
atomic_set(&pool->pages_state_release_cnt, 0);
|
|
|
|
/* Driver calling page_pool_create() also call page_pool_destroy() */
|
|
refcount_set(&pool->user_cnt, 1);
|
|
|
|
if (pool->p.flags & PP_FLAG_DMA_MAP)
|
|
get_device(pool->p.dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct page_pool *page_pool_create(const struct page_pool_params *params)
|
|
{
|
|
struct page_pool *pool;
|
|
int err;
|
|
|
|
pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, params->nid);
|
|
if (!pool)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
err = page_pool_init(pool, params);
|
|
if (err < 0) {
|
|
pr_warn("%s() gave up with errno %d\n", __func__, err);
|
|
kfree(pool);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
return pool;
|
|
}
|
|
EXPORT_SYMBOL(page_pool_create);
|
|
|
|
static void page_pool_return_page(struct page_pool *pool, struct page *page);
|
|
|
|
noinline
|
|
static struct page *page_pool_refill_alloc_cache(struct page_pool *pool)
|
|
{
|
|
struct ptr_ring *r = &pool->ring;
|
|
struct page *page;
|
|
int pref_nid; /* preferred NUMA node */
|
|
|
|
/* Quicker fallback, avoid locks when ring is empty */
|
|
if (__ptr_ring_empty(r)) {
|
|
alloc_stat_inc(pool, empty);
|
|
return NULL;
|
|
}
|
|
|
|
/* Softirq guarantee CPU and thus NUMA node is stable. This,
|
|
* assumes CPU refilling driver RX-ring will also run RX-NAPI.
|
|
*/
|
|
#ifdef CONFIG_NUMA
|
|
pref_nid = (pool->p.nid == NUMA_NO_NODE) ? numa_mem_id() : pool->p.nid;
|
|
#else
|
|
/* Ignore pool->p.nid setting if !CONFIG_NUMA, helps compiler */
|
|
pref_nid = numa_mem_id(); /* will be zero like page_to_nid() */
|
|
#endif
|
|
|
|
/* Refill alloc array, but only if NUMA match */
|
|
do {
|
|
page = __ptr_ring_consume(r);
|
|
if (unlikely(!page))
|
|
break;
|
|
|
|
if (likely(page_to_nid(page) == pref_nid)) {
|
|
pool->alloc.cache[pool->alloc.count++] = page;
|
|
} else {
|
|
/* NUMA mismatch;
|
|
* (1) release 1 page to page-allocator and
|
|
* (2) break out to fallthrough to alloc_pages_node.
|
|
* This limit stress on page buddy alloactor.
|
|
*/
|
|
page_pool_return_page(pool, page);
|
|
alloc_stat_inc(pool, waive);
|
|
page = NULL;
|
|
break;
|
|
}
|
|
} while (pool->alloc.count < PP_ALLOC_CACHE_REFILL);
|
|
|
|
/* Return last page */
|
|
if (likely(pool->alloc.count > 0)) {
|
|
page = pool->alloc.cache[--pool->alloc.count];
|
|
alloc_stat_inc(pool, refill);
|
|
}
|
|
|
|
return page;
|
|
}
|
|
|
|
/* fast path */
|
|
static struct page *__page_pool_get_cached(struct page_pool *pool)
|
|
{
|
|
struct page *page;
|
|
|
|
/* Caller MUST guarantee safe non-concurrent access, e.g. softirq */
|
|
if (likely(pool->alloc.count)) {
|
|
/* Fast-path */
|
|
page = pool->alloc.cache[--pool->alloc.count];
|
|
alloc_stat_inc(pool, fast);
|
|
} else {
|
|
page = page_pool_refill_alloc_cache(pool);
|
|
}
|
|
|
|
return page;
|
|
}
|
|
|
|
static void page_pool_dma_sync_for_device(struct page_pool *pool,
|
|
struct page *page,
|
|
unsigned int dma_sync_size)
|
|
{
|
|
dma_addr_t dma_addr = page_pool_get_dma_addr(page);
|
|
|
|
dma_sync_size = min(dma_sync_size, pool->p.max_len);
|
|
dma_sync_single_range_for_device(pool->p.dev, dma_addr,
|
|
pool->p.offset, dma_sync_size,
|
|
pool->p.dma_dir);
|
|
}
|
|
|
|
static bool page_pool_dma_map(struct page_pool *pool, struct page *page)
|
|
{
|
|
dma_addr_t dma;
|
|
|
|
/* Setup DMA mapping: use 'struct page' area for storing DMA-addr
|
|
* since dma_addr_t can be either 32 or 64 bits and does not always fit
|
|
* into page private data (i.e 32bit cpu with 64bit DMA caps)
|
|
* This mapping is kept for lifetime of page, until leaving pool.
|
|
*/
|
|
dma = dma_map_page_attrs(pool->p.dev, page, 0,
|
|
(PAGE_SIZE << pool->p.order),
|
|
pool->p.dma_dir, DMA_ATTR_SKIP_CPU_SYNC);
|
|
if (dma_mapping_error(pool->p.dev, dma))
|
|
return false;
|
|
|
|
page_pool_set_dma_addr(page, dma);
|
|
|
|
if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV)
|
|
page_pool_dma_sync_for_device(pool, page, pool->p.max_len);
|
|
|
|
return true;
|
|
}
|
|
|
|
static void page_pool_set_pp_info(struct page_pool *pool,
|
|
struct page *page)
|
|
{
|
|
page->pp = pool;
|
|
page->pp_magic |= PP_SIGNATURE;
|
|
if (pool->p.init_callback)
|
|
pool->p.init_callback(page, pool->p.init_arg);
|
|
}
|
|
|
|
static void page_pool_clear_pp_info(struct page *page)
|
|
{
|
|
page->pp_magic = 0;
|
|
page->pp = NULL;
|
|
}
|
|
|
|
static struct page *__page_pool_alloc_page_order(struct page_pool *pool,
|
|
gfp_t gfp)
|
|
{
|
|
struct page *page;
|
|
|
|
gfp |= __GFP_COMP;
|
|
page = alloc_pages_node(pool->p.nid, gfp, pool->p.order);
|
|
if (unlikely(!page))
|
|
return NULL;
|
|
|
|
if ((pool->p.flags & PP_FLAG_DMA_MAP) &&
|
|
unlikely(!page_pool_dma_map(pool, page))) {
|
|
put_page(page);
|
|
return NULL;
|
|
}
|
|
|
|
alloc_stat_inc(pool, slow_high_order);
|
|
page_pool_set_pp_info(pool, page);
|
|
|
|
/* Track how many pages are held 'in-flight' */
|
|
pool->pages_state_hold_cnt++;
|
|
trace_page_pool_state_hold(pool, page, pool->pages_state_hold_cnt);
|
|
return page;
|
|
}
|
|
|
|
/* slow path */
|
|
noinline
|
|
static struct page *__page_pool_alloc_pages_slow(struct page_pool *pool,
|
|
gfp_t gfp)
|
|
{
|
|
const int bulk = PP_ALLOC_CACHE_REFILL;
|
|
unsigned int pp_flags = pool->p.flags;
|
|
unsigned int pp_order = pool->p.order;
|
|
struct page *page;
|
|
int i, nr_pages;
|
|
|
|
/* Don't support bulk alloc for high-order pages */
|
|
if (unlikely(pp_order))
|
|
return __page_pool_alloc_page_order(pool, gfp);
|
|
|
|
/* Unnecessary as alloc cache is empty, but guarantees zero count */
|
|
if (unlikely(pool->alloc.count > 0))
|
|
return pool->alloc.cache[--pool->alloc.count];
|
|
|
|
/* Mark empty alloc.cache slots "empty" for alloc_pages_bulk_array */
|
|
memset(&pool->alloc.cache, 0, sizeof(void *) * bulk);
|
|
|
|
nr_pages = alloc_pages_bulk_array_node(gfp, pool->p.nid, bulk,
|
|
pool->alloc.cache);
|
|
if (unlikely(!nr_pages))
|
|
return NULL;
|
|
|
|
/* Pages have been filled into alloc.cache array, but count is zero and
|
|
* page element have not been (possibly) DMA mapped.
|
|
*/
|
|
for (i = 0; i < nr_pages; i++) {
|
|
page = pool->alloc.cache[i];
|
|
if ((pp_flags & PP_FLAG_DMA_MAP) &&
|
|
unlikely(!page_pool_dma_map(pool, page))) {
|
|
put_page(page);
|
|
continue;
|
|
}
|
|
|
|
page_pool_set_pp_info(pool, page);
|
|
pool->alloc.cache[pool->alloc.count++] = page;
|
|
/* Track how many pages are held 'in-flight' */
|
|
pool->pages_state_hold_cnt++;
|
|
trace_page_pool_state_hold(pool, page,
|
|
pool->pages_state_hold_cnt);
|
|
}
|
|
|
|
/* Return last page */
|
|
if (likely(pool->alloc.count > 0)) {
|
|
page = pool->alloc.cache[--pool->alloc.count];
|
|
alloc_stat_inc(pool, slow);
|
|
} else {
|
|
page = NULL;
|
|
}
|
|
|
|
/* When page just alloc'ed is should/must have refcnt 1. */
|
|
return page;
|
|
}
|
|
|
|
/* For using page_pool replace: alloc_pages() API calls, but provide
|
|
* synchronization guarantee for allocation side.
|
|
*/
|
|
struct page *page_pool_alloc_pages(struct page_pool *pool, gfp_t gfp)
|
|
{
|
|
struct page *page;
|
|
|
|
/* Fast-path: Get a page from cache */
|
|
page = __page_pool_get_cached(pool);
|
|
if (page)
|
|
return page;
|
|
|
|
/* Slow-path: cache empty, do real allocation */
|
|
page = __page_pool_alloc_pages_slow(pool, gfp);
|
|
return page;
|
|
}
|
|
EXPORT_SYMBOL(page_pool_alloc_pages);
|
|
|
|
/* Calculate distance between two u32 values, valid if distance is below 2^(31)
|
|
* https://en.wikipedia.org/wiki/Serial_number_arithmetic#General_Solution
|
|
*/
|
|
#define _distance(a, b) (s32)((a) - (b))
|
|
|
|
static s32 page_pool_inflight(struct page_pool *pool)
|
|
{
|
|
u32 release_cnt = atomic_read(&pool->pages_state_release_cnt);
|
|
u32 hold_cnt = READ_ONCE(pool->pages_state_hold_cnt);
|
|
s32 inflight;
|
|
|
|
inflight = _distance(hold_cnt, release_cnt);
|
|
|
|
trace_page_pool_release(pool, inflight, hold_cnt, release_cnt);
|
|
WARN(inflight < 0, "Negative(%d) inflight packet-pages", inflight);
|
|
|
|
return inflight;
|
|
}
|
|
|
|
/* Disconnects a page (from a page_pool). API users can have a need
|
|
* to disconnect a page (from a page_pool), to allow it to be used as
|
|
* a regular page (that will eventually be returned to the normal
|
|
* page-allocator via put_page).
|
|
*/
|
|
void page_pool_release_page(struct page_pool *pool, struct page *page)
|
|
{
|
|
dma_addr_t dma;
|
|
int count;
|
|
|
|
if (!(pool->p.flags & PP_FLAG_DMA_MAP))
|
|
/* Always account for inflight pages, even if we didn't
|
|
* map them
|
|
*/
|
|
goto skip_dma_unmap;
|
|
|
|
dma = page_pool_get_dma_addr(page);
|
|
|
|
/* When page is unmapped, it cannot be returned to our pool */
|
|
dma_unmap_page_attrs(pool->p.dev, dma,
|
|
PAGE_SIZE << pool->p.order, pool->p.dma_dir,
|
|
DMA_ATTR_SKIP_CPU_SYNC);
|
|
page_pool_set_dma_addr(page, 0);
|
|
skip_dma_unmap:
|
|
page_pool_clear_pp_info(page);
|
|
|
|
/* This may be the last page returned, releasing the pool, so
|
|
* it is not safe to reference pool afterwards.
|
|
*/
|
|
count = atomic_inc_return_relaxed(&pool->pages_state_release_cnt);
|
|
trace_page_pool_state_release(pool, page, count);
|
|
}
|
|
EXPORT_SYMBOL(page_pool_release_page);
|
|
|
|
/* Return a page to the page allocator, cleaning up our state */
|
|
static void page_pool_return_page(struct page_pool *pool, struct page *page)
|
|
{
|
|
page_pool_release_page(pool, page);
|
|
|
|
put_page(page);
|
|
/* An optimization would be to call __free_pages(page, pool->p.order)
|
|
* knowing page is not part of page-cache (thus avoiding a
|
|
* __page_cache_release() call).
|
|
*/
|
|
}
|
|
|
|
static bool page_pool_recycle_in_ring(struct page_pool *pool, struct page *page)
|
|
{
|
|
int ret;
|
|
/* BH protection not needed if current is serving softirq */
|
|
if (in_serving_softirq())
|
|
ret = ptr_ring_produce(&pool->ring, page);
|
|
else
|
|
ret = ptr_ring_produce_bh(&pool->ring, page);
|
|
|
|
if (!ret) {
|
|
recycle_stat_inc(pool, ring);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Only allow direct recycling in special circumstances, into the
|
|
* alloc side cache. E.g. during RX-NAPI processing for XDP_DROP use-case.
|
|
*
|
|
* Caller must provide appropriate safe context.
|
|
*/
|
|
static bool page_pool_recycle_in_cache(struct page *page,
|
|
struct page_pool *pool)
|
|
{
|
|
if (unlikely(pool->alloc.count == PP_ALLOC_CACHE_SIZE)) {
|
|
recycle_stat_inc(pool, cache_full);
|
|
return false;
|
|
}
|
|
|
|
/* Caller MUST have verified/know (page_ref_count(page) == 1) */
|
|
pool->alloc.cache[pool->alloc.count++] = page;
|
|
recycle_stat_inc(pool, cached);
|
|
return true;
|
|
}
|
|
|
|
/* If the page refcnt == 1, this will try to recycle the page.
|
|
* if PP_FLAG_DMA_SYNC_DEV is set, we'll try to sync the DMA area for
|
|
* the configured size min(dma_sync_size, pool->max_len).
|
|
* If the page refcnt != 1, then the page will be returned to memory
|
|
* subsystem.
|
|
*/
|
|
static __always_inline struct page *
|
|
__page_pool_put_page(struct page_pool *pool, struct page *page,
|
|
unsigned int dma_sync_size, bool allow_direct)
|
|
{
|
|
/* This allocator is optimized for the XDP mode that uses
|
|
* one-frame-per-page, but have fallbacks that act like the
|
|
* regular page allocator APIs.
|
|
*
|
|
* refcnt == 1 means page_pool owns page, and can recycle it.
|
|
*
|
|
* page is NOT reusable when allocated when system is under
|
|
* some pressure. (page_is_pfmemalloc)
|
|
*/
|
|
if (likely(page_ref_count(page) == 1 && !page_is_pfmemalloc(page))) {
|
|
/* Read barrier done in page_ref_count / READ_ONCE */
|
|
|
|
if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV)
|
|
page_pool_dma_sync_for_device(pool, page,
|
|
dma_sync_size);
|
|
|
|
if (allow_direct && in_serving_softirq() &&
|
|
page_pool_recycle_in_cache(page, pool))
|
|
return NULL;
|
|
|
|
/* Page found as candidate for recycling */
|
|
return page;
|
|
}
|
|
/* Fallback/non-XDP mode: API user have elevated refcnt.
|
|
*
|
|
* Many drivers split up the page into fragments, and some
|
|
* want to keep doing this to save memory and do refcnt based
|
|
* recycling. Support this use case too, to ease drivers
|
|
* switching between XDP/non-XDP.
|
|
*
|
|
* In-case page_pool maintains the DMA mapping, API user must
|
|
* call page_pool_put_page once. In this elevated refcnt
|
|
* case, the DMA is unmapped/released, as driver is likely
|
|
* doing refcnt based recycle tricks, meaning another process
|
|
* will be invoking put_page.
|
|
*/
|
|
recycle_stat_inc(pool, released_refcnt);
|
|
/* Do not replace this with page_pool_return_page() */
|
|
page_pool_release_page(pool, page);
|
|
put_page(page);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
void page_pool_put_defragged_page(struct page_pool *pool, struct page *page,
|
|
unsigned int dma_sync_size, bool allow_direct)
|
|
{
|
|
page = __page_pool_put_page(pool, page, dma_sync_size, allow_direct);
|
|
if (page && !page_pool_recycle_in_ring(pool, page)) {
|
|
/* Cache full, fallback to free pages */
|
|
recycle_stat_inc(pool, ring_full);
|
|
page_pool_return_page(pool, page);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(page_pool_put_defragged_page);
|
|
|
|
/* Caller must not use data area after call, as this function overwrites it */
|
|
void page_pool_put_page_bulk(struct page_pool *pool, void **data,
|
|
int count)
|
|
{
|
|
int i, bulk_len = 0;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
struct page *page = virt_to_head_page(data[i]);
|
|
|
|
/* It is not the last user for the page frag case */
|
|
if (!page_pool_is_last_frag(pool, page))
|
|
continue;
|
|
|
|
page = __page_pool_put_page(pool, page, -1, false);
|
|
/* Approved for bulk recycling in ptr_ring cache */
|
|
if (page)
|
|
data[bulk_len++] = page;
|
|
}
|
|
|
|
if (unlikely(!bulk_len))
|
|
return;
|
|
|
|
/* Bulk producer into ptr_ring page_pool cache */
|
|
page_pool_ring_lock(pool);
|
|
for (i = 0; i < bulk_len; i++) {
|
|
if (__ptr_ring_produce(&pool->ring, data[i])) {
|
|
/* ring full */
|
|
recycle_stat_inc(pool, ring_full);
|
|
break;
|
|
}
|
|
}
|
|
recycle_stat_add(pool, ring, i);
|
|
page_pool_ring_unlock(pool);
|
|
|
|
/* Hopefully all pages was return into ptr_ring */
|
|
if (likely(i == bulk_len))
|
|
return;
|
|
|
|
/* ptr_ring cache full, free remaining pages outside producer lock
|
|
* since put_page() with refcnt == 1 can be an expensive operation
|
|
*/
|
|
for (; i < bulk_len; i++)
|
|
page_pool_return_page(pool, data[i]);
|
|
}
|
|
EXPORT_SYMBOL(page_pool_put_page_bulk);
|
|
|
|
static struct page *page_pool_drain_frag(struct page_pool *pool,
|
|
struct page *page)
|
|
{
|
|
long drain_count = BIAS_MAX - pool->frag_users;
|
|
|
|
/* Some user is still using the page frag */
|
|
if (likely(page_pool_defrag_page(page, drain_count)))
|
|
return NULL;
|
|
|
|
if (page_ref_count(page) == 1 && !page_is_pfmemalloc(page)) {
|
|
if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV)
|
|
page_pool_dma_sync_for_device(pool, page, -1);
|
|
|
|
return page;
|
|
}
|
|
|
|
page_pool_return_page(pool, page);
|
|
return NULL;
|
|
}
|
|
|
|
static void page_pool_free_frag(struct page_pool *pool)
|
|
{
|
|
long drain_count = BIAS_MAX - pool->frag_users;
|
|
struct page *page = pool->frag_page;
|
|
|
|
pool->frag_page = NULL;
|
|
|
|
if (!page || page_pool_defrag_page(page, drain_count))
|
|
return;
|
|
|
|
page_pool_return_page(pool, page);
|
|
}
|
|
|
|
struct page *page_pool_alloc_frag(struct page_pool *pool,
|
|
unsigned int *offset,
|
|
unsigned int size, gfp_t gfp)
|
|
{
|
|
unsigned int max_size = PAGE_SIZE << pool->p.order;
|
|
struct page *page = pool->frag_page;
|
|
|
|
if (WARN_ON(!(pool->p.flags & PP_FLAG_PAGE_FRAG) ||
|
|
size > max_size))
|
|
return NULL;
|
|
|
|
size = ALIGN(size, dma_get_cache_alignment());
|
|
*offset = pool->frag_offset;
|
|
|
|
if (page && *offset + size > max_size) {
|
|
page = page_pool_drain_frag(pool, page);
|
|
if (page) {
|
|
alloc_stat_inc(pool, fast);
|
|
goto frag_reset;
|
|
}
|
|
}
|
|
|
|
if (!page) {
|
|
page = page_pool_alloc_pages(pool, gfp);
|
|
if (unlikely(!page)) {
|
|
pool->frag_page = NULL;
|
|
return NULL;
|
|
}
|
|
|
|
pool->frag_page = page;
|
|
|
|
frag_reset:
|
|
pool->frag_users = 1;
|
|
*offset = 0;
|
|
pool->frag_offset = size;
|
|
page_pool_fragment_page(page, BIAS_MAX);
|
|
return page;
|
|
}
|
|
|
|
pool->frag_users++;
|
|
pool->frag_offset = *offset + size;
|
|
alloc_stat_inc(pool, fast);
|
|
return page;
|
|
}
|
|
EXPORT_SYMBOL(page_pool_alloc_frag);
|
|
|
|
static void page_pool_empty_ring(struct page_pool *pool)
|
|
{
|
|
struct page *page;
|
|
|
|
/* Empty recycle ring */
|
|
while ((page = ptr_ring_consume_bh(&pool->ring))) {
|
|
/* Verify the refcnt invariant of cached pages */
|
|
if (!(page_ref_count(page) == 1))
|
|
pr_crit("%s() page_pool refcnt %d violation\n",
|
|
__func__, page_ref_count(page));
|
|
|
|
page_pool_return_page(pool, page);
|
|
}
|
|
}
|
|
|
|
static void page_pool_free(struct page_pool *pool)
|
|
{
|
|
if (pool->disconnect)
|
|
pool->disconnect(pool);
|
|
|
|
ptr_ring_cleanup(&pool->ring, NULL);
|
|
|
|
if (pool->p.flags & PP_FLAG_DMA_MAP)
|
|
put_device(pool->p.dev);
|
|
|
|
#ifdef CONFIG_PAGE_POOL_STATS
|
|
free_percpu(pool->recycle_stats);
|
|
#endif
|
|
kfree(pool);
|
|
}
|
|
|
|
static void page_pool_empty_alloc_cache_once(struct page_pool *pool)
|
|
{
|
|
struct page *page;
|
|
|
|
if (pool->destroy_cnt)
|
|
return;
|
|
|
|
/* Empty alloc cache, assume caller made sure this is
|
|
* no-longer in use, and page_pool_alloc_pages() cannot be
|
|
* call concurrently.
|
|
*/
|
|
while (pool->alloc.count) {
|
|
page = pool->alloc.cache[--pool->alloc.count];
|
|
page_pool_return_page(pool, page);
|
|
}
|
|
}
|
|
|
|
static void page_pool_scrub(struct page_pool *pool)
|
|
{
|
|
page_pool_empty_alloc_cache_once(pool);
|
|
pool->destroy_cnt++;
|
|
|
|
/* No more consumers should exist, but producers could still
|
|
* be in-flight.
|
|
*/
|
|
page_pool_empty_ring(pool);
|
|
}
|
|
|
|
static int page_pool_release(struct page_pool *pool)
|
|
{
|
|
int inflight;
|
|
|
|
page_pool_scrub(pool);
|
|
inflight = page_pool_inflight(pool);
|
|
if (!inflight)
|
|
page_pool_free(pool);
|
|
|
|
return inflight;
|
|
}
|
|
|
|
static void page_pool_release_retry(struct work_struct *wq)
|
|
{
|
|
struct delayed_work *dwq = to_delayed_work(wq);
|
|
struct page_pool *pool = container_of(dwq, typeof(*pool), release_dw);
|
|
int inflight;
|
|
|
|
inflight = page_pool_release(pool);
|
|
if (!inflight)
|
|
return;
|
|
|
|
/* Periodic warning */
|
|
if (time_after_eq(jiffies, pool->defer_warn)) {
|
|
int sec = (s32)((u32)jiffies - (u32)pool->defer_start) / HZ;
|
|
|
|
pr_warn("%s() stalled pool shutdown %d inflight %d sec\n",
|
|
__func__, inflight, sec);
|
|
pool->defer_warn = jiffies + DEFER_WARN_INTERVAL;
|
|
}
|
|
|
|
/* Still not ready to be disconnected, retry later */
|
|
schedule_delayed_work(&pool->release_dw, DEFER_TIME);
|
|
}
|
|
|
|
void page_pool_use_xdp_mem(struct page_pool *pool, void (*disconnect)(void *),
|
|
struct xdp_mem_info *mem)
|
|
{
|
|
refcount_inc(&pool->user_cnt);
|
|
pool->disconnect = disconnect;
|
|
pool->xdp_mem_id = mem->id;
|
|
}
|
|
|
|
void page_pool_destroy(struct page_pool *pool)
|
|
{
|
|
if (!pool)
|
|
return;
|
|
|
|
if (!page_pool_put(pool))
|
|
return;
|
|
|
|
page_pool_free_frag(pool);
|
|
|
|
if (!page_pool_release(pool))
|
|
return;
|
|
|
|
pool->defer_start = jiffies;
|
|
pool->defer_warn = jiffies + DEFER_WARN_INTERVAL;
|
|
|
|
INIT_DELAYED_WORK(&pool->release_dw, page_pool_release_retry);
|
|
schedule_delayed_work(&pool->release_dw, DEFER_TIME);
|
|
}
|
|
EXPORT_SYMBOL(page_pool_destroy);
|
|
|
|
/* Caller must provide appropriate safe context, e.g. NAPI. */
|
|
void page_pool_update_nid(struct page_pool *pool, int new_nid)
|
|
{
|
|
struct page *page;
|
|
|
|
trace_page_pool_update_nid(pool, new_nid);
|
|
pool->p.nid = new_nid;
|
|
|
|
/* Flush pool alloc cache, as refill will check NUMA node */
|
|
while (pool->alloc.count) {
|
|
page = pool->alloc.cache[--pool->alloc.count];
|
|
page_pool_return_page(pool, page);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(page_pool_update_nid);
|
|
|
|
bool page_pool_return_skb_page(struct page *page)
|
|
{
|
|
struct page_pool *pp;
|
|
|
|
page = compound_head(page);
|
|
|
|
/* page->pp_magic is OR'ed with PP_SIGNATURE after the allocation
|
|
* in order to preserve any existing bits, such as bit 0 for the
|
|
* head page of compound page and bit 1 for pfmemalloc page, so
|
|
* mask those bits for freeing side when doing below checking,
|
|
* and page_is_pfmemalloc() is checked in __page_pool_put_page()
|
|
* to avoid recycling the pfmemalloc page.
|
|
*/
|
|
if (unlikely((page->pp_magic & ~0x3UL) != PP_SIGNATURE))
|
|
return false;
|
|
|
|
pp = page->pp;
|
|
|
|
/* Driver set this to memory recycling info. Reset it on recycle.
|
|
* This will *not* work for NIC using a split-page memory model.
|
|
* The page will be returned to the pool here regardless of the
|
|
* 'flipped' fragment being in use or not.
|
|
*/
|
|
page_pool_put_full_page(pp, page, false);
|
|
|
|
return true;
|
|
}
|
|
EXPORT_SYMBOL(page_pool_return_skb_page);
|