linux/arch/um/kernel/trap.c
Mike Rapoport e19f97ed67 um: add support for folded p4d page tables
The UML port uses 4 and 5 level fixups to support higher level page
table directories in the generic VM code.

Implement primitives necessary for the 4th level folding, add walks of
p4d level where appropriate and drop usage of __ARCH_USE_5LEVEL_HACK.

Link: http://lkml.kernel.org/r/1572938135-31886-13-git-send-email-rppt@kernel.org
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: Anatoly Pugachev <matorola@gmail.com>
Cc: Anton Ivanov <anton.ivanov@cambridgegreys.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Ungerer <gerg@linux-m68k.org>
Cc: Helge Deller <deller@gmx.de>
Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Mark Salter <msalter@redhat.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Peter Rosin <peda@axentia.se>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rolf Eike Beer <eike-kernel@sf-tec.de>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Sam Creasey <sammy@sammy.net>
Cc: Vincent Chen <deanbo422@gmail.com>
Cc: Vineet Gupta <Vineet.Gupta1@synopsys.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-04 19:44:15 -08:00

330 lines
8.2 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
*/
#include <linux/mm.h>
#include <linux/sched/signal.h>
#include <linux/hardirq.h>
#include <linux/module.h>
#include <linux/uaccess.h>
#include <linux/sched/debug.h>
#include <asm/current.h>
#include <asm/pgtable.h>
#include <asm/tlbflush.h>
#include <arch.h>
#include <as-layout.h>
#include <kern_util.h>
#include <os.h>
#include <skas.h>
/*
* Note this is constrained to return 0, -EFAULT, -EACCES, -ENOMEM by
* segv().
*/
int handle_page_fault(unsigned long address, unsigned long ip,
int is_write, int is_user, int *code_out)
{
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma;
pgd_t *pgd;
p4d_t *p4d;
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
int err = -EFAULT;
unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
*code_out = SEGV_MAPERR;
/*
* If the fault was with pagefaults disabled, don't take the fault, just
* fail.
*/
if (faulthandler_disabled())
goto out_nosemaphore;
if (is_user)
flags |= FAULT_FLAG_USER;
retry:
down_read(&mm->mmap_sem);
vma = find_vma(mm, address);
if (!vma)
goto out;
else if (vma->vm_start <= address)
goto good_area;
else if (!(vma->vm_flags & VM_GROWSDOWN))
goto out;
else if (is_user && !ARCH_IS_STACKGROW(address))
goto out;
else if (expand_stack(vma, address))
goto out;
good_area:
*code_out = SEGV_ACCERR;
if (is_write) {
if (!(vma->vm_flags & VM_WRITE))
goto out;
flags |= FAULT_FLAG_WRITE;
} else {
/* Don't require VM_READ|VM_EXEC for write faults! */
if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
goto out;
}
do {
vm_fault_t fault;
fault = handle_mm_fault(vma, address, flags);
if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
goto out_nosemaphore;
if (unlikely(fault & VM_FAULT_ERROR)) {
if (fault & VM_FAULT_OOM) {
goto out_of_memory;
} else if (fault & VM_FAULT_SIGSEGV) {
goto out;
} else if (fault & VM_FAULT_SIGBUS) {
err = -EACCES;
goto out;
}
BUG();
}
if (flags & FAULT_FLAG_ALLOW_RETRY) {
if (fault & VM_FAULT_MAJOR)
current->maj_flt++;
else
current->min_flt++;
if (fault & VM_FAULT_RETRY) {
flags &= ~FAULT_FLAG_ALLOW_RETRY;
flags |= FAULT_FLAG_TRIED;
goto retry;
}
}
pgd = pgd_offset(mm, address);
p4d = p4d_offset(pgd, address);
pud = pud_offset(p4d, address);
pmd = pmd_offset(pud, address);
pte = pte_offset_kernel(pmd, address);
} while (!pte_present(*pte));
err = 0;
/*
* The below warning was added in place of
* pte_mkyoung(); if (is_write) pte_mkdirty();
* If it's triggered, we'd see normally a hang here (a clean pte is
* marked read-only to emulate the dirty bit).
* However, the generic code can mark a PTE writable but clean on a
* concurrent read fault, triggering this harmlessly. So comment it out.
*/
#if 0
WARN_ON(!pte_young(*pte) || (is_write && !pte_dirty(*pte)));
#endif
flush_tlb_page(vma, address);
out:
up_read(&mm->mmap_sem);
out_nosemaphore:
return err;
out_of_memory:
/*
* We ran out of memory, call the OOM killer, and return the userspace
* (which will retry the fault, or kill us if we got oom-killed).
*/
up_read(&mm->mmap_sem);
if (!is_user)
goto out_nosemaphore;
pagefault_out_of_memory();
return 0;
}
EXPORT_SYMBOL(handle_page_fault);
static void show_segv_info(struct uml_pt_regs *regs)
{
struct task_struct *tsk = current;
struct faultinfo *fi = UPT_FAULTINFO(regs);
if (!unhandled_signal(tsk, SIGSEGV))
return;
if (!printk_ratelimit())
return;
printk("%s%s[%d]: segfault at %lx ip %px sp %px error %x",
task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
tsk->comm, task_pid_nr(tsk), FAULT_ADDRESS(*fi),
(void *)UPT_IP(regs), (void *)UPT_SP(regs),
fi->error_code);
print_vma_addr(KERN_CONT " in ", UPT_IP(regs));
printk(KERN_CONT "\n");
}
static void bad_segv(struct faultinfo fi, unsigned long ip)
{
current->thread.arch.faultinfo = fi;
force_sig_fault(SIGSEGV, SEGV_ACCERR, (void __user *) FAULT_ADDRESS(fi));
}
void fatal_sigsegv(void)
{
force_sigsegv(SIGSEGV);
do_signal(&current->thread.regs);
/*
* This is to tell gcc that we're not returning - do_signal
* can, in general, return, but in this case, it's not, since
* we just got a fatal SIGSEGV queued.
*/
os_dump_core();
}
/**
* segv_handler() - the SIGSEGV handler
* @sig: the signal number
* @unused_si: the signal info struct; unused in this handler
* @regs: the ptrace register information
*
* The handler first extracts the faultinfo from the UML ptrace regs struct.
* If the userfault did not happen in an UML userspace process, bad_segv is called.
* Otherwise the signal did happen in a cloned userspace process, handle it.
*/
void segv_handler(int sig, struct siginfo *unused_si, struct uml_pt_regs *regs)
{
struct faultinfo * fi = UPT_FAULTINFO(regs);
if (UPT_IS_USER(regs) && !SEGV_IS_FIXABLE(fi)) {
show_segv_info(regs);
bad_segv(*fi, UPT_IP(regs));
return;
}
segv(*fi, UPT_IP(regs), UPT_IS_USER(regs), regs);
}
/*
* We give a *copy* of the faultinfo in the regs to segv.
* This must be done, since nesting SEGVs could overwrite
* the info in the regs. A pointer to the info then would
* give us bad data!
*/
unsigned long segv(struct faultinfo fi, unsigned long ip, int is_user,
struct uml_pt_regs *regs)
{
jmp_buf *catcher;
int si_code;
int err;
int is_write = FAULT_WRITE(fi);
unsigned long address = FAULT_ADDRESS(fi);
if (!is_user && regs)
current->thread.segv_regs = container_of(regs, struct pt_regs, regs);
if (!is_user && (address >= start_vm) && (address < end_vm)) {
flush_tlb_kernel_vm();
goto out;
}
else if (current->mm == NULL) {
show_regs(container_of(regs, struct pt_regs, regs));
panic("Segfault with no mm");
}
else if (!is_user && address > PAGE_SIZE && address < TASK_SIZE) {
show_regs(container_of(regs, struct pt_regs, regs));
panic("Kernel tried to access user memory at addr 0x%lx, ip 0x%lx",
address, ip);
}
if (SEGV_IS_FIXABLE(&fi))
err = handle_page_fault(address, ip, is_write, is_user,
&si_code);
else {
err = -EFAULT;
/*
* A thread accessed NULL, we get a fault, but CR2 is invalid.
* This code is used in __do_copy_from_user() of TT mode.
* XXX tt mode is gone, so maybe this isn't needed any more
*/
address = 0;
}
catcher = current->thread.fault_catcher;
if (!err)
goto out;
else if (catcher != NULL) {
current->thread.fault_addr = (void *) address;
UML_LONGJMP(catcher, 1);
}
else if (current->thread.fault_addr != NULL)
panic("fault_addr set but no fault catcher");
else if (!is_user && arch_fixup(ip, regs))
goto out;
if (!is_user) {
show_regs(container_of(regs, struct pt_regs, regs));
panic("Kernel mode fault at addr 0x%lx, ip 0x%lx",
address, ip);
}
show_segv_info(regs);
if (err == -EACCES) {
current->thread.arch.faultinfo = fi;
force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
} else {
BUG_ON(err != -EFAULT);
current->thread.arch.faultinfo = fi;
force_sig_fault(SIGSEGV, si_code, (void __user *) address);
}
out:
if (regs)
current->thread.segv_regs = NULL;
return 0;
}
void relay_signal(int sig, struct siginfo *si, struct uml_pt_regs *regs)
{
int code, err;
if (!UPT_IS_USER(regs)) {
if (sig == SIGBUS)
printk(KERN_ERR "Bus error - the host /dev/shm or /tmp "
"mount likely just ran out of space\n");
panic("Kernel mode signal %d", sig);
}
arch_examine_signal(sig, regs);
/* Is the signal layout for the signal known?
* Signal data must be scrubbed to prevent information leaks.
*/
code = si->si_code;
err = si->si_errno;
if ((err == 0) && (siginfo_layout(sig, code) == SIL_FAULT)) {
struct faultinfo *fi = UPT_FAULTINFO(regs);
current->thread.arch.faultinfo = *fi;
force_sig_fault(sig, code, (void __user *)FAULT_ADDRESS(*fi));
} else {
printk(KERN_ERR "Attempted to relay unknown signal %d (si_code = %d) with errno %d\n",
sig, code, err);
force_sig(sig);
}
}
void bus_handler(int sig, struct siginfo *si, struct uml_pt_regs *regs)
{
if (current->thread.fault_catcher != NULL)
UML_LONGJMP(current->thread.fault_catcher, 1);
else
relay_signal(sig, si, regs);
}
void winch(int sig, struct siginfo *unused_si, struct uml_pt_regs *regs)
{
do_IRQ(WINCH_IRQ, regs);
}
void trap_init(void)
{
}