35727af2b1
The T241 platform suffers from the T241-FABRIC-4 erratum which causes unexpected behavior in the GIC when multiple transactions are received simultaneously from different sources. This hardware issue impacts NVIDIA server platforms that use more than two T241 chips interconnected. Each chip has support for 320 {E}SPIs. This issue occurs when multiple packets from different GICs are incorrectly interleaved at the target chip. The erratum text below specifies exactly what can cause multiple transfer packets susceptible to interleaving and GIC state corruption. GIC state corruption can lead to a range of problems, including kernel panics, and unexpected behavior. >From the erratum text: "In some cases, inter-socket AXI4 Stream packets with multiple transfers, may be interleaved by the fabric when presented to ARM Generic Interrupt Controller. GIC expects all transfers of a packet to be delivered without any interleaving. The following GICv3 commands may result in multiple transfer packets over inter-socket AXI4 Stream interface: - Register reads from GICD_I* and GICD_N* - Register writes to 64-bit GICD registers other than GICD_IROUTERn* - ITS command MOVALL Multiple commands in GICv4+ utilize multiple transfer packets, including VMOVP, VMOVI, VMAPP, and 64-bit register accesses." This issue impacts system configurations with more than 2 sockets, that require multi-transfer packets to be sent over inter-socket AXI4 Stream interface between GIC instances on different sockets. GICv4 cannot be supported. GICv3 SW model can only be supported with the workaround. Single and Dual socket configurations are not impacted by this issue and support GICv3 and GICv4." Link: https://developer.nvidia.com/docs/t241-fabric-4/nvidia-t241-fabric-4-errata.pdf Writing to the chip alias region of the GICD_In{E} registers except GICD_ICENABLERn has an equivalent effect as writing to the global distributor. The SPI interrupt deactivate path is not impacted by the erratum. To fix this problem, implement a workaround that ensures read accesses to the GICD_In{E} registers are directed to the chip that owns the SPI, and disable GICv4.x features. To simplify code changes, the gic_configure_irq() function uses the same alias region for both read and write operations to GICD_ICFGR. Co-developed-by: Vikram Sethi <vsethi@nvidia.com> Signed-off-by: Vikram Sethi <vsethi@nvidia.com> Signed-off-by: Shanker Donthineni <sdonthineni@nvidia.com> Acked-by: Sudeep Holla <sudeep.holla@arm.com> (for SMCCC/SOC ID bits) Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20230319024314.3540573-2-sdonthineni@nvidia.com
88 lines
2.1 KiB
C
88 lines
2.1 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (C) 2020 Arm Limited
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "smccc: " fmt
|
|
|
|
#include <linux/cache.h>
|
|
#include <linux/init.h>
|
|
#include <linux/arm-smccc.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/platform_device.h>
|
|
#include <asm/archrandom.h>
|
|
|
|
static u32 smccc_version = ARM_SMCCC_VERSION_1_0;
|
|
static enum arm_smccc_conduit smccc_conduit = SMCCC_CONDUIT_NONE;
|
|
|
|
bool __ro_after_init smccc_trng_available = false;
|
|
u64 __ro_after_init smccc_has_sve_hint = false;
|
|
s32 __ro_after_init smccc_soc_id_version = SMCCC_RET_NOT_SUPPORTED;
|
|
s32 __ro_after_init smccc_soc_id_revision = SMCCC_RET_NOT_SUPPORTED;
|
|
|
|
void __init arm_smccc_version_init(u32 version, enum arm_smccc_conduit conduit)
|
|
{
|
|
struct arm_smccc_res res;
|
|
|
|
smccc_version = version;
|
|
smccc_conduit = conduit;
|
|
|
|
smccc_trng_available = smccc_probe_trng();
|
|
if (IS_ENABLED(CONFIG_ARM64_SVE) &&
|
|
smccc_version >= ARM_SMCCC_VERSION_1_3)
|
|
smccc_has_sve_hint = true;
|
|
|
|
if ((smccc_version >= ARM_SMCCC_VERSION_1_2) &&
|
|
(smccc_conduit != SMCCC_CONDUIT_NONE)) {
|
|
arm_smccc_1_1_invoke(ARM_SMCCC_ARCH_FEATURES_FUNC_ID,
|
|
ARM_SMCCC_ARCH_SOC_ID, &res);
|
|
if ((s32)res.a0 >= 0) {
|
|
arm_smccc_1_1_invoke(ARM_SMCCC_ARCH_SOC_ID, 0, &res);
|
|
smccc_soc_id_version = (s32)res.a0;
|
|
arm_smccc_1_1_invoke(ARM_SMCCC_ARCH_SOC_ID, 1, &res);
|
|
smccc_soc_id_revision = (s32)res.a0;
|
|
}
|
|
}
|
|
}
|
|
|
|
enum arm_smccc_conduit arm_smccc_1_1_get_conduit(void)
|
|
{
|
|
if (smccc_version < ARM_SMCCC_VERSION_1_1)
|
|
return SMCCC_CONDUIT_NONE;
|
|
|
|
return smccc_conduit;
|
|
}
|
|
EXPORT_SYMBOL_GPL(arm_smccc_1_1_get_conduit);
|
|
|
|
u32 arm_smccc_get_version(void)
|
|
{
|
|
return smccc_version;
|
|
}
|
|
EXPORT_SYMBOL_GPL(arm_smccc_get_version);
|
|
|
|
s32 arm_smccc_get_soc_id_version(void)
|
|
{
|
|
return smccc_soc_id_version;
|
|
}
|
|
|
|
s32 arm_smccc_get_soc_id_revision(void)
|
|
{
|
|
return smccc_soc_id_revision;
|
|
}
|
|
|
|
static int __init smccc_devices_init(void)
|
|
{
|
|
struct platform_device *pdev;
|
|
|
|
if (smccc_trng_available) {
|
|
pdev = platform_device_register_simple("smccc_trng", -1,
|
|
NULL, 0);
|
|
if (IS_ERR(pdev))
|
|
pr_err("smccc_trng: could not register device: %ld\n",
|
|
PTR_ERR(pdev));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
device_initcall(smccc_devices_init);
|