f250eedcf7
for_each_perag_tag() is defined in xfs_icache.c for local use. Promote this to xfs_ag.h and define equivalent iteration functions so that we can use them to iterate AGs instead to replace open coded perag walks and perag lookups. We also convert as many of the straight forward open coded AG walks to use these iterators as possible. Anything that is not a direct conversion to an iterator is ignored and will be updated in future commits. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org>
1698 lines
42 KiB
C
1698 lines
42 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (c) 2000-2005 Silicon Graphics, Inc.
|
|
* All Rights Reserved.
|
|
*/
|
|
#include "xfs.h"
|
|
#include "xfs_fs.h"
|
|
#include "xfs_shared.h"
|
|
#include "xfs_format.h"
|
|
#include "xfs_log_format.h"
|
|
#include "xfs_trans_resv.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_inode.h"
|
|
#include "xfs_trans.h"
|
|
#include "xfs_trans_priv.h"
|
|
#include "xfs_inode_item.h"
|
|
#include "xfs_quota.h"
|
|
#include "xfs_trace.h"
|
|
#include "xfs_icache.h"
|
|
#include "xfs_bmap_util.h"
|
|
#include "xfs_dquot_item.h"
|
|
#include "xfs_dquot.h"
|
|
#include "xfs_reflink.h"
|
|
#include "xfs_ialloc.h"
|
|
#include "xfs_ag.h"
|
|
|
|
#include <linux/iversion.h>
|
|
|
|
/*
|
|
* Allocate and initialise an xfs_inode.
|
|
*/
|
|
struct xfs_inode *
|
|
xfs_inode_alloc(
|
|
struct xfs_mount *mp,
|
|
xfs_ino_t ino)
|
|
{
|
|
struct xfs_inode *ip;
|
|
|
|
/*
|
|
* XXX: If this didn't occur in transactions, we could drop GFP_NOFAIL
|
|
* and return NULL here on ENOMEM.
|
|
*/
|
|
ip = kmem_cache_alloc(xfs_inode_zone, GFP_KERNEL | __GFP_NOFAIL);
|
|
|
|
if (inode_init_always(mp->m_super, VFS_I(ip))) {
|
|
kmem_cache_free(xfs_inode_zone, ip);
|
|
return NULL;
|
|
}
|
|
|
|
/* VFS doesn't initialise i_mode! */
|
|
VFS_I(ip)->i_mode = 0;
|
|
|
|
XFS_STATS_INC(mp, vn_active);
|
|
ASSERT(atomic_read(&ip->i_pincount) == 0);
|
|
ASSERT(ip->i_ino == 0);
|
|
|
|
/* initialise the xfs inode */
|
|
ip->i_ino = ino;
|
|
ip->i_mount = mp;
|
|
memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
|
|
ip->i_afp = NULL;
|
|
ip->i_cowfp = NULL;
|
|
memset(&ip->i_df, 0, sizeof(ip->i_df));
|
|
ip->i_flags = 0;
|
|
ip->i_delayed_blks = 0;
|
|
ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
|
|
ip->i_nblocks = 0;
|
|
ip->i_forkoff = 0;
|
|
ip->i_sick = 0;
|
|
ip->i_checked = 0;
|
|
INIT_WORK(&ip->i_ioend_work, xfs_end_io);
|
|
INIT_LIST_HEAD(&ip->i_ioend_list);
|
|
spin_lock_init(&ip->i_ioend_lock);
|
|
|
|
return ip;
|
|
}
|
|
|
|
STATIC void
|
|
xfs_inode_free_callback(
|
|
struct rcu_head *head)
|
|
{
|
|
struct inode *inode = container_of(head, struct inode, i_rcu);
|
|
struct xfs_inode *ip = XFS_I(inode);
|
|
|
|
switch (VFS_I(ip)->i_mode & S_IFMT) {
|
|
case S_IFREG:
|
|
case S_IFDIR:
|
|
case S_IFLNK:
|
|
xfs_idestroy_fork(&ip->i_df);
|
|
break;
|
|
}
|
|
|
|
if (ip->i_afp) {
|
|
xfs_idestroy_fork(ip->i_afp);
|
|
kmem_cache_free(xfs_ifork_zone, ip->i_afp);
|
|
}
|
|
if (ip->i_cowfp) {
|
|
xfs_idestroy_fork(ip->i_cowfp);
|
|
kmem_cache_free(xfs_ifork_zone, ip->i_cowfp);
|
|
}
|
|
if (ip->i_itemp) {
|
|
ASSERT(!test_bit(XFS_LI_IN_AIL,
|
|
&ip->i_itemp->ili_item.li_flags));
|
|
xfs_inode_item_destroy(ip);
|
|
ip->i_itemp = NULL;
|
|
}
|
|
|
|
kmem_cache_free(xfs_inode_zone, ip);
|
|
}
|
|
|
|
static void
|
|
__xfs_inode_free(
|
|
struct xfs_inode *ip)
|
|
{
|
|
/* asserts to verify all state is correct here */
|
|
ASSERT(atomic_read(&ip->i_pincount) == 0);
|
|
ASSERT(!ip->i_itemp || list_empty(&ip->i_itemp->ili_item.li_bio_list));
|
|
XFS_STATS_DEC(ip->i_mount, vn_active);
|
|
|
|
call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
|
|
}
|
|
|
|
void
|
|
xfs_inode_free(
|
|
struct xfs_inode *ip)
|
|
{
|
|
ASSERT(!xfs_iflags_test(ip, XFS_IFLUSHING));
|
|
|
|
/*
|
|
* Because we use RCU freeing we need to ensure the inode always
|
|
* appears to be reclaimed with an invalid inode number when in the
|
|
* free state. The ip->i_flags_lock provides the barrier against lookup
|
|
* races.
|
|
*/
|
|
spin_lock(&ip->i_flags_lock);
|
|
ip->i_flags = XFS_IRECLAIM;
|
|
ip->i_ino = 0;
|
|
spin_unlock(&ip->i_flags_lock);
|
|
|
|
__xfs_inode_free(ip);
|
|
}
|
|
|
|
/*
|
|
* Queue background inode reclaim work if there are reclaimable inodes and there
|
|
* isn't reclaim work already scheduled or in progress.
|
|
*/
|
|
static void
|
|
xfs_reclaim_work_queue(
|
|
struct xfs_mount *mp)
|
|
{
|
|
|
|
rcu_read_lock();
|
|
if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
|
|
queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
|
|
msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
static void
|
|
xfs_perag_set_reclaim_tag(
|
|
struct xfs_perag *pag)
|
|
{
|
|
struct xfs_mount *mp = pag->pag_mount;
|
|
|
|
lockdep_assert_held(&pag->pag_ici_lock);
|
|
if (pag->pag_ici_reclaimable++)
|
|
return;
|
|
|
|
/* propagate the reclaim tag up into the perag radix tree */
|
|
spin_lock(&mp->m_perag_lock);
|
|
radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno,
|
|
XFS_ICI_RECLAIM_TAG);
|
|
spin_unlock(&mp->m_perag_lock);
|
|
|
|
/* schedule periodic background inode reclaim */
|
|
xfs_reclaim_work_queue(mp);
|
|
|
|
trace_xfs_perag_set_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
|
|
}
|
|
|
|
static void
|
|
xfs_perag_clear_reclaim_tag(
|
|
struct xfs_perag *pag)
|
|
{
|
|
struct xfs_mount *mp = pag->pag_mount;
|
|
|
|
lockdep_assert_held(&pag->pag_ici_lock);
|
|
if (--pag->pag_ici_reclaimable)
|
|
return;
|
|
|
|
/* clear the reclaim tag from the perag radix tree */
|
|
spin_lock(&mp->m_perag_lock);
|
|
radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno,
|
|
XFS_ICI_RECLAIM_TAG);
|
|
spin_unlock(&mp->m_perag_lock);
|
|
trace_xfs_perag_clear_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
|
|
}
|
|
|
|
|
|
/*
|
|
* We set the inode flag atomically with the radix tree tag.
|
|
* Once we get tag lookups on the radix tree, this inode flag
|
|
* can go away.
|
|
*/
|
|
void
|
|
xfs_inode_set_reclaim_tag(
|
|
struct xfs_inode *ip)
|
|
{
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
struct xfs_perag *pag;
|
|
|
|
pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
|
|
spin_lock(&pag->pag_ici_lock);
|
|
spin_lock(&ip->i_flags_lock);
|
|
|
|
radix_tree_tag_set(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino),
|
|
XFS_ICI_RECLAIM_TAG);
|
|
xfs_perag_set_reclaim_tag(pag);
|
|
__xfs_iflags_set(ip, XFS_IRECLAIMABLE);
|
|
|
|
spin_unlock(&ip->i_flags_lock);
|
|
spin_unlock(&pag->pag_ici_lock);
|
|
xfs_perag_put(pag);
|
|
}
|
|
|
|
STATIC void
|
|
xfs_inode_clear_reclaim_tag(
|
|
struct xfs_perag *pag,
|
|
xfs_ino_t ino)
|
|
{
|
|
radix_tree_tag_clear(&pag->pag_ici_root,
|
|
XFS_INO_TO_AGINO(pag->pag_mount, ino),
|
|
XFS_ICI_RECLAIM_TAG);
|
|
xfs_perag_clear_reclaim_tag(pag);
|
|
}
|
|
|
|
static void
|
|
xfs_inew_wait(
|
|
struct xfs_inode *ip)
|
|
{
|
|
wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_INEW_BIT);
|
|
DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_INEW_BIT);
|
|
|
|
do {
|
|
prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
|
|
if (!xfs_iflags_test(ip, XFS_INEW))
|
|
break;
|
|
schedule();
|
|
} while (true);
|
|
finish_wait(wq, &wait.wq_entry);
|
|
}
|
|
|
|
/*
|
|
* When we recycle a reclaimable inode, we need to re-initialise the VFS inode
|
|
* part of the structure. This is made more complex by the fact we store
|
|
* information about the on-disk values in the VFS inode and so we can't just
|
|
* overwrite the values unconditionally. Hence we save the parameters we
|
|
* need to retain across reinitialisation, and rewrite them into the VFS inode
|
|
* after reinitialisation even if it fails.
|
|
*/
|
|
static int
|
|
xfs_reinit_inode(
|
|
struct xfs_mount *mp,
|
|
struct inode *inode)
|
|
{
|
|
int error;
|
|
uint32_t nlink = inode->i_nlink;
|
|
uint32_t generation = inode->i_generation;
|
|
uint64_t version = inode_peek_iversion(inode);
|
|
umode_t mode = inode->i_mode;
|
|
dev_t dev = inode->i_rdev;
|
|
kuid_t uid = inode->i_uid;
|
|
kgid_t gid = inode->i_gid;
|
|
|
|
error = inode_init_always(mp->m_super, inode);
|
|
|
|
set_nlink(inode, nlink);
|
|
inode->i_generation = generation;
|
|
inode_set_iversion_queried(inode, version);
|
|
inode->i_mode = mode;
|
|
inode->i_rdev = dev;
|
|
inode->i_uid = uid;
|
|
inode->i_gid = gid;
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* If we are allocating a new inode, then check what was returned is
|
|
* actually a free, empty inode. If we are not allocating an inode,
|
|
* then check we didn't find a free inode.
|
|
*
|
|
* Returns:
|
|
* 0 if the inode free state matches the lookup context
|
|
* -ENOENT if the inode is free and we are not allocating
|
|
* -EFSCORRUPTED if there is any state mismatch at all
|
|
*/
|
|
static int
|
|
xfs_iget_check_free_state(
|
|
struct xfs_inode *ip,
|
|
int flags)
|
|
{
|
|
if (flags & XFS_IGET_CREATE) {
|
|
/* should be a free inode */
|
|
if (VFS_I(ip)->i_mode != 0) {
|
|
xfs_warn(ip->i_mount,
|
|
"Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)",
|
|
ip->i_ino, VFS_I(ip)->i_mode);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
|
|
if (ip->i_nblocks != 0) {
|
|
xfs_warn(ip->i_mount,
|
|
"Corruption detected! Free inode 0x%llx has blocks allocated!",
|
|
ip->i_ino);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* should be an allocated inode */
|
|
if (VFS_I(ip)->i_mode == 0)
|
|
return -ENOENT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check the validity of the inode we just found it the cache
|
|
*/
|
|
static int
|
|
xfs_iget_cache_hit(
|
|
struct xfs_perag *pag,
|
|
struct xfs_inode *ip,
|
|
xfs_ino_t ino,
|
|
int flags,
|
|
int lock_flags) __releases(RCU)
|
|
{
|
|
struct inode *inode = VFS_I(ip);
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
int error;
|
|
|
|
/*
|
|
* check for re-use of an inode within an RCU grace period due to the
|
|
* radix tree nodes not being updated yet. We monitor for this by
|
|
* setting the inode number to zero before freeing the inode structure.
|
|
* If the inode has been reallocated and set up, then the inode number
|
|
* will not match, so check for that, too.
|
|
*/
|
|
spin_lock(&ip->i_flags_lock);
|
|
if (ip->i_ino != ino) {
|
|
trace_xfs_iget_skip(ip);
|
|
XFS_STATS_INC(mp, xs_ig_frecycle);
|
|
error = -EAGAIN;
|
|
goto out_error;
|
|
}
|
|
|
|
|
|
/*
|
|
* If we are racing with another cache hit that is currently
|
|
* instantiating this inode or currently recycling it out of
|
|
* reclaimabe state, wait for the initialisation to complete
|
|
* before continuing.
|
|
*
|
|
* XXX(hch): eventually we should do something equivalent to
|
|
* wait_on_inode to wait for these flags to be cleared
|
|
* instead of polling for it.
|
|
*/
|
|
if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
|
|
trace_xfs_iget_skip(ip);
|
|
XFS_STATS_INC(mp, xs_ig_frecycle);
|
|
error = -EAGAIN;
|
|
goto out_error;
|
|
}
|
|
|
|
/*
|
|
* Check the inode free state is valid. This also detects lookup
|
|
* racing with unlinks.
|
|
*/
|
|
error = xfs_iget_check_free_state(ip, flags);
|
|
if (error)
|
|
goto out_error;
|
|
|
|
/*
|
|
* If IRECLAIMABLE is set, we've torn down the VFS inode already.
|
|
* Need to carefully get it back into useable state.
|
|
*/
|
|
if (ip->i_flags & XFS_IRECLAIMABLE) {
|
|
trace_xfs_iget_reclaim(ip);
|
|
|
|
if (flags & XFS_IGET_INCORE) {
|
|
error = -EAGAIN;
|
|
goto out_error;
|
|
}
|
|
|
|
/*
|
|
* We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
|
|
* from stomping over us while we recycle the inode. We can't
|
|
* clear the radix tree reclaimable tag yet as it requires
|
|
* pag_ici_lock to be held exclusive.
|
|
*/
|
|
ip->i_flags |= XFS_IRECLAIM;
|
|
|
|
spin_unlock(&ip->i_flags_lock);
|
|
rcu_read_unlock();
|
|
|
|
ASSERT(!rwsem_is_locked(&inode->i_rwsem));
|
|
error = xfs_reinit_inode(mp, inode);
|
|
if (error) {
|
|
bool wake;
|
|
/*
|
|
* Re-initializing the inode failed, and we are in deep
|
|
* trouble. Try to re-add it to the reclaim list.
|
|
*/
|
|
rcu_read_lock();
|
|
spin_lock(&ip->i_flags_lock);
|
|
wake = !!__xfs_iflags_test(ip, XFS_INEW);
|
|
ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
|
|
if (wake)
|
|
wake_up_bit(&ip->i_flags, __XFS_INEW_BIT);
|
|
ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
|
|
trace_xfs_iget_reclaim_fail(ip);
|
|
goto out_error;
|
|
}
|
|
|
|
spin_lock(&pag->pag_ici_lock);
|
|
spin_lock(&ip->i_flags_lock);
|
|
|
|
/*
|
|
* Clear the per-lifetime state in the inode as we are now
|
|
* effectively a new inode and need to return to the initial
|
|
* state before reuse occurs.
|
|
*/
|
|
ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
|
|
ip->i_flags |= XFS_INEW;
|
|
xfs_inode_clear_reclaim_tag(pag, ip->i_ino);
|
|
inode->i_state = I_NEW;
|
|
ip->i_sick = 0;
|
|
ip->i_checked = 0;
|
|
|
|
spin_unlock(&ip->i_flags_lock);
|
|
spin_unlock(&pag->pag_ici_lock);
|
|
} else {
|
|
/* If the VFS inode is being torn down, pause and try again. */
|
|
if (!igrab(inode)) {
|
|
trace_xfs_iget_skip(ip);
|
|
error = -EAGAIN;
|
|
goto out_error;
|
|
}
|
|
|
|
/* We've got a live one. */
|
|
spin_unlock(&ip->i_flags_lock);
|
|
rcu_read_unlock();
|
|
trace_xfs_iget_hit(ip);
|
|
}
|
|
|
|
if (lock_flags != 0)
|
|
xfs_ilock(ip, lock_flags);
|
|
|
|
if (!(flags & XFS_IGET_INCORE))
|
|
xfs_iflags_clear(ip, XFS_ISTALE);
|
|
XFS_STATS_INC(mp, xs_ig_found);
|
|
|
|
return 0;
|
|
|
|
out_error:
|
|
spin_unlock(&ip->i_flags_lock);
|
|
rcu_read_unlock();
|
|
return error;
|
|
}
|
|
|
|
|
|
static int
|
|
xfs_iget_cache_miss(
|
|
struct xfs_mount *mp,
|
|
struct xfs_perag *pag,
|
|
xfs_trans_t *tp,
|
|
xfs_ino_t ino,
|
|
struct xfs_inode **ipp,
|
|
int flags,
|
|
int lock_flags)
|
|
{
|
|
struct xfs_inode *ip;
|
|
int error;
|
|
xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino);
|
|
int iflags;
|
|
|
|
ip = xfs_inode_alloc(mp, ino);
|
|
if (!ip)
|
|
return -ENOMEM;
|
|
|
|
error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, flags);
|
|
if (error)
|
|
goto out_destroy;
|
|
|
|
/*
|
|
* For version 5 superblocks, if we are initialising a new inode and we
|
|
* are not utilising the XFS_MOUNT_IKEEP inode cluster mode, we can
|
|
* simply build the new inode core with a random generation number.
|
|
*
|
|
* For version 4 (and older) superblocks, log recovery is dependent on
|
|
* the i_flushiter field being initialised from the current on-disk
|
|
* value and hence we must also read the inode off disk even when
|
|
* initializing new inodes.
|
|
*/
|
|
if (xfs_sb_version_has_v3inode(&mp->m_sb) &&
|
|
(flags & XFS_IGET_CREATE) && !(mp->m_flags & XFS_MOUNT_IKEEP)) {
|
|
VFS_I(ip)->i_generation = prandom_u32();
|
|
} else {
|
|
struct xfs_buf *bp;
|
|
|
|
error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp);
|
|
if (error)
|
|
goto out_destroy;
|
|
|
|
error = xfs_inode_from_disk(ip,
|
|
xfs_buf_offset(bp, ip->i_imap.im_boffset));
|
|
if (!error)
|
|
xfs_buf_set_ref(bp, XFS_INO_REF);
|
|
xfs_trans_brelse(tp, bp);
|
|
|
|
if (error)
|
|
goto out_destroy;
|
|
}
|
|
|
|
trace_xfs_iget_miss(ip);
|
|
|
|
/*
|
|
* Check the inode free state is valid. This also detects lookup
|
|
* racing with unlinks.
|
|
*/
|
|
error = xfs_iget_check_free_state(ip, flags);
|
|
if (error)
|
|
goto out_destroy;
|
|
|
|
/*
|
|
* Preload the radix tree so we can insert safely under the
|
|
* write spinlock. Note that we cannot sleep inside the preload
|
|
* region. Since we can be called from transaction context, don't
|
|
* recurse into the file system.
|
|
*/
|
|
if (radix_tree_preload(GFP_NOFS)) {
|
|
error = -EAGAIN;
|
|
goto out_destroy;
|
|
}
|
|
|
|
/*
|
|
* Because the inode hasn't been added to the radix-tree yet it can't
|
|
* be found by another thread, so we can do the non-sleeping lock here.
|
|
*/
|
|
if (lock_flags) {
|
|
if (!xfs_ilock_nowait(ip, lock_flags))
|
|
BUG();
|
|
}
|
|
|
|
/*
|
|
* These values must be set before inserting the inode into the radix
|
|
* tree as the moment it is inserted a concurrent lookup (allowed by the
|
|
* RCU locking mechanism) can find it and that lookup must see that this
|
|
* is an inode currently under construction (i.e. that XFS_INEW is set).
|
|
* The ip->i_flags_lock that protects the XFS_INEW flag forms the
|
|
* memory barrier that ensures this detection works correctly at lookup
|
|
* time.
|
|
*/
|
|
iflags = XFS_INEW;
|
|
if (flags & XFS_IGET_DONTCACHE)
|
|
d_mark_dontcache(VFS_I(ip));
|
|
ip->i_udquot = NULL;
|
|
ip->i_gdquot = NULL;
|
|
ip->i_pdquot = NULL;
|
|
xfs_iflags_set(ip, iflags);
|
|
|
|
/* insert the new inode */
|
|
spin_lock(&pag->pag_ici_lock);
|
|
error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
|
|
if (unlikely(error)) {
|
|
WARN_ON(error != -EEXIST);
|
|
XFS_STATS_INC(mp, xs_ig_dup);
|
|
error = -EAGAIN;
|
|
goto out_preload_end;
|
|
}
|
|
spin_unlock(&pag->pag_ici_lock);
|
|
radix_tree_preload_end();
|
|
|
|
*ipp = ip;
|
|
return 0;
|
|
|
|
out_preload_end:
|
|
spin_unlock(&pag->pag_ici_lock);
|
|
radix_tree_preload_end();
|
|
if (lock_flags)
|
|
xfs_iunlock(ip, lock_flags);
|
|
out_destroy:
|
|
__destroy_inode(VFS_I(ip));
|
|
xfs_inode_free(ip);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Look up an inode by number in the given file system. The inode is looked up
|
|
* in the cache held in each AG. If the inode is found in the cache, initialise
|
|
* the vfs inode if necessary.
|
|
*
|
|
* If it is not in core, read it in from the file system's device, add it to the
|
|
* cache and initialise the vfs inode.
|
|
*
|
|
* The inode is locked according to the value of the lock_flags parameter.
|
|
* Inode lookup is only done during metadata operations and not as part of the
|
|
* data IO path. Hence we only allow locking of the XFS_ILOCK during lookup.
|
|
*/
|
|
int
|
|
xfs_iget(
|
|
struct xfs_mount *mp,
|
|
struct xfs_trans *tp,
|
|
xfs_ino_t ino,
|
|
uint flags,
|
|
uint lock_flags,
|
|
struct xfs_inode **ipp)
|
|
{
|
|
struct xfs_inode *ip;
|
|
struct xfs_perag *pag;
|
|
xfs_agino_t agino;
|
|
int error;
|
|
|
|
ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
|
|
|
|
/* reject inode numbers outside existing AGs */
|
|
if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
|
|
return -EINVAL;
|
|
|
|
XFS_STATS_INC(mp, xs_ig_attempts);
|
|
|
|
/* get the perag structure and ensure that it's inode capable */
|
|
pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
|
|
agino = XFS_INO_TO_AGINO(mp, ino);
|
|
|
|
again:
|
|
error = 0;
|
|
rcu_read_lock();
|
|
ip = radix_tree_lookup(&pag->pag_ici_root, agino);
|
|
|
|
if (ip) {
|
|
error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
|
|
if (error)
|
|
goto out_error_or_again;
|
|
} else {
|
|
rcu_read_unlock();
|
|
if (flags & XFS_IGET_INCORE) {
|
|
error = -ENODATA;
|
|
goto out_error_or_again;
|
|
}
|
|
XFS_STATS_INC(mp, xs_ig_missed);
|
|
|
|
error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
|
|
flags, lock_flags);
|
|
if (error)
|
|
goto out_error_or_again;
|
|
}
|
|
xfs_perag_put(pag);
|
|
|
|
*ipp = ip;
|
|
|
|
/*
|
|
* If we have a real type for an on-disk inode, we can setup the inode
|
|
* now. If it's a new inode being created, xfs_ialloc will handle it.
|
|
*/
|
|
if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
|
|
xfs_setup_existing_inode(ip);
|
|
return 0;
|
|
|
|
out_error_or_again:
|
|
if (!(flags & XFS_IGET_INCORE) && error == -EAGAIN) {
|
|
delay(1);
|
|
goto again;
|
|
}
|
|
xfs_perag_put(pag);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* "Is this a cached inode that's also allocated?"
|
|
*
|
|
* Look up an inode by number in the given file system. If the inode is
|
|
* in cache and isn't in purgatory, return 1 if the inode is allocated
|
|
* and 0 if it is not. For all other cases (not in cache, being torn
|
|
* down, etc.), return a negative error code.
|
|
*
|
|
* The caller has to prevent inode allocation and freeing activity,
|
|
* presumably by locking the AGI buffer. This is to ensure that an
|
|
* inode cannot transition from allocated to freed until the caller is
|
|
* ready to allow that. If the inode is in an intermediate state (new,
|
|
* reclaimable, or being reclaimed), -EAGAIN will be returned; if the
|
|
* inode is not in the cache, -ENOENT will be returned. The caller must
|
|
* deal with these scenarios appropriately.
|
|
*
|
|
* This is a specialized use case for the online scrubber; if you're
|
|
* reading this, you probably want xfs_iget.
|
|
*/
|
|
int
|
|
xfs_icache_inode_is_allocated(
|
|
struct xfs_mount *mp,
|
|
struct xfs_trans *tp,
|
|
xfs_ino_t ino,
|
|
bool *inuse)
|
|
{
|
|
struct xfs_inode *ip;
|
|
int error;
|
|
|
|
error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip);
|
|
if (error)
|
|
return error;
|
|
|
|
*inuse = !!(VFS_I(ip)->i_mode);
|
|
xfs_irele(ip);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The inode lookup is done in batches to keep the amount of lock traffic and
|
|
* radix tree lookups to a minimum. The batch size is a trade off between
|
|
* lookup reduction and stack usage. This is in the reclaim path, so we can't
|
|
* be too greedy.
|
|
*/
|
|
#define XFS_LOOKUP_BATCH 32
|
|
|
|
/*
|
|
* Decide if the given @ip is eligible to be a part of the inode walk, and
|
|
* grab it if so. Returns true if it's ready to go or false if we should just
|
|
* ignore it.
|
|
*/
|
|
STATIC bool
|
|
xfs_inode_walk_ag_grab(
|
|
struct xfs_inode *ip,
|
|
int flags)
|
|
{
|
|
struct inode *inode = VFS_I(ip);
|
|
bool newinos = !!(flags & XFS_INODE_WALK_INEW_WAIT);
|
|
|
|
ASSERT(rcu_read_lock_held());
|
|
|
|
/* Check for stale RCU freed inode */
|
|
spin_lock(&ip->i_flags_lock);
|
|
if (!ip->i_ino)
|
|
goto out_unlock_noent;
|
|
|
|
/* avoid new or reclaimable inodes. Leave for reclaim code to flush */
|
|
if ((!newinos && __xfs_iflags_test(ip, XFS_INEW)) ||
|
|
__xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM))
|
|
goto out_unlock_noent;
|
|
spin_unlock(&ip->i_flags_lock);
|
|
|
|
/* nothing to sync during shutdown */
|
|
if (XFS_FORCED_SHUTDOWN(ip->i_mount))
|
|
return false;
|
|
|
|
/* If we can't grab the inode, it must on it's way to reclaim. */
|
|
if (!igrab(inode))
|
|
return false;
|
|
|
|
/* inode is valid */
|
|
return true;
|
|
|
|
out_unlock_noent:
|
|
spin_unlock(&ip->i_flags_lock);
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* For a given per-AG structure @pag, grab, @execute, and rele all incore
|
|
* inodes with the given radix tree @tag.
|
|
*/
|
|
STATIC int
|
|
xfs_inode_walk_ag(
|
|
struct xfs_perag *pag,
|
|
int iter_flags,
|
|
int (*execute)(struct xfs_inode *ip, void *args),
|
|
void *args,
|
|
int tag)
|
|
{
|
|
struct xfs_mount *mp = pag->pag_mount;
|
|
uint32_t first_index;
|
|
int last_error = 0;
|
|
int skipped;
|
|
bool done;
|
|
int nr_found;
|
|
|
|
restart:
|
|
done = false;
|
|
skipped = 0;
|
|
first_index = 0;
|
|
nr_found = 0;
|
|
do {
|
|
struct xfs_inode *batch[XFS_LOOKUP_BATCH];
|
|
int error = 0;
|
|
int i;
|
|
|
|
rcu_read_lock();
|
|
|
|
if (tag == XFS_ICI_NO_TAG)
|
|
nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
|
|
(void **)batch, first_index,
|
|
XFS_LOOKUP_BATCH);
|
|
else
|
|
nr_found = radix_tree_gang_lookup_tag(
|
|
&pag->pag_ici_root,
|
|
(void **) batch, first_index,
|
|
XFS_LOOKUP_BATCH, tag);
|
|
|
|
if (!nr_found) {
|
|
rcu_read_unlock();
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Grab the inodes before we drop the lock. if we found
|
|
* nothing, nr == 0 and the loop will be skipped.
|
|
*/
|
|
for (i = 0; i < nr_found; i++) {
|
|
struct xfs_inode *ip = batch[i];
|
|
|
|
if (done || !xfs_inode_walk_ag_grab(ip, iter_flags))
|
|
batch[i] = NULL;
|
|
|
|
/*
|
|
* Update the index for the next lookup. Catch
|
|
* overflows into the next AG range which can occur if
|
|
* we have inodes in the last block of the AG and we
|
|
* are currently pointing to the last inode.
|
|
*
|
|
* Because we may see inodes that are from the wrong AG
|
|
* due to RCU freeing and reallocation, only update the
|
|
* index if it lies in this AG. It was a race that lead
|
|
* us to see this inode, so another lookup from the
|
|
* same index will not find it again.
|
|
*/
|
|
if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
|
|
continue;
|
|
first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
|
|
if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
|
|
done = true;
|
|
}
|
|
|
|
/* unlock now we've grabbed the inodes. */
|
|
rcu_read_unlock();
|
|
|
|
for (i = 0; i < nr_found; i++) {
|
|
if (!batch[i])
|
|
continue;
|
|
if ((iter_flags & XFS_INODE_WALK_INEW_WAIT) &&
|
|
xfs_iflags_test(batch[i], XFS_INEW))
|
|
xfs_inew_wait(batch[i]);
|
|
error = execute(batch[i], args);
|
|
xfs_irele(batch[i]);
|
|
if (error == -EAGAIN) {
|
|
skipped++;
|
|
continue;
|
|
}
|
|
if (error && last_error != -EFSCORRUPTED)
|
|
last_error = error;
|
|
}
|
|
|
|
/* bail out if the filesystem is corrupted. */
|
|
if (error == -EFSCORRUPTED)
|
|
break;
|
|
|
|
cond_resched();
|
|
|
|
} while (nr_found && !done);
|
|
|
|
if (skipped) {
|
|
delay(1);
|
|
goto restart;
|
|
}
|
|
return last_error;
|
|
}
|
|
|
|
/* Fetch the next (possibly tagged) per-AG structure. */
|
|
static inline struct xfs_perag *
|
|
xfs_inode_walk_get_perag(
|
|
struct xfs_mount *mp,
|
|
xfs_agnumber_t agno,
|
|
int tag)
|
|
{
|
|
if (tag == XFS_ICI_NO_TAG)
|
|
return xfs_perag_get(mp, agno);
|
|
return xfs_perag_get_tag(mp, agno, tag);
|
|
}
|
|
|
|
/*
|
|
* Call the @execute function on all incore inodes matching the radix tree
|
|
* @tag.
|
|
*/
|
|
int
|
|
xfs_inode_walk(
|
|
struct xfs_mount *mp,
|
|
int iter_flags,
|
|
int (*execute)(struct xfs_inode *ip, void *args),
|
|
void *args,
|
|
int tag)
|
|
{
|
|
struct xfs_perag *pag;
|
|
int error = 0;
|
|
int last_error = 0;
|
|
xfs_agnumber_t ag;
|
|
|
|
ag = 0;
|
|
while ((pag = xfs_inode_walk_get_perag(mp, ag, tag))) {
|
|
ag = pag->pag_agno + 1;
|
|
error = xfs_inode_walk_ag(pag, iter_flags, execute, args, tag);
|
|
xfs_perag_put(pag);
|
|
if (error) {
|
|
last_error = error;
|
|
if (error == -EFSCORRUPTED)
|
|
break;
|
|
}
|
|
}
|
|
return last_error;
|
|
}
|
|
|
|
/*
|
|
* Grab the inode for reclaim exclusively.
|
|
*
|
|
* We have found this inode via a lookup under RCU, so the inode may have
|
|
* already been freed, or it may be in the process of being recycled by
|
|
* xfs_iget(). In both cases, the inode will have XFS_IRECLAIM set. If the inode
|
|
* has been fully recycled by the time we get the i_flags_lock, XFS_IRECLAIMABLE
|
|
* will not be set. Hence we need to check for both these flag conditions to
|
|
* avoid inodes that are no longer reclaim candidates.
|
|
*
|
|
* Note: checking for other state flags here, under the i_flags_lock or not, is
|
|
* racy and should be avoided. Those races should be resolved only after we have
|
|
* ensured that we are able to reclaim this inode and the world can see that we
|
|
* are going to reclaim it.
|
|
*
|
|
* Return true if we grabbed it, false otherwise.
|
|
*/
|
|
static bool
|
|
xfs_reclaim_inode_grab(
|
|
struct xfs_inode *ip)
|
|
{
|
|
ASSERT(rcu_read_lock_held());
|
|
|
|
spin_lock(&ip->i_flags_lock);
|
|
if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
|
|
__xfs_iflags_test(ip, XFS_IRECLAIM)) {
|
|
/* not a reclaim candidate. */
|
|
spin_unlock(&ip->i_flags_lock);
|
|
return false;
|
|
}
|
|
__xfs_iflags_set(ip, XFS_IRECLAIM);
|
|
spin_unlock(&ip->i_flags_lock);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Inode reclaim is non-blocking, so the default action if progress cannot be
|
|
* made is to "requeue" the inode for reclaim by unlocking it and clearing the
|
|
* XFS_IRECLAIM flag. If we are in a shutdown state, we don't care about
|
|
* blocking anymore and hence we can wait for the inode to be able to reclaim
|
|
* it.
|
|
*
|
|
* We do no IO here - if callers require inodes to be cleaned they must push the
|
|
* AIL first to trigger writeback of dirty inodes. This enables writeback to be
|
|
* done in the background in a non-blocking manner, and enables memory reclaim
|
|
* to make progress without blocking.
|
|
*/
|
|
static void
|
|
xfs_reclaim_inode(
|
|
struct xfs_inode *ip,
|
|
struct xfs_perag *pag)
|
|
{
|
|
xfs_ino_t ino = ip->i_ino; /* for radix_tree_delete */
|
|
|
|
if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
|
|
goto out;
|
|
if (xfs_iflags_test_and_set(ip, XFS_IFLUSHING))
|
|
goto out_iunlock;
|
|
|
|
if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
|
|
xfs_iunpin_wait(ip);
|
|
xfs_iflush_abort(ip);
|
|
goto reclaim;
|
|
}
|
|
if (xfs_ipincount(ip))
|
|
goto out_clear_flush;
|
|
if (!xfs_inode_clean(ip))
|
|
goto out_clear_flush;
|
|
|
|
xfs_iflags_clear(ip, XFS_IFLUSHING);
|
|
reclaim:
|
|
|
|
/*
|
|
* Because we use RCU freeing we need to ensure the inode always appears
|
|
* to be reclaimed with an invalid inode number when in the free state.
|
|
* We do this as early as possible under the ILOCK so that
|
|
* xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
|
|
* detect races with us here. By doing this, we guarantee that once
|
|
* xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
|
|
* it will see either a valid inode that will serialise correctly, or it
|
|
* will see an invalid inode that it can skip.
|
|
*/
|
|
spin_lock(&ip->i_flags_lock);
|
|
ip->i_flags = XFS_IRECLAIM;
|
|
ip->i_ino = 0;
|
|
spin_unlock(&ip->i_flags_lock);
|
|
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
|
|
|
XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
|
|
/*
|
|
* Remove the inode from the per-AG radix tree.
|
|
*
|
|
* Because radix_tree_delete won't complain even if the item was never
|
|
* added to the tree assert that it's been there before to catch
|
|
* problems with the inode life time early on.
|
|
*/
|
|
spin_lock(&pag->pag_ici_lock);
|
|
if (!radix_tree_delete(&pag->pag_ici_root,
|
|
XFS_INO_TO_AGINO(ip->i_mount, ino)))
|
|
ASSERT(0);
|
|
xfs_perag_clear_reclaim_tag(pag);
|
|
spin_unlock(&pag->pag_ici_lock);
|
|
|
|
/*
|
|
* Here we do an (almost) spurious inode lock in order to coordinate
|
|
* with inode cache radix tree lookups. This is because the lookup
|
|
* can reference the inodes in the cache without taking references.
|
|
*
|
|
* We make that OK here by ensuring that we wait until the inode is
|
|
* unlocked after the lookup before we go ahead and free it.
|
|
*/
|
|
xfs_ilock(ip, XFS_ILOCK_EXCL);
|
|
xfs_qm_dqdetach(ip);
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
|
ASSERT(xfs_inode_clean(ip));
|
|
|
|
__xfs_inode_free(ip);
|
|
return;
|
|
|
|
out_clear_flush:
|
|
xfs_iflags_clear(ip, XFS_IFLUSHING);
|
|
out_iunlock:
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
|
out:
|
|
xfs_iflags_clear(ip, XFS_IRECLAIM);
|
|
}
|
|
|
|
/*
|
|
* Walk the AGs and reclaim the inodes in them. Even if the filesystem is
|
|
* corrupted, we still want to try to reclaim all the inodes. If we don't,
|
|
* then a shut down during filesystem unmount reclaim walk leak all the
|
|
* unreclaimed inodes.
|
|
*
|
|
* Returns non-zero if any AGs or inodes were skipped in the reclaim pass
|
|
* so that callers that want to block until all dirty inodes are written back
|
|
* and reclaimed can sanely loop.
|
|
*/
|
|
static void
|
|
xfs_reclaim_inodes_ag(
|
|
struct xfs_mount *mp,
|
|
int *nr_to_scan)
|
|
{
|
|
struct xfs_perag *pag;
|
|
xfs_agnumber_t agno;
|
|
|
|
for_each_perag_tag(mp, agno, pag, XFS_ICI_RECLAIM_TAG) {
|
|
unsigned long first_index = 0;
|
|
int done = 0;
|
|
int nr_found = 0;
|
|
|
|
first_index = READ_ONCE(pag->pag_ici_reclaim_cursor);
|
|
do {
|
|
struct xfs_inode *batch[XFS_LOOKUP_BATCH];
|
|
int i;
|
|
|
|
rcu_read_lock();
|
|
nr_found = radix_tree_gang_lookup_tag(
|
|
&pag->pag_ici_root,
|
|
(void **)batch, first_index,
|
|
XFS_LOOKUP_BATCH,
|
|
XFS_ICI_RECLAIM_TAG);
|
|
if (!nr_found) {
|
|
done = 1;
|
|
rcu_read_unlock();
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Grab the inodes before we drop the lock. if we found
|
|
* nothing, nr == 0 and the loop will be skipped.
|
|
*/
|
|
for (i = 0; i < nr_found; i++) {
|
|
struct xfs_inode *ip = batch[i];
|
|
|
|
if (done || !xfs_reclaim_inode_grab(ip))
|
|
batch[i] = NULL;
|
|
|
|
/*
|
|
* Update the index for the next lookup. Catch
|
|
* overflows into the next AG range which can
|
|
* occur if we have inodes in the last block of
|
|
* the AG and we are currently pointing to the
|
|
* last inode.
|
|
*
|
|
* Because we may see inodes that are from the
|
|
* wrong AG due to RCU freeing and
|
|
* reallocation, only update the index if it
|
|
* lies in this AG. It was a race that lead us
|
|
* to see this inode, so another lookup from
|
|
* the same index will not find it again.
|
|
*/
|
|
if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
|
|
pag->pag_agno)
|
|
continue;
|
|
first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
|
|
if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
|
|
done = 1;
|
|
}
|
|
|
|
/* unlock now we've grabbed the inodes. */
|
|
rcu_read_unlock();
|
|
|
|
for (i = 0; i < nr_found; i++) {
|
|
if (batch[i])
|
|
xfs_reclaim_inode(batch[i], pag);
|
|
}
|
|
|
|
*nr_to_scan -= XFS_LOOKUP_BATCH;
|
|
cond_resched();
|
|
} while (nr_found && !done && *nr_to_scan > 0);
|
|
|
|
if (done)
|
|
first_index = 0;
|
|
WRITE_ONCE(pag->pag_ici_reclaim_cursor, first_index);
|
|
}
|
|
}
|
|
|
|
void
|
|
xfs_reclaim_inodes(
|
|
struct xfs_mount *mp)
|
|
{
|
|
int nr_to_scan = INT_MAX;
|
|
|
|
while (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
|
|
xfs_ail_push_all_sync(mp->m_ail);
|
|
xfs_reclaim_inodes_ag(mp, &nr_to_scan);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The shrinker infrastructure determines how many inodes we should scan for
|
|
* reclaim. We want as many clean inodes ready to reclaim as possible, so we
|
|
* push the AIL here. We also want to proactively free up memory if we can to
|
|
* minimise the amount of work memory reclaim has to do so we kick the
|
|
* background reclaim if it isn't already scheduled.
|
|
*/
|
|
long
|
|
xfs_reclaim_inodes_nr(
|
|
struct xfs_mount *mp,
|
|
int nr_to_scan)
|
|
{
|
|
/* kick background reclaimer and push the AIL */
|
|
xfs_reclaim_work_queue(mp);
|
|
xfs_ail_push_all(mp->m_ail);
|
|
|
|
xfs_reclaim_inodes_ag(mp, &nr_to_scan);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Return the number of reclaimable inodes in the filesystem for
|
|
* the shrinker to determine how much to reclaim.
|
|
*/
|
|
int
|
|
xfs_reclaim_inodes_count(
|
|
struct xfs_mount *mp)
|
|
{
|
|
struct xfs_perag *pag;
|
|
xfs_agnumber_t ag = 0;
|
|
int reclaimable = 0;
|
|
|
|
while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
|
|
ag = pag->pag_agno + 1;
|
|
reclaimable += pag->pag_ici_reclaimable;
|
|
xfs_perag_put(pag);
|
|
}
|
|
return reclaimable;
|
|
}
|
|
|
|
STATIC bool
|
|
xfs_inode_match_id(
|
|
struct xfs_inode *ip,
|
|
struct xfs_eofblocks *eofb)
|
|
{
|
|
if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
|
|
!uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
|
|
return false;
|
|
|
|
if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
|
|
!gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
|
|
return false;
|
|
|
|
if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
|
|
ip->i_projid != eofb->eof_prid)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* A union-based inode filtering algorithm. Process the inode if any of the
|
|
* criteria match. This is for global/internal scans only.
|
|
*/
|
|
STATIC bool
|
|
xfs_inode_match_id_union(
|
|
struct xfs_inode *ip,
|
|
struct xfs_eofblocks *eofb)
|
|
{
|
|
if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
|
|
uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
|
|
return true;
|
|
|
|
if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
|
|
gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
|
|
return true;
|
|
|
|
if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
|
|
ip->i_projid == eofb->eof_prid)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Is this inode @ip eligible for eof/cow block reclamation, given some
|
|
* filtering parameters @eofb? The inode is eligible if @eofb is null or
|
|
* if the predicate functions match.
|
|
*/
|
|
static bool
|
|
xfs_inode_matches_eofb(
|
|
struct xfs_inode *ip,
|
|
struct xfs_eofblocks *eofb)
|
|
{
|
|
bool match;
|
|
|
|
if (!eofb)
|
|
return true;
|
|
|
|
if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
|
|
match = xfs_inode_match_id_union(ip, eofb);
|
|
else
|
|
match = xfs_inode_match_id(ip, eofb);
|
|
if (!match)
|
|
return false;
|
|
|
|
/* skip the inode if the file size is too small */
|
|
if ((eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE) &&
|
|
XFS_ISIZE(ip) < eofb->eof_min_file_size)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* This is a fast pass over the inode cache to try to get reclaim moving on as
|
|
* many inodes as possible in a short period of time. It kicks itself every few
|
|
* seconds, as well as being kicked by the inode cache shrinker when memory
|
|
* goes low.
|
|
*/
|
|
void
|
|
xfs_reclaim_worker(
|
|
struct work_struct *work)
|
|
{
|
|
struct xfs_mount *mp = container_of(to_delayed_work(work),
|
|
struct xfs_mount, m_reclaim_work);
|
|
int nr_to_scan = INT_MAX;
|
|
|
|
xfs_reclaim_inodes_ag(mp, &nr_to_scan);
|
|
xfs_reclaim_work_queue(mp);
|
|
}
|
|
|
|
STATIC int
|
|
xfs_inode_free_eofblocks(
|
|
struct xfs_inode *ip,
|
|
void *args,
|
|
unsigned int *lockflags)
|
|
{
|
|
struct xfs_eofblocks *eofb = args;
|
|
bool wait;
|
|
|
|
wait = eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC);
|
|
|
|
if (!xfs_iflags_test(ip, XFS_IEOFBLOCKS))
|
|
return 0;
|
|
|
|
/*
|
|
* If the mapping is dirty the operation can block and wait for some
|
|
* time. Unless we are waiting, skip it.
|
|
*/
|
|
if (!wait && mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
|
|
return 0;
|
|
|
|
if (!xfs_inode_matches_eofb(ip, eofb))
|
|
return 0;
|
|
|
|
/*
|
|
* If the caller is waiting, return -EAGAIN to keep the background
|
|
* scanner moving and revisit the inode in a subsequent pass.
|
|
*/
|
|
if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
|
|
if (wait)
|
|
return -EAGAIN;
|
|
return 0;
|
|
}
|
|
*lockflags |= XFS_IOLOCK_EXCL;
|
|
|
|
if (xfs_can_free_eofblocks(ip, false))
|
|
return xfs_free_eofblocks(ip);
|
|
|
|
/* inode could be preallocated or append-only */
|
|
trace_xfs_inode_free_eofblocks_invalid(ip);
|
|
xfs_inode_clear_eofblocks_tag(ip);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Background scanning to trim preallocated space. This is queued based on the
|
|
* 'speculative_prealloc_lifetime' tunable (5m by default).
|
|
*/
|
|
static inline void
|
|
xfs_blockgc_queue(
|
|
struct xfs_perag *pag)
|
|
{
|
|
rcu_read_lock();
|
|
if (radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_BLOCKGC_TAG))
|
|
queue_delayed_work(pag->pag_mount->m_gc_workqueue,
|
|
&pag->pag_blockgc_work,
|
|
msecs_to_jiffies(xfs_blockgc_secs * 1000));
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
static void
|
|
xfs_blockgc_set_iflag(
|
|
struct xfs_inode *ip,
|
|
unsigned long iflag)
|
|
{
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
struct xfs_perag *pag;
|
|
int tagged;
|
|
|
|
ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
|
|
|
|
/*
|
|
* Don't bother locking the AG and looking up in the radix trees
|
|
* if we already know that we have the tag set.
|
|
*/
|
|
if (ip->i_flags & iflag)
|
|
return;
|
|
spin_lock(&ip->i_flags_lock);
|
|
ip->i_flags |= iflag;
|
|
spin_unlock(&ip->i_flags_lock);
|
|
|
|
pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
|
|
spin_lock(&pag->pag_ici_lock);
|
|
|
|
tagged = radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_BLOCKGC_TAG);
|
|
radix_tree_tag_set(&pag->pag_ici_root,
|
|
XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
|
|
XFS_ICI_BLOCKGC_TAG);
|
|
if (!tagged) {
|
|
/* propagate the blockgc tag up into the perag radix tree */
|
|
spin_lock(&ip->i_mount->m_perag_lock);
|
|
radix_tree_tag_set(&ip->i_mount->m_perag_tree,
|
|
XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
|
|
XFS_ICI_BLOCKGC_TAG);
|
|
spin_unlock(&ip->i_mount->m_perag_lock);
|
|
|
|
/* kick off background trimming */
|
|
xfs_blockgc_queue(pag);
|
|
|
|
trace_xfs_perag_set_blockgc(ip->i_mount, pag->pag_agno, -1,
|
|
_RET_IP_);
|
|
}
|
|
|
|
spin_unlock(&pag->pag_ici_lock);
|
|
xfs_perag_put(pag);
|
|
}
|
|
|
|
void
|
|
xfs_inode_set_eofblocks_tag(
|
|
xfs_inode_t *ip)
|
|
{
|
|
trace_xfs_inode_set_eofblocks_tag(ip);
|
|
return xfs_blockgc_set_iflag(ip, XFS_IEOFBLOCKS);
|
|
}
|
|
|
|
static void
|
|
xfs_blockgc_clear_iflag(
|
|
struct xfs_inode *ip,
|
|
unsigned long iflag)
|
|
{
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
struct xfs_perag *pag;
|
|
bool clear_tag;
|
|
|
|
ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
|
|
|
|
spin_lock(&ip->i_flags_lock);
|
|
ip->i_flags &= ~iflag;
|
|
clear_tag = (ip->i_flags & (XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0;
|
|
spin_unlock(&ip->i_flags_lock);
|
|
|
|
if (!clear_tag)
|
|
return;
|
|
|
|
pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
|
|
spin_lock(&pag->pag_ici_lock);
|
|
|
|
radix_tree_tag_clear(&pag->pag_ici_root,
|
|
XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
|
|
XFS_ICI_BLOCKGC_TAG);
|
|
if (!radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_BLOCKGC_TAG)) {
|
|
/* clear the blockgc tag from the perag radix tree */
|
|
spin_lock(&ip->i_mount->m_perag_lock);
|
|
radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
|
|
XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
|
|
XFS_ICI_BLOCKGC_TAG);
|
|
spin_unlock(&ip->i_mount->m_perag_lock);
|
|
trace_xfs_perag_clear_blockgc(ip->i_mount, pag->pag_agno, -1,
|
|
_RET_IP_);
|
|
}
|
|
|
|
spin_unlock(&pag->pag_ici_lock);
|
|
xfs_perag_put(pag);
|
|
}
|
|
|
|
void
|
|
xfs_inode_clear_eofblocks_tag(
|
|
xfs_inode_t *ip)
|
|
{
|
|
trace_xfs_inode_clear_eofblocks_tag(ip);
|
|
return xfs_blockgc_clear_iflag(ip, XFS_IEOFBLOCKS);
|
|
}
|
|
|
|
/*
|
|
* Set ourselves up to free CoW blocks from this file. If it's already clean
|
|
* then we can bail out quickly, but otherwise we must back off if the file
|
|
* is undergoing some kind of write.
|
|
*/
|
|
static bool
|
|
xfs_prep_free_cowblocks(
|
|
struct xfs_inode *ip)
|
|
{
|
|
/*
|
|
* Just clear the tag if we have an empty cow fork or none at all. It's
|
|
* possible the inode was fully unshared since it was originally tagged.
|
|
*/
|
|
if (!xfs_inode_has_cow_data(ip)) {
|
|
trace_xfs_inode_free_cowblocks_invalid(ip);
|
|
xfs_inode_clear_cowblocks_tag(ip);
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* If the mapping is dirty or under writeback we cannot touch the
|
|
* CoW fork. Leave it alone if we're in the midst of a directio.
|
|
*/
|
|
if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
|
|
mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
|
|
mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
|
|
atomic_read(&VFS_I(ip)->i_dio_count))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Automatic CoW Reservation Freeing
|
|
*
|
|
* These functions automatically garbage collect leftover CoW reservations
|
|
* that were made on behalf of a cowextsize hint when we start to run out
|
|
* of quota or when the reservations sit around for too long. If the file
|
|
* has dirty pages or is undergoing writeback, its CoW reservations will
|
|
* be retained.
|
|
*
|
|
* The actual garbage collection piggybacks off the same code that runs
|
|
* the speculative EOF preallocation garbage collector.
|
|
*/
|
|
STATIC int
|
|
xfs_inode_free_cowblocks(
|
|
struct xfs_inode *ip,
|
|
void *args,
|
|
unsigned int *lockflags)
|
|
{
|
|
struct xfs_eofblocks *eofb = args;
|
|
bool wait;
|
|
int ret = 0;
|
|
|
|
wait = eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC);
|
|
|
|
if (!xfs_iflags_test(ip, XFS_ICOWBLOCKS))
|
|
return 0;
|
|
|
|
if (!xfs_prep_free_cowblocks(ip))
|
|
return 0;
|
|
|
|
if (!xfs_inode_matches_eofb(ip, eofb))
|
|
return 0;
|
|
|
|
/*
|
|
* If the caller is waiting, return -EAGAIN to keep the background
|
|
* scanner moving and revisit the inode in a subsequent pass.
|
|
*/
|
|
if (!(*lockflags & XFS_IOLOCK_EXCL) &&
|
|
!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
|
|
if (wait)
|
|
return -EAGAIN;
|
|
return 0;
|
|
}
|
|
*lockflags |= XFS_IOLOCK_EXCL;
|
|
|
|
if (!xfs_ilock_nowait(ip, XFS_MMAPLOCK_EXCL)) {
|
|
if (wait)
|
|
return -EAGAIN;
|
|
return 0;
|
|
}
|
|
*lockflags |= XFS_MMAPLOCK_EXCL;
|
|
|
|
/*
|
|
* Check again, nobody else should be able to dirty blocks or change
|
|
* the reflink iflag now that we have the first two locks held.
|
|
*/
|
|
if (xfs_prep_free_cowblocks(ip))
|
|
ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
|
|
return ret;
|
|
}
|
|
|
|
void
|
|
xfs_inode_set_cowblocks_tag(
|
|
xfs_inode_t *ip)
|
|
{
|
|
trace_xfs_inode_set_cowblocks_tag(ip);
|
|
return xfs_blockgc_set_iflag(ip, XFS_ICOWBLOCKS);
|
|
}
|
|
|
|
void
|
|
xfs_inode_clear_cowblocks_tag(
|
|
xfs_inode_t *ip)
|
|
{
|
|
trace_xfs_inode_clear_cowblocks_tag(ip);
|
|
return xfs_blockgc_clear_iflag(ip, XFS_ICOWBLOCKS);
|
|
}
|
|
|
|
/* Disable post-EOF and CoW block auto-reclamation. */
|
|
void
|
|
xfs_blockgc_stop(
|
|
struct xfs_mount *mp)
|
|
{
|
|
struct xfs_perag *pag;
|
|
xfs_agnumber_t agno;
|
|
|
|
for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
|
|
cancel_delayed_work_sync(&pag->pag_blockgc_work);
|
|
}
|
|
|
|
/* Enable post-EOF and CoW block auto-reclamation. */
|
|
void
|
|
xfs_blockgc_start(
|
|
struct xfs_mount *mp)
|
|
{
|
|
struct xfs_perag *pag;
|
|
xfs_agnumber_t agno;
|
|
|
|
for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
|
|
xfs_blockgc_queue(pag);
|
|
}
|
|
|
|
/* Scan one incore inode for block preallocations that we can remove. */
|
|
static int
|
|
xfs_blockgc_scan_inode(
|
|
struct xfs_inode *ip,
|
|
void *args)
|
|
{
|
|
unsigned int lockflags = 0;
|
|
int error;
|
|
|
|
error = xfs_inode_free_eofblocks(ip, args, &lockflags);
|
|
if (error)
|
|
goto unlock;
|
|
|
|
error = xfs_inode_free_cowblocks(ip, args, &lockflags);
|
|
unlock:
|
|
if (lockflags)
|
|
xfs_iunlock(ip, lockflags);
|
|
return error;
|
|
}
|
|
|
|
/* Background worker that trims preallocated space. */
|
|
void
|
|
xfs_blockgc_worker(
|
|
struct work_struct *work)
|
|
{
|
|
struct xfs_perag *pag = container_of(to_delayed_work(work),
|
|
struct xfs_perag, pag_blockgc_work);
|
|
struct xfs_mount *mp = pag->pag_mount;
|
|
int error;
|
|
|
|
if (!sb_start_write_trylock(mp->m_super))
|
|
return;
|
|
error = xfs_inode_walk_ag(pag, 0, xfs_blockgc_scan_inode, NULL,
|
|
XFS_ICI_BLOCKGC_TAG);
|
|
if (error)
|
|
xfs_info(mp, "AG %u preallocation gc worker failed, err=%d",
|
|
pag->pag_agno, error);
|
|
sb_end_write(mp->m_super);
|
|
xfs_blockgc_queue(pag);
|
|
}
|
|
|
|
/*
|
|
* Try to free space in the filesystem by purging eofblocks and cowblocks.
|
|
*/
|
|
int
|
|
xfs_blockgc_free_space(
|
|
struct xfs_mount *mp,
|
|
struct xfs_eofblocks *eofb)
|
|
{
|
|
trace_xfs_blockgc_free_space(mp, eofb, _RET_IP_);
|
|
|
|
return xfs_inode_walk(mp, 0, xfs_blockgc_scan_inode, eofb,
|
|
XFS_ICI_BLOCKGC_TAG);
|
|
}
|
|
|
|
/*
|
|
* Run cow/eofblocks scans on the supplied dquots. We don't know exactly which
|
|
* quota caused an allocation failure, so we make a best effort by including
|
|
* each quota under low free space conditions (less than 1% free space) in the
|
|
* scan.
|
|
*
|
|
* Callers must not hold any inode's ILOCK. If requesting a synchronous scan
|
|
* (XFS_EOF_FLAGS_SYNC), the caller also must not hold any inode's IOLOCK or
|
|
* MMAPLOCK.
|
|
*/
|
|
int
|
|
xfs_blockgc_free_dquots(
|
|
struct xfs_mount *mp,
|
|
struct xfs_dquot *udqp,
|
|
struct xfs_dquot *gdqp,
|
|
struct xfs_dquot *pdqp,
|
|
unsigned int eof_flags)
|
|
{
|
|
struct xfs_eofblocks eofb = {0};
|
|
bool do_work = false;
|
|
|
|
if (!udqp && !gdqp && !pdqp)
|
|
return 0;
|
|
|
|
/*
|
|
* Run a scan to free blocks using the union filter to cover all
|
|
* applicable quotas in a single scan.
|
|
*/
|
|
eofb.eof_flags = XFS_EOF_FLAGS_UNION | eof_flags;
|
|
|
|
if (XFS_IS_UQUOTA_ENFORCED(mp) && udqp && xfs_dquot_lowsp(udqp)) {
|
|
eofb.eof_uid = make_kuid(mp->m_super->s_user_ns, udqp->q_id);
|
|
eofb.eof_flags |= XFS_EOF_FLAGS_UID;
|
|
do_work = true;
|
|
}
|
|
|
|
if (XFS_IS_UQUOTA_ENFORCED(mp) && gdqp && xfs_dquot_lowsp(gdqp)) {
|
|
eofb.eof_gid = make_kgid(mp->m_super->s_user_ns, gdqp->q_id);
|
|
eofb.eof_flags |= XFS_EOF_FLAGS_GID;
|
|
do_work = true;
|
|
}
|
|
|
|
if (XFS_IS_PQUOTA_ENFORCED(mp) && pdqp && xfs_dquot_lowsp(pdqp)) {
|
|
eofb.eof_prid = pdqp->q_id;
|
|
eofb.eof_flags |= XFS_EOF_FLAGS_PRID;
|
|
do_work = true;
|
|
}
|
|
|
|
if (!do_work)
|
|
return 0;
|
|
|
|
return xfs_blockgc_free_space(mp, &eofb);
|
|
}
|
|
|
|
/* Run cow/eofblocks scans on the quotas attached to the inode. */
|
|
int
|
|
xfs_blockgc_free_quota(
|
|
struct xfs_inode *ip,
|
|
unsigned int eof_flags)
|
|
{
|
|
return xfs_blockgc_free_dquots(ip->i_mount,
|
|
xfs_inode_dquot(ip, XFS_DQTYPE_USER),
|
|
xfs_inode_dquot(ip, XFS_DQTYPE_GROUP),
|
|
xfs_inode_dquot(ip, XFS_DQTYPE_PROJ), eof_flags);
|
|
}
|