17006e86a7
Fix the following build errors:
arch/sparc/mm/srmmu.c: In function ‘smp_flush_page_for_dma’:
arch/sparc/mm/srmmu.c:1639:13: error: cast between incompatible function types from ‘void (*)(long unsigned int)’ to ‘void (*)(long unsigned int, long unsigned int, long unsigned int, long unsigned int, long unsigned int)’ [-Werror=cast-function-type]
1639 | xc1((smpfunc_t) local_ops->page_for_dma, page);
| ^
arch/sparc/mm/srmmu.c: In function ‘smp_flush_cache_mm’:
arch/sparc/mm/srmmu.c:1662:29: error: cast between incompatible function types from ‘void (*)(struct mm_struct *)’ to ‘void (*)(long unsigned int, long unsigned int, long unsigned int, long unsigned int, long unsigned int)’ [-Werror=cast-function-type]
1662 | xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm);
|
[ ... ]
Compile-tested only.
Fixes: 552a23a0e5
("Makefile: Enable -Wcast-function-type")
Cc: stable@vger.kernel.org
Signed-off-by: Bart Van Assche <bvanassche@acm.org>
Tested-by: Andreas Larsson <andreas@gaisler.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20220830205854.1918026-1-bvanassche@acm.org
1829 lines
49 KiB
C
1829 lines
49 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* srmmu.c: SRMMU specific routines for memory management.
|
|
*
|
|
* Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
|
|
* Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
|
|
* Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
|
|
* Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
|
|
* Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
|
|
*/
|
|
|
|
#include <linux/seq_file.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/kdebug.h>
|
|
#include <linux/export.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/init.h>
|
|
#include <linux/log2.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/mm.h>
|
|
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/io-unit.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/bitext.h>
|
|
#include <asm/vaddrs.h>
|
|
#include <asm/cache.h>
|
|
#include <asm/traps.h>
|
|
#include <asm/oplib.h>
|
|
#include <asm/mbus.h>
|
|
#include <asm/page.h>
|
|
#include <asm/asi.h>
|
|
#include <asm/smp.h>
|
|
#include <asm/io.h>
|
|
|
|
/* Now the cpu specific definitions. */
|
|
#include <asm/turbosparc.h>
|
|
#include <asm/tsunami.h>
|
|
#include <asm/viking.h>
|
|
#include <asm/swift.h>
|
|
#include <asm/leon.h>
|
|
#include <asm/mxcc.h>
|
|
#include <asm/ross.h>
|
|
|
|
#include "mm_32.h"
|
|
|
|
enum mbus_module srmmu_modtype;
|
|
static unsigned int hwbug_bitmask;
|
|
int vac_cache_size;
|
|
EXPORT_SYMBOL(vac_cache_size);
|
|
int vac_line_size;
|
|
|
|
extern struct resource sparc_iomap;
|
|
|
|
extern unsigned long last_valid_pfn;
|
|
|
|
static pgd_t *srmmu_swapper_pg_dir;
|
|
|
|
const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
|
|
EXPORT_SYMBOL(sparc32_cachetlb_ops);
|
|
|
|
#ifdef CONFIG_SMP
|
|
const struct sparc32_cachetlb_ops *local_ops;
|
|
|
|
#define FLUSH_BEGIN(mm)
|
|
#define FLUSH_END
|
|
#else
|
|
#define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
|
|
#define FLUSH_END }
|
|
#endif
|
|
|
|
int flush_page_for_dma_global = 1;
|
|
|
|
char *srmmu_name;
|
|
|
|
ctxd_t *srmmu_ctx_table_phys;
|
|
static ctxd_t *srmmu_context_table;
|
|
|
|
int viking_mxcc_present;
|
|
static DEFINE_SPINLOCK(srmmu_context_spinlock);
|
|
|
|
static int is_hypersparc;
|
|
|
|
static int srmmu_cache_pagetables;
|
|
|
|
/* these will be initialized in srmmu_nocache_calcsize() */
|
|
static unsigned long srmmu_nocache_size;
|
|
static unsigned long srmmu_nocache_end;
|
|
|
|
/* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
|
|
#define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
|
|
|
|
/* The context table is a nocache user with the biggest alignment needs. */
|
|
#define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
|
|
|
|
void *srmmu_nocache_pool;
|
|
static struct bit_map srmmu_nocache_map;
|
|
|
|
static inline int srmmu_pmd_none(pmd_t pmd)
|
|
{ return !(pmd_val(pmd) & 0xFFFFFFF); }
|
|
|
|
/* XXX should we hyper_flush_whole_icache here - Anton */
|
|
static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
|
|
{
|
|
pte_t pte;
|
|
|
|
pte = __pte((SRMMU_ET_PTD | (__nocache_pa(pgdp) >> 4)));
|
|
set_pte((pte_t *)ctxp, pte);
|
|
}
|
|
|
|
/*
|
|
* Locations of MSI Registers.
|
|
*/
|
|
#define MSI_MBUS_ARBEN 0xe0001008 /* MBus Arbiter Enable register */
|
|
|
|
/*
|
|
* Useful bits in the MSI Registers.
|
|
*/
|
|
#define MSI_ASYNC_MODE 0x80000000 /* Operate the MSI asynchronously */
|
|
|
|
static void msi_set_sync(void)
|
|
{
|
|
__asm__ __volatile__ ("lda [%0] %1, %%g3\n\t"
|
|
"andn %%g3, %2, %%g3\n\t"
|
|
"sta %%g3, [%0] %1\n\t" : :
|
|
"r" (MSI_MBUS_ARBEN),
|
|
"i" (ASI_M_CTL), "r" (MSI_ASYNC_MODE) : "g3");
|
|
}
|
|
|
|
void pmd_set(pmd_t *pmdp, pte_t *ptep)
|
|
{
|
|
unsigned long ptp = __nocache_pa(ptep) >> 4;
|
|
set_pte((pte_t *)&pmd_val(*pmdp), __pte(SRMMU_ET_PTD | ptp));
|
|
}
|
|
|
|
/*
|
|
* size: bytes to allocate in the nocache area.
|
|
* align: bytes, number to align at.
|
|
* Returns the virtual address of the allocated area.
|
|
*/
|
|
static void *__srmmu_get_nocache(int size, int align)
|
|
{
|
|
int offset, minsz = 1 << SRMMU_NOCACHE_BITMAP_SHIFT;
|
|
unsigned long addr;
|
|
|
|
if (size < minsz) {
|
|
printk(KERN_ERR "Size 0x%x too small for nocache request\n",
|
|
size);
|
|
size = minsz;
|
|
}
|
|
if (size & (minsz - 1)) {
|
|
printk(KERN_ERR "Size 0x%x unaligned in nocache request\n",
|
|
size);
|
|
size += minsz - 1;
|
|
}
|
|
BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
|
|
|
|
offset = bit_map_string_get(&srmmu_nocache_map,
|
|
size >> SRMMU_NOCACHE_BITMAP_SHIFT,
|
|
align >> SRMMU_NOCACHE_BITMAP_SHIFT);
|
|
if (offset == -1) {
|
|
printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n",
|
|
size, (int) srmmu_nocache_size,
|
|
srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
|
|
return NULL;
|
|
}
|
|
|
|
addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT);
|
|
return (void *)addr;
|
|
}
|
|
|
|
void *srmmu_get_nocache(int size, int align)
|
|
{
|
|
void *tmp;
|
|
|
|
tmp = __srmmu_get_nocache(size, align);
|
|
|
|
if (tmp)
|
|
memset(tmp, 0, size);
|
|
|
|
return tmp;
|
|
}
|
|
|
|
void srmmu_free_nocache(void *addr, int size)
|
|
{
|
|
unsigned long vaddr;
|
|
int offset;
|
|
|
|
vaddr = (unsigned long)addr;
|
|
if (vaddr < SRMMU_NOCACHE_VADDR) {
|
|
printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
|
|
vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
|
|
BUG();
|
|
}
|
|
if (vaddr + size > srmmu_nocache_end) {
|
|
printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
|
|
vaddr, srmmu_nocache_end);
|
|
BUG();
|
|
}
|
|
if (!is_power_of_2(size)) {
|
|
printk("Size 0x%x is not a power of 2\n", size);
|
|
BUG();
|
|
}
|
|
if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
|
|
printk("Size 0x%x is too small\n", size);
|
|
BUG();
|
|
}
|
|
if (vaddr & (size - 1)) {
|
|
printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
|
|
BUG();
|
|
}
|
|
|
|
offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
|
|
size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
|
|
|
|
bit_map_clear(&srmmu_nocache_map, offset, size);
|
|
}
|
|
|
|
static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
|
|
unsigned long end);
|
|
|
|
/* Return how much physical memory we have. */
|
|
static unsigned long __init probe_memory(void)
|
|
{
|
|
unsigned long total = 0;
|
|
int i;
|
|
|
|
for (i = 0; sp_banks[i].num_bytes; i++)
|
|
total += sp_banks[i].num_bytes;
|
|
|
|
return total;
|
|
}
|
|
|
|
/*
|
|
* Reserve nocache dynamically proportionally to the amount of
|
|
* system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
|
|
*/
|
|
static void __init srmmu_nocache_calcsize(void)
|
|
{
|
|
unsigned long sysmemavail = probe_memory() / 1024;
|
|
int srmmu_nocache_npages;
|
|
|
|
srmmu_nocache_npages =
|
|
sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
|
|
|
|
/* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
|
|
// if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
|
|
if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
|
|
srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
|
|
|
|
/* anything above 1280 blows up */
|
|
if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
|
|
srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
|
|
|
|
srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
|
|
srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
|
|
}
|
|
|
|
static void __init srmmu_nocache_init(void)
|
|
{
|
|
void *srmmu_nocache_bitmap;
|
|
unsigned int bitmap_bits;
|
|
pgd_t *pgd;
|
|
p4d_t *p4d;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
unsigned long paddr, vaddr;
|
|
unsigned long pteval;
|
|
|
|
bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
|
|
|
|
srmmu_nocache_pool = memblock_alloc(srmmu_nocache_size,
|
|
SRMMU_NOCACHE_ALIGN_MAX);
|
|
if (!srmmu_nocache_pool)
|
|
panic("%s: Failed to allocate %lu bytes align=0x%x\n",
|
|
__func__, srmmu_nocache_size, SRMMU_NOCACHE_ALIGN_MAX);
|
|
memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
|
|
|
|
srmmu_nocache_bitmap =
|
|
memblock_alloc(BITS_TO_LONGS(bitmap_bits) * sizeof(long),
|
|
SMP_CACHE_BYTES);
|
|
if (!srmmu_nocache_bitmap)
|
|
panic("%s: Failed to allocate %zu bytes\n", __func__,
|
|
BITS_TO_LONGS(bitmap_bits) * sizeof(long));
|
|
bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
|
|
|
|
srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
|
|
memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
|
|
init_mm.pgd = srmmu_swapper_pg_dir;
|
|
|
|
srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
|
|
|
|
paddr = __pa((unsigned long)srmmu_nocache_pool);
|
|
vaddr = SRMMU_NOCACHE_VADDR;
|
|
|
|
while (vaddr < srmmu_nocache_end) {
|
|
pgd = pgd_offset_k(vaddr);
|
|
p4d = p4d_offset(pgd, vaddr);
|
|
pud = pud_offset(p4d, vaddr);
|
|
pmd = pmd_offset(__nocache_fix(pud), vaddr);
|
|
pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
|
|
|
|
pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
|
|
|
|
if (srmmu_cache_pagetables)
|
|
pteval |= SRMMU_CACHE;
|
|
|
|
set_pte(__nocache_fix(pte), __pte(pteval));
|
|
|
|
vaddr += PAGE_SIZE;
|
|
paddr += PAGE_SIZE;
|
|
}
|
|
|
|
flush_cache_all();
|
|
flush_tlb_all();
|
|
}
|
|
|
|
pgd_t *get_pgd_fast(void)
|
|
{
|
|
pgd_t *pgd = NULL;
|
|
|
|
pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
|
|
if (pgd) {
|
|
pgd_t *init = pgd_offset_k(0);
|
|
memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
|
|
memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
|
|
(PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
|
|
}
|
|
|
|
return pgd;
|
|
}
|
|
|
|
/*
|
|
* Hardware needs alignment to 256 only, but we align to whole page size
|
|
* to reduce fragmentation problems due to the buddy principle.
|
|
* XXX Provide actual fragmentation statistics in /proc.
|
|
*
|
|
* Alignments up to the page size are the same for physical and virtual
|
|
* addresses of the nocache area.
|
|
*/
|
|
pgtable_t pte_alloc_one(struct mm_struct *mm)
|
|
{
|
|
pte_t *ptep;
|
|
struct page *page;
|
|
|
|
if (!(ptep = pte_alloc_one_kernel(mm)))
|
|
return NULL;
|
|
page = pfn_to_page(__nocache_pa((unsigned long)ptep) >> PAGE_SHIFT);
|
|
spin_lock(&mm->page_table_lock);
|
|
if (page_ref_inc_return(page) == 2 && !pgtable_pte_page_ctor(page)) {
|
|
page_ref_dec(page);
|
|
ptep = NULL;
|
|
}
|
|
spin_unlock(&mm->page_table_lock);
|
|
|
|
return ptep;
|
|
}
|
|
|
|
void pte_free(struct mm_struct *mm, pgtable_t ptep)
|
|
{
|
|
struct page *page;
|
|
|
|
page = pfn_to_page(__nocache_pa((unsigned long)ptep) >> PAGE_SHIFT);
|
|
spin_lock(&mm->page_table_lock);
|
|
if (page_ref_dec_return(page) == 1)
|
|
pgtable_pte_page_dtor(page);
|
|
spin_unlock(&mm->page_table_lock);
|
|
|
|
srmmu_free_nocache(ptep, SRMMU_PTE_TABLE_SIZE);
|
|
}
|
|
|
|
/* context handling - a dynamically sized pool is used */
|
|
#define NO_CONTEXT -1
|
|
|
|
struct ctx_list {
|
|
struct ctx_list *next;
|
|
struct ctx_list *prev;
|
|
unsigned int ctx_number;
|
|
struct mm_struct *ctx_mm;
|
|
};
|
|
|
|
static struct ctx_list *ctx_list_pool;
|
|
static struct ctx_list ctx_free;
|
|
static struct ctx_list ctx_used;
|
|
|
|
/* At boot time we determine the number of contexts */
|
|
static int num_contexts;
|
|
|
|
static inline void remove_from_ctx_list(struct ctx_list *entry)
|
|
{
|
|
entry->next->prev = entry->prev;
|
|
entry->prev->next = entry->next;
|
|
}
|
|
|
|
static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry)
|
|
{
|
|
entry->next = head;
|
|
(entry->prev = head->prev)->next = entry;
|
|
head->prev = entry;
|
|
}
|
|
#define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
|
|
#define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
|
|
|
|
|
|
static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
|
|
{
|
|
struct ctx_list *ctxp;
|
|
|
|
ctxp = ctx_free.next;
|
|
if (ctxp != &ctx_free) {
|
|
remove_from_ctx_list(ctxp);
|
|
add_to_used_ctxlist(ctxp);
|
|
mm->context = ctxp->ctx_number;
|
|
ctxp->ctx_mm = mm;
|
|
return;
|
|
}
|
|
ctxp = ctx_used.next;
|
|
if (ctxp->ctx_mm == old_mm)
|
|
ctxp = ctxp->next;
|
|
if (ctxp == &ctx_used)
|
|
panic("out of mmu contexts");
|
|
flush_cache_mm(ctxp->ctx_mm);
|
|
flush_tlb_mm(ctxp->ctx_mm);
|
|
remove_from_ctx_list(ctxp);
|
|
add_to_used_ctxlist(ctxp);
|
|
ctxp->ctx_mm->context = NO_CONTEXT;
|
|
ctxp->ctx_mm = mm;
|
|
mm->context = ctxp->ctx_number;
|
|
}
|
|
|
|
static inline void free_context(int context)
|
|
{
|
|
struct ctx_list *ctx_old;
|
|
|
|
ctx_old = ctx_list_pool + context;
|
|
remove_from_ctx_list(ctx_old);
|
|
add_to_free_ctxlist(ctx_old);
|
|
}
|
|
|
|
static void __init sparc_context_init(int numctx)
|
|
{
|
|
int ctx;
|
|
unsigned long size;
|
|
|
|
size = numctx * sizeof(struct ctx_list);
|
|
ctx_list_pool = memblock_alloc(size, SMP_CACHE_BYTES);
|
|
if (!ctx_list_pool)
|
|
panic("%s: Failed to allocate %lu bytes\n", __func__, size);
|
|
|
|
for (ctx = 0; ctx < numctx; ctx++) {
|
|
struct ctx_list *clist;
|
|
|
|
clist = (ctx_list_pool + ctx);
|
|
clist->ctx_number = ctx;
|
|
clist->ctx_mm = NULL;
|
|
}
|
|
ctx_free.next = ctx_free.prev = &ctx_free;
|
|
ctx_used.next = ctx_used.prev = &ctx_used;
|
|
for (ctx = 0; ctx < numctx; ctx++)
|
|
add_to_free_ctxlist(ctx_list_pool + ctx);
|
|
}
|
|
|
|
void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
|
|
struct task_struct *tsk)
|
|
{
|
|
unsigned long flags;
|
|
|
|
if (mm->context == NO_CONTEXT) {
|
|
spin_lock_irqsave(&srmmu_context_spinlock, flags);
|
|
alloc_context(old_mm, mm);
|
|
spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
|
|
srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
|
|
}
|
|
|
|
if (sparc_cpu_model == sparc_leon)
|
|
leon_switch_mm();
|
|
|
|
if (is_hypersparc)
|
|
hyper_flush_whole_icache();
|
|
|
|
srmmu_set_context(mm->context);
|
|
}
|
|
|
|
/* Low level IO area allocation on the SRMMU. */
|
|
static inline void srmmu_mapioaddr(unsigned long physaddr,
|
|
unsigned long virt_addr, int bus_type)
|
|
{
|
|
pgd_t *pgdp;
|
|
p4d_t *p4dp;
|
|
pud_t *pudp;
|
|
pmd_t *pmdp;
|
|
pte_t *ptep;
|
|
unsigned long tmp;
|
|
|
|
physaddr &= PAGE_MASK;
|
|
pgdp = pgd_offset_k(virt_addr);
|
|
p4dp = p4d_offset(pgdp, virt_addr);
|
|
pudp = pud_offset(p4dp, virt_addr);
|
|
pmdp = pmd_offset(pudp, virt_addr);
|
|
ptep = pte_offset_kernel(pmdp, virt_addr);
|
|
tmp = (physaddr >> 4) | SRMMU_ET_PTE;
|
|
|
|
/* I need to test whether this is consistent over all
|
|
* sun4m's. The bus_type represents the upper 4 bits of
|
|
* 36-bit physical address on the I/O space lines...
|
|
*/
|
|
tmp |= (bus_type << 28);
|
|
tmp |= SRMMU_PRIV;
|
|
__flush_page_to_ram(virt_addr);
|
|
set_pte(ptep, __pte(tmp));
|
|
}
|
|
|
|
void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
|
|
unsigned long xva, unsigned int len)
|
|
{
|
|
while (len != 0) {
|
|
len -= PAGE_SIZE;
|
|
srmmu_mapioaddr(xpa, xva, bus);
|
|
xva += PAGE_SIZE;
|
|
xpa += PAGE_SIZE;
|
|
}
|
|
flush_tlb_all();
|
|
}
|
|
|
|
static inline void srmmu_unmapioaddr(unsigned long virt_addr)
|
|
{
|
|
pgd_t *pgdp;
|
|
p4d_t *p4dp;
|
|
pud_t *pudp;
|
|
pmd_t *pmdp;
|
|
pte_t *ptep;
|
|
|
|
|
|
pgdp = pgd_offset_k(virt_addr);
|
|
p4dp = p4d_offset(pgdp, virt_addr);
|
|
pudp = pud_offset(p4dp, virt_addr);
|
|
pmdp = pmd_offset(pudp, virt_addr);
|
|
ptep = pte_offset_kernel(pmdp, virt_addr);
|
|
|
|
/* No need to flush uncacheable page. */
|
|
__pte_clear(ptep);
|
|
}
|
|
|
|
void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
|
|
{
|
|
while (len != 0) {
|
|
len -= PAGE_SIZE;
|
|
srmmu_unmapioaddr(virt_addr);
|
|
virt_addr += PAGE_SIZE;
|
|
}
|
|
flush_tlb_all();
|
|
}
|
|
|
|
/* tsunami.S */
|
|
extern void tsunami_flush_cache_all(void);
|
|
extern void tsunami_flush_cache_mm(struct mm_struct *mm);
|
|
extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
|
|
extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
|
|
extern void tsunami_flush_page_to_ram(unsigned long page);
|
|
extern void tsunami_flush_page_for_dma(unsigned long page);
|
|
extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
|
|
extern void tsunami_flush_tlb_all(void);
|
|
extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
|
|
extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
|
|
extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
|
|
extern void tsunami_setup_blockops(void);
|
|
|
|
/* swift.S */
|
|
extern void swift_flush_cache_all(void);
|
|
extern void swift_flush_cache_mm(struct mm_struct *mm);
|
|
extern void swift_flush_cache_range(struct vm_area_struct *vma,
|
|
unsigned long start, unsigned long end);
|
|
extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
|
|
extern void swift_flush_page_to_ram(unsigned long page);
|
|
extern void swift_flush_page_for_dma(unsigned long page);
|
|
extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
|
|
extern void swift_flush_tlb_all(void);
|
|
extern void swift_flush_tlb_mm(struct mm_struct *mm);
|
|
extern void swift_flush_tlb_range(struct vm_area_struct *vma,
|
|
unsigned long start, unsigned long end);
|
|
extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
|
|
|
|
#if 0 /* P3: deadwood to debug precise flushes on Swift. */
|
|
void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
|
|
{
|
|
int cctx, ctx1;
|
|
|
|
page &= PAGE_MASK;
|
|
if ((ctx1 = vma->vm_mm->context) != -1) {
|
|
cctx = srmmu_get_context();
|
|
/* Is context # ever different from current context? P3 */
|
|
if (cctx != ctx1) {
|
|
printk("flush ctx %02x curr %02x\n", ctx1, cctx);
|
|
srmmu_set_context(ctx1);
|
|
swift_flush_page(page);
|
|
__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
|
|
"r" (page), "i" (ASI_M_FLUSH_PROBE));
|
|
srmmu_set_context(cctx);
|
|
} else {
|
|
/* Rm. prot. bits from virt. c. */
|
|
/* swift_flush_cache_all(); */
|
|
/* swift_flush_cache_page(vma, page); */
|
|
swift_flush_page(page);
|
|
|
|
__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
|
|
"r" (page), "i" (ASI_M_FLUSH_PROBE));
|
|
/* same as above: srmmu_flush_tlb_page() */
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* The following are all MBUS based SRMMU modules, and therefore could
|
|
* be found in a multiprocessor configuration. On the whole, these
|
|
* chips seems to be much more touchy about DVMA and page tables
|
|
* with respect to cache coherency.
|
|
*/
|
|
|
|
/* viking.S */
|
|
extern void viking_flush_cache_all(void);
|
|
extern void viking_flush_cache_mm(struct mm_struct *mm);
|
|
extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
|
|
unsigned long end);
|
|
extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
|
|
extern void viking_flush_page_to_ram(unsigned long page);
|
|
extern void viking_flush_page_for_dma(unsigned long page);
|
|
extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
|
|
extern void viking_flush_page(unsigned long page);
|
|
extern void viking_mxcc_flush_page(unsigned long page);
|
|
extern void viking_flush_tlb_all(void);
|
|
extern void viking_flush_tlb_mm(struct mm_struct *mm);
|
|
extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
|
|
unsigned long end);
|
|
extern void viking_flush_tlb_page(struct vm_area_struct *vma,
|
|
unsigned long page);
|
|
extern void sun4dsmp_flush_tlb_all(void);
|
|
extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
|
|
extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
|
|
unsigned long end);
|
|
extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
|
|
unsigned long page);
|
|
|
|
/* hypersparc.S */
|
|
extern void hypersparc_flush_cache_all(void);
|
|
extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
|
|
extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
|
|
extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
|
|
extern void hypersparc_flush_page_to_ram(unsigned long page);
|
|
extern void hypersparc_flush_page_for_dma(unsigned long page);
|
|
extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
|
|
extern void hypersparc_flush_tlb_all(void);
|
|
extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
|
|
extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
|
|
extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
|
|
extern void hypersparc_setup_blockops(void);
|
|
|
|
/*
|
|
* NOTE: All of this startup code assumes the low 16mb (approx.) of
|
|
* kernel mappings are done with one single contiguous chunk of
|
|
* ram. On small ram machines (classics mainly) we only get
|
|
* around 8mb mapped for us.
|
|
*/
|
|
|
|
static void __init early_pgtable_allocfail(char *type)
|
|
{
|
|
prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
|
|
prom_halt();
|
|
}
|
|
|
|
static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
|
|
unsigned long end)
|
|
{
|
|
pgd_t *pgdp;
|
|
p4d_t *p4dp;
|
|
pud_t *pudp;
|
|
pmd_t *pmdp;
|
|
pte_t *ptep;
|
|
|
|
while (start < end) {
|
|
pgdp = pgd_offset_k(start);
|
|
p4dp = p4d_offset(pgdp, start);
|
|
pudp = pud_offset(p4dp, start);
|
|
if (pud_none(*__nocache_fix(pudp))) {
|
|
pmdp = __srmmu_get_nocache(
|
|
SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
|
|
if (pmdp == NULL)
|
|
early_pgtable_allocfail("pmd");
|
|
memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
|
|
pud_set(__nocache_fix(pudp), pmdp);
|
|
}
|
|
pmdp = pmd_offset(__nocache_fix(pudp), start);
|
|
if (srmmu_pmd_none(*__nocache_fix(pmdp))) {
|
|
ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
|
|
if (ptep == NULL)
|
|
early_pgtable_allocfail("pte");
|
|
memset(__nocache_fix(ptep), 0, PTE_SIZE);
|
|
pmd_set(__nocache_fix(pmdp), ptep);
|
|
}
|
|
if (start > (0xffffffffUL - PMD_SIZE))
|
|
break;
|
|
start = (start + PMD_SIZE) & PMD_MASK;
|
|
}
|
|
}
|
|
|
|
static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
|
|
unsigned long end)
|
|
{
|
|
pgd_t *pgdp;
|
|
p4d_t *p4dp;
|
|
pud_t *pudp;
|
|
pmd_t *pmdp;
|
|
pte_t *ptep;
|
|
|
|
while (start < end) {
|
|
pgdp = pgd_offset_k(start);
|
|
p4dp = p4d_offset(pgdp, start);
|
|
pudp = pud_offset(p4dp, start);
|
|
if (pud_none(*pudp)) {
|
|
pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
|
|
if (pmdp == NULL)
|
|
early_pgtable_allocfail("pmd");
|
|
memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
|
|
pud_set((pud_t *)pgdp, pmdp);
|
|
}
|
|
pmdp = pmd_offset(pudp, start);
|
|
if (srmmu_pmd_none(*pmdp)) {
|
|
ptep = __srmmu_get_nocache(PTE_SIZE,
|
|
PTE_SIZE);
|
|
if (ptep == NULL)
|
|
early_pgtable_allocfail("pte");
|
|
memset(ptep, 0, PTE_SIZE);
|
|
pmd_set(pmdp, ptep);
|
|
}
|
|
if (start > (0xffffffffUL - PMD_SIZE))
|
|
break;
|
|
start = (start + PMD_SIZE) & PMD_MASK;
|
|
}
|
|
}
|
|
|
|
/* These flush types are not available on all chips... */
|
|
static inline unsigned long srmmu_probe(unsigned long vaddr)
|
|
{
|
|
unsigned long retval;
|
|
|
|
if (sparc_cpu_model != sparc_leon) {
|
|
|
|
vaddr &= PAGE_MASK;
|
|
__asm__ __volatile__("lda [%1] %2, %0\n\t" :
|
|
"=r" (retval) :
|
|
"r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
|
|
} else {
|
|
retval = leon_swprobe(vaddr, NULL);
|
|
}
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* This is much cleaner than poking around physical address space
|
|
* looking at the prom's page table directly which is what most
|
|
* other OS's do. Yuck... this is much better.
|
|
*/
|
|
static void __init srmmu_inherit_prom_mappings(unsigned long start,
|
|
unsigned long end)
|
|
{
|
|
unsigned long probed;
|
|
unsigned long addr;
|
|
pgd_t *pgdp;
|
|
p4d_t *p4dp;
|
|
pud_t *pudp;
|
|
pmd_t *pmdp;
|
|
pte_t *ptep;
|
|
int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
|
|
|
|
while (start <= end) {
|
|
if (start == 0)
|
|
break; /* probably wrap around */
|
|
if (start == 0xfef00000)
|
|
start = KADB_DEBUGGER_BEGVM;
|
|
probed = srmmu_probe(start);
|
|
if (!probed) {
|
|
/* continue probing until we find an entry */
|
|
start += PAGE_SIZE;
|
|
continue;
|
|
}
|
|
|
|
/* A red snapper, see what it really is. */
|
|
what = 0;
|
|
addr = start - PAGE_SIZE;
|
|
|
|
if (!(start & ~(PMD_MASK))) {
|
|
if (srmmu_probe(addr + PMD_SIZE) == probed)
|
|
what = 1;
|
|
}
|
|
|
|
if (!(start & ~(PGDIR_MASK))) {
|
|
if (srmmu_probe(addr + PGDIR_SIZE) == probed)
|
|
what = 2;
|
|
}
|
|
|
|
pgdp = pgd_offset_k(start);
|
|
p4dp = p4d_offset(pgdp, start);
|
|
pudp = pud_offset(p4dp, start);
|
|
if (what == 2) {
|
|
*__nocache_fix(pgdp) = __pgd(probed);
|
|
start += PGDIR_SIZE;
|
|
continue;
|
|
}
|
|
if (pud_none(*__nocache_fix(pudp))) {
|
|
pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE,
|
|
SRMMU_PMD_TABLE_SIZE);
|
|
if (pmdp == NULL)
|
|
early_pgtable_allocfail("pmd");
|
|
memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
|
|
pud_set(__nocache_fix(pudp), pmdp);
|
|
}
|
|
pmdp = pmd_offset(__nocache_fix(pudp), start);
|
|
if (what == 1) {
|
|
*(pmd_t *)__nocache_fix(pmdp) = __pmd(probed);
|
|
start += PMD_SIZE;
|
|
continue;
|
|
}
|
|
if (srmmu_pmd_none(*__nocache_fix(pmdp))) {
|
|
ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
|
|
if (ptep == NULL)
|
|
early_pgtable_allocfail("pte");
|
|
memset(__nocache_fix(ptep), 0, PTE_SIZE);
|
|
pmd_set(__nocache_fix(pmdp), ptep);
|
|
}
|
|
ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
|
|
*__nocache_fix(ptep) = __pte(probed);
|
|
start += PAGE_SIZE;
|
|
}
|
|
}
|
|
|
|
#define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
|
|
|
|
/* Create a third-level SRMMU 16MB page mapping. */
|
|
static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
|
|
{
|
|
pgd_t *pgdp = pgd_offset_k(vaddr);
|
|
unsigned long big_pte;
|
|
|
|
big_pte = KERNEL_PTE(phys_base >> 4);
|
|
*__nocache_fix(pgdp) = __pgd(big_pte);
|
|
}
|
|
|
|
/* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
|
|
static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
|
|
{
|
|
unsigned long pstart = (sp_banks[sp_entry].base_addr & PGDIR_MASK);
|
|
unsigned long vstart = (vbase & PGDIR_MASK);
|
|
unsigned long vend = PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
|
|
/* Map "low" memory only */
|
|
const unsigned long min_vaddr = PAGE_OFFSET;
|
|
const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
|
|
|
|
if (vstart < min_vaddr || vstart >= max_vaddr)
|
|
return vstart;
|
|
|
|
if (vend > max_vaddr || vend < min_vaddr)
|
|
vend = max_vaddr;
|
|
|
|
while (vstart < vend) {
|
|
do_large_mapping(vstart, pstart);
|
|
vstart += PGDIR_SIZE; pstart += PGDIR_SIZE;
|
|
}
|
|
return vstart;
|
|
}
|
|
|
|
static void __init map_kernel(void)
|
|
{
|
|
int i;
|
|
|
|
if (phys_base > 0) {
|
|
do_large_mapping(PAGE_OFFSET, phys_base);
|
|
}
|
|
|
|
for (i = 0; sp_banks[i].num_bytes != 0; i++) {
|
|
map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
|
|
}
|
|
}
|
|
|
|
void (*poke_srmmu)(void) = NULL;
|
|
|
|
void __init srmmu_paging_init(void)
|
|
{
|
|
int i;
|
|
phandle cpunode;
|
|
char node_str[128];
|
|
pgd_t *pgd;
|
|
p4d_t *p4d;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
unsigned long pages_avail;
|
|
|
|
init_mm.context = (unsigned long) NO_CONTEXT;
|
|
sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */
|
|
|
|
if (sparc_cpu_model == sun4d)
|
|
num_contexts = 65536; /* We know it is Viking */
|
|
else {
|
|
/* Find the number of contexts on the srmmu. */
|
|
cpunode = prom_getchild(prom_root_node);
|
|
num_contexts = 0;
|
|
while (cpunode != 0) {
|
|
prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
|
|
if (!strcmp(node_str, "cpu")) {
|
|
num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
|
|
break;
|
|
}
|
|
cpunode = prom_getsibling(cpunode);
|
|
}
|
|
}
|
|
|
|
if (!num_contexts) {
|
|
prom_printf("Something wrong, can't find cpu node in paging_init.\n");
|
|
prom_halt();
|
|
}
|
|
|
|
pages_avail = 0;
|
|
last_valid_pfn = bootmem_init(&pages_avail);
|
|
|
|
srmmu_nocache_calcsize();
|
|
srmmu_nocache_init();
|
|
srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE));
|
|
map_kernel();
|
|
|
|
/* ctx table has to be physically aligned to its size */
|
|
srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t));
|
|
srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa(srmmu_context_table);
|
|
|
|
for (i = 0; i < num_contexts; i++)
|
|
srmmu_ctxd_set(__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
|
|
|
|
flush_cache_all();
|
|
srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
|
|
#ifdef CONFIG_SMP
|
|
/* Stop from hanging here... */
|
|
local_ops->tlb_all();
|
|
#else
|
|
flush_tlb_all();
|
|
#endif
|
|
poke_srmmu();
|
|
|
|
srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
|
|
srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
|
|
|
|
srmmu_allocate_ptable_skeleton(
|
|
__fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
|
|
srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
|
|
|
|
pgd = pgd_offset_k(PKMAP_BASE);
|
|
p4d = p4d_offset(pgd, PKMAP_BASE);
|
|
pud = pud_offset(p4d, PKMAP_BASE);
|
|
pmd = pmd_offset(pud, PKMAP_BASE);
|
|
pte = pte_offset_kernel(pmd, PKMAP_BASE);
|
|
pkmap_page_table = pte;
|
|
|
|
flush_cache_all();
|
|
flush_tlb_all();
|
|
|
|
sparc_context_init(num_contexts);
|
|
|
|
{
|
|
unsigned long max_zone_pfn[MAX_NR_ZONES] = { 0 };
|
|
|
|
max_zone_pfn[ZONE_DMA] = max_low_pfn;
|
|
max_zone_pfn[ZONE_NORMAL] = max_low_pfn;
|
|
max_zone_pfn[ZONE_HIGHMEM] = highend_pfn;
|
|
|
|
free_area_init(max_zone_pfn);
|
|
}
|
|
}
|
|
|
|
void mmu_info(struct seq_file *m)
|
|
{
|
|
seq_printf(m,
|
|
"MMU type\t: %s\n"
|
|
"contexts\t: %d\n"
|
|
"nocache total\t: %ld\n"
|
|
"nocache used\t: %d\n",
|
|
srmmu_name,
|
|
num_contexts,
|
|
srmmu_nocache_size,
|
|
srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
|
|
}
|
|
|
|
int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
|
|
{
|
|
mm->context = NO_CONTEXT;
|
|
return 0;
|
|
}
|
|
|
|
void destroy_context(struct mm_struct *mm)
|
|
{
|
|
unsigned long flags;
|
|
|
|
if (mm->context != NO_CONTEXT) {
|
|
flush_cache_mm(mm);
|
|
srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
|
|
flush_tlb_mm(mm);
|
|
spin_lock_irqsave(&srmmu_context_spinlock, flags);
|
|
free_context(mm->context);
|
|
spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
|
|
mm->context = NO_CONTEXT;
|
|
}
|
|
}
|
|
|
|
/* Init various srmmu chip types. */
|
|
static void __init srmmu_is_bad(void)
|
|
{
|
|
prom_printf("Could not determine SRMMU chip type.\n");
|
|
prom_halt();
|
|
}
|
|
|
|
static void __init init_vac_layout(void)
|
|
{
|
|
phandle nd;
|
|
int cache_lines;
|
|
char node_str[128];
|
|
#ifdef CONFIG_SMP
|
|
int cpu = 0;
|
|
unsigned long max_size = 0;
|
|
unsigned long min_line_size = 0x10000000;
|
|
#endif
|
|
|
|
nd = prom_getchild(prom_root_node);
|
|
while ((nd = prom_getsibling(nd)) != 0) {
|
|
prom_getstring(nd, "device_type", node_str, sizeof(node_str));
|
|
if (!strcmp(node_str, "cpu")) {
|
|
vac_line_size = prom_getint(nd, "cache-line-size");
|
|
if (vac_line_size == -1) {
|
|
prom_printf("can't determine cache-line-size, halting.\n");
|
|
prom_halt();
|
|
}
|
|
cache_lines = prom_getint(nd, "cache-nlines");
|
|
if (cache_lines == -1) {
|
|
prom_printf("can't determine cache-nlines, halting.\n");
|
|
prom_halt();
|
|
}
|
|
|
|
vac_cache_size = cache_lines * vac_line_size;
|
|
#ifdef CONFIG_SMP
|
|
if (vac_cache_size > max_size)
|
|
max_size = vac_cache_size;
|
|
if (vac_line_size < min_line_size)
|
|
min_line_size = vac_line_size;
|
|
//FIXME: cpus not contiguous!!
|
|
cpu++;
|
|
if (cpu >= nr_cpu_ids || !cpu_online(cpu))
|
|
break;
|
|
#else
|
|
break;
|
|
#endif
|
|
}
|
|
}
|
|
if (nd == 0) {
|
|
prom_printf("No CPU nodes found, halting.\n");
|
|
prom_halt();
|
|
}
|
|
#ifdef CONFIG_SMP
|
|
vac_cache_size = max_size;
|
|
vac_line_size = min_line_size;
|
|
#endif
|
|
printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
|
|
(int)vac_cache_size, (int)vac_line_size);
|
|
}
|
|
|
|
static void poke_hypersparc(void)
|
|
{
|
|
volatile unsigned long clear;
|
|
unsigned long mreg = srmmu_get_mmureg();
|
|
|
|
hyper_flush_unconditional_combined();
|
|
|
|
mreg &= ~(HYPERSPARC_CWENABLE);
|
|
mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
|
|
mreg |= (HYPERSPARC_CMODE);
|
|
|
|
srmmu_set_mmureg(mreg);
|
|
|
|
#if 0 /* XXX I think this is bad news... -DaveM */
|
|
hyper_clear_all_tags();
|
|
#endif
|
|
|
|
put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
|
|
hyper_flush_whole_icache();
|
|
clear = srmmu_get_faddr();
|
|
clear = srmmu_get_fstatus();
|
|
}
|
|
|
|
static const struct sparc32_cachetlb_ops hypersparc_ops = {
|
|
.cache_all = hypersparc_flush_cache_all,
|
|
.cache_mm = hypersparc_flush_cache_mm,
|
|
.cache_page = hypersparc_flush_cache_page,
|
|
.cache_range = hypersparc_flush_cache_range,
|
|
.tlb_all = hypersparc_flush_tlb_all,
|
|
.tlb_mm = hypersparc_flush_tlb_mm,
|
|
.tlb_page = hypersparc_flush_tlb_page,
|
|
.tlb_range = hypersparc_flush_tlb_range,
|
|
.page_to_ram = hypersparc_flush_page_to_ram,
|
|
.sig_insns = hypersparc_flush_sig_insns,
|
|
.page_for_dma = hypersparc_flush_page_for_dma,
|
|
};
|
|
|
|
static void __init init_hypersparc(void)
|
|
{
|
|
srmmu_name = "ROSS HyperSparc";
|
|
srmmu_modtype = HyperSparc;
|
|
|
|
init_vac_layout();
|
|
|
|
is_hypersparc = 1;
|
|
sparc32_cachetlb_ops = &hypersparc_ops;
|
|
|
|
poke_srmmu = poke_hypersparc;
|
|
|
|
hypersparc_setup_blockops();
|
|
}
|
|
|
|
static void poke_swift(void)
|
|
{
|
|
unsigned long mreg;
|
|
|
|
/* Clear any crap from the cache or else... */
|
|
swift_flush_cache_all();
|
|
|
|
/* Enable I & D caches */
|
|
mreg = srmmu_get_mmureg();
|
|
mreg |= (SWIFT_IE | SWIFT_DE);
|
|
/*
|
|
* The Swift branch folding logic is completely broken. At
|
|
* trap time, if things are just right, if can mistakenly
|
|
* think that a trap is coming from kernel mode when in fact
|
|
* it is coming from user mode (it mis-executes the branch in
|
|
* the trap code). So you see things like crashme completely
|
|
* hosing your machine which is completely unacceptable. Turn
|
|
* this shit off... nice job Fujitsu.
|
|
*/
|
|
mreg &= ~(SWIFT_BF);
|
|
srmmu_set_mmureg(mreg);
|
|
}
|
|
|
|
static const struct sparc32_cachetlb_ops swift_ops = {
|
|
.cache_all = swift_flush_cache_all,
|
|
.cache_mm = swift_flush_cache_mm,
|
|
.cache_page = swift_flush_cache_page,
|
|
.cache_range = swift_flush_cache_range,
|
|
.tlb_all = swift_flush_tlb_all,
|
|
.tlb_mm = swift_flush_tlb_mm,
|
|
.tlb_page = swift_flush_tlb_page,
|
|
.tlb_range = swift_flush_tlb_range,
|
|
.page_to_ram = swift_flush_page_to_ram,
|
|
.sig_insns = swift_flush_sig_insns,
|
|
.page_for_dma = swift_flush_page_for_dma,
|
|
};
|
|
|
|
#define SWIFT_MASKID_ADDR 0x10003018
|
|
static void __init init_swift(void)
|
|
{
|
|
unsigned long swift_rev;
|
|
|
|
__asm__ __volatile__("lda [%1] %2, %0\n\t"
|
|
"srl %0, 0x18, %0\n\t" :
|
|
"=r" (swift_rev) :
|
|
"r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
|
|
srmmu_name = "Fujitsu Swift";
|
|
switch (swift_rev) {
|
|
case 0x11:
|
|
case 0x20:
|
|
case 0x23:
|
|
case 0x30:
|
|
srmmu_modtype = Swift_lots_o_bugs;
|
|
hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
|
|
/*
|
|
* Gee george, I wonder why Sun is so hush hush about
|
|
* this hardware bug... really braindamage stuff going
|
|
* on here. However I think we can find a way to avoid
|
|
* all of the workaround overhead under Linux. Basically,
|
|
* any page fault can cause kernel pages to become user
|
|
* accessible (the mmu gets confused and clears some of
|
|
* the ACC bits in kernel ptes). Aha, sounds pretty
|
|
* horrible eh? But wait, after extensive testing it appears
|
|
* that if you use pgd_t level large kernel pte's (like the
|
|
* 4MB pages on the Pentium) the bug does not get tripped
|
|
* at all. This avoids almost all of the major overhead.
|
|
* Welcome to a world where your vendor tells you to,
|
|
* "apply this kernel patch" instead of "sorry for the
|
|
* broken hardware, send it back and we'll give you
|
|
* properly functioning parts"
|
|
*/
|
|
break;
|
|
case 0x25:
|
|
case 0x31:
|
|
srmmu_modtype = Swift_bad_c;
|
|
hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
|
|
/*
|
|
* You see Sun allude to this hardware bug but never
|
|
* admit things directly, they'll say things like,
|
|
* "the Swift chip cache problems" or similar.
|
|
*/
|
|
break;
|
|
default:
|
|
srmmu_modtype = Swift_ok;
|
|
break;
|
|
}
|
|
|
|
sparc32_cachetlb_ops = &swift_ops;
|
|
flush_page_for_dma_global = 0;
|
|
|
|
/*
|
|
* Are you now convinced that the Swift is one of the
|
|
* biggest VLSI abortions of all time? Bravo Fujitsu!
|
|
* Fujitsu, the !#?!%$'d up processor people. I bet if
|
|
* you examined the microcode of the Swift you'd find
|
|
* XXX's all over the place.
|
|
*/
|
|
poke_srmmu = poke_swift;
|
|
}
|
|
|
|
static void turbosparc_flush_cache_all(void)
|
|
{
|
|
flush_user_windows();
|
|
turbosparc_idflash_clear();
|
|
}
|
|
|
|
static void turbosparc_flush_cache_mm(struct mm_struct *mm)
|
|
{
|
|
FLUSH_BEGIN(mm)
|
|
flush_user_windows();
|
|
turbosparc_idflash_clear();
|
|
FLUSH_END
|
|
}
|
|
|
|
static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
|
|
{
|
|
FLUSH_BEGIN(vma->vm_mm)
|
|
flush_user_windows();
|
|
turbosparc_idflash_clear();
|
|
FLUSH_END
|
|
}
|
|
|
|
static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
|
|
{
|
|
FLUSH_BEGIN(vma->vm_mm)
|
|
flush_user_windows();
|
|
if (vma->vm_flags & VM_EXEC)
|
|
turbosparc_flush_icache();
|
|
turbosparc_flush_dcache();
|
|
FLUSH_END
|
|
}
|
|
|
|
/* TurboSparc is copy-back, if we turn it on, but this does not work. */
|
|
static void turbosparc_flush_page_to_ram(unsigned long page)
|
|
{
|
|
#ifdef TURBOSPARC_WRITEBACK
|
|
volatile unsigned long clear;
|
|
|
|
if (srmmu_probe(page))
|
|
turbosparc_flush_page_cache(page);
|
|
clear = srmmu_get_fstatus();
|
|
#endif
|
|
}
|
|
|
|
static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
|
|
{
|
|
}
|
|
|
|
static void turbosparc_flush_page_for_dma(unsigned long page)
|
|
{
|
|
turbosparc_flush_dcache();
|
|
}
|
|
|
|
static void turbosparc_flush_tlb_all(void)
|
|
{
|
|
srmmu_flush_whole_tlb();
|
|
}
|
|
|
|
static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
|
|
{
|
|
FLUSH_BEGIN(mm)
|
|
srmmu_flush_whole_tlb();
|
|
FLUSH_END
|
|
}
|
|
|
|
static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
|
|
{
|
|
FLUSH_BEGIN(vma->vm_mm)
|
|
srmmu_flush_whole_tlb();
|
|
FLUSH_END
|
|
}
|
|
|
|
static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
|
|
{
|
|
FLUSH_BEGIN(vma->vm_mm)
|
|
srmmu_flush_whole_tlb();
|
|
FLUSH_END
|
|
}
|
|
|
|
|
|
static void poke_turbosparc(void)
|
|
{
|
|
unsigned long mreg = srmmu_get_mmureg();
|
|
unsigned long ccreg;
|
|
|
|
/* Clear any crap from the cache or else... */
|
|
turbosparc_flush_cache_all();
|
|
/* Temporarily disable I & D caches */
|
|
mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE);
|
|
mreg &= ~(TURBOSPARC_PCENABLE); /* Don't check parity */
|
|
srmmu_set_mmureg(mreg);
|
|
|
|
ccreg = turbosparc_get_ccreg();
|
|
|
|
#ifdef TURBOSPARC_WRITEBACK
|
|
ccreg |= (TURBOSPARC_SNENABLE); /* Do DVMA snooping in Dcache */
|
|
ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
|
|
/* Write-back D-cache, emulate VLSI
|
|
* abortion number three, not number one */
|
|
#else
|
|
/* For now let's play safe, optimize later */
|
|
ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
|
|
/* Do DVMA snooping in Dcache, Write-thru D-cache */
|
|
ccreg &= ~(TURBOSPARC_uS2);
|
|
/* Emulate VLSI abortion number three, not number one */
|
|
#endif
|
|
|
|
switch (ccreg & 7) {
|
|
case 0: /* No SE cache */
|
|
case 7: /* Test mode */
|
|
break;
|
|
default:
|
|
ccreg |= (TURBOSPARC_SCENABLE);
|
|
}
|
|
turbosparc_set_ccreg(ccreg);
|
|
|
|
mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
|
|
mreg |= (TURBOSPARC_ICSNOOP); /* Icache snooping on */
|
|
srmmu_set_mmureg(mreg);
|
|
}
|
|
|
|
static const struct sparc32_cachetlb_ops turbosparc_ops = {
|
|
.cache_all = turbosparc_flush_cache_all,
|
|
.cache_mm = turbosparc_flush_cache_mm,
|
|
.cache_page = turbosparc_flush_cache_page,
|
|
.cache_range = turbosparc_flush_cache_range,
|
|
.tlb_all = turbosparc_flush_tlb_all,
|
|
.tlb_mm = turbosparc_flush_tlb_mm,
|
|
.tlb_page = turbosparc_flush_tlb_page,
|
|
.tlb_range = turbosparc_flush_tlb_range,
|
|
.page_to_ram = turbosparc_flush_page_to_ram,
|
|
.sig_insns = turbosparc_flush_sig_insns,
|
|
.page_for_dma = turbosparc_flush_page_for_dma,
|
|
};
|
|
|
|
static void __init init_turbosparc(void)
|
|
{
|
|
srmmu_name = "Fujitsu TurboSparc";
|
|
srmmu_modtype = TurboSparc;
|
|
sparc32_cachetlb_ops = &turbosparc_ops;
|
|
poke_srmmu = poke_turbosparc;
|
|
}
|
|
|
|
static void poke_tsunami(void)
|
|
{
|
|
unsigned long mreg = srmmu_get_mmureg();
|
|
|
|
tsunami_flush_icache();
|
|
tsunami_flush_dcache();
|
|
mreg &= ~TSUNAMI_ITD;
|
|
mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
|
|
srmmu_set_mmureg(mreg);
|
|
}
|
|
|
|
static const struct sparc32_cachetlb_ops tsunami_ops = {
|
|
.cache_all = tsunami_flush_cache_all,
|
|
.cache_mm = tsunami_flush_cache_mm,
|
|
.cache_page = tsunami_flush_cache_page,
|
|
.cache_range = tsunami_flush_cache_range,
|
|
.tlb_all = tsunami_flush_tlb_all,
|
|
.tlb_mm = tsunami_flush_tlb_mm,
|
|
.tlb_page = tsunami_flush_tlb_page,
|
|
.tlb_range = tsunami_flush_tlb_range,
|
|
.page_to_ram = tsunami_flush_page_to_ram,
|
|
.sig_insns = tsunami_flush_sig_insns,
|
|
.page_for_dma = tsunami_flush_page_for_dma,
|
|
};
|
|
|
|
static void __init init_tsunami(void)
|
|
{
|
|
/*
|
|
* Tsunami's pretty sane, Sun and TI actually got it
|
|
* somewhat right this time. Fujitsu should have
|
|
* taken some lessons from them.
|
|
*/
|
|
|
|
srmmu_name = "TI Tsunami";
|
|
srmmu_modtype = Tsunami;
|
|
sparc32_cachetlb_ops = &tsunami_ops;
|
|
poke_srmmu = poke_tsunami;
|
|
|
|
tsunami_setup_blockops();
|
|
}
|
|
|
|
static void poke_viking(void)
|
|
{
|
|
unsigned long mreg = srmmu_get_mmureg();
|
|
static int smp_catch;
|
|
|
|
if (viking_mxcc_present) {
|
|
unsigned long mxcc_control = mxcc_get_creg();
|
|
|
|
mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
|
|
mxcc_control &= ~(MXCC_CTL_RRC);
|
|
mxcc_set_creg(mxcc_control);
|
|
|
|
/*
|
|
* We don't need memory parity checks.
|
|
* XXX This is a mess, have to dig out later. ecd.
|
|
viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
|
|
*/
|
|
|
|
/* We do cache ptables on MXCC. */
|
|
mreg |= VIKING_TCENABLE;
|
|
} else {
|
|
unsigned long bpreg;
|
|
|
|
mreg &= ~(VIKING_TCENABLE);
|
|
if (smp_catch++) {
|
|
/* Must disable mixed-cmd mode here for other cpu's. */
|
|
bpreg = viking_get_bpreg();
|
|
bpreg &= ~(VIKING_ACTION_MIX);
|
|
viking_set_bpreg(bpreg);
|
|
|
|
/* Just in case PROM does something funny. */
|
|
msi_set_sync();
|
|
}
|
|
}
|
|
|
|
mreg |= VIKING_SPENABLE;
|
|
mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
|
|
mreg |= VIKING_SBENABLE;
|
|
mreg &= ~(VIKING_ACENABLE);
|
|
srmmu_set_mmureg(mreg);
|
|
}
|
|
|
|
static struct sparc32_cachetlb_ops viking_ops __ro_after_init = {
|
|
.cache_all = viking_flush_cache_all,
|
|
.cache_mm = viking_flush_cache_mm,
|
|
.cache_page = viking_flush_cache_page,
|
|
.cache_range = viking_flush_cache_range,
|
|
.tlb_all = viking_flush_tlb_all,
|
|
.tlb_mm = viking_flush_tlb_mm,
|
|
.tlb_page = viking_flush_tlb_page,
|
|
.tlb_range = viking_flush_tlb_range,
|
|
.page_to_ram = viking_flush_page_to_ram,
|
|
.sig_insns = viking_flush_sig_insns,
|
|
.page_for_dma = viking_flush_page_for_dma,
|
|
};
|
|
|
|
#ifdef CONFIG_SMP
|
|
/* On sun4d the cpu broadcasts local TLB flushes, so we can just
|
|
* perform the local TLB flush and all the other cpus will see it.
|
|
* But, unfortunately, there is a bug in the sun4d XBUS backplane
|
|
* that requires that we add some synchronization to these flushes.
|
|
*
|
|
* The bug is that the fifo which keeps track of all the pending TLB
|
|
* broadcasts in the system is an entry or two too small, so if we
|
|
* have too many going at once we'll overflow that fifo and lose a TLB
|
|
* flush resulting in corruption.
|
|
*
|
|
* Our workaround is to take a global spinlock around the TLB flushes,
|
|
* which guarentees we won't ever have too many pending. It's a big
|
|
* hammer, but a semaphore like system to make sure we only have N TLB
|
|
* flushes going at once will require SMP locking anyways so there's
|
|
* no real value in trying any harder than this.
|
|
*/
|
|
static struct sparc32_cachetlb_ops viking_sun4d_smp_ops __ro_after_init = {
|
|
.cache_all = viking_flush_cache_all,
|
|
.cache_mm = viking_flush_cache_mm,
|
|
.cache_page = viking_flush_cache_page,
|
|
.cache_range = viking_flush_cache_range,
|
|
.tlb_all = sun4dsmp_flush_tlb_all,
|
|
.tlb_mm = sun4dsmp_flush_tlb_mm,
|
|
.tlb_page = sun4dsmp_flush_tlb_page,
|
|
.tlb_range = sun4dsmp_flush_tlb_range,
|
|
.page_to_ram = viking_flush_page_to_ram,
|
|
.sig_insns = viking_flush_sig_insns,
|
|
.page_for_dma = viking_flush_page_for_dma,
|
|
};
|
|
#endif
|
|
|
|
static void __init init_viking(void)
|
|
{
|
|
unsigned long mreg = srmmu_get_mmureg();
|
|
|
|
/* Ahhh, the viking. SRMMU VLSI abortion number two... */
|
|
if (mreg & VIKING_MMODE) {
|
|
srmmu_name = "TI Viking";
|
|
viking_mxcc_present = 0;
|
|
msi_set_sync();
|
|
|
|
/*
|
|
* We need this to make sure old viking takes no hits
|
|
* on it's cache for dma snoops to workaround the
|
|
* "load from non-cacheable memory" interrupt bug.
|
|
* This is only necessary because of the new way in
|
|
* which we use the IOMMU.
|
|
*/
|
|
viking_ops.page_for_dma = viking_flush_page;
|
|
#ifdef CONFIG_SMP
|
|
viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
|
|
#endif
|
|
flush_page_for_dma_global = 0;
|
|
} else {
|
|
srmmu_name = "TI Viking/MXCC";
|
|
viking_mxcc_present = 1;
|
|
srmmu_cache_pagetables = 1;
|
|
}
|
|
|
|
sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
|
|
&viking_ops;
|
|
#ifdef CONFIG_SMP
|
|
if (sparc_cpu_model == sun4d)
|
|
sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
|
|
&viking_sun4d_smp_ops;
|
|
#endif
|
|
|
|
poke_srmmu = poke_viking;
|
|
}
|
|
|
|
/* Probe for the srmmu chip version. */
|
|
static void __init get_srmmu_type(void)
|
|
{
|
|
unsigned long mreg, psr;
|
|
unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
|
|
|
|
srmmu_modtype = SRMMU_INVAL_MOD;
|
|
hwbug_bitmask = 0;
|
|
|
|
mreg = srmmu_get_mmureg(); psr = get_psr();
|
|
mod_typ = (mreg & 0xf0000000) >> 28;
|
|
mod_rev = (mreg & 0x0f000000) >> 24;
|
|
psr_typ = (psr >> 28) & 0xf;
|
|
psr_vers = (psr >> 24) & 0xf;
|
|
|
|
/* First, check for sparc-leon. */
|
|
if (sparc_cpu_model == sparc_leon) {
|
|
init_leon();
|
|
return;
|
|
}
|
|
|
|
/* Second, check for HyperSparc or Cypress. */
|
|
if (mod_typ == 1) {
|
|
switch (mod_rev) {
|
|
case 7:
|
|
/* UP or MP Hypersparc */
|
|
init_hypersparc();
|
|
break;
|
|
case 0:
|
|
case 2:
|
|
case 10:
|
|
case 11:
|
|
case 12:
|
|
case 13:
|
|
case 14:
|
|
case 15:
|
|
default:
|
|
prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
|
|
prom_halt();
|
|
break;
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* Now Fujitsu TurboSparc. It might happen that it is
|
|
* in Swift emulation mode, so we will check later...
|
|
*/
|
|
if (psr_typ == 0 && psr_vers == 5) {
|
|
init_turbosparc();
|
|
return;
|
|
}
|
|
|
|
/* Next check for Fujitsu Swift. */
|
|
if (psr_typ == 0 && psr_vers == 4) {
|
|
phandle cpunode;
|
|
char node_str[128];
|
|
|
|
/* Look if it is not a TurboSparc emulating Swift... */
|
|
cpunode = prom_getchild(prom_root_node);
|
|
while ((cpunode = prom_getsibling(cpunode)) != 0) {
|
|
prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
|
|
if (!strcmp(node_str, "cpu")) {
|
|
if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
|
|
prom_getintdefault(cpunode, "psr-version", 1) == 5) {
|
|
init_turbosparc();
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
init_swift();
|
|
return;
|
|
}
|
|
|
|
/* Now the Viking family of srmmu. */
|
|
if (psr_typ == 4 &&
|
|
((psr_vers == 0) ||
|
|
((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
|
|
init_viking();
|
|
return;
|
|
}
|
|
|
|
/* Finally the Tsunami. */
|
|
if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
|
|
init_tsunami();
|
|
return;
|
|
}
|
|
|
|
/* Oh well */
|
|
srmmu_is_bad();
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
/* Local cross-calls. */
|
|
static void smp_flush_page_for_dma(unsigned long page)
|
|
{
|
|
xc1(local_ops->page_for_dma, page);
|
|
local_ops->page_for_dma(page);
|
|
}
|
|
|
|
static void smp_flush_cache_all(void)
|
|
{
|
|
xc0(local_ops->cache_all);
|
|
local_ops->cache_all();
|
|
}
|
|
|
|
static void smp_flush_tlb_all(void)
|
|
{
|
|
xc0(local_ops->tlb_all);
|
|
local_ops->tlb_all();
|
|
}
|
|
|
|
static void smp_flush_cache_mm(struct mm_struct *mm)
|
|
{
|
|
if (mm->context != NO_CONTEXT) {
|
|
cpumask_t cpu_mask;
|
|
cpumask_copy(&cpu_mask, mm_cpumask(mm));
|
|
cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
|
|
if (!cpumask_empty(&cpu_mask))
|
|
xc1(local_ops->cache_mm, (unsigned long)mm);
|
|
local_ops->cache_mm(mm);
|
|
}
|
|
}
|
|
|
|
static void smp_flush_tlb_mm(struct mm_struct *mm)
|
|
{
|
|
if (mm->context != NO_CONTEXT) {
|
|
cpumask_t cpu_mask;
|
|
cpumask_copy(&cpu_mask, mm_cpumask(mm));
|
|
cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
|
|
if (!cpumask_empty(&cpu_mask)) {
|
|
xc1(local_ops->tlb_mm, (unsigned long)mm);
|
|
if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
|
|
cpumask_copy(mm_cpumask(mm),
|
|
cpumask_of(smp_processor_id()));
|
|
}
|
|
local_ops->tlb_mm(mm);
|
|
}
|
|
}
|
|
|
|
static void smp_flush_cache_range(struct vm_area_struct *vma,
|
|
unsigned long start,
|
|
unsigned long end)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
|
|
if (mm->context != NO_CONTEXT) {
|
|
cpumask_t cpu_mask;
|
|
cpumask_copy(&cpu_mask, mm_cpumask(mm));
|
|
cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
|
|
if (!cpumask_empty(&cpu_mask))
|
|
xc3(local_ops->cache_range, (unsigned long)vma, start,
|
|
end);
|
|
local_ops->cache_range(vma, start, end);
|
|
}
|
|
}
|
|
|
|
static void smp_flush_tlb_range(struct vm_area_struct *vma,
|
|
unsigned long start,
|
|
unsigned long end)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
|
|
if (mm->context != NO_CONTEXT) {
|
|
cpumask_t cpu_mask;
|
|
cpumask_copy(&cpu_mask, mm_cpumask(mm));
|
|
cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
|
|
if (!cpumask_empty(&cpu_mask))
|
|
xc3(local_ops->tlb_range, (unsigned long)vma, start,
|
|
end);
|
|
local_ops->tlb_range(vma, start, end);
|
|
}
|
|
}
|
|
|
|
static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
|
|
if (mm->context != NO_CONTEXT) {
|
|
cpumask_t cpu_mask;
|
|
cpumask_copy(&cpu_mask, mm_cpumask(mm));
|
|
cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
|
|
if (!cpumask_empty(&cpu_mask))
|
|
xc2(local_ops->cache_page, (unsigned long)vma, page);
|
|
local_ops->cache_page(vma, page);
|
|
}
|
|
}
|
|
|
|
static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
|
|
if (mm->context != NO_CONTEXT) {
|
|
cpumask_t cpu_mask;
|
|
cpumask_copy(&cpu_mask, mm_cpumask(mm));
|
|
cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
|
|
if (!cpumask_empty(&cpu_mask))
|
|
xc2(local_ops->tlb_page, (unsigned long)vma, page);
|
|
local_ops->tlb_page(vma, page);
|
|
}
|
|
}
|
|
|
|
static void smp_flush_page_to_ram(unsigned long page)
|
|
{
|
|
/* Current theory is that those who call this are the one's
|
|
* who have just dirtied their cache with the pages contents
|
|
* in kernel space, therefore we only run this on local cpu.
|
|
*
|
|
* XXX This experiment failed, research further... -DaveM
|
|
*/
|
|
#if 1
|
|
xc1(local_ops->page_to_ram, page);
|
|
#endif
|
|
local_ops->page_to_ram(page);
|
|
}
|
|
|
|
static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
|
|
{
|
|
cpumask_t cpu_mask;
|
|
cpumask_copy(&cpu_mask, mm_cpumask(mm));
|
|
cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
|
|
if (!cpumask_empty(&cpu_mask))
|
|
xc2(local_ops->sig_insns, (unsigned long)mm, insn_addr);
|
|
local_ops->sig_insns(mm, insn_addr);
|
|
}
|
|
|
|
static struct sparc32_cachetlb_ops smp_cachetlb_ops __ro_after_init = {
|
|
.cache_all = smp_flush_cache_all,
|
|
.cache_mm = smp_flush_cache_mm,
|
|
.cache_page = smp_flush_cache_page,
|
|
.cache_range = smp_flush_cache_range,
|
|
.tlb_all = smp_flush_tlb_all,
|
|
.tlb_mm = smp_flush_tlb_mm,
|
|
.tlb_page = smp_flush_tlb_page,
|
|
.tlb_range = smp_flush_tlb_range,
|
|
.page_to_ram = smp_flush_page_to_ram,
|
|
.sig_insns = smp_flush_sig_insns,
|
|
.page_for_dma = smp_flush_page_for_dma,
|
|
};
|
|
#endif
|
|
|
|
/* Load up routines and constants for sun4m and sun4d mmu */
|
|
void __init load_mmu(void)
|
|
{
|
|
/* Functions */
|
|
get_srmmu_type();
|
|
|
|
#ifdef CONFIG_SMP
|
|
/* El switcheroo... */
|
|
local_ops = sparc32_cachetlb_ops;
|
|
|
|
if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
|
|
smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
|
|
smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
|
|
smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
|
|
smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
|
|
}
|
|
|
|
if (poke_srmmu == poke_viking) {
|
|
/* Avoid unnecessary cross calls. */
|
|
smp_cachetlb_ops.cache_all = local_ops->cache_all;
|
|
smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
|
|
smp_cachetlb_ops.cache_range = local_ops->cache_range;
|
|
smp_cachetlb_ops.cache_page = local_ops->cache_page;
|
|
|
|
smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
|
|
smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
|
|
smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
|
|
}
|
|
|
|
/* It really is const after this point. */
|
|
sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
|
|
&smp_cachetlb_ops;
|
|
#endif
|
|
|
|
if (sparc_cpu_model != sun4d)
|
|
ld_mmu_iommu();
|
|
#ifdef CONFIG_SMP
|
|
if (sparc_cpu_model == sun4d)
|
|
sun4d_init_smp();
|
|
else if (sparc_cpu_model == sparc_leon)
|
|
leon_init_smp();
|
|
else
|
|
sun4m_init_smp();
|
|
#endif
|
|
}
|