linux/drivers/gpu/drm/i915/intel_step.c
Matt Roper 8b449f1c44 drm/i915/pvc: Extract stepping information from PCI revid
For PVC, the base die and compute tile have separate stepping values
that we need to track; we'll use the existing graphics_step field to
represent the compute tile stepping and add a new 'basedie_step' field.

Unlike past platforms, steppings for these components are represented by
specific bitfields within the PCI revision ID, and we shouldn't make
assumptions about the non-CT, non-BD bits staying 0.  Let's update our
stepping code accordingly.

Bspec: 44484
Signed-off-by: Matt Roper <matthew.d.roper@intel.com>
Reviewed-by: Matt Atwood <matthew.s.atwood@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20220527163348.1936146-2-matthew.d.roper@intel.com
2022-05-31 14:44:57 -07:00

319 lines
9.5 KiB
C

// SPDX-License-Identifier: MIT
/*
* Copyright © 2020,2021 Intel Corporation
*/
#include "i915_drv.h"
#include "intel_step.h"
/*
* Some platforms have unusual ways of mapping PCI revision ID to GT/display
* steppings. E.g., in some cases a higher PCI revision may translate to a
* lower stepping of the GT and/or display IP. This file provides lookup
* tables to map the PCI revision into a standard set of stepping values that
* can be compared numerically.
*
* Also note that some revisions/steppings may have been set aside as
* placeholders but never materialized in real hardware; in those cases there
* may be jumps in the revision IDs or stepping values in the tables below.
*/
/*
* Some platforms always have the same stepping value for GT and display;
* use a macro to define these to make it easier to identify the platforms
* where the two steppings can deviate.
*/
#define COMMON_STEP(x) .graphics_step = STEP_##x, .display_step = STEP_##x, .media_step = STEP_##x
#define COMMON_GT_MEDIA_STEP(x) .graphics_step = STEP_##x, .media_step = STEP_##x
static const struct intel_step_info skl_revids[] = {
[0x6] = { COMMON_STEP(G0) },
[0x7] = { COMMON_STEP(H0) },
[0x9] = { COMMON_STEP(J0) },
[0xA] = { COMMON_STEP(I1) },
};
static const struct intel_step_info kbl_revids[] = {
[1] = { COMMON_GT_MEDIA_STEP(B0), .display_step = STEP_B0 },
[2] = { COMMON_GT_MEDIA_STEP(C0), .display_step = STEP_B0 },
[3] = { COMMON_GT_MEDIA_STEP(D0), .display_step = STEP_B0 },
[4] = { COMMON_GT_MEDIA_STEP(F0), .display_step = STEP_C0 },
[5] = { COMMON_GT_MEDIA_STEP(C0), .display_step = STEP_B1 },
[6] = { COMMON_GT_MEDIA_STEP(D1), .display_step = STEP_B1 },
[7] = { COMMON_GT_MEDIA_STEP(G0), .display_step = STEP_C0 },
};
static const struct intel_step_info bxt_revids[] = {
[0xA] = { COMMON_STEP(C0) },
[0xB] = { COMMON_STEP(C0) },
[0xC] = { COMMON_STEP(D0) },
[0xD] = { COMMON_STEP(E0) },
};
static const struct intel_step_info glk_revids[] = {
[3] = { COMMON_STEP(B0) },
};
static const struct intel_step_info icl_revids[] = {
[7] = { COMMON_STEP(D0) },
};
static const struct intel_step_info jsl_ehl_revids[] = {
[0] = { COMMON_STEP(A0) },
[1] = { COMMON_STEP(B0) },
};
static const struct intel_step_info tgl_uy_revids[] = {
[0] = { COMMON_GT_MEDIA_STEP(A0), .display_step = STEP_A0 },
[1] = { COMMON_GT_MEDIA_STEP(B0), .display_step = STEP_C0 },
[2] = { COMMON_GT_MEDIA_STEP(B1), .display_step = STEP_C0 },
[3] = { COMMON_GT_MEDIA_STEP(C0), .display_step = STEP_D0 },
};
/* Same GT stepping between tgl_uy_revids and tgl_revids don't mean the same HW */
static const struct intel_step_info tgl_revids[] = {
[0] = { COMMON_GT_MEDIA_STEP(A0), .display_step = STEP_B0 },
[1] = { COMMON_GT_MEDIA_STEP(B0), .display_step = STEP_D0 },
};
static const struct intel_step_info rkl_revids[] = {
[0] = { COMMON_STEP(A0) },
[1] = { COMMON_STEP(B0) },
[4] = { COMMON_STEP(C0) },
};
static const struct intel_step_info dg1_revids[] = {
[0] = { COMMON_STEP(A0) },
[1] = { COMMON_STEP(B0) },
};
static const struct intel_step_info adls_revids[] = {
[0x0] = { COMMON_GT_MEDIA_STEP(A0), .display_step = STEP_A0 },
[0x1] = { COMMON_GT_MEDIA_STEP(A0), .display_step = STEP_A2 },
[0x4] = { COMMON_GT_MEDIA_STEP(B0), .display_step = STEP_B0 },
[0x8] = { COMMON_GT_MEDIA_STEP(C0), .display_step = STEP_B0 },
[0xC] = { COMMON_GT_MEDIA_STEP(D0), .display_step = STEP_C0 },
};
static const struct intel_step_info adlp_revids[] = {
[0x0] = { COMMON_GT_MEDIA_STEP(A0), .display_step = STEP_A0 },
[0x4] = { COMMON_GT_MEDIA_STEP(B0), .display_step = STEP_B0 },
[0x8] = { COMMON_GT_MEDIA_STEP(C0), .display_step = STEP_C0 },
[0xC] = { COMMON_GT_MEDIA_STEP(C0), .display_step = STEP_D0 },
};
static const struct intel_step_info xehpsdv_revids[] = {
[0x0] = { COMMON_GT_MEDIA_STEP(A0) },
[0x1] = { COMMON_GT_MEDIA_STEP(A1) },
[0x4] = { COMMON_GT_MEDIA_STEP(B0) },
[0x8] = { COMMON_GT_MEDIA_STEP(C0) },
};
static const struct intel_step_info dg2_g10_revid_step_tbl[] = {
[0x0] = { COMMON_GT_MEDIA_STEP(A0), .display_step = STEP_A0 },
[0x1] = { COMMON_GT_MEDIA_STEP(A1), .display_step = STEP_A0 },
[0x4] = { COMMON_GT_MEDIA_STEP(B0), .display_step = STEP_B0 },
[0x8] = { COMMON_GT_MEDIA_STEP(C0), .display_step = STEP_C0 },
};
static const struct intel_step_info dg2_g11_revid_step_tbl[] = {
[0x0] = { COMMON_GT_MEDIA_STEP(A0), .display_step = STEP_B0 },
[0x4] = { COMMON_GT_MEDIA_STEP(B0), .display_step = STEP_C0 },
[0x5] = { COMMON_GT_MEDIA_STEP(B1), .display_step = STEP_C0 },
};
static const struct intel_step_info dg2_g12_revid_step_tbl[] = {
[0x0] = { COMMON_GT_MEDIA_STEP(A0), .display_step = STEP_C0 },
};
static const struct intel_step_info adls_rpls_revids[] = {
[0x4] = { COMMON_GT_MEDIA_STEP(D0), .display_step = STEP_D0 },
[0xC] = { COMMON_GT_MEDIA_STEP(D0), .display_step = STEP_C0 },
};
static const struct intel_step_info adlp_n_revids[] = {
[0x0] = { COMMON_GT_MEDIA_STEP(A0), .display_step = STEP_D0 },
};
static void pvc_step_init(struct drm_i915_private *i915, int pci_revid);
void intel_step_init(struct drm_i915_private *i915)
{
const struct intel_step_info *revids = NULL;
int size = 0;
int revid = INTEL_REVID(i915);
struct intel_step_info step = {};
if (IS_PONTEVECCHIO(i915)) {
pvc_step_init(i915, revid);
return;
} else if (IS_DG2_G10(i915)) {
revids = dg2_g10_revid_step_tbl;
size = ARRAY_SIZE(dg2_g10_revid_step_tbl);
} else if (IS_DG2_G11(i915)) {
revids = dg2_g11_revid_step_tbl;
size = ARRAY_SIZE(dg2_g11_revid_step_tbl);
} else if (IS_DG2_G12(i915)) {
revids = dg2_g12_revid_step_tbl;
size = ARRAY_SIZE(dg2_g12_revid_step_tbl);
} else if (IS_XEHPSDV(i915)) {
revids = xehpsdv_revids;
size = ARRAY_SIZE(xehpsdv_revids);
} else if (IS_ADLP_N(i915)) {
revids = adlp_n_revids;
size = ARRAY_SIZE(adlp_n_revids);
} else if (IS_ALDERLAKE_P(i915)) {
revids = adlp_revids;
size = ARRAY_SIZE(adlp_revids);
} else if (IS_ADLS_RPLS(i915)) {
revids = adls_rpls_revids;
size = ARRAY_SIZE(adls_rpls_revids);
} else if (IS_ALDERLAKE_S(i915)) {
revids = adls_revids;
size = ARRAY_SIZE(adls_revids);
} else if (IS_DG1(i915)) {
revids = dg1_revids;
size = ARRAY_SIZE(dg1_revids);
} else if (IS_ROCKETLAKE(i915)) {
revids = rkl_revids;
size = ARRAY_SIZE(rkl_revids);
} else if (IS_TGL_UY(i915)) {
revids = tgl_uy_revids;
size = ARRAY_SIZE(tgl_uy_revids);
} else if (IS_TIGERLAKE(i915)) {
revids = tgl_revids;
size = ARRAY_SIZE(tgl_revids);
} else if (IS_JSL_EHL(i915)) {
revids = jsl_ehl_revids;
size = ARRAY_SIZE(jsl_ehl_revids);
} else if (IS_ICELAKE(i915)) {
revids = icl_revids;
size = ARRAY_SIZE(icl_revids);
} else if (IS_GEMINILAKE(i915)) {
revids = glk_revids;
size = ARRAY_SIZE(glk_revids);
} else if (IS_BROXTON(i915)) {
revids = bxt_revids;
size = ARRAY_SIZE(bxt_revids);
} else if (IS_KABYLAKE(i915)) {
revids = kbl_revids;
size = ARRAY_SIZE(kbl_revids);
} else if (IS_SKYLAKE(i915)) {
revids = skl_revids;
size = ARRAY_SIZE(skl_revids);
}
/* Not using the stepping scheme for the platform yet. */
if (!revids)
return;
if (revid < size && revids[revid].graphics_step != STEP_NONE) {
step = revids[revid];
} else {
drm_warn(&i915->drm, "Unknown revid 0x%02x\n", revid);
/*
* If we hit a gap in the revid array, use the information for
* the next revid.
*
* This may be wrong in all sorts of ways, especially if the
* steppings in the array are not monotonically increasing, but
* it's better than defaulting to 0.
*/
while (revid < size && revids[revid].graphics_step == STEP_NONE)
revid++;
if (revid < size) {
drm_dbg(&i915->drm, "Using steppings for revid 0x%02x\n",
revid);
step = revids[revid];
} else {
drm_dbg(&i915->drm, "Using future steppings\n");
step.graphics_step = STEP_FUTURE;
step.display_step = STEP_FUTURE;
}
}
if (drm_WARN_ON(&i915->drm, step.graphics_step == STEP_NONE))
return;
RUNTIME_INFO(i915)->step = step;
}
#define PVC_BD_REVID GENMASK(5, 3)
#define PVC_CT_REVID GENMASK(2, 0)
static const int pvc_bd_subids[] = {
[0x0] = STEP_A0,
[0x3] = STEP_B0,
[0x4] = STEP_B1,
[0x5] = STEP_B3,
};
static const int pvc_ct_subids[] = {
[0x3] = STEP_A0,
[0x5] = STEP_B0,
[0x6] = STEP_B1,
[0x7] = STEP_C0,
};
static int
pvc_step_lookup(struct drm_i915_private *i915, const char *type,
const int *table, int size, int subid)
{
if (subid < size && table[subid] != STEP_NONE)
return table[subid];
drm_warn(&i915->drm, "Unknown %s id 0x%02x\n", type, subid);
/*
* As on other platforms, try to use the next higher ID if we land on a
* gap in the table.
*/
while (subid < size && table[subid] == STEP_NONE)
subid++;
if (subid < size) {
drm_dbg(&i915->drm, "Using steppings for %s id 0x%02x\n",
type, subid);
return table[subid];
}
drm_dbg(&i915->drm, "Using future steppings\n");
return STEP_FUTURE;
}
/*
* PVC needs special handling since we don't lookup the
* revid in a table, but rather specific bitfields within
* the revid for various components.
*/
static void pvc_step_init(struct drm_i915_private *i915, int pci_revid)
{
int ct_subid, bd_subid;
bd_subid = FIELD_GET(PVC_BD_REVID, pci_revid);
ct_subid = FIELD_GET(PVC_CT_REVID, pci_revid);
RUNTIME_INFO(i915)->step.basedie_step =
pvc_step_lookup(i915, "Base Die", pvc_bd_subids,
ARRAY_SIZE(pvc_bd_subids), bd_subid);
RUNTIME_INFO(i915)->step.graphics_step =
pvc_step_lookup(i915, "Compute Tile", pvc_ct_subids,
ARRAY_SIZE(pvc_ct_subids), ct_subid);
}
#define STEP_NAME_CASE(name) \
case STEP_##name: \
return #name;
const char *intel_step_name(enum intel_step step)
{
switch (step) {
STEP_NAME_LIST(STEP_NAME_CASE);
default:
return "**";
}
}