8b24e69fc4
At present, interrupts are hard-disabled fairly late in the guest entry path, in the assembly code. Since we check for pending signals for the vCPU(s) task(s) earlier in the guest entry path, it is possible for a signal to be delivered before we enter the guest but not be noticed until after we exit the guest for some other reason. Similarly, it is possible for the scheduler to request a reschedule while we are in the guest entry path, and we won't notice until after we have run the guest, potentially for a whole timeslice. Furthermore, with a radix guest on POWER9, we can take the interrupt with the MMU on. In this case we end up leaving interrupts hard-disabled after the guest exit, and they are likely to stay hard-disabled until we exit to userspace or context-switch to another process. This was masking the fact that we were also not setting the RI (recoverable interrupt) bit in the MSR, meaning that if we had taken an interrupt, it would have crashed the host kernel with an unrecoverable interrupt message. To close these races, we need to check for signals and reschedule requests after hard-disabling interrupts, and then keep interrupts hard-disabled until we enter the guest. If there is a signal or a reschedule request from another CPU, it will send an IPI, which will cause a guest exit. This puts the interrupt disabling before we call kvmppc_start_thread() for all the secondary threads of this core that are going to run vCPUs. The reason for that is that once we have started the secondary threads there is no easy way to back out without going through at least part of the guest entry path. However, kvmppc_start_thread() includes some code for radix guests which needs to call smp_call_function(), which must be called with interrupts enabled. To solve this problem, this patch moves that code into a separate function that is called earlier. When the guest exit is caused by an external interrupt, a hypervisor doorbell or a hypervisor maintenance interrupt, we now handle these using the replay facility. __kvmppc_vcore_entry() now returns the trap number that caused the exit on this thread, and instead of the assembly code jumping to the handler entry, we return to C code with interrupts still hard-disabled and set the irq_happened flag in the PACA, so that when we do local_irq_enable() the appropriate handler gets called. With all this, we now have the interrupt soft-enable flag clear while we are in the guest. This is useful because code in the real-mode hypercall handlers that checks whether interrupts are enabled will now see that they are disabled, which is correct, since interrupts are hard-disabled in the real-mode code. Signed-off-by: Paul Mackerras <paulus@ozlabs.org> |
||
---|---|---|
.. | ||
book3s_32_mmu_host.c | ||
book3s_32_mmu.c | ||
book3s_32_sr.S | ||
book3s_64_mmu_host.c | ||
book3s_64_mmu_hv.c | ||
book3s_64_mmu_radix.c | ||
book3s_64_mmu.c | ||
book3s_64_slb.S | ||
book3s_64_vio_hv.c | ||
book3s_64_vio.c | ||
book3s_emulate.c | ||
book3s_exports.c | ||
book3s_hv_builtin.c | ||
book3s_hv_hmi.c | ||
book3s_hv_interrupts.S | ||
book3s_hv_ras.c | ||
book3s_hv_rm_mmu.c | ||
book3s_hv_rm_xics.c | ||
book3s_hv_rm_xive.c | ||
book3s_hv_rmhandlers.S | ||
book3s_hv.c | ||
book3s_interrupts.S | ||
book3s_mmu_hpte.c | ||
book3s_paired_singles.c | ||
book3s_pr_papr.c | ||
book3s_pr.c | ||
book3s_rmhandlers.S | ||
book3s_rtas.c | ||
book3s_segment.S | ||
book3s_xics.c | ||
book3s_xics.h | ||
book3s_xive_template.c | ||
book3s_xive.c | ||
book3s_xive.h | ||
book3s.c | ||
book3s.h | ||
booke_emulate.c | ||
booke_interrupts.S | ||
booke.c | ||
booke.h | ||
bookehv_interrupts.S | ||
e500_emulate.c | ||
e500_mmu_host.c | ||
e500_mmu_host.h | ||
e500_mmu.c | ||
e500.c | ||
e500.h | ||
e500mc.c | ||
emulate_loadstore.c | ||
emulate.c | ||
fpu.S | ||
irq.h | ||
Kconfig | ||
Makefile | ||
mpic.c | ||
powerpc.c | ||
timing.c | ||
timing.h | ||
trace_book3s.h | ||
trace_booke.h | ||
trace_hv.h | ||
trace_pr.h | ||
trace.h |