David Hildenbrand 8b9c1cc041 smaps: use vm_normal_page_pmd() instead of follow_trans_huge_pmd()
We shouldn't be using a GUP-internal helper if it can be avoided.

Similar to smaps_pte_entry() that uses vm_normal_page(), let's use
vm_normal_page_pmd() that similarly refuses to return the huge zeropage.

In contrast to follow_trans_huge_pmd(), vm_normal_page_pmd():

(1) Will always return the head page, not a tail page of a THP.

 If we'd ever call smaps_account with a tail page while setting "compound
 = true", we could be in trouble, because smaps_account() would look at
 the memmap of unrelated pages.

 If we're unlucky, that memmap does not exist at all. Before we removed
 PG_doublemap, we could have triggered something similar as in
 commit 24d7275ce279 ("fs/proc: task_mmu.c: don't read mapcount for
 migration entry").

 This can theoretically happen ever since commit ff9f47f6f00c ("mm: proc:
 smaps_rollup: do not stall write attempts on mmap_lock"):

  (a) We're in show_smaps_rollup() and processed a VMA
  (b) We release the mmap lock in show_smaps_rollup() because it is
      contended
  (c) We merged that VMA with another VMA
  (d) We collapsed a THP in that merged VMA at that position

 If the end address of the original VMA falls into the middle of a THP
 area, we would call smap_gather_stats() with a start address that falls
 into a PMD-mapped THP. It's probably very rare to trigger when not
 really forced.

(2) Will succeed on a is_pci_p2pdma_page(), like vm_normal_page()

 Treat such PMDs here just like smaps_pte_entry() would treat such PTEs.
 If such pages would be anonymous, we most certainly would want to
 account them.

(3) Will skip over pmd_devmap(), like vm_normal_page() for pte_devmap()

 As noted in vm_normal_page(), that is only for handling legacy ZONE_DEVICE
 pages. So just like smaps_pte_entry(), we'll now also ignore such PMD
 entries.

 Especially, follow_pmd_mask() never ends up calling
 follow_trans_huge_pmd() on pmd_devmap(). Instead it calls
 follow_devmap_pmd() -- which will fail if neither FOLL_GET nor FOLL_PIN
 is set.

 So skipping pmd_devmap() pages seems to be the right thing to do.

(4) Will properly handle VM_MIXEDMAP/VM_PFNMAP, like vm_normal_page()

 We won't be returning a memmap that should be ignored by core-mm, or
 worse, a memmap that does not even exist. Note that while
 walk_page_range() will skip VM_PFNMAP mappings, walk_page_vma() won't.

 Most probably this case doesn't currently really happen on the PMD level,
 otherwise we'd already be able to trigger kernel crashes when reading
 smaps / smaps_rollup.

So most probably only (1) is relevant in practice as of now, but could only
cause trouble in extreme corner cases.

Let's move follow_trans_huge_pmd() to mm/internal.h to discourage future
reuse in wrong context.

Link: https://lkml.kernel.org/r/20230803143208.383663-3-david@redhat.com
Fixes: ff9f47f6f00c ("mm: proc: smaps_rollup: do not stall write attempts on mmap_lock")
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: liubo <liubo254@huawei.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-21 13:07:20 -07:00
..
2023-06-09 16:25:17 -07:00
2023-06-19 16:19:05 -07:00
2023-06-19 16:19:25 -07:00
2023-06-19 16:19:25 -07:00
2023-06-19 16:19:25 -07:00
2023-04-30 13:00:38 -07:00
2023-04-12 17:36:23 -07:00
2023-06-19 16:19:25 -07:00
2023-06-19 16:19:25 -07:00
2022-10-03 14:02:43 -07:00
2022-09-26 19:46:09 -07:00
2023-06-19 16:19:25 -07:00
2023-06-19 16:19:25 -07:00
2023-06-19 16:19:25 -07:00
2023-06-29 16:34:12 -07:00
2023-06-29 16:34:12 -07:00
2023-06-29 16:34:12 -07:00
2023-06-19 16:19:25 -07:00
2023-06-23 16:59:30 -07:00
2023-06-23 16:59:30 -07:00
2023-04-12 17:36:23 -07:00
2023-06-19 16:19:25 -07:00
2023-04-08 13:45:37 -07:00