8bead25820
btrfs_set_lock_blocking is now only a simple wrapper around btrfs_set_lock_blocking_write. The name does not bring any semantic value that could not be inferred from the new function so there's no point keeping it. Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de> Signed-off-by: David Sterba <dsterba@suse.com>
4569 lines
124 KiB
C
4569 lines
124 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2007 Oracle. All rights reserved.
|
|
*/
|
|
|
|
#include <linux/fs.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/radix-tree.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/buffer_head.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/migrate.h>
|
|
#include <linux/ratelimit.h>
|
|
#include <linux/uuid.h>
|
|
#include <linux/semaphore.h>
|
|
#include <linux/error-injection.h>
|
|
#include <linux/crc32c.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <asm/unaligned.h>
|
|
#include "ctree.h"
|
|
#include "disk-io.h"
|
|
#include "transaction.h"
|
|
#include "btrfs_inode.h"
|
|
#include "volumes.h"
|
|
#include "print-tree.h"
|
|
#include "locking.h"
|
|
#include "tree-log.h"
|
|
#include "free-space-cache.h"
|
|
#include "free-space-tree.h"
|
|
#include "inode-map.h"
|
|
#include "check-integrity.h"
|
|
#include "rcu-string.h"
|
|
#include "dev-replace.h"
|
|
#include "raid56.h"
|
|
#include "sysfs.h"
|
|
#include "qgroup.h"
|
|
#include "compression.h"
|
|
#include "tree-checker.h"
|
|
#include "ref-verify.h"
|
|
|
|
#ifdef CONFIG_X86
|
|
#include <asm/cpufeature.h>
|
|
#endif
|
|
|
|
#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
|
|
BTRFS_HEADER_FLAG_RELOC |\
|
|
BTRFS_SUPER_FLAG_ERROR |\
|
|
BTRFS_SUPER_FLAG_SEEDING |\
|
|
BTRFS_SUPER_FLAG_METADUMP |\
|
|
BTRFS_SUPER_FLAG_METADUMP_V2)
|
|
|
|
static const struct extent_io_ops btree_extent_io_ops;
|
|
static void end_workqueue_fn(struct btrfs_work *work);
|
|
static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
|
|
static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
|
|
struct btrfs_fs_info *fs_info);
|
|
static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
|
|
static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
|
|
struct extent_io_tree *dirty_pages,
|
|
int mark);
|
|
static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
|
|
struct extent_io_tree *pinned_extents);
|
|
static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
|
|
static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
|
|
|
|
/*
|
|
* btrfs_end_io_wq structs are used to do processing in task context when an IO
|
|
* is complete. This is used during reads to verify checksums, and it is used
|
|
* by writes to insert metadata for new file extents after IO is complete.
|
|
*/
|
|
struct btrfs_end_io_wq {
|
|
struct bio *bio;
|
|
bio_end_io_t *end_io;
|
|
void *private;
|
|
struct btrfs_fs_info *info;
|
|
blk_status_t status;
|
|
enum btrfs_wq_endio_type metadata;
|
|
struct btrfs_work work;
|
|
};
|
|
|
|
static struct kmem_cache *btrfs_end_io_wq_cache;
|
|
|
|
int __init btrfs_end_io_wq_init(void)
|
|
{
|
|
btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
|
|
sizeof(struct btrfs_end_io_wq),
|
|
0,
|
|
SLAB_MEM_SPREAD,
|
|
NULL);
|
|
if (!btrfs_end_io_wq_cache)
|
|
return -ENOMEM;
|
|
return 0;
|
|
}
|
|
|
|
void __cold btrfs_end_io_wq_exit(void)
|
|
{
|
|
kmem_cache_destroy(btrfs_end_io_wq_cache);
|
|
}
|
|
|
|
/*
|
|
* async submit bios are used to offload expensive checksumming
|
|
* onto the worker threads. They checksum file and metadata bios
|
|
* just before they are sent down the IO stack.
|
|
*/
|
|
struct async_submit_bio {
|
|
void *private_data;
|
|
struct bio *bio;
|
|
extent_submit_bio_start_t *submit_bio_start;
|
|
int mirror_num;
|
|
/*
|
|
* bio_offset is optional, can be used if the pages in the bio
|
|
* can't tell us where in the file the bio should go
|
|
*/
|
|
u64 bio_offset;
|
|
struct btrfs_work work;
|
|
blk_status_t status;
|
|
};
|
|
|
|
/*
|
|
* Lockdep class keys for extent_buffer->lock's in this root. For a given
|
|
* eb, the lockdep key is determined by the btrfs_root it belongs to and
|
|
* the level the eb occupies in the tree.
|
|
*
|
|
* Different roots are used for different purposes and may nest inside each
|
|
* other and they require separate keysets. As lockdep keys should be
|
|
* static, assign keysets according to the purpose of the root as indicated
|
|
* by btrfs_root->root_key.objectid. This ensures that all special purpose
|
|
* roots have separate keysets.
|
|
*
|
|
* Lock-nesting across peer nodes is always done with the immediate parent
|
|
* node locked thus preventing deadlock. As lockdep doesn't know this, use
|
|
* subclass to avoid triggering lockdep warning in such cases.
|
|
*
|
|
* The key is set by the readpage_end_io_hook after the buffer has passed
|
|
* csum validation but before the pages are unlocked. It is also set by
|
|
* btrfs_init_new_buffer on freshly allocated blocks.
|
|
*
|
|
* We also add a check to make sure the highest level of the tree is the
|
|
* same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
|
|
* needs update as well.
|
|
*/
|
|
#ifdef CONFIG_DEBUG_LOCK_ALLOC
|
|
# if BTRFS_MAX_LEVEL != 8
|
|
# error
|
|
# endif
|
|
|
|
static struct btrfs_lockdep_keyset {
|
|
u64 id; /* root objectid */
|
|
const char *name_stem; /* lock name stem */
|
|
char names[BTRFS_MAX_LEVEL + 1][20];
|
|
struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
|
|
} btrfs_lockdep_keysets[] = {
|
|
{ .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
|
|
{ .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
|
|
{ .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
|
|
{ .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
|
|
{ .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
|
|
{ .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
|
|
{ .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
|
|
{ .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
|
|
{ .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
|
|
{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
|
|
{ .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
|
|
{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
|
|
{ .id = 0, .name_stem = "tree" },
|
|
};
|
|
|
|
void __init btrfs_init_lockdep(void)
|
|
{
|
|
int i, j;
|
|
|
|
/* initialize lockdep class names */
|
|
for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
|
|
struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
|
|
|
|
for (j = 0; j < ARRAY_SIZE(ks->names); j++)
|
|
snprintf(ks->names[j], sizeof(ks->names[j]),
|
|
"btrfs-%s-%02d", ks->name_stem, j);
|
|
}
|
|
}
|
|
|
|
void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
|
|
int level)
|
|
{
|
|
struct btrfs_lockdep_keyset *ks;
|
|
|
|
BUG_ON(level >= ARRAY_SIZE(ks->keys));
|
|
|
|
/* find the matching keyset, id 0 is the default entry */
|
|
for (ks = btrfs_lockdep_keysets; ks->id; ks++)
|
|
if (ks->id == objectid)
|
|
break;
|
|
|
|
lockdep_set_class_and_name(&eb->lock,
|
|
&ks->keys[level], ks->names[level]);
|
|
}
|
|
|
|
#endif
|
|
|
|
/*
|
|
* extents on the btree inode are pretty simple, there's one extent
|
|
* that covers the entire device
|
|
*/
|
|
struct extent_map *btree_get_extent(struct btrfs_inode *inode,
|
|
struct page *page, size_t pg_offset, u64 start, u64 len,
|
|
int create)
|
|
{
|
|
struct btrfs_fs_info *fs_info = inode->root->fs_info;
|
|
struct extent_map_tree *em_tree = &inode->extent_tree;
|
|
struct extent_map *em;
|
|
int ret;
|
|
|
|
read_lock(&em_tree->lock);
|
|
em = lookup_extent_mapping(em_tree, start, len);
|
|
if (em) {
|
|
em->bdev = fs_info->fs_devices->latest_bdev;
|
|
read_unlock(&em_tree->lock);
|
|
goto out;
|
|
}
|
|
read_unlock(&em_tree->lock);
|
|
|
|
em = alloc_extent_map();
|
|
if (!em) {
|
|
em = ERR_PTR(-ENOMEM);
|
|
goto out;
|
|
}
|
|
em->start = 0;
|
|
em->len = (u64)-1;
|
|
em->block_len = (u64)-1;
|
|
em->block_start = 0;
|
|
em->bdev = fs_info->fs_devices->latest_bdev;
|
|
|
|
write_lock(&em_tree->lock);
|
|
ret = add_extent_mapping(em_tree, em, 0);
|
|
if (ret == -EEXIST) {
|
|
free_extent_map(em);
|
|
em = lookup_extent_mapping(em_tree, start, len);
|
|
if (!em)
|
|
em = ERR_PTR(-EIO);
|
|
} else if (ret) {
|
|
free_extent_map(em);
|
|
em = ERR_PTR(ret);
|
|
}
|
|
write_unlock(&em_tree->lock);
|
|
|
|
out:
|
|
return em;
|
|
}
|
|
|
|
u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
|
|
{
|
|
return crc32c(seed, data, len);
|
|
}
|
|
|
|
void btrfs_csum_final(u32 crc, u8 *result)
|
|
{
|
|
put_unaligned_le32(~crc, result);
|
|
}
|
|
|
|
/*
|
|
* compute the csum for a btree block, and either verify it or write it
|
|
* into the csum field of the block.
|
|
*/
|
|
static int csum_tree_block(struct btrfs_fs_info *fs_info,
|
|
struct extent_buffer *buf,
|
|
int verify)
|
|
{
|
|
u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
|
|
char result[BTRFS_CSUM_SIZE];
|
|
unsigned long len;
|
|
unsigned long cur_len;
|
|
unsigned long offset = BTRFS_CSUM_SIZE;
|
|
char *kaddr;
|
|
unsigned long map_start;
|
|
unsigned long map_len;
|
|
int err;
|
|
u32 crc = ~(u32)0;
|
|
|
|
len = buf->len - offset;
|
|
while (len > 0) {
|
|
/*
|
|
* Note: we don't need to check for the err == 1 case here, as
|
|
* with the given combination of 'start = BTRFS_CSUM_SIZE (32)'
|
|
* and 'min_len = 32' and the currently implemented mapping
|
|
* algorithm we cannot cross a page boundary.
|
|
*/
|
|
err = map_private_extent_buffer(buf, offset, 32,
|
|
&kaddr, &map_start, &map_len);
|
|
if (err)
|
|
return err;
|
|
cur_len = min(len, map_len - (offset - map_start));
|
|
crc = btrfs_csum_data(kaddr + offset - map_start,
|
|
crc, cur_len);
|
|
len -= cur_len;
|
|
offset += cur_len;
|
|
}
|
|
memset(result, 0, BTRFS_CSUM_SIZE);
|
|
|
|
btrfs_csum_final(crc, result);
|
|
|
|
if (verify) {
|
|
if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
|
|
u32 val;
|
|
u32 found = 0;
|
|
memcpy(&found, result, csum_size);
|
|
|
|
read_extent_buffer(buf, &val, 0, csum_size);
|
|
btrfs_warn_rl(fs_info,
|
|
"%s checksum verify failed on %llu wanted %X found %X level %d",
|
|
fs_info->sb->s_id, buf->start,
|
|
val, found, btrfs_header_level(buf));
|
|
return -EUCLEAN;
|
|
}
|
|
} else {
|
|
write_extent_buffer(buf, result, 0, csum_size);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* we can't consider a given block up to date unless the transid of the
|
|
* block matches the transid in the parent node's pointer. This is how we
|
|
* detect blocks that either didn't get written at all or got written
|
|
* in the wrong place.
|
|
*/
|
|
static int verify_parent_transid(struct extent_io_tree *io_tree,
|
|
struct extent_buffer *eb, u64 parent_transid,
|
|
int atomic)
|
|
{
|
|
struct extent_state *cached_state = NULL;
|
|
int ret;
|
|
bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
|
|
|
|
if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
|
|
return 0;
|
|
|
|
if (atomic)
|
|
return -EAGAIN;
|
|
|
|
if (need_lock) {
|
|
btrfs_tree_read_lock(eb);
|
|
btrfs_set_lock_blocking_read(eb);
|
|
}
|
|
|
|
lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
|
|
&cached_state);
|
|
if (extent_buffer_uptodate(eb) &&
|
|
btrfs_header_generation(eb) == parent_transid) {
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
btrfs_err_rl(eb->fs_info,
|
|
"parent transid verify failed on %llu wanted %llu found %llu",
|
|
eb->start,
|
|
parent_transid, btrfs_header_generation(eb));
|
|
ret = 1;
|
|
|
|
/*
|
|
* Things reading via commit roots that don't have normal protection,
|
|
* like send, can have a really old block in cache that may point at a
|
|
* block that has been freed and re-allocated. So don't clear uptodate
|
|
* if we find an eb that is under IO (dirty/writeback) because we could
|
|
* end up reading in the stale data and then writing it back out and
|
|
* making everybody very sad.
|
|
*/
|
|
if (!extent_buffer_under_io(eb))
|
|
clear_extent_buffer_uptodate(eb);
|
|
out:
|
|
unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
|
|
&cached_state);
|
|
if (need_lock)
|
|
btrfs_tree_read_unlock_blocking(eb);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Return 0 if the superblock checksum type matches the checksum value of that
|
|
* algorithm. Pass the raw disk superblock data.
|
|
*/
|
|
static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
|
|
char *raw_disk_sb)
|
|
{
|
|
struct btrfs_super_block *disk_sb =
|
|
(struct btrfs_super_block *)raw_disk_sb;
|
|
u16 csum_type = btrfs_super_csum_type(disk_sb);
|
|
int ret = 0;
|
|
|
|
if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
|
|
u32 crc = ~(u32)0;
|
|
char result[sizeof(crc)];
|
|
|
|
/*
|
|
* The super_block structure does not span the whole
|
|
* BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
|
|
* is filled with zeros and is included in the checksum.
|
|
*/
|
|
crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
|
|
crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
|
|
btrfs_csum_final(crc, result);
|
|
|
|
if (memcmp(raw_disk_sb, result, sizeof(result)))
|
|
ret = 1;
|
|
}
|
|
|
|
if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
|
|
btrfs_err(fs_info, "unsupported checksum algorithm %u",
|
|
csum_type);
|
|
ret = 1;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int verify_level_key(struct btrfs_fs_info *fs_info,
|
|
struct extent_buffer *eb, int level,
|
|
struct btrfs_key *first_key, u64 parent_transid)
|
|
{
|
|
int found_level;
|
|
struct btrfs_key found_key;
|
|
int ret;
|
|
|
|
found_level = btrfs_header_level(eb);
|
|
if (found_level != level) {
|
|
#ifdef CONFIG_BTRFS_DEBUG
|
|
WARN_ON(1);
|
|
btrfs_err(fs_info,
|
|
"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
|
|
eb->start, level, found_level);
|
|
#endif
|
|
return -EIO;
|
|
}
|
|
|
|
if (!first_key)
|
|
return 0;
|
|
|
|
/*
|
|
* For live tree block (new tree blocks in current transaction),
|
|
* we need proper lock context to avoid race, which is impossible here.
|
|
* So we only checks tree blocks which is read from disk, whose
|
|
* generation <= fs_info->last_trans_committed.
|
|
*/
|
|
if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
|
|
return 0;
|
|
if (found_level)
|
|
btrfs_node_key_to_cpu(eb, &found_key, 0);
|
|
else
|
|
btrfs_item_key_to_cpu(eb, &found_key, 0);
|
|
ret = btrfs_comp_cpu_keys(first_key, &found_key);
|
|
|
|
#ifdef CONFIG_BTRFS_DEBUG
|
|
if (ret) {
|
|
WARN_ON(1);
|
|
btrfs_err(fs_info,
|
|
"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
|
|
eb->start, parent_transid, first_key->objectid,
|
|
first_key->type, first_key->offset,
|
|
found_key.objectid, found_key.type,
|
|
found_key.offset);
|
|
}
|
|
#endif
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* helper to read a given tree block, doing retries as required when
|
|
* the checksums don't match and we have alternate mirrors to try.
|
|
*
|
|
* @parent_transid: expected transid, skip check if 0
|
|
* @level: expected level, mandatory check
|
|
* @first_key: expected key of first slot, skip check if NULL
|
|
*/
|
|
static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
|
|
struct extent_buffer *eb,
|
|
u64 parent_transid, int level,
|
|
struct btrfs_key *first_key)
|
|
{
|
|
struct extent_io_tree *io_tree;
|
|
int failed = 0;
|
|
int ret;
|
|
int num_copies = 0;
|
|
int mirror_num = 0;
|
|
int failed_mirror = 0;
|
|
|
|
io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
|
|
while (1) {
|
|
clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
|
|
ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
|
|
mirror_num);
|
|
if (!ret) {
|
|
if (verify_parent_transid(io_tree, eb,
|
|
parent_transid, 0))
|
|
ret = -EIO;
|
|
else if (verify_level_key(fs_info, eb, level,
|
|
first_key, parent_transid))
|
|
ret = -EUCLEAN;
|
|
else
|
|
break;
|
|
}
|
|
|
|
num_copies = btrfs_num_copies(fs_info,
|
|
eb->start, eb->len);
|
|
if (num_copies == 1)
|
|
break;
|
|
|
|
if (!failed_mirror) {
|
|
failed = 1;
|
|
failed_mirror = eb->read_mirror;
|
|
}
|
|
|
|
mirror_num++;
|
|
if (mirror_num == failed_mirror)
|
|
mirror_num++;
|
|
|
|
if (mirror_num > num_copies)
|
|
break;
|
|
}
|
|
|
|
if (failed && !ret && failed_mirror)
|
|
repair_eb_io_failure(fs_info, eb, failed_mirror);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* checksum a dirty tree block before IO. This has extra checks to make sure
|
|
* we only fill in the checksum field in the first page of a multi-page block
|
|
*/
|
|
|
|
static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
|
|
{
|
|
u64 start = page_offset(page);
|
|
u64 found_start;
|
|
struct extent_buffer *eb;
|
|
|
|
eb = (struct extent_buffer *)page->private;
|
|
if (page != eb->pages[0])
|
|
return 0;
|
|
|
|
found_start = btrfs_header_bytenr(eb);
|
|
/*
|
|
* Please do not consolidate these warnings into a single if.
|
|
* It is useful to know what went wrong.
|
|
*/
|
|
if (WARN_ON(found_start != start))
|
|
return -EUCLEAN;
|
|
if (WARN_ON(!PageUptodate(page)))
|
|
return -EUCLEAN;
|
|
|
|
ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
|
|
btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
|
|
|
|
return csum_tree_block(fs_info, eb, 0);
|
|
}
|
|
|
|
static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
|
|
struct extent_buffer *eb)
|
|
{
|
|
struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
|
|
u8 fsid[BTRFS_FSID_SIZE];
|
|
int ret = 1;
|
|
|
|
read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
|
|
while (fs_devices) {
|
|
u8 *metadata_uuid;
|
|
|
|
/*
|
|
* Checking the incompat flag is only valid for the current
|
|
* fs. For seed devices it's forbidden to have their uuid
|
|
* changed so reading ->fsid in this case is fine
|
|
*/
|
|
if (fs_devices == fs_info->fs_devices &&
|
|
btrfs_fs_incompat(fs_info, METADATA_UUID))
|
|
metadata_uuid = fs_devices->metadata_uuid;
|
|
else
|
|
metadata_uuid = fs_devices->fsid;
|
|
|
|
if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
|
|
ret = 0;
|
|
break;
|
|
}
|
|
fs_devices = fs_devices->seed;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
|
|
u64 phy_offset, struct page *page,
|
|
u64 start, u64 end, int mirror)
|
|
{
|
|
u64 found_start;
|
|
int found_level;
|
|
struct extent_buffer *eb;
|
|
struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
int ret = 0;
|
|
int reads_done;
|
|
|
|
if (!page->private)
|
|
goto out;
|
|
|
|
eb = (struct extent_buffer *)page->private;
|
|
|
|
/* the pending IO might have been the only thing that kept this buffer
|
|
* in memory. Make sure we have a ref for all this other checks
|
|
*/
|
|
extent_buffer_get(eb);
|
|
|
|
reads_done = atomic_dec_and_test(&eb->io_pages);
|
|
if (!reads_done)
|
|
goto err;
|
|
|
|
eb->read_mirror = mirror;
|
|
if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
|
|
ret = -EIO;
|
|
goto err;
|
|
}
|
|
|
|
found_start = btrfs_header_bytenr(eb);
|
|
if (found_start != eb->start) {
|
|
btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
|
|
eb->start, found_start);
|
|
ret = -EIO;
|
|
goto err;
|
|
}
|
|
if (check_tree_block_fsid(fs_info, eb)) {
|
|
btrfs_err_rl(fs_info, "bad fsid on block %llu",
|
|
eb->start);
|
|
ret = -EIO;
|
|
goto err;
|
|
}
|
|
found_level = btrfs_header_level(eb);
|
|
if (found_level >= BTRFS_MAX_LEVEL) {
|
|
btrfs_err(fs_info, "bad tree block level %d on %llu",
|
|
(int)btrfs_header_level(eb), eb->start);
|
|
ret = -EIO;
|
|
goto err;
|
|
}
|
|
|
|
btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
|
|
eb, found_level);
|
|
|
|
ret = csum_tree_block(fs_info, eb, 1);
|
|
if (ret)
|
|
goto err;
|
|
|
|
/*
|
|
* If this is a leaf block and it is corrupt, set the corrupt bit so
|
|
* that we don't try and read the other copies of this block, just
|
|
* return -EIO.
|
|
*/
|
|
if (found_level == 0 && btrfs_check_leaf_full(fs_info, eb)) {
|
|
set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
|
|
ret = -EIO;
|
|
}
|
|
|
|
if (found_level > 0 && btrfs_check_node(fs_info, eb))
|
|
ret = -EIO;
|
|
|
|
if (!ret)
|
|
set_extent_buffer_uptodate(eb);
|
|
err:
|
|
if (reads_done &&
|
|
test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
|
|
btree_readahead_hook(eb, ret);
|
|
|
|
if (ret) {
|
|
/*
|
|
* our io error hook is going to dec the io pages
|
|
* again, we have to make sure it has something
|
|
* to decrement
|
|
*/
|
|
atomic_inc(&eb->io_pages);
|
|
clear_extent_buffer_uptodate(eb);
|
|
}
|
|
free_extent_buffer(eb);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static void end_workqueue_bio(struct bio *bio)
|
|
{
|
|
struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
|
|
struct btrfs_fs_info *fs_info;
|
|
struct btrfs_workqueue *wq;
|
|
btrfs_work_func_t func;
|
|
|
|
fs_info = end_io_wq->info;
|
|
end_io_wq->status = bio->bi_status;
|
|
|
|
if (bio_op(bio) == REQ_OP_WRITE) {
|
|
if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
|
|
wq = fs_info->endio_meta_write_workers;
|
|
func = btrfs_endio_meta_write_helper;
|
|
} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
|
|
wq = fs_info->endio_freespace_worker;
|
|
func = btrfs_freespace_write_helper;
|
|
} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
|
|
wq = fs_info->endio_raid56_workers;
|
|
func = btrfs_endio_raid56_helper;
|
|
} else {
|
|
wq = fs_info->endio_write_workers;
|
|
func = btrfs_endio_write_helper;
|
|
}
|
|
} else {
|
|
if (unlikely(end_io_wq->metadata ==
|
|
BTRFS_WQ_ENDIO_DIO_REPAIR)) {
|
|
wq = fs_info->endio_repair_workers;
|
|
func = btrfs_endio_repair_helper;
|
|
} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
|
|
wq = fs_info->endio_raid56_workers;
|
|
func = btrfs_endio_raid56_helper;
|
|
} else if (end_io_wq->metadata) {
|
|
wq = fs_info->endio_meta_workers;
|
|
func = btrfs_endio_meta_helper;
|
|
} else {
|
|
wq = fs_info->endio_workers;
|
|
func = btrfs_endio_helper;
|
|
}
|
|
}
|
|
|
|
btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
|
|
btrfs_queue_work(wq, &end_io_wq->work);
|
|
}
|
|
|
|
blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
|
|
enum btrfs_wq_endio_type metadata)
|
|
{
|
|
struct btrfs_end_io_wq *end_io_wq;
|
|
|
|
end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
|
|
if (!end_io_wq)
|
|
return BLK_STS_RESOURCE;
|
|
|
|
end_io_wq->private = bio->bi_private;
|
|
end_io_wq->end_io = bio->bi_end_io;
|
|
end_io_wq->info = info;
|
|
end_io_wq->status = 0;
|
|
end_io_wq->bio = bio;
|
|
end_io_wq->metadata = metadata;
|
|
|
|
bio->bi_private = end_io_wq;
|
|
bio->bi_end_io = end_workqueue_bio;
|
|
return 0;
|
|
}
|
|
|
|
static void run_one_async_start(struct btrfs_work *work)
|
|
{
|
|
struct async_submit_bio *async;
|
|
blk_status_t ret;
|
|
|
|
async = container_of(work, struct async_submit_bio, work);
|
|
ret = async->submit_bio_start(async->private_data, async->bio,
|
|
async->bio_offset);
|
|
if (ret)
|
|
async->status = ret;
|
|
}
|
|
|
|
/*
|
|
* In order to insert checksums into the metadata in large chunks, we wait
|
|
* until bio submission time. All the pages in the bio are checksummed and
|
|
* sums are attached onto the ordered extent record.
|
|
*
|
|
* At IO completion time the csums attached on the ordered extent record are
|
|
* inserted into the tree.
|
|
*/
|
|
static void run_one_async_done(struct btrfs_work *work)
|
|
{
|
|
struct async_submit_bio *async;
|
|
struct inode *inode;
|
|
blk_status_t ret;
|
|
|
|
async = container_of(work, struct async_submit_bio, work);
|
|
inode = async->private_data;
|
|
|
|
/* If an error occurred we just want to clean up the bio and move on */
|
|
if (async->status) {
|
|
async->bio->bi_status = async->status;
|
|
bio_endio(async->bio);
|
|
return;
|
|
}
|
|
|
|
ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio,
|
|
async->mirror_num, 1);
|
|
if (ret) {
|
|
async->bio->bi_status = ret;
|
|
bio_endio(async->bio);
|
|
}
|
|
}
|
|
|
|
static void run_one_async_free(struct btrfs_work *work)
|
|
{
|
|
struct async_submit_bio *async;
|
|
|
|
async = container_of(work, struct async_submit_bio, work);
|
|
kfree(async);
|
|
}
|
|
|
|
blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
|
|
int mirror_num, unsigned long bio_flags,
|
|
u64 bio_offset, void *private_data,
|
|
extent_submit_bio_start_t *submit_bio_start)
|
|
{
|
|
struct async_submit_bio *async;
|
|
|
|
async = kmalloc(sizeof(*async), GFP_NOFS);
|
|
if (!async)
|
|
return BLK_STS_RESOURCE;
|
|
|
|
async->private_data = private_data;
|
|
async->bio = bio;
|
|
async->mirror_num = mirror_num;
|
|
async->submit_bio_start = submit_bio_start;
|
|
|
|
btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
|
|
run_one_async_done, run_one_async_free);
|
|
|
|
async->bio_offset = bio_offset;
|
|
|
|
async->status = 0;
|
|
|
|
if (op_is_sync(bio->bi_opf))
|
|
btrfs_set_work_high_priority(&async->work);
|
|
|
|
btrfs_queue_work(fs_info->workers, &async->work);
|
|
return 0;
|
|
}
|
|
|
|
static blk_status_t btree_csum_one_bio(struct bio *bio)
|
|
{
|
|
struct bio_vec *bvec;
|
|
struct btrfs_root *root;
|
|
int i, ret = 0;
|
|
|
|
ASSERT(!bio_flagged(bio, BIO_CLONED));
|
|
bio_for_each_segment_all(bvec, bio, i) {
|
|
root = BTRFS_I(bvec->bv_page->mapping->host)->root;
|
|
ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
|
|
if (ret)
|
|
break;
|
|
}
|
|
|
|
return errno_to_blk_status(ret);
|
|
}
|
|
|
|
static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
|
|
u64 bio_offset)
|
|
{
|
|
/*
|
|
* when we're called for a write, we're already in the async
|
|
* submission context. Just jump into btrfs_map_bio
|
|
*/
|
|
return btree_csum_one_bio(bio);
|
|
}
|
|
|
|
static int check_async_write(struct btrfs_inode *bi)
|
|
{
|
|
if (atomic_read(&bi->sync_writers))
|
|
return 0;
|
|
#ifdef CONFIG_X86
|
|
if (static_cpu_has(X86_FEATURE_XMM4_2))
|
|
return 0;
|
|
#endif
|
|
return 1;
|
|
}
|
|
|
|
static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio,
|
|
int mirror_num, unsigned long bio_flags,
|
|
u64 bio_offset)
|
|
{
|
|
struct inode *inode = private_data;
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
int async = check_async_write(BTRFS_I(inode));
|
|
blk_status_t ret;
|
|
|
|
if (bio_op(bio) != REQ_OP_WRITE) {
|
|
/*
|
|
* called for a read, do the setup so that checksum validation
|
|
* can happen in the async kernel threads
|
|
*/
|
|
ret = btrfs_bio_wq_end_io(fs_info, bio,
|
|
BTRFS_WQ_ENDIO_METADATA);
|
|
if (ret)
|
|
goto out_w_error;
|
|
ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
|
|
} else if (!async) {
|
|
ret = btree_csum_one_bio(bio);
|
|
if (ret)
|
|
goto out_w_error;
|
|
ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
|
|
} else {
|
|
/*
|
|
* kthread helpers are used to submit writes so that
|
|
* checksumming can happen in parallel across all CPUs
|
|
*/
|
|
ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
|
|
bio_offset, private_data,
|
|
btree_submit_bio_start);
|
|
}
|
|
|
|
if (ret)
|
|
goto out_w_error;
|
|
return 0;
|
|
|
|
out_w_error:
|
|
bio->bi_status = ret;
|
|
bio_endio(bio);
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_MIGRATION
|
|
static int btree_migratepage(struct address_space *mapping,
|
|
struct page *newpage, struct page *page,
|
|
enum migrate_mode mode)
|
|
{
|
|
/*
|
|
* we can't safely write a btree page from here,
|
|
* we haven't done the locking hook
|
|
*/
|
|
if (PageDirty(page))
|
|
return -EAGAIN;
|
|
/*
|
|
* Buffers may be managed in a filesystem specific way.
|
|
* We must have no buffers or drop them.
|
|
*/
|
|
if (page_has_private(page) &&
|
|
!try_to_release_page(page, GFP_KERNEL))
|
|
return -EAGAIN;
|
|
return migrate_page(mapping, newpage, page, mode);
|
|
}
|
|
#endif
|
|
|
|
|
|
static int btree_writepages(struct address_space *mapping,
|
|
struct writeback_control *wbc)
|
|
{
|
|
struct btrfs_fs_info *fs_info;
|
|
int ret;
|
|
|
|
if (wbc->sync_mode == WB_SYNC_NONE) {
|
|
|
|
if (wbc->for_kupdate)
|
|
return 0;
|
|
|
|
fs_info = BTRFS_I(mapping->host)->root->fs_info;
|
|
/* this is a bit racy, but that's ok */
|
|
ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
|
|
BTRFS_DIRTY_METADATA_THRESH,
|
|
fs_info->dirty_metadata_batch);
|
|
if (ret < 0)
|
|
return 0;
|
|
}
|
|
return btree_write_cache_pages(mapping, wbc);
|
|
}
|
|
|
|
static int btree_readpage(struct file *file, struct page *page)
|
|
{
|
|
struct extent_io_tree *tree;
|
|
tree = &BTRFS_I(page->mapping->host)->io_tree;
|
|
return extent_read_full_page(tree, page, btree_get_extent, 0);
|
|
}
|
|
|
|
static int btree_releasepage(struct page *page, gfp_t gfp_flags)
|
|
{
|
|
if (PageWriteback(page) || PageDirty(page))
|
|
return 0;
|
|
|
|
return try_release_extent_buffer(page);
|
|
}
|
|
|
|
static void btree_invalidatepage(struct page *page, unsigned int offset,
|
|
unsigned int length)
|
|
{
|
|
struct extent_io_tree *tree;
|
|
tree = &BTRFS_I(page->mapping->host)->io_tree;
|
|
extent_invalidatepage(tree, page, offset);
|
|
btree_releasepage(page, GFP_NOFS);
|
|
if (PagePrivate(page)) {
|
|
btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
|
|
"page private not zero on page %llu",
|
|
(unsigned long long)page_offset(page));
|
|
ClearPagePrivate(page);
|
|
set_page_private(page, 0);
|
|
put_page(page);
|
|
}
|
|
}
|
|
|
|
static int btree_set_page_dirty(struct page *page)
|
|
{
|
|
#ifdef DEBUG
|
|
struct extent_buffer *eb;
|
|
|
|
BUG_ON(!PagePrivate(page));
|
|
eb = (struct extent_buffer *)page->private;
|
|
BUG_ON(!eb);
|
|
BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
|
|
BUG_ON(!atomic_read(&eb->refs));
|
|
btrfs_assert_tree_locked(eb);
|
|
#endif
|
|
return __set_page_dirty_nobuffers(page);
|
|
}
|
|
|
|
static const struct address_space_operations btree_aops = {
|
|
.readpage = btree_readpage,
|
|
.writepages = btree_writepages,
|
|
.releasepage = btree_releasepage,
|
|
.invalidatepage = btree_invalidatepage,
|
|
#ifdef CONFIG_MIGRATION
|
|
.migratepage = btree_migratepage,
|
|
#endif
|
|
.set_page_dirty = btree_set_page_dirty,
|
|
};
|
|
|
|
void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
|
|
{
|
|
struct extent_buffer *buf = NULL;
|
|
struct inode *btree_inode = fs_info->btree_inode;
|
|
|
|
buf = btrfs_find_create_tree_block(fs_info, bytenr);
|
|
if (IS_ERR(buf))
|
|
return;
|
|
read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
|
|
buf, WAIT_NONE, 0);
|
|
free_extent_buffer(buf);
|
|
}
|
|
|
|
int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
|
|
int mirror_num, struct extent_buffer **eb)
|
|
{
|
|
struct extent_buffer *buf = NULL;
|
|
struct inode *btree_inode = fs_info->btree_inode;
|
|
struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
|
|
int ret;
|
|
|
|
buf = btrfs_find_create_tree_block(fs_info, bytenr);
|
|
if (IS_ERR(buf))
|
|
return 0;
|
|
|
|
set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
|
|
|
|
ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
|
|
mirror_num);
|
|
if (ret) {
|
|
free_extent_buffer(buf);
|
|
return ret;
|
|
}
|
|
|
|
if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
|
|
free_extent_buffer(buf);
|
|
return -EIO;
|
|
} else if (extent_buffer_uptodate(buf)) {
|
|
*eb = buf;
|
|
} else {
|
|
free_extent_buffer(buf);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
struct extent_buffer *btrfs_find_create_tree_block(
|
|
struct btrfs_fs_info *fs_info,
|
|
u64 bytenr)
|
|
{
|
|
if (btrfs_is_testing(fs_info))
|
|
return alloc_test_extent_buffer(fs_info, bytenr);
|
|
return alloc_extent_buffer(fs_info, bytenr);
|
|
}
|
|
|
|
|
|
int btrfs_write_tree_block(struct extent_buffer *buf)
|
|
{
|
|
return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
|
|
buf->start + buf->len - 1);
|
|
}
|
|
|
|
void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
|
|
{
|
|
filemap_fdatawait_range(buf->pages[0]->mapping,
|
|
buf->start, buf->start + buf->len - 1);
|
|
}
|
|
|
|
/*
|
|
* Read tree block at logical address @bytenr and do variant basic but critical
|
|
* verification.
|
|
*
|
|
* @parent_transid: expected transid of this tree block, skip check if 0
|
|
* @level: expected level, mandatory check
|
|
* @first_key: expected key in slot 0, skip check if NULL
|
|
*/
|
|
struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
|
|
u64 parent_transid, int level,
|
|
struct btrfs_key *first_key)
|
|
{
|
|
struct extent_buffer *buf = NULL;
|
|
int ret;
|
|
|
|
buf = btrfs_find_create_tree_block(fs_info, bytenr);
|
|
if (IS_ERR(buf))
|
|
return buf;
|
|
|
|
ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
|
|
level, first_key);
|
|
if (ret) {
|
|
free_extent_buffer(buf);
|
|
return ERR_PTR(ret);
|
|
}
|
|
return buf;
|
|
|
|
}
|
|
|
|
void clean_tree_block(struct btrfs_fs_info *fs_info,
|
|
struct extent_buffer *buf)
|
|
{
|
|
if (btrfs_header_generation(buf) ==
|
|
fs_info->running_transaction->transid) {
|
|
btrfs_assert_tree_locked(buf);
|
|
|
|
if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
|
|
percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
|
|
-buf->len,
|
|
fs_info->dirty_metadata_batch);
|
|
/* ugh, clear_extent_buffer_dirty needs to lock the page */
|
|
btrfs_set_lock_blocking_write(buf);
|
|
clear_extent_buffer_dirty(buf);
|
|
}
|
|
}
|
|
}
|
|
|
|
static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
|
|
{
|
|
struct btrfs_subvolume_writers *writers;
|
|
int ret;
|
|
|
|
writers = kmalloc(sizeof(*writers), GFP_NOFS);
|
|
if (!writers)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
|
|
if (ret < 0) {
|
|
kfree(writers);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
init_waitqueue_head(&writers->wait);
|
|
return writers;
|
|
}
|
|
|
|
static void
|
|
btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
|
|
{
|
|
percpu_counter_destroy(&writers->counter);
|
|
kfree(writers);
|
|
}
|
|
|
|
static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
|
|
u64 objectid)
|
|
{
|
|
bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
|
|
root->node = NULL;
|
|
root->commit_root = NULL;
|
|
root->state = 0;
|
|
root->orphan_cleanup_state = 0;
|
|
|
|
root->last_trans = 0;
|
|
root->highest_objectid = 0;
|
|
root->nr_delalloc_inodes = 0;
|
|
root->nr_ordered_extents = 0;
|
|
root->inode_tree = RB_ROOT;
|
|
INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
|
|
root->block_rsv = NULL;
|
|
|
|
INIT_LIST_HEAD(&root->dirty_list);
|
|
INIT_LIST_HEAD(&root->root_list);
|
|
INIT_LIST_HEAD(&root->delalloc_inodes);
|
|
INIT_LIST_HEAD(&root->delalloc_root);
|
|
INIT_LIST_HEAD(&root->ordered_extents);
|
|
INIT_LIST_HEAD(&root->ordered_root);
|
|
INIT_LIST_HEAD(&root->reloc_dirty_list);
|
|
INIT_LIST_HEAD(&root->logged_list[0]);
|
|
INIT_LIST_HEAD(&root->logged_list[1]);
|
|
spin_lock_init(&root->inode_lock);
|
|
spin_lock_init(&root->delalloc_lock);
|
|
spin_lock_init(&root->ordered_extent_lock);
|
|
spin_lock_init(&root->accounting_lock);
|
|
spin_lock_init(&root->log_extents_lock[0]);
|
|
spin_lock_init(&root->log_extents_lock[1]);
|
|
spin_lock_init(&root->qgroup_meta_rsv_lock);
|
|
mutex_init(&root->objectid_mutex);
|
|
mutex_init(&root->log_mutex);
|
|
mutex_init(&root->ordered_extent_mutex);
|
|
mutex_init(&root->delalloc_mutex);
|
|
init_waitqueue_head(&root->log_writer_wait);
|
|
init_waitqueue_head(&root->log_commit_wait[0]);
|
|
init_waitqueue_head(&root->log_commit_wait[1]);
|
|
INIT_LIST_HEAD(&root->log_ctxs[0]);
|
|
INIT_LIST_HEAD(&root->log_ctxs[1]);
|
|
atomic_set(&root->log_commit[0], 0);
|
|
atomic_set(&root->log_commit[1], 0);
|
|
atomic_set(&root->log_writers, 0);
|
|
atomic_set(&root->log_batch, 0);
|
|
refcount_set(&root->refs, 1);
|
|
atomic_set(&root->will_be_snapshotted, 0);
|
|
atomic_set(&root->snapshot_force_cow, 0);
|
|
atomic_set(&root->nr_swapfiles, 0);
|
|
root->log_transid = 0;
|
|
root->log_transid_committed = -1;
|
|
root->last_log_commit = 0;
|
|
if (!dummy)
|
|
extent_io_tree_init(&root->dirty_log_pages, NULL);
|
|
|
|
memset(&root->root_key, 0, sizeof(root->root_key));
|
|
memset(&root->root_item, 0, sizeof(root->root_item));
|
|
memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
|
|
if (!dummy)
|
|
root->defrag_trans_start = fs_info->generation;
|
|
else
|
|
root->defrag_trans_start = 0;
|
|
root->root_key.objectid = objectid;
|
|
root->anon_dev = 0;
|
|
|
|
spin_lock_init(&root->root_item_lock);
|
|
btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
|
|
}
|
|
|
|
static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
|
|
gfp_t flags)
|
|
{
|
|
struct btrfs_root *root = kzalloc(sizeof(*root), flags);
|
|
if (root)
|
|
root->fs_info = fs_info;
|
|
return root;
|
|
}
|
|
|
|
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
|
|
/* Should only be used by the testing infrastructure */
|
|
struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct btrfs_root *root;
|
|
|
|
if (!fs_info)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
root = btrfs_alloc_root(fs_info, GFP_KERNEL);
|
|
if (!root)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
/* We don't use the stripesize in selftest, set it as sectorsize */
|
|
__setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
|
|
root->alloc_bytenr = 0;
|
|
|
|
return root;
|
|
}
|
|
#endif
|
|
|
|
struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
|
|
struct btrfs_fs_info *fs_info,
|
|
u64 objectid)
|
|
{
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_root *tree_root = fs_info->tree_root;
|
|
struct btrfs_root *root;
|
|
struct btrfs_key key;
|
|
unsigned int nofs_flag;
|
|
int ret = 0;
|
|
uuid_le uuid = NULL_UUID_LE;
|
|
|
|
/*
|
|
* We're holding a transaction handle, so use a NOFS memory allocation
|
|
* context to avoid deadlock if reclaim happens.
|
|
*/
|
|
nofs_flag = memalloc_nofs_save();
|
|
root = btrfs_alloc_root(fs_info, GFP_KERNEL);
|
|
memalloc_nofs_restore(nofs_flag);
|
|
if (!root)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
__setup_root(root, fs_info, objectid);
|
|
root->root_key.objectid = objectid;
|
|
root->root_key.type = BTRFS_ROOT_ITEM_KEY;
|
|
root->root_key.offset = 0;
|
|
|
|
leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
|
|
if (IS_ERR(leaf)) {
|
|
ret = PTR_ERR(leaf);
|
|
leaf = NULL;
|
|
goto fail;
|
|
}
|
|
|
|
root->node = leaf;
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
|
|
root->commit_root = btrfs_root_node(root);
|
|
set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
|
|
|
|
root->root_item.flags = 0;
|
|
root->root_item.byte_limit = 0;
|
|
btrfs_set_root_bytenr(&root->root_item, leaf->start);
|
|
btrfs_set_root_generation(&root->root_item, trans->transid);
|
|
btrfs_set_root_level(&root->root_item, 0);
|
|
btrfs_set_root_refs(&root->root_item, 1);
|
|
btrfs_set_root_used(&root->root_item, leaf->len);
|
|
btrfs_set_root_last_snapshot(&root->root_item, 0);
|
|
btrfs_set_root_dirid(&root->root_item, 0);
|
|
if (is_fstree(objectid))
|
|
uuid_le_gen(&uuid);
|
|
memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
|
|
root->root_item.drop_level = 0;
|
|
|
|
key.objectid = objectid;
|
|
key.type = BTRFS_ROOT_ITEM_KEY;
|
|
key.offset = 0;
|
|
ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
|
|
if (ret)
|
|
goto fail;
|
|
|
|
btrfs_tree_unlock(leaf);
|
|
|
|
return root;
|
|
|
|
fail:
|
|
if (leaf) {
|
|
btrfs_tree_unlock(leaf);
|
|
free_extent_buffer(root->commit_root);
|
|
free_extent_buffer(leaf);
|
|
}
|
|
kfree(root);
|
|
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
|
|
struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct btrfs_root *root;
|
|
struct extent_buffer *leaf;
|
|
|
|
root = btrfs_alloc_root(fs_info, GFP_NOFS);
|
|
if (!root)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
__setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
|
|
|
|
root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
|
|
root->root_key.type = BTRFS_ROOT_ITEM_KEY;
|
|
root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
|
|
|
|
/*
|
|
* DON'T set REF_COWS for log trees
|
|
*
|
|
* log trees do not get reference counted because they go away
|
|
* before a real commit is actually done. They do store pointers
|
|
* to file data extents, and those reference counts still get
|
|
* updated (along with back refs to the log tree).
|
|
*/
|
|
|
|
leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
|
|
NULL, 0, 0, 0);
|
|
if (IS_ERR(leaf)) {
|
|
kfree(root);
|
|
return ERR_CAST(leaf);
|
|
}
|
|
|
|
root->node = leaf;
|
|
|
|
btrfs_mark_buffer_dirty(root->node);
|
|
btrfs_tree_unlock(root->node);
|
|
return root;
|
|
}
|
|
|
|
int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
|
|
struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct btrfs_root *log_root;
|
|
|
|
log_root = alloc_log_tree(trans, fs_info);
|
|
if (IS_ERR(log_root))
|
|
return PTR_ERR(log_root);
|
|
WARN_ON(fs_info->log_root_tree);
|
|
fs_info->log_root_tree = log_root;
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct btrfs_root *log_root;
|
|
struct btrfs_inode_item *inode_item;
|
|
|
|
log_root = alloc_log_tree(trans, fs_info);
|
|
if (IS_ERR(log_root))
|
|
return PTR_ERR(log_root);
|
|
|
|
log_root->last_trans = trans->transid;
|
|
log_root->root_key.offset = root->root_key.objectid;
|
|
|
|
inode_item = &log_root->root_item.inode;
|
|
btrfs_set_stack_inode_generation(inode_item, 1);
|
|
btrfs_set_stack_inode_size(inode_item, 3);
|
|
btrfs_set_stack_inode_nlink(inode_item, 1);
|
|
btrfs_set_stack_inode_nbytes(inode_item,
|
|
fs_info->nodesize);
|
|
btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
|
|
|
|
btrfs_set_root_node(&log_root->root_item, log_root->node);
|
|
|
|
WARN_ON(root->log_root);
|
|
root->log_root = log_root;
|
|
root->log_transid = 0;
|
|
root->log_transid_committed = -1;
|
|
root->last_log_commit = 0;
|
|
return 0;
|
|
}
|
|
|
|
static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
|
|
struct btrfs_key *key)
|
|
{
|
|
struct btrfs_root *root;
|
|
struct btrfs_fs_info *fs_info = tree_root->fs_info;
|
|
struct btrfs_path *path;
|
|
u64 generation;
|
|
int ret;
|
|
int level;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
root = btrfs_alloc_root(fs_info, GFP_NOFS);
|
|
if (!root) {
|
|
ret = -ENOMEM;
|
|
goto alloc_fail;
|
|
}
|
|
|
|
__setup_root(root, fs_info, key->objectid);
|
|
|
|
ret = btrfs_find_root(tree_root, key, path,
|
|
&root->root_item, &root->root_key);
|
|
if (ret) {
|
|
if (ret > 0)
|
|
ret = -ENOENT;
|
|
goto find_fail;
|
|
}
|
|
|
|
generation = btrfs_root_generation(&root->root_item);
|
|
level = btrfs_root_level(&root->root_item);
|
|
root->node = read_tree_block(fs_info,
|
|
btrfs_root_bytenr(&root->root_item),
|
|
generation, level, NULL);
|
|
if (IS_ERR(root->node)) {
|
|
ret = PTR_ERR(root->node);
|
|
goto find_fail;
|
|
} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
|
|
ret = -EIO;
|
|
free_extent_buffer(root->node);
|
|
goto find_fail;
|
|
}
|
|
root->commit_root = btrfs_root_node(root);
|
|
out:
|
|
btrfs_free_path(path);
|
|
return root;
|
|
|
|
find_fail:
|
|
kfree(root);
|
|
alloc_fail:
|
|
root = ERR_PTR(ret);
|
|
goto out;
|
|
}
|
|
|
|
struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
|
|
struct btrfs_key *location)
|
|
{
|
|
struct btrfs_root *root;
|
|
|
|
root = btrfs_read_tree_root(tree_root, location);
|
|
if (IS_ERR(root))
|
|
return root;
|
|
|
|
if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
|
|
set_bit(BTRFS_ROOT_REF_COWS, &root->state);
|
|
btrfs_check_and_init_root_item(&root->root_item);
|
|
}
|
|
|
|
return root;
|
|
}
|
|
|
|
int btrfs_init_fs_root(struct btrfs_root *root)
|
|
{
|
|
int ret;
|
|
struct btrfs_subvolume_writers *writers;
|
|
|
|
root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
|
|
root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
|
|
GFP_NOFS);
|
|
if (!root->free_ino_pinned || !root->free_ino_ctl) {
|
|
ret = -ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
writers = btrfs_alloc_subvolume_writers();
|
|
if (IS_ERR(writers)) {
|
|
ret = PTR_ERR(writers);
|
|
goto fail;
|
|
}
|
|
root->subv_writers = writers;
|
|
|
|
btrfs_init_free_ino_ctl(root);
|
|
spin_lock_init(&root->ino_cache_lock);
|
|
init_waitqueue_head(&root->ino_cache_wait);
|
|
|
|
ret = get_anon_bdev(&root->anon_dev);
|
|
if (ret)
|
|
goto fail;
|
|
|
|
mutex_lock(&root->objectid_mutex);
|
|
ret = btrfs_find_highest_objectid(root,
|
|
&root->highest_objectid);
|
|
if (ret) {
|
|
mutex_unlock(&root->objectid_mutex);
|
|
goto fail;
|
|
}
|
|
|
|
ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
|
|
|
|
mutex_unlock(&root->objectid_mutex);
|
|
|
|
return 0;
|
|
fail:
|
|
/* The caller is responsible to call btrfs_free_fs_root */
|
|
return ret;
|
|
}
|
|
|
|
struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
|
|
u64 root_id)
|
|
{
|
|
struct btrfs_root *root;
|
|
|
|
spin_lock(&fs_info->fs_roots_radix_lock);
|
|
root = radix_tree_lookup(&fs_info->fs_roots_radix,
|
|
(unsigned long)root_id);
|
|
spin_unlock(&fs_info->fs_roots_radix_lock);
|
|
return root;
|
|
}
|
|
|
|
int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_root *root)
|
|
{
|
|
int ret;
|
|
|
|
ret = radix_tree_preload(GFP_NOFS);
|
|
if (ret)
|
|
return ret;
|
|
|
|
spin_lock(&fs_info->fs_roots_radix_lock);
|
|
ret = radix_tree_insert(&fs_info->fs_roots_radix,
|
|
(unsigned long)root->root_key.objectid,
|
|
root);
|
|
if (ret == 0)
|
|
set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
|
|
spin_unlock(&fs_info->fs_roots_radix_lock);
|
|
radix_tree_preload_end();
|
|
|
|
return ret;
|
|
}
|
|
|
|
struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_key *location,
|
|
bool check_ref)
|
|
{
|
|
struct btrfs_root *root;
|
|
struct btrfs_path *path;
|
|
struct btrfs_key key;
|
|
int ret;
|
|
|
|
if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
|
|
return fs_info->tree_root;
|
|
if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
|
|
return fs_info->extent_root;
|
|
if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
|
|
return fs_info->chunk_root;
|
|
if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
|
|
return fs_info->dev_root;
|
|
if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
|
|
return fs_info->csum_root;
|
|
if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
|
|
return fs_info->quota_root ? fs_info->quota_root :
|
|
ERR_PTR(-ENOENT);
|
|
if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
|
|
return fs_info->uuid_root ? fs_info->uuid_root :
|
|
ERR_PTR(-ENOENT);
|
|
if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
|
|
return fs_info->free_space_root ? fs_info->free_space_root :
|
|
ERR_PTR(-ENOENT);
|
|
again:
|
|
root = btrfs_lookup_fs_root(fs_info, location->objectid);
|
|
if (root) {
|
|
if (check_ref && btrfs_root_refs(&root->root_item) == 0)
|
|
return ERR_PTR(-ENOENT);
|
|
return root;
|
|
}
|
|
|
|
root = btrfs_read_fs_root(fs_info->tree_root, location);
|
|
if (IS_ERR(root))
|
|
return root;
|
|
|
|
if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
|
|
ret = -ENOENT;
|
|
goto fail;
|
|
}
|
|
|
|
ret = btrfs_init_fs_root(root);
|
|
if (ret)
|
|
goto fail;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path) {
|
|
ret = -ENOMEM;
|
|
goto fail;
|
|
}
|
|
key.objectid = BTRFS_ORPHAN_OBJECTID;
|
|
key.type = BTRFS_ORPHAN_ITEM_KEY;
|
|
key.offset = location->objectid;
|
|
|
|
ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
|
|
btrfs_free_path(path);
|
|
if (ret < 0)
|
|
goto fail;
|
|
if (ret == 0)
|
|
set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
|
|
|
|
ret = btrfs_insert_fs_root(fs_info, root);
|
|
if (ret) {
|
|
if (ret == -EEXIST) {
|
|
btrfs_free_fs_root(root);
|
|
goto again;
|
|
}
|
|
goto fail;
|
|
}
|
|
return root;
|
|
fail:
|
|
btrfs_free_fs_root(root);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
static int btrfs_congested_fn(void *congested_data, int bdi_bits)
|
|
{
|
|
struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
|
|
int ret = 0;
|
|
struct btrfs_device *device;
|
|
struct backing_dev_info *bdi;
|
|
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
|
|
if (!device->bdev)
|
|
continue;
|
|
bdi = device->bdev->bd_bdi;
|
|
if (bdi_congested(bdi, bdi_bits)) {
|
|
ret = 1;
|
|
break;
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* called by the kthread helper functions to finally call the bio end_io
|
|
* functions. This is where read checksum verification actually happens
|
|
*/
|
|
static void end_workqueue_fn(struct btrfs_work *work)
|
|
{
|
|
struct bio *bio;
|
|
struct btrfs_end_io_wq *end_io_wq;
|
|
|
|
end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
|
|
bio = end_io_wq->bio;
|
|
|
|
bio->bi_status = end_io_wq->status;
|
|
bio->bi_private = end_io_wq->private;
|
|
bio->bi_end_io = end_io_wq->end_io;
|
|
kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
|
|
bio_endio(bio);
|
|
}
|
|
|
|
static int cleaner_kthread(void *arg)
|
|
{
|
|
struct btrfs_root *root = arg;
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
int again;
|
|
|
|
while (1) {
|
|
again = 0;
|
|
|
|
set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
|
|
|
|
/* Make the cleaner go to sleep early. */
|
|
if (btrfs_need_cleaner_sleep(fs_info))
|
|
goto sleep;
|
|
|
|
/*
|
|
* Do not do anything if we might cause open_ctree() to block
|
|
* before we have finished mounting the filesystem.
|
|
*/
|
|
if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
|
|
goto sleep;
|
|
|
|
if (!mutex_trylock(&fs_info->cleaner_mutex))
|
|
goto sleep;
|
|
|
|
/*
|
|
* Avoid the problem that we change the status of the fs
|
|
* during the above check and trylock.
|
|
*/
|
|
if (btrfs_need_cleaner_sleep(fs_info)) {
|
|
mutex_unlock(&fs_info->cleaner_mutex);
|
|
goto sleep;
|
|
}
|
|
|
|
mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
|
|
btrfs_run_delayed_iputs(fs_info);
|
|
mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
|
|
|
|
again = btrfs_clean_one_deleted_snapshot(root);
|
|
mutex_unlock(&fs_info->cleaner_mutex);
|
|
|
|
/*
|
|
* The defragger has dealt with the R/O remount and umount,
|
|
* needn't do anything special here.
|
|
*/
|
|
btrfs_run_defrag_inodes(fs_info);
|
|
|
|
/*
|
|
* Acquires fs_info->delete_unused_bgs_mutex to avoid racing
|
|
* with relocation (btrfs_relocate_chunk) and relocation
|
|
* acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
|
|
* after acquiring fs_info->delete_unused_bgs_mutex. So we
|
|
* can't hold, nor need to, fs_info->cleaner_mutex when deleting
|
|
* unused block groups.
|
|
*/
|
|
btrfs_delete_unused_bgs(fs_info);
|
|
sleep:
|
|
clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
|
|
if (kthread_should_park())
|
|
kthread_parkme();
|
|
if (kthread_should_stop())
|
|
return 0;
|
|
if (!again) {
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
schedule();
|
|
__set_current_state(TASK_RUNNING);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int transaction_kthread(void *arg)
|
|
{
|
|
struct btrfs_root *root = arg;
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_transaction *cur;
|
|
u64 transid;
|
|
time64_t now;
|
|
unsigned long delay;
|
|
bool cannot_commit;
|
|
|
|
do {
|
|
cannot_commit = false;
|
|
delay = HZ * fs_info->commit_interval;
|
|
mutex_lock(&fs_info->transaction_kthread_mutex);
|
|
|
|
spin_lock(&fs_info->trans_lock);
|
|
cur = fs_info->running_transaction;
|
|
if (!cur) {
|
|
spin_unlock(&fs_info->trans_lock);
|
|
goto sleep;
|
|
}
|
|
|
|
now = ktime_get_seconds();
|
|
if (cur->state < TRANS_STATE_BLOCKED &&
|
|
!test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
|
|
(now < cur->start_time ||
|
|
now - cur->start_time < fs_info->commit_interval)) {
|
|
spin_unlock(&fs_info->trans_lock);
|
|
delay = HZ * 5;
|
|
goto sleep;
|
|
}
|
|
transid = cur->transid;
|
|
spin_unlock(&fs_info->trans_lock);
|
|
|
|
/* If the file system is aborted, this will always fail. */
|
|
trans = btrfs_attach_transaction(root);
|
|
if (IS_ERR(trans)) {
|
|
if (PTR_ERR(trans) != -ENOENT)
|
|
cannot_commit = true;
|
|
goto sleep;
|
|
}
|
|
if (transid == trans->transid) {
|
|
btrfs_commit_transaction(trans);
|
|
} else {
|
|
btrfs_end_transaction(trans);
|
|
}
|
|
sleep:
|
|
wake_up_process(fs_info->cleaner_kthread);
|
|
mutex_unlock(&fs_info->transaction_kthread_mutex);
|
|
|
|
if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
|
|
&fs_info->fs_state)))
|
|
btrfs_cleanup_transaction(fs_info);
|
|
if (!kthread_should_stop() &&
|
|
(!btrfs_transaction_blocked(fs_info) ||
|
|
cannot_commit))
|
|
schedule_timeout_interruptible(delay);
|
|
} while (!kthread_should_stop());
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* this will find the highest generation in the array of
|
|
* root backups. The index of the highest array is returned,
|
|
* or -1 if we can't find anything.
|
|
*
|
|
* We check to make sure the array is valid by comparing the
|
|
* generation of the latest root in the array with the generation
|
|
* in the super block. If they don't match we pitch it.
|
|
*/
|
|
static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
|
|
{
|
|
u64 cur;
|
|
int newest_index = -1;
|
|
struct btrfs_root_backup *root_backup;
|
|
int i;
|
|
|
|
for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
|
|
root_backup = info->super_copy->super_roots + i;
|
|
cur = btrfs_backup_tree_root_gen(root_backup);
|
|
if (cur == newest_gen)
|
|
newest_index = i;
|
|
}
|
|
|
|
/* check to see if we actually wrapped around */
|
|
if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
|
|
root_backup = info->super_copy->super_roots;
|
|
cur = btrfs_backup_tree_root_gen(root_backup);
|
|
if (cur == newest_gen)
|
|
newest_index = 0;
|
|
}
|
|
return newest_index;
|
|
}
|
|
|
|
|
|
/*
|
|
* find the oldest backup so we know where to store new entries
|
|
* in the backup array. This will set the backup_root_index
|
|
* field in the fs_info struct
|
|
*/
|
|
static void find_oldest_super_backup(struct btrfs_fs_info *info,
|
|
u64 newest_gen)
|
|
{
|
|
int newest_index = -1;
|
|
|
|
newest_index = find_newest_super_backup(info, newest_gen);
|
|
/* if there was garbage in there, just move along */
|
|
if (newest_index == -1) {
|
|
info->backup_root_index = 0;
|
|
} else {
|
|
info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* copy all the root pointers into the super backup array.
|
|
* this will bump the backup pointer by one when it is
|
|
* done
|
|
*/
|
|
static void backup_super_roots(struct btrfs_fs_info *info)
|
|
{
|
|
int next_backup;
|
|
struct btrfs_root_backup *root_backup;
|
|
int last_backup;
|
|
|
|
next_backup = info->backup_root_index;
|
|
last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
|
|
BTRFS_NUM_BACKUP_ROOTS;
|
|
|
|
/*
|
|
* just overwrite the last backup if we're at the same generation
|
|
* this happens only at umount
|
|
*/
|
|
root_backup = info->super_for_commit->super_roots + last_backup;
|
|
if (btrfs_backup_tree_root_gen(root_backup) ==
|
|
btrfs_header_generation(info->tree_root->node))
|
|
next_backup = last_backup;
|
|
|
|
root_backup = info->super_for_commit->super_roots + next_backup;
|
|
|
|
/*
|
|
* make sure all of our padding and empty slots get zero filled
|
|
* regardless of which ones we use today
|
|
*/
|
|
memset(root_backup, 0, sizeof(*root_backup));
|
|
|
|
info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
|
|
|
|
btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
|
|
btrfs_set_backup_tree_root_gen(root_backup,
|
|
btrfs_header_generation(info->tree_root->node));
|
|
|
|
btrfs_set_backup_tree_root_level(root_backup,
|
|
btrfs_header_level(info->tree_root->node));
|
|
|
|
btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
|
|
btrfs_set_backup_chunk_root_gen(root_backup,
|
|
btrfs_header_generation(info->chunk_root->node));
|
|
btrfs_set_backup_chunk_root_level(root_backup,
|
|
btrfs_header_level(info->chunk_root->node));
|
|
|
|
btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
|
|
btrfs_set_backup_extent_root_gen(root_backup,
|
|
btrfs_header_generation(info->extent_root->node));
|
|
btrfs_set_backup_extent_root_level(root_backup,
|
|
btrfs_header_level(info->extent_root->node));
|
|
|
|
/*
|
|
* we might commit during log recovery, which happens before we set
|
|
* the fs_root. Make sure it is valid before we fill it in.
|
|
*/
|
|
if (info->fs_root && info->fs_root->node) {
|
|
btrfs_set_backup_fs_root(root_backup,
|
|
info->fs_root->node->start);
|
|
btrfs_set_backup_fs_root_gen(root_backup,
|
|
btrfs_header_generation(info->fs_root->node));
|
|
btrfs_set_backup_fs_root_level(root_backup,
|
|
btrfs_header_level(info->fs_root->node));
|
|
}
|
|
|
|
btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
|
|
btrfs_set_backup_dev_root_gen(root_backup,
|
|
btrfs_header_generation(info->dev_root->node));
|
|
btrfs_set_backup_dev_root_level(root_backup,
|
|
btrfs_header_level(info->dev_root->node));
|
|
|
|
btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
|
|
btrfs_set_backup_csum_root_gen(root_backup,
|
|
btrfs_header_generation(info->csum_root->node));
|
|
btrfs_set_backup_csum_root_level(root_backup,
|
|
btrfs_header_level(info->csum_root->node));
|
|
|
|
btrfs_set_backup_total_bytes(root_backup,
|
|
btrfs_super_total_bytes(info->super_copy));
|
|
btrfs_set_backup_bytes_used(root_backup,
|
|
btrfs_super_bytes_used(info->super_copy));
|
|
btrfs_set_backup_num_devices(root_backup,
|
|
btrfs_super_num_devices(info->super_copy));
|
|
|
|
/*
|
|
* if we don't copy this out to the super_copy, it won't get remembered
|
|
* for the next commit
|
|
*/
|
|
memcpy(&info->super_copy->super_roots,
|
|
&info->super_for_commit->super_roots,
|
|
sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
|
|
}
|
|
|
|
/*
|
|
* this copies info out of the root backup array and back into
|
|
* the in-memory super block. It is meant to help iterate through
|
|
* the array, so you send it the number of backups you've already
|
|
* tried and the last backup index you used.
|
|
*
|
|
* this returns -1 when it has tried all the backups
|
|
*/
|
|
static noinline int next_root_backup(struct btrfs_fs_info *info,
|
|
struct btrfs_super_block *super,
|
|
int *num_backups_tried, int *backup_index)
|
|
{
|
|
struct btrfs_root_backup *root_backup;
|
|
int newest = *backup_index;
|
|
|
|
if (*num_backups_tried == 0) {
|
|
u64 gen = btrfs_super_generation(super);
|
|
|
|
newest = find_newest_super_backup(info, gen);
|
|
if (newest == -1)
|
|
return -1;
|
|
|
|
*backup_index = newest;
|
|
*num_backups_tried = 1;
|
|
} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
|
|
/* we've tried all the backups, all done */
|
|
return -1;
|
|
} else {
|
|
/* jump to the next oldest backup */
|
|
newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
|
|
BTRFS_NUM_BACKUP_ROOTS;
|
|
*backup_index = newest;
|
|
*num_backups_tried += 1;
|
|
}
|
|
root_backup = super->super_roots + newest;
|
|
|
|
btrfs_set_super_generation(super,
|
|
btrfs_backup_tree_root_gen(root_backup));
|
|
btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
|
|
btrfs_set_super_root_level(super,
|
|
btrfs_backup_tree_root_level(root_backup));
|
|
btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
|
|
|
|
/*
|
|
* fixme: the total bytes and num_devices need to match or we should
|
|
* need a fsck
|
|
*/
|
|
btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
|
|
btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
|
|
return 0;
|
|
}
|
|
|
|
/* helper to cleanup workers */
|
|
static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
|
|
{
|
|
btrfs_destroy_workqueue(fs_info->fixup_workers);
|
|
btrfs_destroy_workqueue(fs_info->delalloc_workers);
|
|
btrfs_destroy_workqueue(fs_info->workers);
|
|
btrfs_destroy_workqueue(fs_info->endio_workers);
|
|
btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
|
|
btrfs_destroy_workqueue(fs_info->endio_repair_workers);
|
|
btrfs_destroy_workqueue(fs_info->rmw_workers);
|
|
btrfs_destroy_workqueue(fs_info->endio_write_workers);
|
|
btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
|
|
btrfs_destroy_workqueue(fs_info->submit_workers);
|
|
btrfs_destroy_workqueue(fs_info->delayed_workers);
|
|
btrfs_destroy_workqueue(fs_info->caching_workers);
|
|
btrfs_destroy_workqueue(fs_info->readahead_workers);
|
|
btrfs_destroy_workqueue(fs_info->flush_workers);
|
|
btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
|
|
btrfs_destroy_workqueue(fs_info->extent_workers);
|
|
/*
|
|
* Now that all other work queues are destroyed, we can safely destroy
|
|
* the queues used for metadata I/O, since tasks from those other work
|
|
* queues can do metadata I/O operations.
|
|
*/
|
|
btrfs_destroy_workqueue(fs_info->endio_meta_workers);
|
|
btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
|
|
}
|
|
|
|
static void free_root_extent_buffers(struct btrfs_root *root)
|
|
{
|
|
if (root) {
|
|
free_extent_buffer(root->node);
|
|
free_extent_buffer(root->commit_root);
|
|
root->node = NULL;
|
|
root->commit_root = NULL;
|
|
}
|
|
}
|
|
|
|
/* helper to cleanup tree roots */
|
|
static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
|
|
{
|
|
free_root_extent_buffers(info->tree_root);
|
|
|
|
free_root_extent_buffers(info->dev_root);
|
|
free_root_extent_buffers(info->extent_root);
|
|
free_root_extent_buffers(info->csum_root);
|
|
free_root_extent_buffers(info->quota_root);
|
|
free_root_extent_buffers(info->uuid_root);
|
|
if (chunk_root)
|
|
free_root_extent_buffers(info->chunk_root);
|
|
free_root_extent_buffers(info->free_space_root);
|
|
}
|
|
|
|
void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
|
|
{
|
|
int ret;
|
|
struct btrfs_root *gang[8];
|
|
int i;
|
|
|
|
while (!list_empty(&fs_info->dead_roots)) {
|
|
gang[0] = list_entry(fs_info->dead_roots.next,
|
|
struct btrfs_root, root_list);
|
|
list_del(&gang[0]->root_list);
|
|
|
|
if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
|
|
btrfs_drop_and_free_fs_root(fs_info, gang[0]);
|
|
} else {
|
|
free_extent_buffer(gang[0]->node);
|
|
free_extent_buffer(gang[0]->commit_root);
|
|
btrfs_put_fs_root(gang[0]);
|
|
}
|
|
}
|
|
|
|
while (1) {
|
|
ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
|
|
(void **)gang, 0,
|
|
ARRAY_SIZE(gang));
|
|
if (!ret)
|
|
break;
|
|
for (i = 0; i < ret; i++)
|
|
btrfs_drop_and_free_fs_root(fs_info, gang[i]);
|
|
}
|
|
|
|
if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
|
|
btrfs_free_log_root_tree(NULL, fs_info);
|
|
btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
|
|
}
|
|
}
|
|
|
|
static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
|
|
{
|
|
mutex_init(&fs_info->scrub_lock);
|
|
atomic_set(&fs_info->scrubs_running, 0);
|
|
atomic_set(&fs_info->scrub_pause_req, 0);
|
|
atomic_set(&fs_info->scrubs_paused, 0);
|
|
atomic_set(&fs_info->scrub_cancel_req, 0);
|
|
init_waitqueue_head(&fs_info->scrub_pause_wait);
|
|
fs_info->scrub_workers_refcnt = 0;
|
|
}
|
|
|
|
static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
|
|
{
|
|
spin_lock_init(&fs_info->balance_lock);
|
|
mutex_init(&fs_info->balance_mutex);
|
|
atomic_set(&fs_info->balance_pause_req, 0);
|
|
atomic_set(&fs_info->balance_cancel_req, 0);
|
|
fs_info->balance_ctl = NULL;
|
|
init_waitqueue_head(&fs_info->balance_wait_q);
|
|
}
|
|
|
|
static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct inode *inode = fs_info->btree_inode;
|
|
|
|
inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
|
|
set_nlink(inode, 1);
|
|
/*
|
|
* we set the i_size on the btree inode to the max possible int.
|
|
* the real end of the address space is determined by all of
|
|
* the devices in the system
|
|
*/
|
|
inode->i_size = OFFSET_MAX;
|
|
inode->i_mapping->a_ops = &btree_aops;
|
|
|
|
RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
|
|
extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode);
|
|
BTRFS_I(inode)->io_tree.track_uptodate = 0;
|
|
extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
|
|
|
|
BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
|
|
|
|
BTRFS_I(inode)->root = fs_info->tree_root;
|
|
memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
|
|
set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
|
|
btrfs_insert_inode_hash(inode);
|
|
}
|
|
|
|
static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
|
|
{
|
|
mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
|
|
init_rwsem(&fs_info->dev_replace.rwsem);
|
|
init_waitqueue_head(&fs_info->dev_replace.replace_wait);
|
|
}
|
|
|
|
static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
|
|
{
|
|
spin_lock_init(&fs_info->qgroup_lock);
|
|
mutex_init(&fs_info->qgroup_ioctl_lock);
|
|
fs_info->qgroup_tree = RB_ROOT;
|
|
fs_info->qgroup_op_tree = RB_ROOT;
|
|
INIT_LIST_HEAD(&fs_info->dirty_qgroups);
|
|
fs_info->qgroup_seq = 1;
|
|
fs_info->qgroup_ulist = NULL;
|
|
fs_info->qgroup_rescan_running = false;
|
|
mutex_init(&fs_info->qgroup_rescan_lock);
|
|
}
|
|
|
|
static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_fs_devices *fs_devices)
|
|
{
|
|
u32 max_active = fs_info->thread_pool_size;
|
|
unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
|
|
|
|
fs_info->workers =
|
|
btrfs_alloc_workqueue(fs_info, "worker",
|
|
flags | WQ_HIGHPRI, max_active, 16);
|
|
|
|
fs_info->delalloc_workers =
|
|
btrfs_alloc_workqueue(fs_info, "delalloc",
|
|
flags, max_active, 2);
|
|
|
|
fs_info->flush_workers =
|
|
btrfs_alloc_workqueue(fs_info, "flush_delalloc",
|
|
flags, max_active, 0);
|
|
|
|
fs_info->caching_workers =
|
|
btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
|
|
|
|
/*
|
|
* a higher idle thresh on the submit workers makes it much more
|
|
* likely that bios will be send down in a sane order to the
|
|
* devices
|
|
*/
|
|
fs_info->submit_workers =
|
|
btrfs_alloc_workqueue(fs_info, "submit", flags,
|
|
min_t(u64, fs_devices->num_devices,
|
|
max_active), 64);
|
|
|
|
fs_info->fixup_workers =
|
|
btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
|
|
|
|
/*
|
|
* endios are largely parallel and should have a very
|
|
* low idle thresh
|
|
*/
|
|
fs_info->endio_workers =
|
|
btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
|
|
fs_info->endio_meta_workers =
|
|
btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
|
|
max_active, 4);
|
|
fs_info->endio_meta_write_workers =
|
|
btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
|
|
max_active, 2);
|
|
fs_info->endio_raid56_workers =
|
|
btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
|
|
max_active, 4);
|
|
fs_info->endio_repair_workers =
|
|
btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
|
|
fs_info->rmw_workers =
|
|
btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
|
|
fs_info->endio_write_workers =
|
|
btrfs_alloc_workqueue(fs_info, "endio-write", flags,
|
|
max_active, 2);
|
|
fs_info->endio_freespace_worker =
|
|
btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
|
|
max_active, 0);
|
|
fs_info->delayed_workers =
|
|
btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
|
|
max_active, 0);
|
|
fs_info->readahead_workers =
|
|
btrfs_alloc_workqueue(fs_info, "readahead", flags,
|
|
max_active, 2);
|
|
fs_info->qgroup_rescan_workers =
|
|
btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
|
|
fs_info->extent_workers =
|
|
btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
|
|
min_t(u64, fs_devices->num_devices,
|
|
max_active), 8);
|
|
|
|
if (!(fs_info->workers && fs_info->delalloc_workers &&
|
|
fs_info->submit_workers && fs_info->flush_workers &&
|
|
fs_info->endio_workers && fs_info->endio_meta_workers &&
|
|
fs_info->endio_meta_write_workers &&
|
|
fs_info->endio_repair_workers &&
|
|
fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
|
|
fs_info->endio_freespace_worker && fs_info->rmw_workers &&
|
|
fs_info->caching_workers && fs_info->readahead_workers &&
|
|
fs_info->fixup_workers && fs_info->delayed_workers &&
|
|
fs_info->extent_workers &&
|
|
fs_info->qgroup_rescan_workers)) {
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_fs_devices *fs_devices)
|
|
{
|
|
int ret;
|
|
struct btrfs_root *log_tree_root;
|
|
struct btrfs_super_block *disk_super = fs_info->super_copy;
|
|
u64 bytenr = btrfs_super_log_root(disk_super);
|
|
int level = btrfs_super_log_root_level(disk_super);
|
|
|
|
if (fs_devices->rw_devices == 0) {
|
|
btrfs_warn(fs_info, "log replay required on RO media");
|
|
return -EIO;
|
|
}
|
|
|
|
log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
|
|
if (!log_tree_root)
|
|
return -ENOMEM;
|
|
|
|
__setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
|
|
|
|
log_tree_root->node = read_tree_block(fs_info, bytenr,
|
|
fs_info->generation + 1,
|
|
level, NULL);
|
|
if (IS_ERR(log_tree_root->node)) {
|
|
btrfs_warn(fs_info, "failed to read log tree");
|
|
ret = PTR_ERR(log_tree_root->node);
|
|
kfree(log_tree_root);
|
|
return ret;
|
|
} else if (!extent_buffer_uptodate(log_tree_root->node)) {
|
|
btrfs_err(fs_info, "failed to read log tree");
|
|
free_extent_buffer(log_tree_root->node);
|
|
kfree(log_tree_root);
|
|
return -EIO;
|
|
}
|
|
/* returns with log_tree_root freed on success */
|
|
ret = btrfs_recover_log_trees(log_tree_root);
|
|
if (ret) {
|
|
btrfs_handle_fs_error(fs_info, ret,
|
|
"Failed to recover log tree");
|
|
free_extent_buffer(log_tree_root->node);
|
|
kfree(log_tree_root);
|
|
return ret;
|
|
}
|
|
|
|
if (sb_rdonly(fs_info->sb)) {
|
|
ret = btrfs_commit_super(fs_info);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct btrfs_root *tree_root = fs_info->tree_root;
|
|
struct btrfs_root *root;
|
|
struct btrfs_key location;
|
|
int ret;
|
|
|
|
BUG_ON(!fs_info->tree_root);
|
|
|
|
location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
|
|
location.type = BTRFS_ROOT_ITEM_KEY;
|
|
location.offset = 0;
|
|
|
|
root = btrfs_read_tree_root(tree_root, &location);
|
|
if (IS_ERR(root)) {
|
|
ret = PTR_ERR(root);
|
|
goto out;
|
|
}
|
|
set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
|
|
fs_info->extent_root = root;
|
|
|
|
location.objectid = BTRFS_DEV_TREE_OBJECTID;
|
|
root = btrfs_read_tree_root(tree_root, &location);
|
|
if (IS_ERR(root)) {
|
|
ret = PTR_ERR(root);
|
|
goto out;
|
|
}
|
|
set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
|
|
fs_info->dev_root = root;
|
|
btrfs_init_devices_late(fs_info);
|
|
|
|
location.objectid = BTRFS_CSUM_TREE_OBJECTID;
|
|
root = btrfs_read_tree_root(tree_root, &location);
|
|
if (IS_ERR(root)) {
|
|
ret = PTR_ERR(root);
|
|
goto out;
|
|
}
|
|
set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
|
|
fs_info->csum_root = root;
|
|
|
|
location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
|
|
root = btrfs_read_tree_root(tree_root, &location);
|
|
if (!IS_ERR(root)) {
|
|
set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
|
|
set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
|
|
fs_info->quota_root = root;
|
|
}
|
|
|
|
location.objectid = BTRFS_UUID_TREE_OBJECTID;
|
|
root = btrfs_read_tree_root(tree_root, &location);
|
|
if (IS_ERR(root)) {
|
|
ret = PTR_ERR(root);
|
|
if (ret != -ENOENT)
|
|
goto out;
|
|
} else {
|
|
set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
|
|
fs_info->uuid_root = root;
|
|
}
|
|
|
|
if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
|
|
location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
|
|
root = btrfs_read_tree_root(tree_root, &location);
|
|
if (IS_ERR(root)) {
|
|
ret = PTR_ERR(root);
|
|
goto out;
|
|
}
|
|
set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
|
|
fs_info->free_space_root = root;
|
|
}
|
|
|
|
return 0;
|
|
out:
|
|
btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
|
|
location.objectid, ret);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Real super block validation
|
|
* NOTE: super csum type and incompat features will not be checked here.
|
|
*
|
|
* @sb: super block to check
|
|
* @mirror_num: the super block number to check its bytenr:
|
|
* 0 the primary (1st) sb
|
|
* 1, 2 2nd and 3rd backup copy
|
|
* -1 skip bytenr check
|
|
*/
|
|
static int validate_super(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_super_block *sb, int mirror_num)
|
|
{
|
|
u64 nodesize = btrfs_super_nodesize(sb);
|
|
u64 sectorsize = btrfs_super_sectorsize(sb);
|
|
int ret = 0;
|
|
|
|
if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
|
|
btrfs_err(fs_info, "no valid FS found");
|
|
ret = -EINVAL;
|
|
}
|
|
if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
|
|
btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
|
|
btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
|
|
ret = -EINVAL;
|
|
}
|
|
if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
|
|
btrfs_err(fs_info, "tree_root level too big: %d >= %d",
|
|
btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
|
|
ret = -EINVAL;
|
|
}
|
|
if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
|
|
btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
|
|
btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
|
|
ret = -EINVAL;
|
|
}
|
|
if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
|
|
btrfs_err(fs_info, "log_root level too big: %d >= %d",
|
|
btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Check sectorsize and nodesize first, other check will need it.
|
|
* Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
|
|
*/
|
|
if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
|
|
sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
|
|
btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
|
|
ret = -EINVAL;
|
|
}
|
|
/* Only PAGE SIZE is supported yet */
|
|
if (sectorsize != PAGE_SIZE) {
|
|
btrfs_err(fs_info,
|
|
"sectorsize %llu not supported yet, only support %lu",
|
|
sectorsize, PAGE_SIZE);
|
|
ret = -EINVAL;
|
|
}
|
|
if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
|
|
nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
|
|
btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
|
|
ret = -EINVAL;
|
|
}
|
|
if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
|
|
btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
|
|
le32_to_cpu(sb->__unused_leafsize), nodesize);
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
/* Root alignment check */
|
|
if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
|
|
btrfs_warn(fs_info, "tree_root block unaligned: %llu",
|
|
btrfs_super_root(sb));
|
|
ret = -EINVAL;
|
|
}
|
|
if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
|
|
btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
|
|
btrfs_super_chunk_root(sb));
|
|
ret = -EINVAL;
|
|
}
|
|
if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
|
|
btrfs_warn(fs_info, "log_root block unaligned: %llu",
|
|
btrfs_super_log_root(sb));
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
|
|
BTRFS_FSID_SIZE) != 0) {
|
|
btrfs_err(fs_info,
|
|
"dev_item UUID does not match metadata fsid: %pU != %pU",
|
|
fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Hint to catch really bogus numbers, bitflips or so, more exact checks are
|
|
* done later
|
|
*/
|
|
if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
|
|
btrfs_err(fs_info, "bytes_used is too small %llu",
|
|
btrfs_super_bytes_used(sb));
|
|
ret = -EINVAL;
|
|
}
|
|
if (!is_power_of_2(btrfs_super_stripesize(sb))) {
|
|
btrfs_err(fs_info, "invalid stripesize %u",
|
|
btrfs_super_stripesize(sb));
|
|
ret = -EINVAL;
|
|
}
|
|
if (btrfs_super_num_devices(sb) > (1UL << 31))
|
|
btrfs_warn(fs_info, "suspicious number of devices: %llu",
|
|
btrfs_super_num_devices(sb));
|
|
if (btrfs_super_num_devices(sb) == 0) {
|
|
btrfs_err(fs_info, "number of devices is 0");
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
if (mirror_num >= 0 &&
|
|
btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
|
|
btrfs_err(fs_info, "super offset mismatch %llu != %u",
|
|
btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Obvious sys_chunk_array corruptions, it must hold at least one key
|
|
* and one chunk
|
|
*/
|
|
if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
|
|
btrfs_err(fs_info, "system chunk array too big %u > %u",
|
|
btrfs_super_sys_array_size(sb),
|
|
BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
|
|
ret = -EINVAL;
|
|
}
|
|
if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
|
|
+ sizeof(struct btrfs_chunk)) {
|
|
btrfs_err(fs_info, "system chunk array too small %u < %zu",
|
|
btrfs_super_sys_array_size(sb),
|
|
sizeof(struct btrfs_disk_key)
|
|
+ sizeof(struct btrfs_chunk));
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* The generation is a global counter, we'll trust it more than the others
|
|
* but it's still possible that it's the one that's wrong.
|
|
*/
|
|
if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
|
|
btrfs_warn(fs_info,
|
|
"suspicious: generation < chunk_root_generation: %llu < %llu",
|
|
btrfs_super_generation(sb),
|
|
btrfs_super_chunk_root_generation(sb));
|
|
if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
|
|
&& btrfs_super_cache_generation(sb) != (u64)-1)
|
|
btrfs_warn(fs_info,
|
|
"suspicious: generation < cache_generation: %llu < %llu",
|
|
btrfs_super_generation(sb),
|
|
btrfs_super_cache_generation(sb));
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Validation of super block at mount time.
|
|
* Some checks already done early at mount time, like csum type and incompat
|
|
* flags will be skipped.
|
|
*/
|
|
static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
|
|
{
|
|
return validate_super(fs_info, fs_info->super_copy, 0);
|
|
}
|
|
|
|
/*
|
|
* Validation of super block at write time.
|
|
* Some checks like bytenr check will be skipped as their values will be
|
|
* overwritten soon.
|
|
* Extra checks like csum type and incompat flags will be done here.
|
|
*/
|
|
static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_super_block *sb)
|
|
{
|
|
int ret;
|
|
|
|
ret = validate_super(fs_info, sb, -1);
|
|
if (ret < 0)
|
|
goto out;
|
|
if (btrfs_super_csum_type(sb) != BTRFS_CSUM_TYPE_CRC32) {
|
|
ret = -EUCLEAN;
|
|
btrfs_err(fs_info, "invalid csum type, has %u want %u",
|
|
btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
|
|
goto out;
|
|
}
|
|
if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
|
|
ret = -EUCLEAN;
|
|
btrfs_err(fs_info,
|
|
"invalid incompat flags, has 0x%llx valid mask 0x%llx",
|
|
btrfs_super_incompat_flags(sb),
|
|
(unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
|
|
goto out;
|
|
}
|
|
out:
|
|
if (ret < 0)
|
|
btrfs_err(fs_info,
|
|
"super block corruption detected before writing it to disk");
|
|
return ret;
|
|
}
|
|
|
|
int open_ctree(struct super_block *sb,
|
|
struct btrfs_fs_devices *fs_devices,
|
|
char *options)
|
|
{
|
|
u32 sectorsize;
|
|
u32 nodesize;
|
|
u32 stripesize;
|
|
u64 generation;
|
|
u64 features;
|
|
struct btrfs_key location;
|
|
struct buffer_head *bh;
|
|
struct btrfs_super_block *disk_super;
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(sb);
|
|
struct btrfs_root *tree_root;
|
|
struct btrfs_root *chunk_root;
|
|
int ret;
|
|
int err = -EINVAL;
|
|
int num_backups_tried = 0;
|
|
int backup_index = 0;
|
|
int clear_free_space_tree = 0;
|
|
int level;
|
|
|
|
tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
|
|
chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
|
|
if (!tree_root || !chunk_root) {
|
|
err = -ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
ret = init_srcu_struct(&fs_info->subvol_srcu);
|
|
if (ret) {
|
|
err = ret;
|
|
goto fail;
|
|
}
|
|
|
|
ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
|
|
if (ret) {
|
|
err = ret;
|
|
goto fail_srcu;
|
|
}
|
|
fs_info->dirty_metadata_batch = PAGE_SIZE *
|
|
(1 + ilog2(nr_cpu_ids));
|
|
|
|
ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
|
|
if (ret) {
|
|
err = ret;
|
|
goto fail_dirty_metadata_bytes;
|
|
}
|
|
|
|
ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
|
|
GFP_KERNEL);
|
|
if (ret) {
|
|
err = ret;
|
|
goto fail_delalloc_bytes;
|
|
}
|
|
|
|
INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
|
|
INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
|
|
INIT_LIST_HEAD(&fs_info->trans_list);
|
|
INIT_LIST_HEAD(&fs_info->dead_roots);
|
|
INIT_LIST_HEAD(&fs_info->delayed_iputs);
|
|
INIT_LIST_HEAD(&fs_info->delalloc_roots);
|
|
INIT_LIST_HEAD(&fs_info->caching_block_groups);
|
|
INIT_LIST_HEAD(&fs_info->pending_raid_kobjs);
|
|
spin_lock_init(&fs_info->pending_raid_kobjs_lock);
|
|
spin_lock_init(&fs_info->delalloc_root_lock);
|
|
spin_lock_init(&fs_info->trans_lock);
|
|
spin_lock_init(&fs_info->fs_roots_radix_lock);
|
|
spin_lock_init(&fs_info->delayed_iput_lock);
|
|
spin_lock_init(&fs_info->defrag_inodes_lock);
|
|
spin_lock_init(&fs_info->tree_mod_seq_lock);
|
|
spin_lock_init(&fs_info->super_lock);
|
|
spin_lock_init(&fs_info->qgroup_op_lock);
|
|
spin_lock_init(&fs_info->buffer_lock);
|
|
spin_lock_init(&fs_info->unused_bgs_lock);
|
|
rwlock_init(&fs_info->tree_mod_log_lock);
|
|
mutex_init(&fs_info->unused_bg_unpin_mutex);
|
|
mutex_init(&fs_info->delete_unused_bgs_mutex);
|
|
mutex_init(&fs_info->reloc_mutex);
|
|
mutex_init(&fs_info->delalloc_root_mutex);
|
|
mutex_init(&fs_info->cleaner_delayed_iput_mutex);
|
|
seqlock_init(&fs_info->profiles_lock);
|
|
|
|
INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
|
|
INIT_LIST_HEAD(&fs_info->space_info);
|
|
INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
|
|
INIT_LIST_HEAD(&fs_info->unused_bgs);
|
|
btrfs_mapping_init(&fs_info->mapping_tree);
|
|
btrfs_init_block_rsv(&fs_info->global_block_rsv,
|
|
BTRFS_BLOCK_RSV_GLOBAL);
|
|
btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
|
|
btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
|
|
btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
|
|
btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
|
|
BTRFS_BLOCK_RSV_DELOPS);
|
|
btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
|
|
BTRFS_BLOCK_RSV_DELREFS);
|
|
|
|
atomic_set(&fs_info->async_delalloc_pages, 0);
|
|
atomic_set(&fs_info->defrag_running, 0);
|
|
atomic_set(&fs_info->qgroup_op_seq, 0);
|
|
atomic_set(&fs_info->reada_works_cnt, 0);
|
|
atomic64_set(&fs_info->tree_mod_seq, 0);
|
|
fs_info->sb = sb;
|
|
fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
|
|
fs_info->metadata_ratio = 0;
|
|
fs_info->defrag_inodes = RB_ROOT;
|
|
atomic64_set(&fs_info->free_chunk_space, 0);
|
|
fs_info->tree_mod_log = RB_ROOT;
|
|
fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
|
|
fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
|
|
/* readahead state */
|
|
INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
|
|
spin_lock_init(&fs_info->reada_lock);
|
|
btrfs_init_ref_verify(fs_info);
|
|
|
|
fs_info->thread_pool_size = min_t(unsigned long,
|
|
num_online_cpus() + 2, 8);
|
|
|
|
INIT_LIST_HEAD(&fs_info->ordered_roots);
|
|
spin_lock_init(&fs_info->ordered_root_lock);
|
|
|
|
fs_info->btree_inode = new_inode(sb);
|
|
if (!fs_info->btree_inode) {
|
|
err = -ENOMEM;
|
|
goto fail_bio_counter;
|
|
}
|
|
mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
|
|
|
|
fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
|
|
GFP_KERNEL);
|
|
if (!fs_info->delayed_root) {
|
|
err = -ENOMEM;
|
|
goto fail_iput;
|
|
}
|
|
btrfs_init_delayed_root(fs_info->delayed_root);
|
|
|
|
btrfs_init_scrub(fs_info);
|
|
#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
|
|
fs_info->check_integrity_print_mask = 0;
|
|
#endif
|
|
btrfs_init_balance(fs_info);
|
|
btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
|
|
|
|
sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
|
|
sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
|
|
|
|
btrfs_init_btree_inode(fs_info);
|
|
|
|
spin_lock_init(&fs_info->block_group_cache_lock);
|
|
fs_info->block_group_cache_tree = RB_ROOT;
|
|
fs_info->first_logical_byte = (u64)-1;
|
|
|
|
extent_io_tree_init(&fs_info->freed_extents[0], NULL);
|
|
extent_io_tree_init(&fs_info->freed_extents[1], NULL);
|
|
fs_info->pinned_extents = &fs_info->freed_extents[0];
|
|
set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
|
|
|
|
mutex_init(&fs_info->ordered_operations_mutex);
|
|
mutex_init(&fs_info->tree_log_mutex);
|
|
mutex_init(&fs_info->chunk_mutex);
|
|
mutex_init(&fs_info->transaction_kthread_mutex);
|
|
mutex_init(&fs_info->cleaner_mutex);
|
|
mutex_init(&fs_info->ro_block_group_mutex);
|
|
init_rwsem(&fs_info->commit_root_sem);
|
|
init_rwsem(&fs_info->cleanup_work_sem);
|
|
init_rwsem(&fs_info->subvol_sem);
|
|
sema_init(&fs_info->uuid_tree_rescan_sem, 1);
|
|
|
|
btrfs_init_dev_replace_locks(fs_info);
|
|
btrfs_init_qgroup(fs_info);
|
|
|
|
btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
|
|
btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
|
|
|
|
init_waitqueue_head(&fs_info->transaction_throttle);
|
|
init_waitqueue_head(&fs_info->transaction_wait);
|
|
init_waitqueue_head(&fs_info->transaction_blocked_wait);
|
|
init_waitqueue_head(&fs_info->async_submit_wait);
|
|
|
|
INIT_LIST_HEAD(&fs_info->pinned_chunks);
|
|
|
|
/* Usable values until the real ones are cached from the superblock */
|
|
fs_info->nodesize = 4096;
|
|
fs_info->sectorsize = 4096;
|
|
fs_info->stripesize = 4096;
|
|
|
|
spin_lock_init(&fs_info->swapfile_pins_lock);
|
|
fs_info->swapfile_pins = RB_ROOT;
|
|
|
|
ret = btrfs_alloc_stripe_hash_table(fs_info);
|
|
if (ret) {
|
|
err = ret;
|
|
goto fail_alloc;
|
|
}
|
|
|
|
__setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
|
|
|
|
invalidate_bdev(fs_devices->latest_bdev);
|
|
|
|
/*
|
|
* Read super block and check the signature bytes only
|
|
*/
|
|
bh = btrfs_read_dev_super(fs_devices->latest_bdev);
|
|
if (IS_ERR(bh)) {
|
|
err = PTR_ERR(bh);
|
|
goto fail_alloc;
|
|
}
|
|
|
|
/*
|
|
* We want to check superblock checksum, the type is stored inside.
|
|
* Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
|
|
*/
|
|
if (btrfs_check_super_csum(fs_info, bh->b_data)) {
|
|
btrfs_err(fs_info, "superblock checksum mismatch");
|
|
err = -EINVAL;
|
|
brelse(bh);
|
|
goto fail_alloc;
|
|
}
|
|
|
|
/*
|
|
* super_copy is zeroed at allocation time and we never touch the
|
|
* following bytes up to INFO_SIZE, the checksum is calculated from
|
|
* the whole block of INFO_SIZE
|
|
*/
|
|
memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
|
|
brelse(bh);
|
|
|
|
disk_super = fs_info->super_copy;
|
|
|
|
ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
|
|
BTRFS_FSID_SIZE));
|
|
|
|
if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
|
|
ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
|
|
fs_info->super_copy->metadata_uuid,
|
|
BTRFS_FSID_SIZE));
|
|
}
|
|
|
|
features = btrfs_super_flags(disk_super);
|
|
if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
|
|
features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
|
|
btrfs_set_super_flags(disk_super, features);
|
|
btrfs_info(fs_info,
|
|
"found metadata UUID change in progress flag, clearing");
|
|
}
|
|
|
|
memcpy(fs_info->super_for_commit, fs_info->super_copy,
|
|
sizeof(*fs_info->super_for_commit));
|
|
|
|
ret = btrfs_validate_mount_super(fs_info);
|
|
if (ret) {
|
|
btrfs_err(fs_info, "superblock contains fatal errors");
|
|
err = -EINVAL;
|
|
goto fail_alloc;
|
|
}
|
|
|
|
if (!btrfs_super_root(disk_super))
|
|
goto fail_alloc;
|
|
|
|
/* check FS state, whether FS is broken. */
|
|
if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
|
|
set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
|
|
|
|
/*
|
|
* run through our array of backup supers and setup
|
|
* our ring pointer to the oldest one
|
|
*/
|
|
generation = btrfs_super_generation(disk_super);
|
|
find_oldest_super_backup(fs_info, generation);
|
|
|
|
/*
|
|
* In the long term, we'll store the compression type in the super
|
|
* block, and it'll be used for per file compression control.
|
|
*/
|
|
fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
|
|
|
|
ret = btrfs_parse_options(fs_info, options, sb->s_flags);
|
|
if (ret) {
|
|
err = ret;
|
|
goto fail_alloc;
|
|
}
|
|
|
|
features = btrfs_super_incompat_flags(disk_super) &
|
|
~BTRFS_FEATURE_INCOMPAT_SUPP;
|
|
if (features) {
|
|
btrfs_err(fs_info,
|
|
"cannot mount because of unsupported optional features (%llx)",
|
|
features);
|
|
err = -EINVAL;
|
|
goto fail_alloc;
|
|
}
|
|
|
|
features = btrfs_super_incompat_flags(disk_super);
|
|
features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
|
|
if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
|
|
features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
|
|
else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
|
|
features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
|
|
|
|
if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
|
|
btrfs_info(fs_info, "has skinny extents");
|
|
|
|
/*
|
|
* flag our filesystem as having big metadata blocks if
|
|
* they are bigger than the page size
|
|
*/
|
|
if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
|
|
if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
|
|
btrfs_info(fs_info,
|
|
"flagging fs with big metadata feature");
|
|
features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
|
|
}
|
|
|
|
nodesize = btrfs_super_nodesize(disk_super);
|
|
sectorsize = btrfs_super_sectorsize(disk_super);
|
|
stripesize = sectorsize;
|
|
fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
|
|
fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
|
|
|
|
/* Cache block sizes */
|
|
fs_info->nodesize = nodesize;
|
|
fs_info->sectorsize = sectorsize;
|
|
fs_info->stripesize = stripesize;
|
|
|
|
/*
|
|
* mixed block groups end up with duplicate but slightly offset
|
|
* extent buffers for the same range. It leads to corruptions
|
|
*/
|
|
if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
|
|
(sectorsize != nodesize)) {
|
|
btrfs_err(fs_info,
|
|
"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
|
|
nodesize, sectorsize);
|
|
goto fail_alloc;
|
|
}
|
|
|
|
/*
|
|
* Needn't use the lock because there is no other task which will
|
|
* update the flag.
|
|
*/
|
|
btrfs_set_super_incompat_flags(disk_super, features);
|
|
|
|
features = btrfs_super_compat_ro_flags(disk_super) &
|
|
~BTRFS_FEATURE_COMPAT_RO_SUPP;
|
|
if (!sb_rdonly(sb) && features) {
|
|
btrfs_err(fs_info,
|
|
"cannot mount read-write because of unsupported optional features (%llx)",
|
|
features);
|
|
err = -EINVAL;
|
|
goto fail_alloc;
|
|
}
|
|
|
|
ret = btrfs_init_workqueues(fs_info, fs_devices);
|
|
if (ret) {
|
|
err = ret;
|
|
goto fail_sb_buffer;
|
|
}
|
|
|
|
sb->s_bdi->congested_fn = btrfs_congested_fn;
|
|
sb->s_bdi->congested_data = fs_info;
|
|
sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
|
|
sb->s_bdi->ra_pages = VM_MAX_READAHEAD * SZ_1K / PAGE_SIZE;
|
|
sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
|
|
sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
|
|
|
|
sb->s_blocksize = sectorsize;
|
|
sb->s_blocksize_bits = blksize_bits(sectorsize);
|
|
memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
|
|
|
|
mutex_lock(&fs_info->chunk_mutex);
|
|
ret = btrfs_read_sys_array(fs_info);
|
|
mutex_unlock(&fs_info->chunk_mutex);
|
|
if (ret) {
|
|
btrfs_err(fs_info, "failed to read the system array: %d", ret);
|
|
goto fail_sb_buffer;
|
|
}
|
|
|
|
generation = btrfs_super_chunk_root_generation(disk_super);
|
|
level = btrfs_super_chunk_root_level(disk_super);
|
|
|
|
__setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
|
|
|
|
chunk_root->node = read_tree_block(fs_info,
|
|
btrfs_super_chunk_root(disk_super),
|
|
generation, level, NULL);
|
|
if (IS_ERR(chunk_root->node) ||
|
|
!extent_buffer_uptodate(chunk_root->node)) {
|
|
btrfs_err(fs_info, "failed to read chunk root");
|
|
if (!IS_ERR(chunk_root->node))
|
|
free_extent_buffer(chunk_root->node);
|
|
chunk_root->node = NULL;
|
|
goto fail_tree_roots;
|
|
}
|
|
btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
|
|
chunk_root->commit_root = btrfs_root_node(chunk_root);
|
|
|
|
read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
|
|
btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
|
|
|
|
ret = btrfs_read_chunk_tree(fs_info);
|
|
if (ret) {
|
|
btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
|
|
goto fail_tree_roots;
|
|
}
|
|
|
|
/*
|
|
* Keep the devid that is marked to be the target device for the
|
|
* device replace procedure
|
|
*/
|
|
btrfs_free_extra_devids(fs_devices, 0);
|
|
|
|
if (!fs_devices->latest_bdev) {
|
|
btrfs_err(fs_info, "failed to read devices");
|
|
goto fail_tree_roots;
|
|
}
|
|
|
|
retry_root_backup:
|
|
generation = btrfs_super_generation(disk_super);
|
|
level = btrfs_super_root_level(disk_super);
|
|
|
|
tree_root->node = read_tree_block(fs_info,
|
|
btrfs_super_root(disk_super),
|
|
generation, level, NULL);
|
|
if (IS_ERR(tree_root->node) ||
|
|
!extent_buffer_uptodate(tree_root->node)) {
|
|
btrfs_warn(fs_info, "failed to read tree root");
|
|
if (!IS_ERR(tree_root->node))
|
|
free_extent_buffer(tree_root->node);
|
|
tree_root->node = NULL;
|
|
goto recovery_tree_root;
|
|
}
|
|
|
|
btrfs_set_root_node(&tree_root->root_item, tree_root->node);
|
|
tree_root->commit_root = btrfs_root_node(tree_root);
|
|
btrfs_set_root_refs(&tree_root->root_item, 1);
|
|
|
|
mutex_lock(&tree_root->objectid_mutex);
|
|
ret = btrfs_find_highest_objectid(tree_root,
|
|
&tree_root->highest_objectid);
|
|
if (ret) {
|
|
mutex_unlock(&tree_root->objectid_mutex);
|
|
goto recovery_tree_root;
|
|
}
|
|
|
|
ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
|
|
|
|
mutex_unlock(&tree_root->objectid_mutex);
|
|
|
|
ret = btrfs_read_roots(fs_info);
|
|
if (ret)
|
|
goto recovery_tree_root;
|
|
|
|
fs_info->generation = generation;
|
|
fs_info->last_trans_committed = generation;
|
|
|
|
ret = btrfs_verify_dev_extents(fs_info);
|
|
if (ret) {
|
|
btrfs_err(fs_info,
|
|
"failed to verify dev extents against chunks: %d",
|
|
ret);
|
|
goto fail_block_groups;
|
|
}
|
|
ret = btrfs_recover_balance(fs_info);
|
|
if (ret) {
|
|
btrfs_err(fs_info, "failed to recover balance: %d", ret);
|
|
goto fail_block_groups;
|
|
}
|
|
|
|
ret = btrfs_init_dev_stats(fs_info);
|
|
if (ret) {
|
|
btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
|
|
goto fail_block_groups;
|
|
}
|
|
|
|
ret = btrfs_init_dev_replace(fs_info);
|
|
if (ret) {
|
|
btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
|
|
goto fail_block_groups;
|
|
}
|
|
|
|
btrfs_free_extra_devids(fs_devices, 1);
|
|
|
|
ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
|
|
if (ret) {
|
|
btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
|
|
ret);
|
|
goto fail_block_groups;
|
|
}
|
|
|
|
ret = btrfs_sysfs_add_device(fs_devices);
|
|
if (ret) {
|
|
btrfs_err(fs_info, "failed to init sysfs device interface: %d",
|
|
ret);
|
|
goto fail_fsdev_sysfs;
|
|
}
|
|
|
|
ret = btrfs_sysfs_add_mounted(fs_info);
|
|
if (ret) {
|
|
btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
|
|
goto fail_fsdev_sysfs;
|
|
}
|
|
|
|
ret = btrfs_init_space_info(fs_info);
|
|
if (ret) {
|
|
btrfs_err(fs_info, "failed to initialize space info: %d", ret);
|
|
goto fail_sysfs;
|
|
}
|
|
|
|
ret = btrfs_read_block_groups(fs_info);
|
|
if (ret) {
|
|
btrfs_err(fs_info, "failed to read block groups: %d", ret);
|
|
goto fail_sysfs;
|
|
}
|
|
|
|
if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
|
|
btrfs_warn(fs_info,
|
|
"writable mount is not allowed due to too many missing devices");
|
|
goto fail_sysfs;
|
|
}
|
|
|
|
fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
|
|
"btrfs-cleaner");
|
|
if (IS_ERR(fs_info->cleaner_kthread))
|
|
goto fail_sysfs;
|
|
|
|
fs_info->transaction_kthread = kthread_run(transaction_kthread,
|
|
tree_root,
|
|
"btrfs-transaction");
|
|
if (IS_ERR(fs_info->transaction_kthread))
|
|
goto fail_cleaner;
|
|
|
|
if (!btrfs_test_opt(fs_info, NOSSD) &&
|
|
!fs_info->fs_devices->rotating) {
|
|
btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
|
|
}
|
|
|
|
/*
|
|
* Mount does not set all options immediately, we can do it now and do
|
|
* not have to wait for transaction commit
|
|
*/
|
|
btrfs_apply_pending_changes(fs_info);
|
|
|
|
#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
|
|
if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
|
|
ret = btrfsic_mount(fs_info, fs_devices,
|
|
btrfs_test_opt(fs_info,
|
|
CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
|
|
1 : 0,
|
|
fs_info->check_integrity_print_mask);
|
|
if (ret)
|
|
btrfs_warn(fs_info,
|
|
"failed to initialize integrity check module: %d",
|
|
ret);
|
|
}
|
|
#endif
|
|
ret = btrfs_read_qgroup_config(fs_info);
|
|
if (ret)
|
|
goto fail_trans_kthread;
|
|
|
|
if (btrfs_build_ref_tree(fs_info))
|
|
btrfs_err(fs_info, "couldn't build ref tree");
|
|
|
|
/* do not make disk changes in broken FS or nologreplay is given */
|
|
if (btrfs_super_log_root(disk_super) != 0 &&
|
|
!btrfs_test_opt(fs_info, NOLOGREPLAY)) {
|
|
ret = btrfs_replay_log(fs_info, fs_devices);
|
|
if (ret) {
|
|
err = ret;
|
|
goto fail_qgroup;
|
|
}
|
|
}
|
|
|
|
ret = btrfs_find_orphan_roots(fs_info);
|
|
if (ret)
|
|
goto fail_qgroup;
|
|
|
|
if (!sb_rdonly(sb)) {
|
|
ret = btrfs_cleanup_fs_roots(fs_info);
|
|
if (ret)
|
|
goto fail_qgroup;
|
|
|
|
mutex_lock(&fs_info->cleaner_mutex);
|
|
ret = btrfs_recover_relocation(tree_root);
|
|
mutex_unlock(&fs_info->cleaner_mutex);
|
|
if (ret < 0) {
|
|
btrfs_warn(fs_info, "failed to recover relocation: %d",
|
|
ret);
|
|
err = -EINVAL;
|
|
goto fail_qgroup;
|
|
}
|
|
}
|
|
|
|
location.objectid = BTRFS_FS_TREE_OBJECTID;
|
|
location.type = BTRFS_ROOT_ITEM_KEY;
|
|
location.offset = 0;
|
|
|
|
fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
|
|
if (IS_ERR(fs_info->fs_root)) {
|
|
err = PTR_ERR(fs_info->fs_root);
|
|
btrfs_warn(fs_info, "failed to read fs tree: %d", err);
|
|
goto fail_qgroup;
|
|
}
|
|
|
|
if (sb_rdonly(sb))
|
|
return 0;
|
|
|
|
if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
|
|
btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
|
|
clear_free_space_tree = 1;
|
|
} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
|
|
!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
|
|
btrfs_warn(fs_info, "free space tree is invalid");
|
|
clear_free_space_tree = 1;
|
|
}
|
|
|
|
if (clear_free_space_tree) {
|
|
btrfs_info(fs_info, "clearing free space tree");
|
|
ret = btrfs_clear_free_space_tree(fs_info);
|
|
if (ret) {
|
|
btrfs_warn(fs_info,
|
|
"failed to clear free space tree: %d", ret);
|
|
close_ctree(fs_info);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
|
|
!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
|
|
btrfs_info(fs_info, "creating free space tree");
|
|
ret = btrfs_create_free_space_tree(fs_info);
|
|
if (ret) {
|
|
btrfs_warn(fs_info,
|
|
"failed to create free space tree: %d", ret);
|
|
close_ctree(fs_info);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
down_read(&fs_info->cleanup_work_sem);
|
|
if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
|
|
(ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
|
|
up_read(&fs_info->cleanup_work_sem);
|
|
close_ctree(fs_info);
|
|
return ret;
|
|
}
|
|
up_read(&fs_info->cleanup_work_sem);
|
|
|
|
ret = btrfs_resume_balance_async(fs_info);
|
|
if (ret) {
|
|
btrfs_warn(fs_info, "failed to resume balance: %d", ret);
|
|
close_ctree(fs_info);
|
|
return ret;
|
|
}
|
|
|
|
ret = btrfs_resume_dev_replace_async(fs_info);
|
|
if (ret) {
|
|
btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
|
|
close_ctree(fs_info);
|
|
return ret;
|
|
}
|
|
|
|
btrfs_qgroup_rescan_resume(fs_info);
|
|
|
|
if (!fs_info->uuid_root) {
|
|
btrfs_info(fs_info, "creating UUID tree");
|
|
ret = btrfs_create_uuid_tree(fs_info);
|
|
if (ret) {
|
|
btrfs_warn(fs_info,
|
|
"failed to create the UUID tree: %d", ret);
|
|
close_ctree(fs_info);
|
|
return ret;
|
|
}
|
|
} else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
|
|
fs_info->generation !=
|
|
btrfs_super_uuid_tree_generation(disk_super)) {
|
|
btrfs_info(fs_info, "checking UUID tree");
|
|
ret = btrfs_check_uuid_tree(fs_info);
|
|
if (ret) {
|
|
btrfs_warn(fs_info,
|
|
"failed to check the UUID tree: %d", ret);
|
|
close_ctree(fs_info);
|
|
return ret;
|
|
}
|
|
} else {
|
|
set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
|
|
}
|
|
set_bit(BTRFS_FS_OPEN, &fs_info->flags);
|
|
|
|
/*
|
|
* backuproot only affect mount behavior, and if open_ctree succeeded,
|
|
* no need to keep the flag
|
|
*/
|
|
btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
|
|
|
|
return 0;
|
|
|
|
fail_qgroup:
|
|
btrfs_free_qgroup_config(fs_info);
|
|
fail_trans_kthread:
|
|
kthread_stop(fs_info->transaction_kthread);
|
|
btrfs_cleanup_transaction(fs_info);
|
|
btrfs_free_fs_roots(fs_info);
|
|
fail_cleaner:
|
|
kthread_stop(fs_info->cleaner_kthread);
|
|
|
|
/*
|
|
* make sure we're done with the btree inode before we stop our
|
|
* kthreads
|
|
*/
|
|
filemap_write_and_wait(fs_info->btree_inode->i_mapping);
|
|
|
|
fail_sysfs:
|
|
btrfs_sysfs_remove_mounted(fs_info);
|
|
|
|
fail_fsdev_sysfs:
|
|
btrfs_sysfs_remove_fsid(fs_info->fs_devices);
|
|
|
|
fail_block_groups:
|
|
btrfs_put_block_group_cache(fs_info);
|
|
|
|
fail_tree_roots:
|
|
free_root_pointers(fs_info, 1);
|
|
invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
|
|
|
|
fail_sb_buffer:
|
|
btrfs_stop_all_workers(fs_info);
|
|
btrfs_free_block_groups(fs_info);
|
|
fail_alloc:
|
|
fail_iput:
|
|
btrfs_mapping_tree_free(&fs_info->mapping_tree);
|
|
|
|
iput(fs_info->btree_inode);
|
|
fail_bio_counter:
|
|
percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
|
|
fail_delalloc_bytes:
|
|
percpu_counter_destroy(&fs_info->delalloc_bytes);
|
|
fail_dirty_metadata_bytes:
|
|
percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
|
|
fail_srcu:
|
|
cleanup_srcu_struct(&fs_info->subvol_srcu);
|
|
fail:
|
|
btrfs_free_stripe_hash_table(fs_info);
|
|
btrfs_close_devices(fs_info->fs_devices);
|
|
return err;
|
|
|
|
recovery_tree_root:
|
|
if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
|
|
goto fail_tree_roots;
|
|
|
|
free_root_pointers(fs_info, 0);
|
|
|
|
/* don't use the log in recovery mode, it won't be valid */
|
|
btrfs_set_super_log_root(disk_super, 0);
|
|
|
|
/* we can't trust the free space cache either */
|
|
btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
|
|
|
|
ret = next_root_backup(fs_info, fs_info->super_copy,
|
|
&num_backups_tried, &backup_index);
|
|
if (ret == -1)
|
|
goto fail_block_groups;
|
|
goto retry_root_backup;
|
|
}
|
|
ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
|
|
|
|
static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
|
|
{
|
|
if (uptodate) {
|
|
set_buffer_uptodate(bh);
|
|
} else {
|
|
struct btrfs_device *device = (struct btrfs_device *)
|
|
bh->b_private;
|
|
|
|
btrfs_warn_rl_in_rcu(device->fs_info,
|
|
"lost page write due to IO error on %s",
|
|
rcu_str_deref(device->name));
|
|
/* note, we don't set_buffer_write_io_error because we have
|
|
* our own ways of dealing with the IO errors
|
|
*/
|
|
clear_buffer_uptodate(bh);
|
|
btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
|
|
}
|
|
unlock_buffer(bh);
|
|
put_bh(bh);
|
|
}
|
|
|
|
int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
|
|
struct buffer_head **bh_ret)
|
|
{
|
|
struct buffer_head *bh;
|
|
struct btrfs_super_block *super;
|
|
u64 bytenr;
|
|
|
|
bytenr = btrfs_sb_offset(copy_num);
|
|
if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
|
|
return -EINVAL;
|
|
|
|
bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
|
|
/*
|
|
* If we fail to read from the underlying devices, as of now
|
|
* the best option we have is to mark it EIO.
|
|
*/
|
|
if (!bh)
|
|
return -EIO;
|
|
|
|
super = (struct btrfs_super_block *)bh->b_data;
|
|
if (btrfs_super_bytenr(super) != bytenr ||
|
|
btrfs_super_magic(super) != BTRFS_MAGIC) {
|
|
brelse(bh);
|
|
return -EINVAL;
|
|
}
|
|
|
|
*bh_ret = bh;
|
|
return 0;
|
|
}
|
|
|
|
|
|
struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
|
|
{
|
|
struct buffer_head *bh;
|
|
struct buffer_head *latest = NULL;
|
|
struct btrfs_super_block *super;
|
|
int i;
|
|
u64 transid = 0;
|
|
int ret = -EINVAL;
|
|
|
|
/* we would like to check all the supers, but that would make
|
|
* a btrfs mount succeed after a mkfs from a different FS.
|
|
* So, we need to add a special mount option to scan for
|
|
* later supers, using BTRFS_SUPER_MIRROR_MAX instead
|
|
*/
|
|
for (i = 0; i < 1; i++) {
|
|
ret = btrfs_read_dev_one_super(bdev, i, &bh);
|
|
if (ret)
|
|
continue;
|
|
|
|
super = (struct btrfs_super_block *)bh->b_data;
|
|
|
|
if (!latest || btrfs_super_generation(super) > transid) {
|
|
brelse(latest);
|
|
latest = bh;
|
|
transid = btrfs_super_generation(super);
|
|
} else {
|
|
brelse(bh);
|
|
}
|
|
}
|
|
|
|
if (!latest)
|
|
return ERR_PTR(ret);
|
|
|
|
return latest;
|
|
}
|
|
|
|
/*
|
|
* Write superblock @sb to the @device. Do not wait for completion, all the
|
|
* buffer heads we write are pinned.
|
|
*
|
|
* Write @max_mirrors copies of the superblock, where 0 means default that fit
|
|
* the expected device size at commit time. Note that max_mirrors must be
|
|
* same for write and wait phases.
|
|
*
|
|
* Return number of errors when buffer head is not found or submission fails.
|
|
*/
|
|
static int write_dev_supers(struct btrfs_device *device,
|
|
struct btrfs_super_block *sb, int max_mirrors)
|
|
{
|
|
struct buffer_head *bh;
|
|
int i;
|
|
int ret;
|
|
int errors = 0;
|
|
u32 crc;
|
|
u64 bytenr;
|
|
int op_flags;
|
|
|
|
if (max_mirrors == 0)
|
|
max_mirrors = BTRFS_SUPER_MIRROR_MAX;
|
|
|
|
for (i = 0; i < max_mirrors; i++) {
|
|
bytenr = btrfs_sb_offset(i);
|
|
if (bytenr + BTRFS_SUPER_INFO_SIZE >=
|
|
device->commit_total_bytes)
|
|
break;
|
|
|
|
btrfs_set_super_bytenr(sb, bytenr);
|
|
|
|
crc = ~(u32)0;
|
|
crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc,
|
|
BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
|
|
btrfs_csum_final(crc, sb->csum);
|
|
|
|
/* One reference for us, and we leave it for the caller */
|
|
bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
|
|
BTRFS_SUPER_INFO_SIZE);
|
|
if (!bh) {
|
|
btrfs_err(device->fs_info,
|
|
"couldn't get super buffer head for bytenr %llu",
|
|
bytenr);
|
|
errors++;
|
|
continue;
|
|
}
|
|
|
|
memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
|
|
|
|
/* one reference for submit_bh */
|
|
get_bh(bh);
|
|
|
|
set_buffer_uptodate(bh);
|
|
lock_buffer(bh);
|
|
bh->b_end_io = btrfs_end_buffer_write_sync;
|
|
bh->b_private = device;
|
|
|
|
/*
|
|
* we fua the first super. The others we allow
|
|
* to go down lazy.
|
|
*/
|
|
op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
|
|
if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
|
|
op_flags |= REQ_FUA;
|
|
ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
|
|
if (ret)
|
|
errors++;
|
|
}
|
|
return errors < i ? 0 : -1;
|
|
}
|
|
|
|
/*
|
|
* Wait for write completion of superblocks done by write_dev_supers,
|
|
* @max_mirrors same for write and wait phases.
|
|
*
|
|
* Return number of errors when buffer head is not found or not marked up to
|
|
* date.
|
|
*/
|
|
static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
|
|
{
|
|
struct buffer_head *bh;
|
|
int i;
|
|
int errors = 0;
|
|
bool primary_failed = false;
|
|
u64 bytenr;
|
|
|
|
if (max_mirrors == 0)
|
|
max_mirrors = BTRFS_SUPER_MIRROR_MAX;
|
|
|
|
for (i = 0; i < max_mirrors; i++) {
|
|
bytenr = btrfs_sb_offset(i);
|
|
if (bytenr + BTRFS_SUPER_INFO_SIZE >=
|
|
device->commit_total_bytes)
|
|
break;
|
|
|
|
bh = __find_get_block(device->bdev,
|
|
bytenr / BTRFS_BDEV_BLOCKSIZE,
|
|
BTRFS_SUPER_INFO_SIZE);
|
|
if (!bh) {
|
|
errors++;
|
|
if (i == 0)
|
|
primary_failed = true;
|
|
continue;
|
|
}
|
|
wait_on_buffer(bh);
|
|
if (!buffer_uptodate(bh)) {
|
|
errors++;
|
|
if (i == 0)
|
|
primary_failed = true;
|
|
}
|
|
|
|
/* drop our reference */
|
|
brelse(bh);
|
|
|
|
/* drop the reference from the writing run */
|
|
brelse(bh);
|
|
}
|
|
|
|
/* log error, force error return */
|
|
if (primary_failed) {
|
|
btrfs_err(device->fs_info, "error writing primary super block to device %llu",
|
|
device->devid);
|
|
return -1;
|
|
}
|
|
|
|
return errors < i ? 0 : -1;
|
|
}
|
|
|
|
/*
|
|
* endio for the write_dev_flush, this will wake anyone waiting
|
|
* for the barrier when it is done
|
|
*/
|
|
static void btrfs_end_empty_barrier(struct bio *bio)
|
|
{
|
|
complete(bio->bi_private);
|
|
}
|
|
|
|
/*
|
|
* Submit a flush request to the device if it supports it. Error handling is
|
|
* done in the waiting counterpart.
|
|
*/
|
|
static void write_dev_flush(struct btrfs_device *device)
|
|
{
|
|
struct request_queue *q = bdev_get_queue(device->bdev);
|
|
struct bio *bio = device->flush_bio;
|
|
|
|
if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
|
|
return;
|
|
|
|
bio_reset(bio);
|
|
bio->bi_end_io = btrfs_end_empty_barrier;
|
|
bio_set_dev(bio, device->bdev);
|
|
bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
|
|
init_completion(&device->flush_wait);
|
|
bio->bi_private = &device->flush_wait;
|
|
|
|
btrfsic_submit_bio(bio);
|
|
set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
|
|
}
|
|
|
|
/*
|
|
* If the flush bio has been submitted by write_dev_flush, wait for it.
|
|
*/
|
|
static blk_status_t wait_dev_flush(struct btrfs_device *device)
|
|
{
|
|
struct bio *bio = device->flush_bio;
|
|
|
|
if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
|
|
return BLK_STS_OK;
|
|
|
|
clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
|
|
wait_for_completion_io(&device->flush_wait);
|
|
|
|
return bio->bi_status;
|
|
}
|
|
|
|
static int check_barrier_error(struct btrfs_fs_info *fs_info)
|
|
{
|
|
if (!btrfs_check_rw_degradable(fs_info, NULL))
|
|
return -EIO;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* send an empty flush down to each device in parallel,
|
|
* then wait for them
|
|
*/
|
|
static int barrier_all_devices(struct btrfs_fs_info *info)
|
|
{
|
|
struct list_head *head;
|
|
struct btrfs_device *dev;
|
|
int errors_wait = 0;
|
|
blk_status_t ret;
|
|
|
|
lockdep_assert_held(&info->fs_devices->device_list_mutex);
|
|
/* send down all the barriers */
|
|
head = &info->fs_devices->devices;
|
|
list_for_each_entry(dev, head, dev_list) {
|
|
if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
|
|
continue;
|
|
if (!dev->bdev)
|
|
continue;
|
|
if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
|
|
!test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
|
|
continue;
|
|
|
|
write_dev_flush(dev);
|
|
dev->last_flush_error = BLK_STS_OK;
|
|
}
|
|
|
|
/* wait for all the barriers */
|
|
list_for_each_entry(dev, head, dev_list) {
|
|
if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
|
|
continue;
|
|
if (!dev->bdev) {
|
|
errors_wait++;
|
|
continue;
|
|
}
|
|
if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
|
|
!test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
|
|
continue;
|
|
|
|
ret = wait_dev_flush(dev);
|
|
if (ret) {
|
|
dev->last_flush_error = ret;
|
|
btrfs_dev_stat_inc_and_print(dev,
|
|
BTRFS_DEV_STAT_FLUSH_ERRS);
|
|
errors_wait++;
|
|
}
|
|
}
|
|
|
|
if (errors_wait) {
|
|
/*
|
|
* At some point we need the status of all disks
|
|
* to arrive at the volume status. So error checking
|
|
* is being pushed to a separate loop.
|
|
*/
|
|
return check_barrier_error(info);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
|
|
{
|
|
int raid_type;
|
|
int min_tolerated = INT_MAX;
|
|
|
|
if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
|
|
(flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
|
|
min_tolerated = min(min_tolerated,
|
|
btrfs_raid_array[BTRFS_RAID_SINGLE].
|
|
tolerated_failures);
|
|
|
|
for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
|
|
if (raid_type == BTRFS_RAID_SINGLE)
|
|
continue;
|
|
if (!(flags & btrfs_raid_array[raid_type].bg_flag))
|
|
continue;
|
|
min_tolerated = min(min_tolerated,
|
|
btrfs_raid_array[raid_type].
|
|
tolerated_failures);
|
|
}
|
|
|
|
if (min_tolerated == INT_MAX) {
|
|
pr_warn("BTRFS: unknown raid flag: %llu", flags);
|
|
min_tolerated = 0;
|
|
}
|
|
|
|
return min_tolerated;
|
|
}
|
|
|
|
int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
|
|
{
|
|
struct list_head *head;
|
|
struct btrfs_device *dev;
|
|
struct btrfs_super_block *sb;
|
|
struct btrfs_dev_item *dev_item;
|
|
int ret;
|
|
int do_barriers;
|
|
int max_errors;
|
|
int total_errors = 0;
|
|
u64 flags;
|
|
|
|
do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
|
|
|
|
/*
|
|
* max_mirrors == 0 indicates we're from commit_transaction,
|
|
* not from fsync where the tree roots in fs_info have not
|
|
* been consistent on disk.
|
|
*/
|
|
if (max_mirrors == 0)
|
|
backup_super_roots(fs_info);
|
|
|
|
sb = fs_info->super_for_commit;
|
|
dev_item = &sb->dev_item;
|
|
|
|
mutex_lock(&fs_info->fs_devices->device_list_mutex);
|
|
head = &fs_info->fs_devices->devices;
|
|
max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
|
|
|
|
if (do_barriers) {
|
|
ret = barrier_all_devices(fs_info);
|
|
if (ret) {
|
|
mutex_unlock(
|
|
&fs_info->fs_devices->device_list_mutex);
|
|
btrfs_handle_fs_error(fs_info, ret,
|
|
"errors while submitting device barriers.");
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
list_for_each_entry(dev, head, dev_list) {
|
|
if (!dev->bdev) {
|
|
total_errors++;
|
|
continue;
|
|
}
|
|
if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
|
|
!test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
|
|
continue;
|
|
|
|
btrfs_set_stack_device_generation(dev_item, 0);
|
|
btrfs_set_stack_device_type(dev_item, dev->type);
|
|
btrfs_set_stack_device_id(dev_item, dev->devid);
|
|
btrfs_set_stack_device_total_bytes(dev_item,
|
|
dev->commit_total_bytes);
|
|
btrfs_set_stack_device_bytes_used(dev_item,
|
|
dev->commit_bytes_used);
|
|
btrfs_set_stack_device_io_align(dev_item, dev->io_align);
|
|
btrfs_set_stack_device_io_width(dev_item, dev->io_width);
|
|
btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
|
|
memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
|
|
memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
|
|
BTRFS_FSID_SIZE);
|
|
|
|
flags = btrfs_super_flags(sb);
|
|
btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
|
|
|
|
ret = btrfs_validate_write_super(fs_info, sb);
|
|
if (ret < 0) {
|
|
mutex_unlock(&fs_info->fs_devices->device_list_mutex);
|
|
btrfs_handle_fs_error(fs_info, -EUCLEAN,
|
|
"unexpected superblock corruption detected");
|
|
return -EUCLEAN;
|
|
}
|
|
|
|
ret = write_dev_supers(dev, sb, max_mirrors);
|
|
if (ret)
|
|
total_errors++;
|
|
}
|
|
if (total_errors > max_errors) {
|
|
btrfs_err(fs_info, "%d errors while writing supers",
|
|
total_errors);
|
|
mutex_unlock(&fs_info->fs_devices->device_list_mutex);
|
|
|
|
/* FUA is masked off if unsupported and can't be the reason */
|
|
btrfs_handle_fs_error(fs_info, -EIO,
|
|
"%d errors while writing supers",
|
|
total_errors);
|
|
return -EIO;
|
|
}
|
|
|
|
total_errors = 0;
|
|
list_for_each_entry(dev, head, dev_list) {
|
|
if (!dev->bdev)
|
|
continue;
|
|
if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
|
|
!test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
|
|
continue;
|
|
|
|
ret = wait_dev_supers(dev, max_mirrors);
|
|
if (ret)
|
|
total_errors++;
|
|
}
|
|
mutex_unlock(&fs_info->fs_devices->device_list_mutex);
|
|
if (total_errors > max_errors) {
|
|
btrfs_handle_fs_error(fs_info, -EIO,
|
|
"%d errors while writing supers",
|
|
total_errors);
|
|
return -EIO;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Drop a fs root from the radix tree and free it. */
|
|
void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_root *root)
|
|
{
|
|
spin_lock(&fs_info->fs_roots_radix_lock);
|
|
radix_tree_delete(&fs_info->fs_roots_radix,
|
|
(unsigned long)root->root_key.objectid);
|
|
spin_unlock(&fs_info->fs_roots_radix_lock);
|
|
|
|
if (btrfs_root_refs(&root->root_item) == 0)
|
|
synchronize_srcu(&fs_info->subvol_srcu);
|
|
|
|
if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
|
|
btrfs_free_log(NULL, root);
|
|
if (root->reloc_root) {
|
|
free_extent_buffer(root->reloc_root->node);
|
|
free_extent_buffer(root->reloc_root->commit_root);
|
|
btrfs_put_fs_root(root->reloc_root);
|
|
root->reloc_root = NULL;
|
|
}
|
|
}
|
|
|
|
if (root->free_ino_pinned)
|
|
__btrfs_remove_free_space_cache(root->free_ino_pinned);
|
|
if (root->free_ino_ctl)
|
|
__btrfs_remove_free_space_cache(root->free_ino_ctl);
|
|
btrfs_free_fs_root(root);
|
|
}
|
|
|
|
void btrfs_free_fs_root(struct btrfs_root *root)
|
|
{
|
|
iput(root->ino_cache_inode);
|
|
WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
|
|
if (root->anon_dev)
|
|
free_anon_bdev(root->anon_dev);
|
|
if (root->subv_writers)
|
|
btrfs_free_subvolume_writers(root->subv_writers);
|
|
free_extent_buffer(root->node);
|
|
free_extent_buffer(root->commit_root);
|
|
kfree(root->free_ino_ctl);
|
|
kfree(root->free_ino_pinned);
|
|
btrfs_put_fs_root(root);
|
|
}
|
|
|
|
int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
|
|
{
|
|
u64 root_objectid = 0;
|
|
struct btrfs_root *gang[8];
|
|
int i = 0;
|
|
int err = 0;
|
|
unsigned int ret = 0;
|
|
int index;
|
|
|
|
while (1) {
|
|
index = srcu_read_lock(&fs_info->subvol_srcu);
|
|
ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
|
|
(void **)gang, root_objectid,
|
|
ARRAY_SIZE(gang));
|
|
if (!ret) {
|
|
srcu_read_unlock(&fs_info->subvol_srcu, index);
|
|
break;
|
|
}
|
|
root_objectid = gang[ret - 1]->root_key.objectid + 1;
|
|
|
|
for (i = 0; i < ret; i++) {
|
|
/* Avoid to grab roots in dead_roots */
|
|
if (btrfs_root_refs(&gang[i]->root_item) == 0) {
|
|
gang[i] = NULL;
|
|
continue;
|
|
}
|
|
/* grab all the search result for later use */
|
|
gang[i] = btrfs_grab_fs_root(gang[i]);
|
|
}
|
|
srcu_read_unlock(&fs_info->subvol_srcu, index);
|
|
|
|
for (i = 0; i < ret; i++) {
|
|
if (!gang[i])
|
|
continue;
|
|
root_objectid = gang[i]->root_key.objectid;
|
|
err = btrfs_orphan_cleanup(gang[i]);
|
|
if (err)
|
|
break;
|
|
btrfs_put_fs_root(gang[i]);
|
|
}
|
|
root_objectid++;
|
|
}
|
|
|
|
/* release the uncleaned roots due to error */
|
|
for (; i < ret; i++) {
|
|
if (gang[i])
|
|
btrfs_put_fs_root(gang[i]);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
int btrfs_commit_super(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct btrfs_root *root = fs_info->tree_root;
|
|
struct btrfs_trans_handle *trans;
|
|
|
|
mutex_lock(&fs_info->cleaner_mutex);
|
|
btrfs_run_delayed_iputs(fs_info);
|
|
mutex_unlock(&fs_info->cleaner_mutex);
|
|
wake_up_process(fs_info->cleaner_kthread);
|
|
|
|
/* wait until ongoing cleanup work done */
|
|
down_write(&fs_info->cleanup_work_sem);
|
|
up_write(&fs_info->cleanup_work_sem);
|
|
|
|
trans = btrfs_join_transaction(root);
|
|
if (IS_ERR(trans))
|
|
return PTR_ERR(trans);
|
|
return btrfs_commit_transaction(trans);
|
|
}
|
|
|
|
void close_ctree(struct btrfs_fs_info *fs_info)
|
|
{
|
|
int ret;
|
|
|
|
set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
|
|
/*
|
|
* We don't want the cleaner to start new transactions, add more delayed
|
|
* iputs, etc. while we're closing. We can't use kthread_stop() yet
|
|
* because that frees the task_struct, and the transaction kthread might
|
|
* still try to wake up the cleaner.
|
|
*/
|
|
kthread_park(fs_info->cleaner_kthread);
|
|
|
|
/* wait for the qgroup rescan worker to stop */
|
|
btrfs_qgroup_wait_for_completion(fs_info, false);
|
|
|
|
/* wait for the uuid_scan task to finish */
|
|
down(&fs_info->uuid_tree_rescan_sem);
|
|
/* avoid complains from lockdep et al., set sem back to initial state */
|
|
up(&fs_info->uuid_tree_rescan_sem);
|
|
|
|
/* pause restriper - we want to resume on mount */
|
|
btrfs_pause_balance(fs_info);
|
|
|
|
btrfs_dev_replace_suspend_for_unmount(fs_info);
|
|
|
|
btrfs_scrub_cancel(fs_info);
|
|
|
|
/* wait for any defraggers to finish */
|
|
wait_event(fs_info->transaction_wait,
|
|
(atomic_read(&fs_info->defrag_running) == 0));
|
|
|
|
/* clear out the rbtree of defraggable inodes */
|
|
btrfs_cleanup_defrag_inodes(fs_info);
|
|
|
|
cancel_work_sync(&fs_info->async_reclaim_work);
|
|
|
|
if (!sb_rdonly(fs_info->sb)) {
|
|
/*
|
|
* The cleaner kthread is stopped, so do one final pass over
|
|
* unused block groups.
|
|
*/
|
|
btrfs_delete_unused_bgs(fs_info);
|
|
|
|
ret = btrfs_commit_super(fs_info);
|
|
if (ret)
|
|
btrfs_err(fs_info, "commit super ret %d", ret);
|
|
}
|
|
|
|
if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
|
|
test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
|
|
btrfs_error_commit_super(fs_info);
|
|
|
|
kthread_stop(fs_info->transaction_kthread);
|
|
kthread_stop(fs_info->cleaner_kthread);
|
|
|
|
ASSERT(list_empty(&fs_info->delayed_iputs));
|
|
set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
|
|
|
|
btrfs_free_qgroup_config(fs_info);
|
|
ASSERT(list_empty(&fs_info->delalloc_roots));
|
|
|
|
if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
|
|
btrfs_info(fs_info, "at unmount delalloc count %lld",
|
|
percpu_counter_sum(&fs_info->delalloc_bytes));
|
|
}
|
|
|
|
btrfs_sysfs_remove_mounted(fs_info);
|
|
btrfs_sysfs_remove_fsid(fs_info->fs_devices);
|
|
|
|
btrfs_free_fs_roots(fs_info);
|
|
|
|
btrfs_put_block_group_cache(fs_info);
|
|
|
|
/*
|
|
* we must make sure there is not any read request to
|
|
* submit after we stopping all workers.
|
|
*/
|
|
invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
|
|
btrfs_stop_all_workers(fs_info);
|
|
|
|
btrfs_free_block_groups(fs_info);
|
|
|
|
clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
|
|
free_root_pointers(fs_info, 1);
|
|
|
|
iput(fs_info->btree_inode);
|
|
|
|
#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
|
|
if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
|
|
btrfsic_unmount(fs_info->fs_devices);
|
|
#endif
|
|
|
|
btrfs_close_devices(fs_info->fs_devices);
|
|
btrfs_mapping_tree_free(&fs_info->mapping_tree);
|
|
|
|
percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
|
|
percpu_counter_destroy(&fs_info->delalloc_bytes);
|
|
percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
|
|
cleanup_srcu_struct(&fs_info->subvol_srcu);
|
|
|
|
btrfs_free_stripe_hash_table(fs_info);
|
|
btrfs_free_ref_cache(fs_info);
|
|
|
|
while (!list_empty(&fs_info->pinned_chunks)) {
|
|
struct extent_map *em;
|
|
|
|
em = list_first_entry(&fs_info->pinned_chunks,
|
|
struct extent_map, list);
|
|
list_del_init(&em->list);
|
|
free_extent_map(em);
|
|
}
|
|
}
|
|
|
|
int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
|
|
int atomic)
|
|
{
|
|
int ret;
|
|
struct inode *btree_inode = buf->pages[0]->mapping->host;
|
|
|
|
ret = extent_buffer_uptodate(buf);
|
|
if (!ret)
|
|
return ret;
|
|
|
|
ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
|
|
parent_transid, atomic);
|
|
if (ret == -EAGAIN)
|
|
return ret;
|
|
return !ret;
|
|
}
|
|
|
|
void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
|
|
{
|
|
struct btrfs_fs_info *fs_info;
|
|
struct btrfs_root *root;
|
|
u64 transid = btrfs_header_generation(buf);
|
|
int was_dirty;
|
|
|
|
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
|
|
/*
|
|
* This is a fast path so only do this check if we have sanity tests
|
|
* enabled. Normal people shouldn't be using unmapped buffers as dirty
|
|
* outside of the sanity tests.
|
|
*/
|
|
if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
|
|
return;
|
|
#endif
|
|
root = BTRFS_I(buf->pages[0]->mapping->host)->root;
|
|
fs_info = root->fs_info;
|
|
btrfs_assert_tree_locked(buf);
|
|
if (transid != fs_info->generation)
|
|
WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
|
|
buf->start, transid, fs_info->generation);
|
|
was_dirty = set_extent_buffer_dirty(buf);
|
|
if (!was_dirty)
|
|
percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
|
|
buf->len,
|
|
fs_info->dirty_metadata_batch);
|
|
#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
|
|
/*
|
|
* Since btrfs_mark_buffer_dirty() can be called with item pointer set
|
|
* but item data not updated.
|
|
* So here we should only check item pointers, not item data.
|
|
*/
|
|
if (btrfs_header_level(buf) == 0 &&
|
|
btrfs_check_leaf_relaxed(fs_info, buf)) {
|
|
btrfs_print_leaf(buf);
|
|
ASSERT(0);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
|
|
int flush_delayed)
|
|
{
|
|
/*
|
|
* looks as though older kernels can get into trouble with
|
|
* this code, they end up stuck in balance_dirty_pages forever
|
|
*/
|
|
int ret;
|
|
|
|
if (current->flags & PF_MEMALLOC)
|
|
return;
|
|
|
|
if (flush_delayed)
|
|
btrfs_balance_delayed_items(fs_info);
|
|
|
|
ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
|
|
BTRFS_DIRTY_METADATA_THRESH,
|
|
fs_info->dirty_metadata_batch);
|
|
if (ret > 0) {
|
|
balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
|
|
}
|
|
}
|
|
|
|
void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
|
|
{
|
|
__btrfs_btree_balance_dirty(fs_info, 1);
|
|
}
|
|
|
|
void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
|
|
{
|
|
__btrfs_btree_balance_dirty(fs_info, 0);
|
|
}
|
|
|
|
int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
|
|
struct btrfs_key *first_key)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
|
|
return btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
|
|
level, first_key);
|
|
}
|
|
|
|
static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
|
|
{
|
|
/* cleanup FS via transaction */
|
|
btrfs_cleanup_transaction(fs_info);
|
|
|
|
mutex_lock(&fs_info->cleaner_mutex);
|
|
btrfs_run_delayed_iputs(fs_info);
|
|
mutex_unlock(&fs_info->cleaner_mutex);
|
|
|
|
down_write(&fs_info->cleanup_work_sem);
|
|
up_write(&fs_info->cleanup_work_sem);
|
|
}
|
|
|
|
static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
|
|
{
|
|
struct btrfs_ordered_extent *ordered;
|
|
|
|
spin_lock(&root->ordered_extent_lock);
|
|
/*
|
|
* This will just short circuit the ordered completion stuff which will
|
|
* make sure the ordered extent gets properly cleaned up.
|
|
*/
|
|
list_for_each_entry(ordered, &root->ordered_extents,
|
|
root_extent_list)
|
|
set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
|
|
spin_unlock(&root->ordered_extent_lock);
|
|
}
|
|
|
|
static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct btrfs_root *root;
|
|
struct list_head splice;
|
|
|
|
INIT_LIST_HEAD(&splice);
|
|
|
|
spin_lock(&fs_info->ordered_root_lock);
|
|
list_splice_init(&fs_info->ordered_roots, &splice);
|
|
while (!list_empty(&splice)) {
|
|
root = list_first_entry(&splice, struct btrfs_root,
|
|
ordered_root);
|
|
list_move_tail(&root->ordered_root,
|
|
&fs_info->ordered_roots);
|
|
|
|
spin_unlock(&fs_info->ordered_root_lock);
|
|
btrfs_destroy_ordered_extents(root);
|
|
|
|
cond_resched();
|
|
spin_lock(&fs_info->ordered_root_lock);
|
|
}
|
|
spin_unlock(&fs_info->ordered_root_lock);
|
|
|
|
/*
|
|
* We need this here because if we've been flipped read-only we won't
|
|
* get sync() from the umount, so we need to make sure any ordered
|
|
* extents that haven't had their dirty pages IO start writeout yet
|
|
* actually get run and error out properly.
|
|
*/
|
|
btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
|
|
}
|
|
|
|
static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
|
|
struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct rb_node *node;
|
|
struct btrfs_delayed_ref_root *delayed_refs;
|
|
struct btrfs_delayed_ref_node *ref;
|
|
int ret = 0;
|
|
|
|
delayed_refs = &trans->delayed_refs;
|
|
|
|
spin_lock(&delayed_refs->lock);
|
|
if (atomic_read(&delayed_refs->num_entries) == 0) {
|
|
spin_unlock(&delayed_refs->lock);
|
|
btrfs_info(fs_info, "delayed_refs has NO entry");
|
|
return ret;
|
|
}
|
|
|
|
while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
|
|
struct btrfs_delayed_ref_head *head;
|
|
struct rb_node *n;
|
|
bool pin_bytes = false;
|
|
|
|
head = rb_entry(node, struct btrfs_delayed_ref_head,
|
|
href_node);
|
|
if (btrfs_delayed_ref_lock(delayed_refs, head))
|
|
continue;
|
|
|
|
spin_lock(&head->lock);
|
|
while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
|
|
ref = rb_entry(n, struct btrfs_delayed_ref_node,
|
|
ref_node);
|
|
ref->in_tree = 0;
|
|
rb_erase_cached(&ref->ref_node, &head->ref_tree);
|
|
RB_CLEAR_NODE(&ref->ref_node);
|
|
if (!list_empty(&ref->add_list))
|
|
list_del(&ref->add_list);
|
|
atomic_dec(&delayed_refs->num_entries);
|
|
btrfs_put_delayed_ref(ref);
|
|
}
|
|
if (head->must_insert_reserved)
|
|
pin_bytes = true;
|
|
btrfs_free_delayed_extent_op(head->extent_op);
|
|
btrfs_delete_ref_head(delayed_refs, head);
|
|
spin_unlock(&head->lock);
|
|
spin_unlock(&delayed_refs->lock);
|
|
mutex_unlock(&head->mutex);
|
|
|
|
if (pin_bytes)
|
|
btrfs_pin_extent(fs_info, head->bytenr,
|
|
head->num_bytes, 1);
|
|
btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
|
|
btrfs_put_delayed_ref_head(head);
|
|
cond_resched();
|
|
spin_lock(&delayed_refs->lock);
|
|
}
|
|
|
|
spin_unlock(&delayed_refs->lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
|
|
{
|
|
struct btrfs_inode *btrfs_inode;
|
|
struct list_head splice;
|
|
|
|
INIT_LIST_HEAD(&splice);
|
|
|
|
spin_lock(&root->delalloc_lock);
|
|
list_splice_init(&root->delalloc_inodes, &splice);
|
|
|
|
while (!list_empty(&splice)) {
|
|
struct inode *inode = NULL;
|
|
btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
|
|
delalloc_inodes);
|
|
__btrfs_del_delalloc_inode(root, btrfs_inode);
|
|
spin_unlock(&root->delalloc_lock);
|
|
|
|
/*
|
|
* Make sure we get a live inode and that it'll not disappear
|
|
* meanwhile.
|
|
*/
|
|
inode = igrab(&btrfs_inode->vfs_inode);
|
|
if (inode) {
|
|
invalidate_inode_pages2(inode->i_mapping);
|
|
iput(inode);
|
|
}
|
|
spin_lock(&root->delalloc_lock);
|
|
}
|
|
spin_unlock(&root->delalloc_lock);
|
|
}
|
|
|
|
static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct btrfs_root *root;
|
|
struct list_head splice;
|
|
|
|
INIT_LIST_HEAD(&splice);
|
|
|
|
spin_lock(&fs_info->delalloc_root_lock);
|
|
list_splice_init(&fs_info->delalloc_roots, &splice);
|
|
while (!list_empty(&splice)) {
|
|
root = list_first_entry(&splice, struct btrfs_root,
|
|
delalloc_root);
|
|
root = btrfs_grab_fs_root(root);
|
|
BUG_ON(!root);
|
|
spin_unlock(&fs_info->delalloc_root_lock);
|
|
|
|
btrfs_destroy_delalloc_inodes(root);
|
|
btrfs_put_fs_root(root);
|
|
|
|
spin_lock(&fs_info->delalloc_root_lock);
|
|
}
|
|
spin_unlock(&fs_info->delalloc_root_lock);
|
|
}
|
|
|
|
static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
|
|
struct extent_io_tree *dirty_pages,
|
|
int mark)
|
|
{
|
|
int ret;
|
|
struct extent_buffer *eb;
|
|
u64 start = 0;
|
|
u64 end;
|
|
|
|
while (1) {
|
|
ret = find_first_extent_bit(dirty_pages, start, &start, &end,
|
|
mark, NULL);
|
|
if (ret)
|
|
break;
|
|
|
|
clear_extent_bits(dirty_pages, start, end, mark);
|
|
while (start <= end) {
|
|
eb = find_extent_buffer(fs_info, start);
|
|
start += fs_info->nodesize;
|
|
if (!eb)
|
|
continue;
|
|
wait_on_extent_buffer_writeback(eb);
|
|
|
|
if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
|
|
&eb->bflags))
|
|
clear_extent_buffer_dirty(eb);
|
|
free_extent_buffer_stale(eb);
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
|
|
struct extent_io_tree *pinned_extents)
|
|
{
|
|
struct extent_io_tree *unpin;
|
|
u64 start;
|
|
u64 end;
|
|
int ret;
|
|
bool loop = true;
|
|
|
|
unpin = pinned_extents;
|
|
again:
|
|
while (1) {
|
|
struct extent_state *cached_state = NULL;
|
|
|
|
/*
|
|
* The btrfs_finish_extent_commit() may get the same range as
|
|
* ours between find_first_extent_bit and clear_extent_dirty.
|
|
* Hence, hold the unused_bg_unpin_mutex to avoid double unpin
|
|
* the same extent range.
|
|
*/
|
|
mutex_lock(&fs_info->unused_bg_unpin_mutex);
|
|
ret = find_first_extent_bit(unpin, 0, &start, &end,
|
|
EXTENT_DIRTY, &cached_state);
|
|
if (ret) {
|
|
mutex_unlock(&fs_info->unused_bg_unpin_mutex);
|
|
break;
|
|
}
|
|
|
|
clear_extent_dirty(unpin, start, end, &cached_state);
|
|
free_extent_state(cached_state);
|
|
btrfs_error_unpin_extent_range(fs_info, start, end);
|
|
mutex_unlock(&fs_info->unused_bg_unpin_mutex);
|
|
cond_resched();
|
|
}
|
|
|
|
if (loop) {
|
|
if (unpin == &fs_info->freed_extents[0])
|
|
unpin = &fs_info->freed_extents[1];
|
|
else
|
|
unpin = &fs_info->freed_extents[0];
|
|
loop = false;
|
|
goto again;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
|
|
{
|
|
struct inode *inode;
|
|
|
|
inode = cache->io_ctl.inode;
|
|
if (inode) {
|
|
invalidate_inode_pages2(inode->i_mapping);
|
|
BTRFS_I(inode)->generation = 0;
|
|
cache->io_ctl.inode = NULL;
|
|
iput(inode);
|
|
}
|
|
btrfs_put_block_group(cache);
|
|
}
|
|
|
|
void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
|
|
struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct btrfs_block_group_cache *cache;
|
|
|
|
spin_lock(&cur_trans->dirty_bgs_lock);
|
|
while (!list_empty(&cur_trans->dirty_bgs)) {
|
|
cache = list_first_entry(&cur_trans->dirty_bgs,
|
|
struct btrfs_block_group_cache,
|
|
dirty_list);
|
|
|
|
if (!list_empty(&cache->io_list)) {
|
|
spin_unlock(&cur_trans->dirty_bgs_lock);
|
|
list_del_init(&cache->io_list);
|
|
btrfs_cleanup_bg_io(cache);
|
|
spin_lock(&cur_trans->dirty_bgs_lock);
|
|
}
|
|
|
|
list_del_init(&cache->dirty_list);
|
|
spin_lock(&cache->lock);
|
|
cache->disk_cache_state = BTRFS_DC_ERROR;
|
|
spin_unlock(&cache->lock);
|
|
|
|
spin_unlock(&cur_trans->dirty_bgs_lock);
|
|
btrfs_put_block_group(cache);
|
|
btrfs_delayed_refs_rsv_release(fs_info, 1);
|
|
spin_lock(&cur_trans->dirty_bgs_lock);
|
|
}
|
|
spin_unlock(&cur_trans->dirty_bgs_lock);
|
|
|
|
/*
|
|
* Refer to the definition of io_bgs member for details why it's safe
|
|
* to use it without any locking
|
|
*/
|
|
while (!list_empty(&cur_trans->io_bgs)) {
|
|
cache = list_first_entry(&cur_trans->io_bgs,
|
|
struct btrfs_block_group_cache,
|
|
io_list);
|
|
|
|
list_del_init(&cache->io_list);
|
|
spin_lock(&cache->lock);
|
|
cache->disk_cache_state = BTRFS_DC_ERROR;
|
|
spin_unlock(&cache->lock);
|
|
btrfs_cleanup_bg_io(cache);
|
|
}
|
|
}
|
|
|
|
void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
|
|
struct btrfs_fs_info *fs_info)
|
|
{
|
|
btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
|
|
ASSERT(list_empty(&cur_trans->dirty_bgs));
|
|
ASSERT(list_empty(&cur_trans->io_bgs));
|
|
|
|
btrfs_destroy_delayed_refs(cur_trans, fs_info);
|
|
|
|
cur_trans->state = TRANS_STATE_COMMIT_START;
|
|
wake_up(&fs_info->transaction_blocked_wait);
|
|
|
|
cur_trans->state = TRANS_STATE_UNBLOCKED;
|
|
wake_up(&fs_info->transaction_wait);
|
|
|
|
btrfs_destroy_delayed_inodes(fs_info);
|
|
btrfs_assert_delayed_root_empty(fs_info);
|
|
|
|
btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
|
|
EXTENT_DIRTY);
|
|
btrfs_destroy_pinned_extent(fs_info,
|
|
fs_info->pinned_extents);
|
|
|
|
cur_trans->state =TRANS_STATE_COMPLETED;
|
|
wake_up(&cur_trans->commit_wait);
|
|
}
|
|
|
|
static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct btrfs_transaction *t;
|
|
|
|
mutex_lock(&fs_info->transaction_kthread_mutex);
|
|
|
|
spin_lock(&fs_info->trans_lock);
|
|
while (!list_empty(&fs_info->trans_list)) {
|
|
t = list_first_entry(&fs_info->trans_list,
|
|
struct btrfs_transaction, list);
|
|
if (t->state >= TRANS_STATE_COMMIT_START) {
|
|
refcount_inc(&t->use_count);
|
|
spin_unlock(&fs_info->trans_lock);
|
|
btrfs_wait_for_commit(fs_info, t->transid);
|
|
btrfs_put_transaction(t);
|
|
spin_lock(&fs_info->trans_lock);
|
|
continue;
|
|
}
|
|
if (t == fs_info->running_transaction) {
|
|
t->state = TRANS_STATE_COMMIT_DOING;
|
|
spin_unlock(&fs_info->trans_lock);
|
|
/*
|
|
* We wait for 0 num_writers since we don't hold a trans
|
|
* handle open currently for this transaction.
|
|
*/
|
|
wait_event(t->writer_wait,
|
|
atomic_read(&t->num_writers) == 0);
|
|
} else {
|
|
spin_unlock(&fs_info->trans_lock);
|
|
}
|
|
btrfs_cleanup_one_transaction(t, fs_info);
|
|
|
|
spin_lock(&fs_info->trans_lock);
|
|
if (t == fs_info->running_transaction)
|
|
fs_info->running_transaction = NULL;
|
|
list_del_init(&t->list);
|
|
spin_unlock(&fs_info->trans_lock);
|
|
|
|
btrfs_put_transaction(t);
|
|
trace_btrfs_transaction_commit(fs_info->tree_root);
|
|
spin_lock(&fs_info->trans_lock);
|
|
}
|
|
spin_unlock(&fs_info->trans_lock);
|
|
btrfs_destroy_all_ordered_extents(fs_info);
|
|
btrfs_destroy_delayed_inodes(fs_info);
|
|
btrfs_assert_delayed_root_empty(fs_info);
|
|
btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
|
|
btrfs_destroy_all_delalloc_inodes(fs_info);
|
|
mutex_unlock(&fs_info->transaction_kthread_mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct extent_io_ops btree_extent_io_ops = {
|
|
/* mandatory callbacks */
|
|
.submit_bio_hook = btree_submit_bio_hook,
|
|
.readpage_end_io_hook = btree_readpage_end_io_hook,
|
|
};
|