linux/drivers/crypto/qce/common.c
Ard Biesheuvel 8bf0871539 crypto: qce - switch to skcipher API
Commit 7a7ffe65c8c5 ("crypto: skcipher - Add top-level skcipher interface")
dated 20 august 2015 introduced the new skcipher API which is supposed to
replace both blkcipher and ablkcipher. While all consumers of the API have
been converted long ago, some producers of the ablkcipher remain, forcing
us to keep the ablkcipher support routines alive, along with the matching
code to expose [a]blkciphers via the skcipher API.

So switch this driver to the skcipher API, allowing us to finally drop the
ablkcipher code in the near future.

Reviewed-by: Stanimir Varbanov <stanimir.varbanov@linaro.org>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2019-11-17 09:02:48 +08:00

431 lines
11 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2012-2014, The Linux Foundation. All rights reserved.
*/
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/types.h>
#include <crypto/scatterwalk.h>
#include <crypto/sha.h>
#include "cipher.h"
#include "common.h"
#include "core.h"
#include "regs-v5.h"
#include "sha.h"
#define QCE_SECTOR_SIZE 512
static inline u32 qce_read(struct qce_device *qce, u32 offset)
{
return readl(qce->base + offset);
}
static inline void qce_write(struct qce_device *qce, u32 offset, u32 val)
{
writel(val, qce->base + offset);
}
static inline void qce_write_array(struct qce_device *qce, u32 offset,
const u32 *val, unsigned int len)
{
int i;
for (i = 0; i < len; i++)
qce_write(qce, offset + i * sizeof(u32), val[i]);
}
static inline void
qce_clear_array(struct qce_device *qce, u32 offset, unsigned int len)
{
int i;
for (i = 0; i < len; i++)
qce_write(qce, offset + i * sizeof(u32), 0);
}
static u32 qce_encr_cfg(unsigned long flags, u32 aes_key_size)
{
u32 cfg = 0;
if (IS_AES(flags)) {
if (aes_key_size == AES_KEYSIZE_128)
cfg |= ENCR_KEY_SZ_AES128 << ENCR_KEY_SZ_SHIFT;
else if (aes_key_size == AES_KEYSIZE_256)
cfg |= ENCR_KEY_SZ_AES256 << ENCR_KEY_SZ_SHIFT;
}
if (IS_AES(flags))
cfg |= ENCR_ALG_AES << ENCR_ALG_SHIFT;
else if (IS_DES(flags) || IS_3DES(flags))
cfg |= ENCR_ALG_DES << ENCR_ALG_SHIFT;
if (IS_DES(flags))
cfg |= ENCR_KEY_SZ_DES << ENCR_KEY_SZ_SHIFT;
if (IS_3DES(flags))
cfg |= ENCR_KEY_SZ_3DES << ENCR_KEY_SZ_SHIFT;
switch (flags & QCE_MODE_MASK) {
case QCE_MODE_ECB:
cfg |= ENCR_MODE_ECB << ENCR_MODE_SHIFT;
break;
case QCE_MODE_CBC:
cfg |= ENCR_MODE_CBC << ENCR_MODE_SHIFT;
break;
case QCE_MODE_CTR:
cfg |= ENCR_MODE_CTR << ENCR_MODE_SHIFT;
break;
case QCE_MODE_XTS:
cfg |= ENCR_MODE_XTS << ENCR_MODE_SHIFT;
break;
case QCE_MODE_CCM:
cfg |= ENCR_MODE_CCM << ENCR_MODE_SHIFT;
cfg |= LAST_CCM_XFR << LAST_CCM_SHIFT;
break;
default:
return ~0;
}
return cfg;
}
static u32 qce_auth_cfg(unsigned long flags, u32 key_size)
{
u32 cfg = 0;
if (IS_AES(flags) && (IS_CCM(flags) || IS_CMAC(flags)))
cfg |= AUTH_ALG_AES << AUTH_ALG_SHIFT;
else
cfg |= AUTH_ALG_SHA << AUTH_ALG_SHIFT;
if (IS_CCM(flags) || IS_CMAC(flags)) {
if (key_size == AES_KEYSIZE_128)
cfg |= AUTH_KEY_SZ_AES128 << AUTH_KEY_SIZE_SHIFT;
else if (key_size == AES_KEYSIZE_256)
cfg |= AUTH_KEY_SZ_AES256 << AUTH_KEY_SIZE_SHIFT;
}
if (IS_SHA1(flags) || IS_SHA1_HMAC(flags))
cfg |= AUTH_SIZE_SHA1 << AUTH_SIZE_SHIFT;
else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags))
cfg |= AUTH_SIZE_SHA256 << AUTH_SIZE_SHIFT;
else if (IS_CMAC(flags))
cfg |= AUTH_SIZE_ENUM_16_BYTES << AUTH_SIZE_SHIFT;
if (IS_SHA1(flags) || IS_SHA256(flags))
cfg |= AUTH_MODE_HASH << AUTH_MODE_SHIFT;
else if (IS_SHA1_HMAC(flags) || IS_SHA256_HMAC(flags) ||
IS_CBC(flags) || IS_CTR(flags))
cfg |= AUTH_MODE_HMAC << AUTH_MODE_SHIFT;
else if (IS_AES(flags) && IS_CCM(flags))
cfg |= AUTH_MODE_CCM << AUTH_MODE_SHIFT;
else if (IS_AES(flags) && IS_CMAC(flags))
cfg |= AUTH_MODE_CMAC << AUTH_MODE_SHIFT;
if (IS_SHA(flags) || IS_SHA_HMAC(flags))
cfg |= AUTH_POS_BEFORE << AUTH_POS_SHIFT;
if (IS_CCM(flags))
cfg |= QCE_MAX_NONCE_WORDS << AUTH_NONCE_NUM_WORDS_SHIFT;
if (IS_CBC(flags) || IS_CTR(flags) || IS_CCM(flags) ||
IS_CMAC(flags))
cfg |= BIT(AUTH_LAST_SHIFT) | BIT(AUTH_FIRST_SHIFT);
return cfg;
}
static u32 qce_config_reg(struct qce_device *qce, int little)
{
u32 beats = (qce->burst_size >> 3) - 1;
u32 pipe_pair = qce->pipe_pair_id;
u32 config;
config = (beats << REQ_SIZE_SHIFT) & REQ_SIZE_MASK;
config |= BIT(MASK_DOUT_INTR_SHIFT) | BIT(MASK_DIN_INTR_SHIFT) |
BIT(MASK_OP_DONE_INTR_SHIFT) | BIT(MASK_ERR_INTR_SHIFT);
config |= (pipe_pair << PIPE_SET_SELECT_SHIFT) & PIPE_SET_SELECT_MASK;
config &= ~HIGH_SPD_EN_N_SHIFT;
if (little)
config |= BIT(LITTLE_ENDIAN_MODE_SHIFT);
return config;
}
void qce_cpu_to_be32p_array(__be32 *dst, const u8 *src, unsigned int len)
{
__be32 *d = dst;
const u8 *s = src;
unsigned int n;
n = len / sizeof(u32);
for (; n > 0; n--) {
*d = cpu_to_be32p((const __u32 *) s);
s += sizeof(__u32);
d++;
}
}
static void qce_xts_swapiv(__be32 *dst, const u8 *src, unsigned int ivsize)
{
u8 swap[QCE_AES_IV_LENGTH];
u32 i, j;
if (ivsize > QCE_AES_IV_LENGTH)
return;
memset(swap, 0, QCE_AES_IV_LENGTH);
for (i = (QCE_AES_IV_LENGTH - ivsize), j = ivsize - 1;
i < QCE_AES_IV_LENGTH; i++, j--)
swap[i] = src[j];
qce_cpu_to_be32p_array(dst, swap, QCE_AES_IV_LENGTH);
}
static void qce_xtskey(struct qce_device *qce, const u8 *enckey,
unsigned int enckeylen, unsigned int cryptlen)
{
u32 xtskey[QCE_MAX_CIPHER_KEY_SIZE / sizeof(u32)] = {0};
unsigned int xtsklen = enckeylen / (2 * sizeof(u32));
unsigned int xtsdusize;
qce_cpu_to_be32p_array((__be32 *)xtskey, enckey + enckeylen / 2,
enckeylen / 2);
qce_write_array(qce, REG_ENCR_XTS_KEY0, xtskey, xtsklen);
/* xts du size 512B */
xtsdusize = min_t(u32, QCE_SECTOR_SIZE, cryptlen);
qce_write(qce, REG_ENCR_XTS_DU_SIZE, xtsdusize);
}
static void qce_setup_config(struct qce_device *qce)
{
u32 config;
/* get big endianness */
config = qce_config_reg(qce, 0);
/* clear status */
qce_write(qce, REG_STATUS, 0);
qce_write(qce, REG_CONFIG, config);
}
static inline void qce_crypto_go(struct qce_device *qce)
{
qce_write(qce, REG_GOPROC, BIT(GO_SHIFT) | BIT(RESULTS_DUMP_SHIFT));
}
static int qce_setup_regs_ahash(struct crypto_async_request *async_req,
u32 totallen, u32 offset)
{
struct ahash_request *req = ahash_request_cast(async_req);
struct crypto_ahash *ahash = __crypto_ahash_cast(async_req->tfm);
struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
struct qce_device *qce = tmpl->qce;
unsigned int digestsize = crypto_ahash_digestsize(ahash);
unsigned int blocksize = crypto_tfm_alg_blocksize(async_req->tfm);
__be32 auth[SHA256_DIGEST_SIZE / sizeof(__be32)] = {0};
__be32 mackey[QCE_SHA_HMAC_KEY_SIZE / sizeof(__be32)] = {0};
u32 auth_cfg = 0, config;
unsigned int iv_words;
/* if not the last, the size has to be on the block boundary */
if (!rctx->last_blk && req->nbytes % blocksize)
return -EINVAL;
qce_setup_config(qce);
if (IS_CMAC(rctx->flags)) {
qce_write(qce, REG_AUTH_SEG_CFG, 0);
qce_write(qce, REG_ENCR_SEG_CFG, 0);
qce_write(qce, REG_ENCR_SEG_SIZE, 0);
qce_clear_array(qce, REG_AUTH_IV0, 16);
qce_clear_array(qce, REG_AUTH_KEY0, 16);
qce_clear_array(qce, REG_AUTH_BYTECNT0, 4);
auth_cfg = qce_auth_cfg(rctx->flags, rctx->authklen);
}
if (IS_SHA_HMAC(rctx->flags) || IS_CMAC(rctx->flags)) {
u32 authkey_words = rctx->authklen / sizeof(u32);
qce_cpu_to_be32p_array(mackey, rctx->authkey, rctx->authklen);
qce_write_array(qce, REG_AUTH_KEY0, (u32 *)mackey,
authkey_words);
}
if (IS_CMAC(rctx->flags))
goto go_proc;
if (rctx->first_blk)
memcpy(auth, rctx->digest, digestsize);
else
qce_cpu_to_be32p_array(auth, rctx->digest, digestsize);
iv_words = (IS_SHA1(rctx->flags) || IS_SHA1_HMAC(rctx->flags)) ? 5 : 8;
qce_write_array(qce, REG_AUTH_IV0, (u32 *)auth, iv_words);
if (rctx->first_blk)
qce_clear_array(qce, REG_AUTH_BYTECNT0, 4);
else
qce_write_array(qce, REG_AUTH_BYTECNT0,
(u32 *)rctx->byte_count, 2);
auth_cfg = qce_auth_cfg(rctx->flags, 0);
if (rctx->last_blk)
auth_cfg |= BIT(AUTH_LAST_SHIFT);
else
auth_cfg &= ~BIT(AUTH_LAST_SHIFT);
if (rctx->first_blk)
auth_cfg |= BIT(AUTH_FIRST_SHIFT);
else
auth_cfg &= ~BIT(AUTH_FIRST_SHIFT);
go_proc:
qce_write(qce, REG_AUTH_SEG_CFG, auth_cfg);
qce_write(qce, REG_AUTH_SEG_SIZE, req->nbytes);
qce_write(qce, REG_AUTH_SEG_START, 0);
qce_write(qce, REG_ENCR_SEG_CFG, 0);
qce_write(qce, REG_SEG_SIZE, req->nbytes);
/* get little endianness */
config = qce_config_reg(qce, 1);
qce_write(qce, REG_CONFIG, config);
qce_crypto_go(qce);
return 0;
}
static int qce_setup_regs_skcipher(struct crypto_async_request *async_req,
u32 totallen, u32 offset)
{
struct skcipher_request *req = skcipher_request_cast(async_req);
struct qce_cipher_reqctx *rctx = skcipher_request_ctx(req);
struct qce_cipher_ctx *ctx = crypto_tfm_ctx(async_req->tfm);
struct qce_alg_template *tmpl = to_cipher_tmpl(crypto_skcipher_reqtfm(req));
struct qce_device *qce = tmpl->qce;
__be32 enckey[QCE_MAX_CIPHER_KEY_SIZE / sizeof(__be32)] = {0};
__be32 enciv[QCE_MAX_IV_SIZE / sizeof(__be32)] = {0};
unsigned int enckey_words, enciv_words;
unsigned int keylen;
u32 encr_cfg = 0, auth_cfg = 0, config;
unsigned int ivsize = rctx->ivsize;
unsigned long flags = rctx->flags;
qce_setup_config(qce);
if (IS_XTS(flags))
keylen = ctx->enc_keylen / 2;
else
keylen = ctx->enc_keylen;
qce_cpu_to_be32p_array(enckey, ctx->enc_key, keylen);
enckey_words = keylen / sizeof(u32);
qce_write(qce, REG_AUTH_SEG_CFG, auth_cfg);
encr_cfg = qce_encr_cfg(flags, keylen);
if (IS_DES(flags)) {
enciv_words = 2;
enckey_words = 2;
} else if (IS_3DES(flags)) {
enciv_words = 2;
enckey_words = 6;
} else if (IS_AES(flags)) {
if (IS_XTS(flags))
qce_xtskey(qce, ctx->enc_key, ctx->enc_keylen,
rctx->cryptlen);
enciv_words = 4;
} else {
return -EINVAL;
}
qce_write_array(qce, REG_ENCR_KEY0, (u32 *)enckey, enckey_words);
if (!IS_ECB(flags)) {
if (IS_XTS(flags))
qce_xts_swapiv(enciv, rctx->iv, ivsize);
else
qce_cpu_to_be32p_array(enciv, rctx->iv, ivsize);
qce_write_array(qce, REG_CNTR0_IV0, (u32 *)enciv, enciv_words);
}
if (IS_ENCRYPT(flags))
encr_cfg |= BIT(ENCODE_SHIFT);
qce_write(qce, REG_ENCR_SEG_CFG, encr_cfg);
qce_write(qce, REG_ENCR_SEG_SIZE, rctx->cryptlen);
qce_write(qce, REG_ENCR_SEG_START, offset & 0xffff);
if (IS_CTR(flags)) {
qce_write(qce, REG_CNTR_MASK, ~0);
qce_write(qce, REG_CNTR_MASK0, ~0);
qce_write(qce, REG_CNTR_MASK1, ~0);
qce_write(qce, REG_CNTR_MASK2, ~0);
}
qce_write(qce, REG_SEG_SIZE, totallen);
/* get little endianness */
config = qce_config_reg(qce, 1);
qce_write(qce, REG_CONFIG, config);
qce_crypto_go(qce);
return 0;
}
int qce_start(struct crypto_async_request *async_req, u32 type, u32 totallen,
u32 offset)
{
switch (type) {
case CRYPTO_ALG_TYPE_SKCIPHER:
return qce_setup_regs_skcipher(async_req, totallen, offset);
case CRYPTO_ALG_TYPE_AHASH:
return qce_setup_regs_ahash(async_req, totallen, offset);
default:
return -EINVAL;
}
}
#define STATUS_ERRORS \
(BIT(SW_ERR_SHIFT) | BIT(AXI_ERR_SHIFT) | BIT(HSD_ERR_SHIFT))
int qce_check_status(struct qce_device *qce, u32 *status)
{
int ret = 0;
*status = qce_read(qce, REG_STATUS);
/*
* Don't use result dump status. The operation may not be complete.
* Instead, use the status we just read from device. In case, we need to
* use result_status from result dump the result_status needs to be byte
* swapped, since we set the device to little endian.
*/
if (*status & STATUS_ERRORS || !(*status & BIT(OPERATION_DONE_SHIFT)))
ret = -ENXIO;
return ret;
}
void qce_get_version(struct qce_device *qce, u32 *major, u32 *minor, u32 *step)
{
u32 val;
val = qce_read(qce, REG_VERSION);
*major = (val & CORE_MAJOR_REV_MASK) >> CORE_MAJOR_REV_SHIFT;
*minor = (val & CORE_MINOR_REV_MASK) >> CORE_MINOR_REV_SHIFT;
*step = (val & CORE_STEP_REV_MASK) >> CORE_STEP_REV_SHIFT;
}