8cb1ae19bf
- Cleanup of extable fixup handling to be more robust, which in turn allows to make the FPU exception fixups more robust as well. - Change the return code for signal frame related failures from explicit error codes to a boolean fail/success as that's all what the calling code evaluates. - A large refactoring of the FPU code to prepare for adding AMX support: - Distangle the public header maze and remove especially the misnomed kitchen sink internal.h which is despite it's name included all over the place. - Add a proper abstraction for the register buffer storage (struct fpstate) which allows to dynamically size the buffer at runtime by flipping the pointer to the buffer container from the default container which is embedded in task_struct::tread::fpu to a dynamically allocated container with a larger register buffer. - Convert the code over to the new fpstate mechanism. - Consolidate the KVM FPU handling by moving the FPU related code into the FPU core which removes the number of exports and avoids adding even more export when AMX has to be supported in KVM. This also removes duplicated code which was of course unnecessary different and incomplete in the KVM copy. - Simplify the KVM FPU buffer handling by utilizing the new fpstate container and just switching the buffer pointer from the user space buffer to the KVM guest buffer when entering vcpu_run() and flipping it back when leaving the function. This cuts the memory requirements of a vCPU for FPU buffers in half and avoids pointless memory copy operations. This also solves the so far unresolved problem of adding AMX support because the current FPU buffer handling of KVM inflicted a circular dependency between adding AMX support to the core and to KVM. With the new scheme of switching fpstate AMX support can be added to the core code without affecting KVM. - Replace various variables with proper data structures so the extra information required for adding dynamically enabled FPU features (AMX) can be added in one place - Add AMX (Advanved Matrix eXtensions) support (finally): AMX is a large XSTATE component which is going to be available with Saphire Rapids XEON CPUs. The feature comes with an extra MSR (MSR_XFD) which allows to trap the (first) use of an AMX related instruction, which has two benefits: 1) It allows the kernel to control access to the feature 2) It allows the kernel to dynamically allocate the large register state buffer instead of burdening every task with the the extra 8K or larger state storage. It would have been great to gain this kind of control already with AVX512. The support comes with the following infrastructure components: 1) arch_prctl() to - read the supported features (equivalent to XGETBV(0)) - read the permitted features for a task - request permission for a dynamically enabled feature Permission is granted per process, inherited on fork() and cleared on exec(). The permission policy of the kernel is restricted to sigaltstack size validation, but the syscall obviously allows further restrictions via seccomp etc. 2) A stronger sigaltstack size validation for sys_sigaltstack(2) which takes granted permissions and the potentially resulting larger signal frame into account. This mechanism can also be used to enforce factual sigaltstack validation independent of dynamic features to help with finding potential victims of the 2K sigaltstack size constant which is broken since AVX512 support was added. 3) Exception handling for #NM traps to catch first use of a extended feature via a new cause MSR. If the exception was caused by the use of such a feature, the handler checks permission for that feature. If permission has not been granted, the handler sends a SIGILL like the #UD handler would do if the feature would have been disabled in XCR0. If permission has been granted, then a new fpstate which fits the larger buffer requirement is allocated. In the unlikely case that this allocation fails, the handler sends SIGSEGV to the task. That's not elegant, but unavoidable as the other discussed options of preallocation or full per task permissions come with their own set of horrors for kernel and/or userspace. So this is the lesser of the evils and SIGSEGV caused by unexpected memory allocation failures is not a fundamentally new concept either. When allocation succeeds, the fpstate properties are filled in to reflect the extended feature set and the resulting sizes, the fpu::fpstate pointer is updated accordingly and the trap is disarmed for this task permanently. 4) Enumeration and size calculations 5) Trap switching via MSR_XFD The XFD (eXtended Feature Disable) MSR is context switched with the same life time rules as the FPU register state itself. The mechanism is keyed off with a static key which is default disabled so !AMX equipped CPUs have zero overhead. On AMX enabled CPUs the overhead is limited by comparing the tasks XFD value with a per CPU shadow variable to avoid redundant MSR writes. In case of switching from a AMX using task to a non AMX using task or vice versa, the extra MSR write is obviously inevitable. All other places which need to be aware of the variable feature sets and resulting variable sizes are not affected at all because they retrieve the information (feature set, sizes) unconditonally from the fpstate properties. 6) Enable the new AMX states Note, this is relatively new code despite the fact that AMX support is in the works for more than a year now. The big refactoring of the FPU code, which allowed to do a proper integration has been started exactly 3 weeks ago. Refactoring of the existing FPU code and of the original AMX patches took a week and has been subject to extensive review and testing. The only fallout which has not been caught in review and testing right away was restricted to AMX enabled systems, which is completely irrelevant for anyone outside Intel and their early access program. There might be dragons lurking as usual, but so far the fine grained refactoring has held up and eventual yet undetected fallout is bisectable and should be easily addressable before the 5.16 release. Famous last words... Many thanks to Chang Bae and Dave Hansen for working hard on this and also to the various test teams at Intel who reserved extra capacity to follow the rapid development of this closely which provides the confidence level required to offer this rather large update for inclusion into 5.16-rc1. -----BEGIN PGP SIGNATURE----- iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmF/NkITHHRnbHhAbGlu dXRyb25peC5kZQAKCRCmGPVMDXSYodDkEADH4+/nN/QoSUHIuuha5Zptj3g2b16a /3TxT9fhwPen/kzMGsUk70s3iWJMA+I5dCfkSZexJ2hfhcRe9cBzZIa1HCawKwf3 YCISTsO/M+LpeORuZ+TpfFLJKnxNr1SEOl+EYffGhq0AkCjifb9Cnr0JZuoMUzGU jpfJZ2bj28ri5lG812DtzSMBM9E3SAwgJv+GNjmZbxZKb9mAfhbAMdBUXHirX7Ej jmx6koQjYOKwYIW8w1BrdC270lUKQUyJTbQgdRkN9Mh/HnKyFixQ18JqGlgaV2cT EtYePUfTEdaHdAhUINLIlEug1MfOslHU+HyGsdywnoChNB4GHPQuePC5Tz60VeFN RbQ9aKcBUu8r95rjlnKtAtBijNMA4bjGwllVxNwJ/ZoA9RPv1SbDZ07RX3qTaLVY YhVQl8+shD33/W24jUTJv1kMMexpHXIlv0gyfMryzpwI7uzzmGHRPAokJdbYKctC dyMPfdE90rxTiMUdL/1IQGhnh3awjbyfArzUhHyQ++HyUyzCFh0slsO0CD18vUy8 FofhCugGBhjuKw3XwLNQ+KsWURz5qHctSzBc3qMOSyqFHbAJCVRANkhsFvWJo2qL 75+Z7OTRebtsyOUZIdq26r4roSxHrps3dupWTtN70HWx2NhQG1nLEw986QYiQu1T hcKvDmehQLrUvg== =x3WL -----END PGP SIGNATURE----- Merge tag 'x86-fpu-2021-11-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 fpu updates from Thomas Gleixner: - Cleanup of extable fixup handling to be more robust, which in turn allows to make the FPU exception fixups more robust as well. - Change the return code for signal frame related failures from explicit error codes to a boolean fail/success as that's all what the calling code evaluates. - A large refactoring of the FPU code to prepare for adding AMX support: - Distangle the public header maze and remove especially the misnomed kitchen sink internal.h which is despite it's name included all over the place. - Add a proper abstraction for the register buffer storage (struct fpstate) which allows to dynamically size the buffer at runtime by flipping the pointer to the buffer container from the default container which is embedded in task_struct::tread::fpu to a dynamically allocated container with a larger register buffer. - Convert the code over to the new fpstate mechanism. - Consolidate the KVM FPU handling by moving the FPU related code into the FPU core which removes the number of exports and avoids adding even more export when AMX has to be supported in KVM. This also removes duplicated code which was of course unnecessary different and incomplete in the KVM copy. - Simplify the KVM FPU buffer handling by utilizing the new fpstate container and just switching the buffer pointer from the user space buffer to the KVM guest buffer when entering vcpu_run() and flipping it back when leaving the function. This cuts the memory requirements of a vCPU for FPU buffers in half and avoids pointless memory copy operations. This also solves the so far unresolved problem of adding AMX support because the current FPU buffer handling of KVM inflicted a circular dependency between adding AMX support to the core and to KVM. With the new scheme of switching fpstate AMX support can be added to the core code without affecting KVM. - Replace various variables with proper data structures so the extra information required for adding dynamically enabled FPU features (AMX) can be added in one place - Add AMX (Advanced Matrix eXtensions) support (finally): AMX is a large XSTATE component which is going to be available with Saphire Rapids XEON CPUs. The feature comes with an extra MSR (MSR_XFD) which allows to trap the (first) use of an AMX related instruction, which has two benefits: 1) It allows the kernel to control access to the feature 2) It allows the kernel to dynamically allocate the large register state buffer instead of burdening every task with the the extra 8K or larger state storage. It would have been great to gain this kind of control already with AVX512. The support comes with the following infrastructure components: 1) arch_prctl() to - read the supported features (equivalent to XGETBV(0)) - read the permitted features for a task - request permission for a dynamically enabled feature Permission is granted per process, inherited on fork() and cleared on exec(). The permission policy of the kernel is restricted to sigaltstack size validation, but the syscall obviously allows further restrictions via seccomp etc. 2) A stronger sigaltstack size validation for sys_sigaltstack(2) which takes granted permissions and the potentially resulting larger signal frame into account. This mechanism can also be used to enforce factual sigaltstack validation independent of dynamic features to help with finding potential victims of the 2K sigaltstack size constant which is broken since AVX512 support was added. 3) Exception handling for #NM traps to catch first use of a extended feature via a new cause MSR. If the exception was caused by the use of such a feature, the handler checks permission for that feature. If permission has not been granted, the handler sends a SIGILL like the #UD handler would do if the feature would have been disabled in XCR0. If permission has been granted, then a new fpstate which fits the larger buffer requirement is allocated. In the unlikely case that this allocation fails, the handler sends SIGSEGV to the task. That's not elegant, but unavoidable as the other discussed options of preallocation or full per task permissions come with their own set of horrors for kernel and/or userspace. So this is the lesser of the evils and SIGSEGV caused by unexpected memory allocation failures is not a fundamentally new concept either. When allocation succeeds, the fpstate properties are filled in to reflect the extended feature set and the resulting sizes, the fpu::fpstate pointer is updated accordingly and the trap is disarmed for this task permanently. 4) Enumeration and size calculations 5) Trap switching via MSR_XFD The XFD (eXtended Feature Disable) MSR is context switched with the same life time rules as the FPU register state itself. The mechanism is keyed off with a static key which is default disabled so !AMX equipped CPUs have zero overhead. On AMX enabled CPUs the overhead is limited by comparing the tasks XFD value with a per CPU shadow variable to avoid redundant MSR writes. In case of switching from a AMX using task to a non AMX using task or vice versa, the extra MSR write is obviously inevitable. All other places which need to be aware of the variable feature sets and resulting variable sizes are not affected at all because they retrieve the information (feature set, sizes) unconditonally from the fpstate properties. 6) Enable the new AMX states Note, this is relatively new code despite the fact that AMX support is in the works for more than a year now. The big refactoring of the FPU code, which allowed to do a proper integration has been started exactly 3 weeks ago. Refactoring of the existing FPU code and of the original AMX patches took a week and has been subject to extensive review and testing. The only fallout which has not been caught in review and testing right away was restricted to AMX enabled systems, which is completely irrelevant for anyone outside Intel and their early access program. There might be dragons lurking as usual, but so far the fine grained refactoring has held up and eventual yet undetected fallout is bisectable and should be easily addressable before the 5.16 release. Famous last words... Many thanks to Chang Bae and Dave Hansen for working hard on this and also to the various test teams at Intel who reserved extra capacity to follow the rapid development of this closely which provides the confidence level required to offer this rather large update for inclusion into 5.16-rc1 * tag 'x86-fpu-2021-11-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (110 commits) Documentation/x86: Add documentation for using dynamic XSTATE features x86/fpu: Include vmalloc.h for vzalloc() selftests/x86/amx: Add context switch test selftests/x86/amx: Add test cases for AMX state management x86/fpu/amx: Enable the AMX feature in 64-bit mode x86/fpu: Add XFD handling for dynamic states x86/fpu: Calculate the default sizes independently x86/fpu/amx: Define AMX state components and have it used for boot-time checks x86/fpu/xstate: Prepare XSAVE feature table for gaps in state component numbers x86/fpu/xstate: Add fpstate_realloc()/free() x86/fpu/xstate: Add XFD #NM handler x86/fpu: Update XFD state where required x86/fpu: Add sanity checks for XFD x86/fpu: Add XFD state to fpstate x86/msr-index: Add MSRs for XFD x86/cpufeatures: Add eXtended Feature Disabling (XFD) feature bit x86/fpu: Reset permission and fpstate on exec() x86/fpu: Prepare fpu_clone() for dynamically enabled features x86/fpu/signal: Prepare for variable sigframe length x86/signal: Use fpu::__state_user_size for sigalt stack validation ... |
||
---|---|---|
.. | ||
.gitignore | ||
atomic64_32.c | ||
atomic64_386_32.S | ||
atomic64_cx8_32.S | ||
cache-smp.c | ||
checksum_32.S | ||
clear_page_64.S | ||
cmdline.c | ||
cmpxchg8b_emu.S | ||
cmpxchg16b_emu.S | ||
copy_mc_64.S | ||
copy_mc.c | ||
copy_page_64.S | ||
copy_user_64.S | ||
cpu.c | ||
csum-copy_64.S | ||
csum-partial_64.c | ||
csum-wrappers_64.c | ||
delay.c | ||
error-inject.c | ||
getuser.S | ||
hweight.S | ||
inat.c | ||
insn-eval.c | ||
insn.c | ||
iomap_copy_64.S | ||
iomem.c | ||
kaslr.c | ||
Makefile | ||
memcpy_32.c | ||
memcpy_64.S | ||
memmove_64.S | ||
memset_64.S | ||
misc.c | ||
mmx_32.c | ||
msr-reg-export.c | ||
msr-reg.S | ||
msr-smp.c | ||
msr.c | ||
pc-conf-reg.c | ||
putuser.S | ||
retpoline.S | ||
string_32.c | ||
strstr_32.c | ||
usercopy_32.c | ||
usercopy_64.c | ||
usercopy.c | ||
x86-opcode-map.txt |