8cd9357381
commit 55cc11da69895a680940c1733caabc37be685f5e upstream. This reverts commit 55884c045d31a29cf69db8332d1064a1b61dd159. When Ath10k is in AP mode and an unassociated STA sends a VHT action frame (Operating Mode Notification for the NSS change) periodically to AP this causes ath10k to call ath10k_station_assoc() which sends WMI_PEER_ASSOC_CMDID during NSS update. Over the time (with a certain client it can happen within 15 mins when there are over 500 of these VHT action frames) continuous calls of WMI_PEER_ASSOC_CMDID cause firmware to assert due to resource exhaust. To my knowledge setting WMI_PEER_NSS peer param itself enough to handle NSS updates and no need to call ath10k_station_assoc(). So revert the original commit from 2014 as it's unclear why the change was really needed. Now the firmware assert doesn't happen anymore. Issue observed in QCA9984 platform with firmware version:10.4-3.5.3-00053. This Change tested in QCA9984 with firmware version: 10.4-3.5.3-00053 and QCA988x platform with firmware version: 10.2.4-1.0-00036. Firmware Assert log: ath10k_pci 0002:01:00.0: firmware crashed! (guid e61f1274-9acd-4c5b-bcca-e032ea6e723c) ath10k_pci 0002:01:00.0: qca9984/qca9994 hw1.0 target 0x01000000 chip_id 0x00000000 sub 168c:cafe ath10k_pci 0002:01:00.0: kconfig debug 1 debugfs 1 tracing 0 dfs 1 testmode 1 ath10k_pci 0002:01:00.0: firmware ver 10.4-3.5.3-00053 api 5 features no-p2p,mfp,peer-flow-ctrl,btcoex-param,allows-mesh-bcast crc32 4c56a386 ath10k_pci 0002:01:00.0: board_file api 2 bmi_id 0:4 crc32 c2271344 ath10k_pci 0002:01:00.0: htt-ver 2.2 wmi-op 6 htt-op 4 cal otp max-sta 512 raw 0 hwcrypto 1 ath10k_pci 0002:01:00.0: firmware register dump: ath10k_pci 0002:01:00.0: [00]: 0x0000000A 0x000015B3 0x00981E5F 0x00975B31 ath10k_pci 0002:01:00.0: [04]: 0x00981E5F 0x00060530 0x00000011 0x00446C60 ath10k_pci 0002:01:00.0: [08]: 0x0042F1FC 0x00458080 0x00000017 0x00000000 ath10k_pci 0002:01:00.0: [12]: 0x00000009 0x00000000 0x00973ABC 0x00973AD2 ath10k_pci 0002:01:00.0: [16]: 0x00973AB0 0x00960E62 0x009606CA 0x00000000 ath10k_pci 0002:01:00.0: [20]: 0x40981E5F 0x004066DC 0x00400000 0x00981E34 ath10k_pci 0002:01:00.0: [24]: 0x80983B48 0x0040673C 0x000000C0 0xC0981E5F ath10k_pci 0002:01:00.0: [28]: 0x80993DEB 0x0040676C 0x00431AB8 0x0045D0C4 ath10k_pci 0002:01:00.0: [32]: 0x80993E5C 0x004067AC 0x004303C0 0x0045D0C4 ath10k_pci 0002:01:00.0: [36]: 0x80994AAB 0x004067DC 0x00000000 0x0045D0C4 ath10k_pci 0002:01:00.0: [40]: 0x809971A0 0x0040681C 0x004303C0 0x00441B00 ath10k_pci 0002:01:00.0: [44]: 0x80991904 0x0040688C 0x004303C0 0x0045D0C4 ath10k_pci 0002:01:00.0: [48]: 0x80963AD3 0x00406A7C 0x004303C0 0x009918FC ath10k_pci 0002:01:00.0: [52]: 0x80960E80 0x00406A9C 0x0000001F 0x00400000 ath10k_pci 0002:01:00.0: [56]: 0x80960E51 0x00406ACC 0x00400000 0x00000000 ath10k_pci 0002:01:00.0: Copy Engine register dump: ath10k_pci 0002:01:00.0: index: addr: sr_wr_idx: sr_r_idx: dst_wr_idx: dst_r_idx: ath10k_pci 0002:01:00.0: [00]: 0x0004a000 15 15 3 3 ath10k_pci 0002:01:00.0: [01]: 0x0004a400 17 17 212 213 ath10k_pci 0002:01:00.0: [02]: 0x0004a800 21 21 20 21 ath10k_pci 0002:01:00.0: [03]: 0x0004ac00 25 25 27 25 ath10k_pci 0002:01:00.0: [04]: 0x0004b000 515 515 144 104 ath10k_pci 0002:01:00.0: [05]: 0x0004b400 28 28 155 156 ath10k_pci 0002:01:00.0: [06]: 0x0004b800 12 12 12 12 ath10k_pci 0002:01:00.0: [07]: 0x0004bc00 1 1 1 1 ath10k_pci 0002:01:00.0: [08]: 0x0004c000 0 0 127 0 ath10k_pci 0002:01:00.0: [09]: 0x0004c400 1 1 1 1 ath10k_pci 0002:01:00.0: [10]: 0x0004c800 0 0 0 0 ath10k_pci 0002:01:00.0: [11]: 0x0004cc00 0 0 0 0 ath10k_pci 0002:01:00.0: CE[1] write_index 212 sw_index 213 hw_index 0 nentries_mask 0x000001ff ath10k_pci 0002:01:00.0: CE[2] write_index 20 sw_index 21 hw_index 0 nentries_mask 0x0000007f ath10k_pci 0002:01:00.0: CE[5] write_index 155 sw_index 156 hw_index 0 nentries_mask 0x000001ff ath10k_pci 0002:01:00.0: DMA addr: nbytes: meta data: byte swap: gather: ath10k_pci 0002:01:00.0: [455]: 0x580c0042 0 0 0 0 ath10k_pci 0002:01:00.0: [456]: 0x594a0010 0 0 0 1 ath10k_pci 0002:01:00.0: [457]: 0x580c0042 0 0 0 0 ath10k_pci 0002:01:00.0: [458]: 0x594a0038 0 0 0 1 ath10k_pci 0002:01:00.0: [459]: 0x580c0a42 0 0 0 0 ath10k_pci 0002:01:00.0: [460]: 0x594a0060 0 0 0 1 ath10k_pci 0002:01:00.0: [461]: 0x580c0c42 0 0 0 0 ath10k_pci 0002:01:00.0: [462]: 0x594a0010 0 0 0 1 ath10k_pci 0002:01:00.0: [463]: 0x580c0c42 0 0 0 0 ath10k_pci 0002:01:00.0: [464]: 0x594a0038 0 0 0 1 ath10k_pci 0002:01:00.0: [465]: 0x580c0a42 0 0 0 0 ath10k_pci 0002:01:00.0: [466]: 0x594a0060 0 0 0 1 ath10k_pci 0002:01:00.0: [467]: 0x580c0042 0 0 0 0 ath10k_pci 0002:01:00.0: [468]: 0x594a0010 0 0 0 1 ath10k_pci 0002:01:00.0: [469]: 0x580c1c42 0 0 0 0 ath10k_pci 0002:01:00.0: [470]: 0x594a0010 0 0 0 1 ath10k_pci 0002:01:00.0: [471]: 0x580c1c42 0 0 0 0 ath10k_pci 0002:01:00.0: [472]: 0x594a0010 0 0 0 1 ath10k_pci 0002:01:00.0: [473]: 0x580c1c42 0 0 0 0 ath10k_pci 0002:01:00.0: [474]: 0x594a0010 0 0 0 1 ath10k_pci 0002:01:00.0: [475]: 0x580c0642 0 0 0 0 ath10k_pci 0002:01:00.0: [476]: 0x594a0038 0 0 0 1 ath10k_pci 0002:01:00.0: [477]: 0x580c0842 0 0 0 0 ath10k_pci 0002:01:00.0: [478]: 0x594a0060 0 0 0 1 ath10k_pci 0002:01:00.0: [479]: 0x580c0042 0 0 0 0 ath10k_pci 0002:01:00.0: [480]: 0x594a0010 0 0 0 1 ath10k_pci 0002:01:00.0: [481]: 0x580c0042 0 0 0 0 ath10k_pci 0002:01:00.0: [482]: 0x594a0038 0 0 0 1 ath10k_pci 0002:01:00.0: [483]: 0x580c0842 0 0 0 0 ath10k_pci 0002:01:00.0: [484]: 0x594a0060 0 0 0 1 ath10k_pci 0002:01:00.0: [485]: 0x580c0642 0 0 0 0 ath10k_pci 0002:01:00.0: [486]: 0x594a0010 0 0 0 1 ath10k_pci 0002:01:00.0: [487]: 0x580c0642 0 0 0 0 ath10k_pci 0002:01:00.0: [488]: 0x594a0038 0 0 0 1 ath10k_pci 0002:01:00.0: [489]: 0x580c0842 0 0 0 0 ath10k_pci 0002:01:00.0: [490]: 0x594a0060 0 0 0 1 ath10k_pci 0002:01:00.0: [491]: 0x580c0042 0 0 0 0 ath10k_pci 0002:01:00.0: [492]: 0x58174040 0 1 0 0 ath10k_pci 0002:01:00.0: [493]: 0x5a946040 0 1 0 0 ath10k_pci 0002:01:00.0: [494]: 0x59909040 0 1 0 0 ath10k_pci 0002:01:00.0: [495]: 0x5ae5a040 0 1 0 0 ath10k_pci 0002:01:00.0: [496]: 0x58096040 0 1 0 0 ath10k_pci 0002:01:00.0: [497]: 0x594a0010 0 0 0 1 ath10k_pci 0002:01:00.0: [498]: 0x580c0642 0 0 0 0 ath10k_pci 0002:01:00.0: [499]: 0x5c1e0040 0 1 0 0 ath10k_pci 0002:01:00.0: [500]: 0x58153040 0 1 0 0 ath10k_pci 0002:01:00.0: [501]: 0x58129040 0 1 0 0 ath10k_pci 0002:01:00.0: [502]: 0x5952f040 0 1 0 0 ath10k_pci 0002:01:00.0: [503]: 0x59535040 0 1 0 0 ath10k_pci 0002:01:00.0: [504]: 0x594a0010 0 0 0 1 ath10k_pci 0002:01:00.0: [505]: 0x580c0042 0 0 0 0 ath10k_pci 0002:01:00.0: [506]: 0x594a0010 0 0 0 1 ath10k_pci 0002:01:00.0: [507]: 0x580c0042 0 0 0 0 ath10k_pci 0002:01:00.0: [508]: 0x594a0010 0 0 0 1 ath10k_pci 0002:01:00.0: [509]: 0x580c0042 0 0 0 0 ath10k_pci 0002:01:00.0: [510]: 0x594a0010 0 0 0 1 ath10k_pci 0002:01:00.0: [511]: 0x580c0042 0 0 0 0 ath10k_pci 0002:01:00.0: [512]: 0x5adcc040 0 1 0 0 ath10k_pci 0002:01:00.0: [513]: 0x5cf3d040 0 1 0 0 ath10k_pci 0002:01:00.0: [514]: 0x5c1e9040 64 1 0 0 ath10k_pci 0002:01:00.0: [515]: 0x00000000 0 0 0 0 Signed-off-by: Karthikeyan Periyasamy <periyasa@codeaurora.org> Signed-off-by: Kalle Valo <kvalo@codeaurora.org> Cc: Takashi Iwai <tiwai@suse.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
…
…
Linux kernel release 4.x <http://kernel.org/> These are the release notes for Linux version 4. Read them carefully, as they tell you what this is all about, explain how to install the kernel, and what to do if something goes wrong. WHAT IS LINUX? Linux is a clone of the operating system Unix, written from scratch by Linus Torvalds with assistance from a loosely-knit team of hackers across the Net. It aims towards POSIX and Single UNIX Specification compliance. It has all the features you would expect in a modern fully-fledged Unix, including true multitasking, virtual memory, shared libraries, demand loading, shared copy-on-write executables, proper memory management, and multistack networking including IPv4 and IPv6. It is distributed under the GNU General Public License - see the accompanying COPYING file for more details. ON WHAT HARDWARE DOES IT RUN? Although originally developed first for 32-bit x86-based PCs (386 or higher), today Linux also runs on (at least) the Compaq Alpha AXP, Sun SPARC and UltraSPARC, Motorola 68000, PowerPC, PowerPC64, ARM, Hitachi SuperH, Cell, IBM S/390, MIPS, HP PA-RISC, Intel IA-64, DEC VAX, AMD x86-64, AXIS CRIS, Xtensa, Tilera TILE, AVR32, ARC and Renesas M32R architectures. Linux is easily portable to most general-purpose 32- or 64-bit architectures as long as they have a paged memory management unit (PMMU) and a port of the GNU C compiler (gcc) (part of The GNU Compiler Collection, GCC). Linux has also been ported to a number of architectures without a PMMU, although functionality is then obviously somewhat limited. Linux has also been ported to itself. You can now run the kernel as a userspace application - this is called UserMode Linux (UML). DOCUMENTATION: - There is a lot of documentation available both in electronic form on the Internet and in books, both Linux-specific and pertaining to general UNIX questions. I'd recommend looking into the documentation subdirectories on any Linux FTP site for the LDP (Linux Documentation Project) books. This README is not meant to be documentation on the system: there are much better sources available. - There are various README files in the Documentation/ subdirectory: these typically contain kernel-specific installation notes for some drivers for example. See Documentation/00-INDEX for a list of what is contained in each file. Please read the Changes file, as it contains information about the problems, which may result by upgrading your kernel. - The Documentation/DocBook/ subdirectory contains several guides for kernel developers and users. These guides can be rendered in a number of formats: PostScript (.ps), PDF, HTML, & man-pages, among others. After installation, "make psdocs", "make pdfdocs", "make htmldocs", or "make mandocs" will render the documentation in the requested format. INSTALLING the kernel source: - If you install the full sources, put the kernel tarball in a directory where you have permissions (eg. your home directory) and unpack it: xz -cd linux-4.X.tar.xz | tar xvf - Replace "X" with the version number of the latest kernel. Do NOT use the /usr/src/linux area! This area has a (usually incomplete) set of kernel headers that are used by the library header files. They should match the library, and not get messed up by whatever the kernel-du-jour happens to be. - You can also upgrade between 4.x releases by patching. Patches are distributed in the xz format. To install by patching, get all the newer patch files, enter the top level directory of the kernel source (linux-4.X) and execute: xz -cd ../patch-4.x.xz | patch -p1 Replace "x" for all versions bigger than the version "X" of your current source tree, _in_order_, and you should be ok. You may want to remove the backup files (some-file-name~ or some-file-name.orig), and make sure that there are no failed patches (some-file-name# or some-file-name.rej). If there are, either you or I have made a mistake. Unlike patches for the 4.x kernels, patches for the 4.x.y kernels (also known as the -stable kernels) are not incremental but instead apply directly to the base 4.x kernel. For example, if your base kernel is 4.0 and you want to apply the 4.0.3 patch, you must not first apply the 4.0.1 and 4.0.2 patches. Similarly, if you are running kernel version 4.0.2 and want to jump to 4.0.3, you must first reverse the 4.0.2 patch (that is, patch -R) _before_ applying the 4.0.3 patch. You can read more on this in Documentation/applying-patches.txt Alternatively, the script patch-kernel can be used to automate this process. It determines the current kernel version and applies any patches found. linux/scripts/patch-kernel linux The first argument in the command above is the location of the kernel source. Patches are applied from the current directory, but an alternative directory can be specified as the second argument. - Make sure you have no stale .o files and dependencies lying around: cd linux make mrproper You should now have the sources correctly installed. SOFTWARE REQUIREMENTS Compiling and running the 4.x kernels requires up-to-date versions of various software packages. Consult Documentation/Changes for the minimum version numbers required and how to get updates for these packages. Beware that using excessively old versions of these packages can cause indirect errors that are very difficult to track down, so don't assume that you can just update packages when obvious problems arise during build or operation. BUILD directory for the kernel: When compiling the kernel, all output files will per default be stored together with the kernel source code. Using the option "make O=output/dir" allow you to specify an alternate place for the output files (including .config). Example: kernel source code: /usr/src/linux-4.X build directory: /home/name/build/kernel To configure and build the kernel, use: cd /usr/src/linux-4.X make O=/home/name/build/kernel menuconfig make O=/home/name/build/kernel sudo make O=/home/name/build/kernel modules_install install Please note: If the 'O=output/dir' option is used, then it must be used for all invocations of make. CONFIGURING the kernel: Do not skip this step even if you are only upgrading one minor version. New configuration options are added in each release, and odd problems will turn up if the configuration files are not set up as expected. If you want to carry your existing configuration to a new version with minimal work, use "make oldconfig", which will only ask you for the answers to new questions. - Alternative configuration commands are: "make config" Plain text interface. "make menuconfig" Text based color menus, radiolists & dialogs. "make nconfig" Enhanced text based color menus. "make xconfig" X windows (Qt) based configuration tool. "make gconfig" X windows (GTK+) based configuration tool. "make oldconfig" Default all questions based on the contents of your existing ./.config file and asking about new config symbols. "make silentoldconfig" Like above, but avoids cluttering the screen with questions already answered. Additionally updates the dependencies. "make olddefconfig" Like above, but sets new symbols to their default values without prompting. "make defconfig" Create a ./.config file by using the default symbol values from either arch/$ARCH/defconfig or arch/$ARCH/configs/${PLATFORM}_defconfig, depending on the architecture. "make ${PLATFORM}_defconfig" Create a ./.config file by using the default symbol values from arch/$ARCH/configs/${PLATFORM}_defconfig. Use "make help" to get a list of all available platforms of your architecture. "make allyesconfig" Create a ./.config file by setting symbol values to 'y' as much as possible. "make allmodconfig" Create a ./.config file by setting symbol values to 'm' as much as possible. "make allnoconfig" Create a ./.config file by setting symbol values to 'n' as much as possible. "make randconfig" Create a ./.config file by setting symbol values to random values. "make localmodconfig" Create a config based on current config and loaded modules (lsmod). Disables any module option that is not needed for the loaded modules. To create a localmodconfig for another machine, store the lsmod of that machine into a file and pass it in as a LSMOD parameter. target$ lsmod > /tmp/mylsmod target$ scp /tmp/mylsmod host:/tmp host$ make LSMOD=/tmp/mylsmod localmodconfig The above also works when cross compiling. "make localyesconfig" Similar to localmodconfig, except it will convert all module options to built in (=y) options. You can find more information on using the Linux kernel config tools in Documentation/kbuild/kconfig.txt. - NOTES on "make config": - Having unnecessary drivers will make the kernel bigger, and can under some circumstances lead to problems: probing for a nonexistent controller card may confuse your other controllers - Compiling the kernel with "Processor type" set higher than 386 will result in a kernel that does NOT work on a 386. The kernel will detect this on bootup, and give up. - A kernel with math-emulation compiled in will still use the coprocessor if one is present: the math emulation will just never get used in that case. The kernel will be slightly larger, but will work on different machines regardless of whether they have a math coprocessor or not. - The "kernel hacking" configuration details usually result in a bigger or slower kernel (or both), and can even make the kernel less stable by configuring some routines to actively try to break bad code to find kernel problems (kmalloc()). Thus you should probably answer 'n' to the questions for "development", "experimental", or "debugging" features. COMPILING the kernel: - Make sure you have at least gcc 3.2 available. For more information, refer to Documentation/Changes. Please note that you can still run a.out user programs with this kernel. - Do a "make" to create a compressed kernel image. It is also possible to do "make install" if you have lilo installed to suit the kernel makefiles, but you may want to check your particular lilo setup first. To do the actual install, you have to be root, but none of the normal build should require that. Don't take the name of root in vain. - If you configured any of the parts of the kernel as `modules', you will also have to do "make modules_install". - Verbose kernel compile/build output: Normally, the kernel build system runs in a fairly quiet mode (but not totally silent). However, sometimes you or other kernel developers need to see compile, link, or other commands exactly as they are executed. For this, use "verbose" build mode. This is done by inserting "V=1" in the "make" command. E.g.: make V=1 all To have the build system also tell the reason for the rebuild of each target, use "V=2". The default is "V=0". - Keep a backup kernel handy in case something goes wrong. This is especially true for the development releases, since each new release contains new code which has not been debugged. Make sure you keep a backup of the modules corresponding to that kernel, as well. If you are installing a new kernel with the same version number as your working kernel, make a backup of your modules directory before you do a "make modules_install". Alternatively, before compiling, use the kernel config option "LOCALVERSION" to append a unique suffix to the regular kernel version. LOCALVERSION can be set in the "General Setup" menu. - In order to boot your new kernel, you'll need to copy the kernel image (e.g. .../linux/arch/i386/boot/bzImage after compilation) to the place where your regular bootable kernel is found. - Booting a kernel directly from a floppy without the assistance of a bootloader such as LILO, is no longer supported. If you boot Linux from the hard drive, chances are you use LILO, which uses the kernel image as specified in the file /etc/lilo.conf. The kernel image file is usually /vmlinuz, /boot/vmlinuz, /bzImage or /boot/bzImage. To use the new kernel, save a copy of the old image and copy the new image over the old one. Then, you MUST RERUN LILO to update the loading map!! If you don't, you won't be able to boot the new kernel image. Reinstalling LILO is usually a matter of running /sbin/lilo. You may wish to edit /etc/lilo.conf to specify an entry for your old kernel image (say, /vmlinux.old) in case the new one does not work. See the LILO docs for more information. After reinstalling LILO, you should be all set. Shutdown the system, reboot, and enjoy! If you ever need to change the default root device, video mode, ramdisk size, etc. in the kernel image, use the 'rdev' program (or alternatively the LILO boot options when appropriate). No need to recompile the kernel to change these parameters. - Reboot with the new kernel and enjoy. IF SOMETHING GOES WRONG: - If you have problems that seem to be due to kernel bugs, please check the file MAINTAINERS to see if there is a particular person associated with the part of the kernel that you are having trouble with. If there isn't anyone listed there, then the second best thing is to mail them to me (torvalds@linux-foundation.org), and possibly to any other relevant mailing-list or to the newsgroup. - In all bug-reports, *please* tell what kernel you are talking about, how to duplicate the problem, and what your setup is (use your common sense). If the problem is new, tell me so, and if the problem is old, please try to tell me when you first noticed it. - If the bug results in a message like unable to handle kernel paging request at address C0000010 Oops: 0002 EIP: 0010:XXXXXXXX eax: xxxxxxxx ebx: xxxxxxxx ecx: xxxxxxxx edx: xxxxxxxx esi: xxxxxxxx edi: xxxxxxxx ebp: xxxxxxxx ds: xxxx es: xxxx fs: xxxx gs: xxxx Pid: xx, process nr: xx xx xx xx xx xx xx xx xx xx xx or similar kernel debugging information on your screen or in your system log, please duplicate it *exactly*. The dump may look incomprehensible to you, but it does contain information that may help debugging the problem. The text above the dump is also important: it tells something about why the kernel dumped code (in the above example, it's due to a bad kernel pointer). More information on making sense of the dump is in Documentation/oops-tracing.txt - If you compiled the kernel with CONFIG_KALLSYMS you can send the dump as is, otherwise you will have to use the "ksymoops" program to make sense of the dump (but compiling with CONFIG_KALLSYMS is usually preferred). This utility can be downloaded from ftp://ftp.<country>.kernel.org/pub/linux/utils/kernel/ksymoops/ . Alternatively, you can do the dump lookup by hand: - In debugging dumps like the above, it helps enormously if you can look up what the EIP value means. The hex value as such doesn't help me or anybody else very much: it will depend on your particular kernel setup. What you should do is take the hex value from the EIP line (ignore the "0010:"), and look it up in the kernel namelist to see which kernel function contains the offending address. To find out the kernel function name, you'll need to find the system binary associated with the kernel that exhibited the symptom. This is the file 'linux/vmlinux'. To extract the namelist and match it against the EIP from the kernel crash, do: nm vmlinux | sort | less This will give you a list of kernel addresses sorted in ascending order, from which it is simple to find the function that contains the offending address. Note that the address given by the kernel debugging messages will not necessarily match exactly with the function addresses (in fact, that is very unlikely), so you can't just 'grep' the list: the list will, however, give you the starting point of each kernel function, so by looking for the function that has a starting address lower than the one you are searching for but is followed by a function with a higher address you will find the one you want. In fact, it may be a good idea to include a bit of "context" in your problem report, giving a few lines around the interesting one. If you for some reason cannot do the above (you have a pre-compiled kernel image or similar), telling me as much about your setup as possible will help. Please read the REPORTING-BUGS document for details. - Alternatively, you can use gdb on a running kernel. (read-only; i.e. you cannot change values or set break points.) To do this, first compile the kernel with -g; edit arch/i386/Makefile appropriately, then do a "make clean". You'll also need to enable CONFIG_PROC_FS (via "make config"). After you've rebooted with the new kernel, do "gdb vmlinux /proc/kcore". You can now use all the usual gdb commands. The command to look up the point where your system crashed is "l *0xXXXXXXXX". (Replace the XXXes with the EIP value.) gdb'ing a non-running kernel currently fails because gdb (wrongly) disregards the starting offset for which the kernel is compiled.
Description
Languages
C
97.6%
Assembly
1%
Shell
0.5%
Python
0.3%
Makefile
0.3%