83ee9f2376
clang 14 won't build because ret is uninitialised and can be returned if both prop and fdtprop are NULL. Drop the ret variable and return an error in that failure case. Fixes: b1fc44eaa9ba ("pseries/iommu/ddw: Fix kdump to work in absence of ibm,dma-window") Suggested-by: Christophe Leroy <christophe.leroy@csgroup.eu> Signed-off-by: Russell Currey <ruscur@russell.cc> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20220810054331.373761-1-ruscur@russell.cc
1288 lines
34 KiB
C
1288 lines
34 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* ppc64 code to implement the kexec_file_load syscall
|
|
*
|
|
* Copyright (C) 2004 Adam Litke (agl@us.ibm.com)
|
|
* Copyright (C) 2004 IBM Corp.
|
|
* Copyright (C) 2004,2005 Milton D Miller II, IBM Corporation
|
|
* Copyright (C) 2005 R Sharada (sharada@in.ibm.com)
|
|
* Copyright (C) 2006 Mohan Kumar M (mohan@in.ibm.com)
|
|
* Copyright (C) 2020 IBM Corporation
|
|
*
|
|
* Based on kexec-tools' kexec-ppc64.c, kexec-elf-rel-ppc64.c, fs2dt.c.
|
|
* Heavily modified for the kernel by
|
|
* Hari Bathini, IBM Corporation.
|
|
*/
|
|
|
|
#include <linux/kexec.h>
|
|
#include <linux/of_fdt.h>
|
|
#include <linux/libfdt.h>
|
|
#include <linux/of_device.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/drmem.h>
|
|
#include <asm/firmware.h>
|
|
#include <asm/kexec_ranges.h>
|
|
#include <asm/crashdump-ppc64.h>
|
|
|
|
struct umem_info {
|
|
u64 *buf; /* data buffer for usable-memory property */
|
|
u32 size; /* size allocated for the data buffer */
|
|
u32 max_entries; /* maximum no. of entries */
|
|
u32 idx; /* index of current entry */
|
|
|
|
/* usable memory ranges to look up */
|
|
unsigned int nr_ranges;
|
|
const struct crash_mem_range *ranges;
|
|
};
|
|
|
|
const struct kexec_file_ops * const kexec_file_loaders[] = {
|
|
&kexec_elf64_ops,
|
|
NULL
|
|
};
|
|
|
|
/**
|
|
* get_exclude_memory_ranges - Get exclude memory ranges. This list includes
|
|
* regions like opal/rtas, tce-table, initrd,
|
|
* kernel, htab which should be avoided while
|
|
* setting up kexec load segments.
|
|
* @mem_ranges: Range list to add the memory ranges to.
|
|
*
|
|
* Returns 0 on success, negative errno on error.
|
|
*/
|
|
static int get_exclude_memory_ranges(struct crash_mem **mem_ranges)
|
|
{
|
|
int ret;
|
|
|
|
ret = add_tce_mem_ranges(mem_ranges);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = add_initrd_mem_range(mem_ranges);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = add_htab_mem_range(mem_ranges);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = add_kernel_mem_range(mem_ranges);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = add_rtas_mem_range(mem_ranges);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = add_opal_mem_range(mem_ranges);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = add_reserved_mem_ranges(mem_ranges);
|
|
if (ret)
|
|
goto out;
|
|
|
|
/* exclude memory ranges should be sorted for easy lookup */
|
|
sort_memory_ranges(*mem_ranges, true);
|
|
out:
|
|
if (ret)
|
|
pr_err("Failed to setup exclude memory ranges\n");
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* get_usable_memory_ranges - Get usable memory ranges. This list includes
|
|
* regions like crashkernel, opal/rtas & tce-table,
|
|
* that kdump kernel could use.
|
|
* @mem_ranges: Range list to add the memory ranges to.
|
|
*
|
|
* Returns 0 on success, negative errno on error.
|
|
*/
|
|
static int get_usable_memory_ranges(struct crash_mem **mem_ranges)
|
|
{
|
|
int ret;
|
|
|
|
/*
|
|
* Early boot failure observed on guests when low memory (first memory
|
|
* block?) is not added to usable memory. So, add [0, crashk_res.end]
|
|
* instead of [crashk_res.start, crashk_res.end] to workaround it.
|
|
* Also, crashed kernel's memory must be added to reserve map to
|
|
* avoid kdump kernel from using it.
|
|
*/
|
|
ret = add_mem_range(mem_ranges, 0, crashk_res.end + 1);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = add_rtas_mem_range(mem_ranges);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = add_opal_mem_range(mem_ranges);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = add_tce_mem_ranges(mem_ranges);
|
|
out:
|
|
if (ret)
|
|
pr_err("Failed to setup usable memory ranges\n");
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* get_crash_memory_ranges - Get crash memory ranges. This list includes
|
|
* first/crashing kernel's memory regions that
|
|
* would be exported via an elfcore.
|
|
* @mem_ranges: Range list to add the memory ranges to.
|
|
*
|
|
* Returns 0 on success, negative errno on error.
|
|
*/
|
|
static int get_crash_memory_ranges(struct crash_mem **mem_ranges)
|
|
{
|
|
phys_addr_t base, end;
|
|
struct crash_mem *tmem;
|
|
u64 i;
|
|
int ret;
|
|
|
|
for_each_mem_range(i, &base, &end) {
|
|
u64 size = end - base;
|
|
|
|
/* Skip backup memory region, which needs a separate entry */
|
|
if (base == BACKUP_SRC_START) {
|
|
if (size > BACKUP_SRC_SIZE) {
|
|
base = BACKUP_SRC_END + 1;
|
|
size -= BACKUP_SRC_SIZE;
|
|
} else
|
|
continue;
|
|
}
|
|
|
|
ret = add_mem_range(mem_ranges, base, size);
|
|
if (ret)
|
|
goto out;
|
|
|
|
/* Try merging adjacent ranges before reallocation attempt */
|
|
if ((*mem_ranges)->nr_ranges == (*mem_ranges)->max_nr_ranges)
|
|
sort_memory_ranges(*mem_ranges, true);
|
|
}
|
|
|
|
/* Reallocate memory ranges if there is no space to split ranges */
|
|
tmem = *mem_ranges;
|
|
if (tmem && (tmem->nr_ranges == tmem->max_nr_ranges)) {
|
|
tmem = realloc_mem_ranges(mem_ranges);
|
|
if (!tmem)
|
|
goto out;
|
|
}
|
|
|
|
/* Exclude crashkernel region */
|
|
ret = crash_exclude_mem_range(tmem, crashk_res.start, crashk_res.end);
|
|
if (ret)
|
|
goto out;
|
|
|
|
/*
|
|
* FIXME: For now, stay in parity with kexec-tools but if RTAS/OPAL
|
|
* regions are exported to save their context at the time of
|
|
* crash, they should actually be backed up just like the
|
|
* first 64K bytes of memory.
|
|
*/
|
|
ret = add_rtas_mem_range(mem_ranges);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = add_opal_mem_range(mem_ranges);
|
|
if (ret)
|
|
goto out;
|
|
|
|
/* create a separate program header for the backup region */
|
|
ret = add_mem_range(mem_ranges, BACKUP_SRC_START, BACKUP_SRC_SIZE);
|
|
if (ret)
|
|
goto out;
|
|
|
|
sort_memory_ranges(*mem_ranges, false);
|
|
out:
|
|
if (ret)
|
|
pr_err("Failed to setup crash memory ranges\n");
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* get_reserved_memory_ranges - Get reserve memory ranges. This list includes
|
|
* memory regions that should be added to the
|
|
* memory reserve map to ensure the region is
|
|
* protected from any mischief.
|
|
* @mem_ranges: Range list to add the memory ranges to.
|
|
*
|
|
* Returns 0 on success, negative errno on error.
|
|
*/
|
|
static int get_reserved_memory_ranges(struct crash_mem **mem_ranges)
|
|
{
|
|
int ret;
|
|
|
|
ret = add_rtas_mem_range(mem_ranges);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = add_tce_mem_ranges(mem_ranges);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = add_reserved_mem_ranges(mem_ranges);
|
|
out:
|
|
if (ret)
|
|
pr_err("Failed to setup reserved memory ranges\n");
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* __locate_mem_hole_top_down - Looks top down for a large enough memory hole
|
|
* in the memory regions between buf_min & buf_max
|
|
* for the buffer. If found, sets kbuf->mem.
|
|
* @kbuf: Buffer contents and memory parameters.
|
|
* @buf_min: Minimum address for the buffer.
|
|
* @buf_max: Maximum address for the buffer.
|
|
*
|
|
* Returns 0 on success, negative errno on error.
|
|
*/
|
|
static int __locate_mem_hole_top_down(struct kexec_buf *kbuf,
|
|
u64 buf_min, u64 buf_max)
|
|
{
|
|
int ret = -EADDRNOTAVAIL;
|
|
phys_addr_t start, end;
|
|
u64 i;
|
|
|
|
for_each_mem_range_rev(i, &start, &end) {
|
|
/*
|
|
* memblock uses [start, end) convention while it is
|
|
* [start, end] here. Fix the off-by-one to have the
|
|
* same convention.
|
|
*/
|
|
end -= 1;
|
|
|
|
if (start > buf_max)
|
|
continue;
|
|
|
|
/* Memory hole not found */
|
|
if (end < buf_min)
|
|
break;
|
|
|
|
/* Adjust memory region based on the given range */
|
|
if (start < buf_min)
|
|
start = buf_min;
|
|
if (end > buf_max)
|
|
end = buf_max;
|
|
|
|
start = ALIGN(start, kbuf->buf_align);
|
|
if (start < end && (end - start + 1) >= kbuf->memsz) {
|
|
/* Suitable memory range found. Set kbuf->mem */
|
|
kbuf->mem = ALIGN_DOWN(end - kbuf->memsz + 1,
|
|
kbuf->buf_align);
|
|
ret = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* locate_mem_hole_top_down_ppc64 - Skip special memory regions to find a
|
|
* suitable buffer with top down approach.
|
|
* @kbuf: Buffer contents and memory parameters.
|
|
* @buf_min: Minimum address for the buffer.
|
|
* @buf_max: Maximum address for the buffer.
|
|
* @emem: Exclude memory ranges.
|
|
*
|
|
* Returns 0 on success, negative errno on error.
|
|
*/
|
|
static int locate_mem_hole_top_down_ppc64(struct kexec_buf *kbuf,
|
|
u64 buf_min, u64 buf_max,
|
|
const struct crash_mem *emem)
|
|
{
|
|
int i, ret = 0, err = -EADDRNOTAVAIL;
|
|
u64 start, end, tmin, tmax;
|
|
|
|
tmax = buf_max;
|
|
for (i = (emem->nr_ranges - 1); i >= 0; i--) {
|
|
start = emem->ranges[i].start;
|
|
end = emem->ranges[i].end;
|
|
|
|
if (start > tmax)
|
|
continue;
|
|
|
|
if (end < tmax) {
|
|
tmin = (end < buf_min ? buf_min : end + 1);
|
|
ret = __locate_mem_hole_top_down(kbuf, tmin, tmax);
|
|
if (!ret)
|
|
return 0;
|
|
}
|
|
|
|
tmax = start - 1;
|
|
|
|
if (tmax < buf_min) {
|
|
ret = err;
|
|
break;
|
|
}
|
|
ret = 0;
|
|
}
|
|
|
|
if (!ret) {
|
|
tmin = buf_min;
|
|
ret = __locate_mem_hole_top_down(kbuf, tmin, tmax);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* __locate_mem_hole_bottom_up - Looks bottom up for a large enough memory hole
|
|
* in the memory regions between buf_min & buf_max
|
|
* for the buffer. If found, sets kbuf->mem.
|
|
* @kbuf: Buffer contents and memory parameters.
|
|
* @buf_min: Minimum address for the buffer.
|
|
* @buf_max: Maximum address for the buffer.
|
|
*
|
|
* Returns 0 on success, negative errno on error.
|
|
*/
|
|
static int __locate_mem_hole_bottom_up(struct kexec_buf *kbuf,
|
|
u64 buf_min, u64 buf_max)
|
|
{
|
|
int ret = -EADDRNOTAVAIL;
|
|
phys_addr_t start, end;
|
|
u64 i;
|
|
|
|
for_each_mem_range(i, &start, &end) {
|
|
/*
|
|
* memblock uses [start, end) convention while it is
|
|
* [start, end] here. Fix the off-by-one to have the
|
|
* same convention.
|
|
*/
|
|
end -= 1;
|
|
|
|
if (end < buf_min)
|
|
continue;
|
|
|
|
/* Memory hole not found */
|
|
if (start > buf_max)
|
|
break;
|
|
|
|
/* Adjust memory region based on the given range */
|
|
if (start < buf_min)
|
|
start = buf_min;
|
|
if (end > buf_max)
|
|
end = buf_max;
|
|
|
|
start = ALIGN(start, kbuf->buf_align);
|
|
if (start < end && (end - start + 1) >= kbuf->memsz) {
|
|
/* Suitable memory range found. Set kbuf->mem */
|
|
kbuf->mem = start;
|
|
ret = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* locate_mem_hole_bottom_up_ppc64 - Skip special memory regions to find a
|
|
* suitable buffer with bottom up approach.
|
|
* @kbuf: Buffer contents and memory parameters.
|
|
* @buf_min: Minimum address for the buffer.
|
|
* @buf_max: Maximum address for the buffer.
|
|
* @emem: Exclude memory ranges.
|
|
*
|
|
* Returns 0 on success, negative errno on error.
|
|
*/
|
|
static int locate_mem_hole_bottom_up_ppc64(struct kexec_buf *kbuf,
|
|
u64 buf_min, u64 buf_max,
|
|
const struct crash_mem *emem)
|
|
{
|
|
int i, ret = 0, err = -EADDRNOTAVAIL;
|
|
u64 start, end, tmin, tmax;
|
|
|
|
tmin = buf_min;
|
|
for (i = 0; i < emem->nr_ranges; i++) {
|
|
start = emem->ranges[i].start;
|
|
end = emem->ranges[i].end;
|
|
|
|
if (end < tmin)
|
|
continue;
|
|
|
|
if (start > tmin) {
|
|
tmax = (start > buf_max ? buf_max : start - 1);
|
|
ret = __locate_mem_hole_bottom_up(kbuf, tmin, tmax);
|
|
if (!ret)
|
|
return 0;
|
|
}
|
|
|
|
tmin = end + 1;
|
|
|
|
if (tmin > buf_max) {
|
|
ret = err;
|
|
break;
|
|
}
|
|
ret = 0;
|
|
}
|
|
|
|
if (!ret) {
|
|
tmax = buf_max;
|
|
ret = __locate_mem_hole_bottom_up(kbuf, tmin, tmax);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* check_realloc_usable_mem - Reallocate buffer if it can't accommodate entries
|
|
* @um_info: Usable memory buffer and ranges info.
|
|
* @cnt: No. of entries to accommodate.
|
|
*
|
|
* Frees up the old buffer if memory reallocation fails.
|
|
*
|
|
* Returns buffer on success, NULL on error.
|
|
*/
|
|
static u64 *check_realloc_usable_mem(struct umem_info *um_info, int cnt)
|
|
{
|
|
u32 new_size;
|
|
u64 *tbuf;
|
|
|
|
if ((um_info->idx + cnt) <= um_info->max_entries)
|
|
return um_info->buf;
|
|
|
|
new_size = um_info->size + MEM_RANGE_CHUNK_SZ;
|
|
tbuf = krealloc(um_info->buf, new_size, GFP_KERNEL);
|
|
if (tbuf) {
|
|
um_info->buf = tbuf;
|
|
um_info->size = new_size;
|
|
um_info->max_entries = (um_info->size / sizeof(u64));
|
|
}
|
|
|
|
return tbuf;
|
|
}
|
|
|
|
/**
|
|
* add_usable_mem - Add the usable memory ranges within the given memory range
|
|
* to the buffer
|
|
* @um_info: Usable memory buffer and ranges info.
|
|
* @base: Base address of memory range to look for.
|
|
* @end: End address of memory range to look for.
|
|
*
|
|
* Returns 0 on success, negative errno on error.
|
|
*/
|
|
static int add_usable_mem(struct umem_info *um_info, u64 base, u64 end)
|
|
{
|
|
u64 loc_base, loc_end;
|
|
bool add;
|
|
int i;
|
|
|
|
for (i = 0; i < um_info->nr_ranges; i++) {
|
|
add = false;
|
|
loc_base = um_info->ranges[i].start;
|
|
loc_end = um_info->ranges[i].end;
|
|
if (loc_base >= base && loc_end <= end)
|
|
add = true;
|
|
else if (base < loc_end && end > loc_base) {
|
|
if (loc_base < base)
|
|
loc_base = base;
|
|
if (loc_end > end)
|
|
loc_end = end;
|
|
add = true;
|
|
}
|
|
|
|
if (add) {
|
|
if (!check_realloc_usable_mem(um_info, 2))
|
|
return -ENOMEM;
|
|
|
|
um_info->buf[um_info->idx++] = cpu_to_be64(loc_base);
|
|
um_info->buf[um_info->idx++] =
|
|
cpu_to_be64(loc_end - loc_base + 1);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* kdump_setup_usable_lmb - This is a callback function that gets called by
|
|
* walk_drmem_lmbs for every LMB to set its
|
|
* usable memory ranges.
|
|
* @lmb: LMB info.
|
|
* @usm: linux,drconf-usable-memory property value.
|
|
* @data: Pointer to usable memory buffer and ranges info.
|
|
*
|
|
* Returns 0 on success, negative errno on error.
|
|
*/
|
|
static int kdump_setup_usable_lmb(struct drmem_lmb *lmb, const __be32 **usm,
|
|
void *data)
|
|
{
|
|
struct umem_info *um_info;
|
|
int tmp_idx, ret;
|
|
u64 base, end;
|
|
|
|
/*
|
|
* kdump load isn't supported on kernels already booted with
|
|
* linux,drconf-usable-memory property.
|
|
*/
|
|
if (*usm) {
|
|
pr_err("linux,drconf-usable-memory property already exists!");
|
|
return -EINVAL;
|
|
}
|
|
|
|
um_info = data;
|
|
tmp_idx = um_info->idx;
|
|
if (!check_realloc_usable_mem(um_info, 1))
|
|
return -ENOMEM;
|
|
|
|
um_info->idx++;
|
|
base = lmb->base_addr;
|
|
end = base + drmem_lmb_size() - 1;
|
|
ret = add_usable_mem(um_info, base, end);
|
|
if (!ret) {
|
|
/*
|
|
* Update the no. of ranges added. Two entries (base & size)
|
|
* for every range added.
|
|
*/
|
|
um_info->buf[tmp_idx] =
|
|
cpu_to_be64((um_info->idx - tmp_idx - 1) / 2);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
#define NODE_PATH_LEN 256
|
|
/**
|
|
* add_usable_mem_property - Add usable memory property for the given
|
|
* memory node.
|
|
* @fdt: Flattened device tree for the kdump kernel.
|
|
* @dn: Memory node.
|
|
* @um_info: Usable memory buffer and ranges info.
|
|
*
|
|
* Returns 0 on success, negative errno on error.
|
|
*/
|
|
static int add_usable_mem_property(void *fdt, struct device_node *dn,
|
|
struct umem_info *um_info)
|
|
{
|
|
int n_mem_addr_cells, n_mem_size_cells, node;
|
|
char path[NODE_PATH_LEN];
|
|
int i, len, ranges, ret;
|
|
const __be32 *prop;
|
|
u64 base, end;
|
|
|
|
of_node_get(dn);
|
|
|
|
if (snprintf(path, NODE_PATH_LEN, "%pOF", dn) > (NODE_PATH_LEN - 1)) {
|
|
pr_err("Buffer (%d) too small for memory node: %pOF\n",
|
|
NODE_PATH_LEN, dn);
|
|
return -EOVERFLOW;
|
|
}
|
|
pr_debug("Memory node path: %s\n", path);
|
|
|
|
/* Now that we know the path, find its offset in kdump kernel's fdt */
|
|
node = fdt_path_offset(fdt, path);
|
|
if (node < 0) {
|
|
pr_err("Malformed device tree: error reading %s\n", path);
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/* Get the address & size cells */
|
|
n_mem_addr_cells = of_n_addr_cells(dn);
|
|
n_mem_size_cells = of_n_size_cells(dn);
|
|
pr_debug("address cells: %d, size cells: %d\n", n_mem_addr_cells,
|
|
n_mem_size_cells);
|
|
|
|
um_info->idx = 0;
|
|
if (!check_realloc_usable_mem(um_info, 2)) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
prop = of_get_property(dn, "reg", &len);
|
|
if (!prop || len <= 0) {
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* "reg" property represents sequence of (addr,size) tuples
|
|
* each representing a memory range.
|
|
*/
|
|
ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
|
|
|
|
for (i = 0; i < ranges; i++) {
|
|
base = of_read_number(prop, n_mem_addr_cells);
|
|
prop += n_mem_addr_cells;
|
|
end = base + of_read_number(prop, n_mem_size_cells) - 1;
|
|
prop += n_mem_size_cells;
|
|
|
|
ret = add_usable_mem(um_info, base, end);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* No kdump kernel usable memory found in this memory node.
|
|
* Write (0,0) tuple in linux,usable-memory property for
|
|
* this region to be ignored.
|
|
*/
|
|
if (um_info->idx == 0) {
|
|
um_info->buf[0] = 0;
|
|
um_info->buf[1] = 0;
|
|
um_info->idx = 2;
|
|
}
|
|
|
|
ret = fdt_setprop(fdt, node, "linux,usable-memory", um_info->buf,
|
|
(um_info->idx * sizeof(u64)));
|
|
|
|
out:
|
|
of_node_put(dn);
|
|
return ret;
|
|
}
|
|
|
|
|
|
/**
|
|
* update_usable_mem_fdt - Updates kdump kernel's fdt with linux,usable-memory
|
|
* and linux,drconf-usable-memory DT properties as
|
|
* appropriate to restrict its memory usage.
|
|
* @fdt: Flattened device tree for the kdump kernel.
|
|
* @usable_mem: Usable memory ranges for kdump kernel.
|
|
*
|
|
* Returns 0 on success, negative errno on error.
|
|
*/
|
|
static int update_usable_mem_fdt(void *fdt, struct crash_mem *usable_mem)
|
|
{
|
|
struct umem_info um_info;
|
|
struct device_node *dn;
|
|
int node, ret = 0;
|
|
|
|
if (!usable_mem) {
|
|
pr_err("Usable memory ranges for kdump kernel not found\n");
|
|
return -ENOENT;
|
|
}
|
|
|
|
node = fdt_path_offset(fdt, "/ibm,dynamic-reconfiguration-memory");
|
|
if (node == -FDT_ERR_NOTFOUND)
|
|
pr_debug("No dynamic reconfiguration memory found\n");
|
|
else if (node < 0) {
|
|
pr_err("Malformed device tree: error reading /ibm,dynamic-reconfiguration-memory.\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
um_info.buf = NULL;
|
|
um_info.size = 0;
|
|
um_info.max_entries = 0;
|
|
um_info.idx = 0;
|
|
/* Memory ranges to look up */
|
|
um_info.ranges = &(usable_mem->ranges[0]);
|
|
um_info.nr_ranges = usable_mem->nr_ranges;
|
|
|
|
dn = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
|
|
if (dn) {
|
|
ret = walk_drmem_lmbs(dn, &um_info, kdump_setup_usable_lmb);
|
|
of_node_put(dn);
|
|
|
|
if (ret) {
|
|
pr_err("Could not setup linux,drconf-usable-memory property for kdump\n");
|
|
goto out;
|
|
}
|
|
|
|
ret = fdt_setprop(fdt, node, "linux,drconf-usable-memory",
|
|
um_info.buf, (um_info.idx * sizeof(u64)));
|
|
if (ret) {
|
|
pr_err("Failed to update fdt with linux,drconf-usable-memory property");
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Walk through each memory node and set linux,usable-memory property
|
|
* for the corresponding node in kdump kernel's fdt.
|
|
*/
|
|
for_each_node_by_type(dn, "memory") {
|
|
ret = add_usable_mem_property(fdt, dn, &um_info);
|
|
if (ret) {
|
|
pr_err("Failed to set linux,usable-memory property for %s node",
|
|
dn->full_name);
|
|
of_node_put(dn);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
out:
|
|
kfree(um_info.buf);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* load_backup_segment - Locate a memory hole to place the backup region.
|
|
* @image: Kexec image.
|
|
* @kbuf: Buffer contents and memory parameters.
|
|
*
|
|
* Returns 0 on success, negative errno on error.
|
|
*/
|
|
static int load_backup_segment(struct kimage *image, struct kexec_buf *kbuf)
|
|
{
|
|
void *buf;
|
|
int ret;
|
|
|
|
/*
|
|
* Setup a source buffer for backup segment.
|
|
*
|
|
* A source buffer has no meaning for backup region as data will
|
|
* be copied from backup source, after crash, in the purgatory.
|
|
* But as load segment code doesn't recognize such segments,
|
|
* setup a dummy source buffer to keep it happy for now.
|
|
*/
|
|
buf = vzalloc(BACKUP_SRC_SIZE);
|
|
if (!buf)
|
|
return -ENOMEM;
|
|
|
|
kbuf->buffer = buf;
|
|
kbuf->mem = KEXEC_BUF_MEM_UNKNOWN;
|
|
kbuf->bufsz = kbuf->memsz = BACKUP_SRC_SIZE;
|
|
kbuf->top_down = false;
|
|
|
|
ret = kexec_add_buffer(kbuf);
|
|
if (ret) {
|
|
vfree(buf);
|
|
return ret;
|
|
}
|
|
|
|
image->arch.backup_buf = buf;
|
|
image->arch.backup_start = kbuf->mem;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* update_backup_region_phdr - Update backup region's offset for the core to
|
|
* export the region appropriately.
|
|
* @image: Kexec image.
|
|
* @ehdr: ELF core header.
|
|
*
|
|
* Assumes an exclusive program header is setup for the backup region
|
|
* in the ELF headers
|
|
*
|
|
* Returns nothing.
|
|
*/
|
|
static void update_backup_region_phdr(struct kimage *image, Elf64_Ehdr *ehdr)
|
|
{
|
|
Elf64_Phdr *phdr;
|
|
unsigned int i;
|
|
|
|
phdr = (Elf64_Phdr *)(ehdr + 1);
|
|
for (i = 0; i < ehdr->e_phnum; i++) {
|
|
if (phdr->p_paddr == BACKUP_SRC_START) {
|
|
phdr->p_offset = image->arch.backup_start;
|
|
pr_debug("Backup region offset updated to 0x%lx\n",
|
|
image->arch.backup_start);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* load_elfcorehdr_segment - Setup crash memory ranges and initialize elfcorehdr
|
|
* segment needed to load kdump kernel.
|
|
* @image: Kexec image.
|
|
* @kbuf: Buffer contents and memory parameters.
|
|
*
|
|
* Returns 0 on success, negative errno on error.
|
|
*/
|
|
static int load_elfcorehdr_segment(struct kimage *image, struct kexec_buf *kbuf)
|
|
{
|
|
struct crash_mem *cmem = NULL;
|
|
unsigned long headers_sz;
|
|
void *headers = NULL;
|
|
int ret;
|
|
|
|
ret = get_crash_memory_ranges(&cmem);
|
|
if (ret)
|
|
goto out;
|
|
|
|
/* Setup elfcorehdr segment */
|
|
ret = crash_prepare_elf64_headers(cmem, false, &headers, &headers_sz);
|
|
if (ret) {
|
|
pr_err("Failed to prepare elf headers for the core\n");
|
|
goto out;
|
|
}
|
|
|
|
/* Fix the offset for backup region in the ELF header */
|
|
update_backup_region_phdr(image, headers);
|
|
|
|
kbuf->buffer = headers;
|
|
kbuf->mem = KEXEC_BUF_MEM_UNKNOWN;
|
|
kbuf->bufsz = kbuf->memsz = headers_sz;
|
|
kbuf->top_down = false;
|
|
|
|
ret = kexec_add_buffer(kbuf);
|
|
if (ret) {
|
|
vfree(headers);
|
|
goto out;
|
|
}
|
|
|
|
image->elf_load_addr = kbuf->mem;
|
|
image->elf_headers_sz = headers_sz;
|
|
image->elf_headers = headers;
|
|
out:
|
|
kfree(cmem);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* load_crashdump_segments_ppc64 - Initialize the additional segements needed
|
|
* to load kdump kernel.
|
|
* @image: Kexec image.
|
|
* @kbuf: Buffer contents and memory parameters.
|
|
*
|
|
* Returns 0 on success, negative errno on error.
|
|
*/
|
|
int load_crashdump_segments_ppc64(struct kimage *image,
|
|
struct kexec_buf *kbuf)
|
|
{
|
|
int ret;
|
|
|
|
/* Load backup segment - first 64K bytes of the crashing kernel */
|
|
ret = load_backup_segment(image, kbuf);
|
|
if (ret) {
|
|
pr_err("Failed to load backup segment\n");
|
|
return ret;
|
|
}
|
|
pr_debug("Loaded the backup region at 0x%lx\n", kbuf->mem);
|
|
|
|
/* Load elfcorehdr segment - to export crashing kernel's vmcore */
|
|
ret = load_elfcorehdr_segment(image, kbuf);
|
|
if (ret) {
|
|
pr_err("Failed to load elfcorehdr segment\n");
|
|
return ret;
|
|
}
|
|
pr_debug("Loaded elf core header at 0x%lx, bufsz=0x%lx memsz=0x%lx\n",
|
|
image->elf_load_addr, kbuf->bufsz, kbuf->memsz);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* setup_purgatory_ppc64 - initialize PPC64 specific purgatory's global
|
|
* variables and call setup_purgatory() to initialize
|
|
* common global variable.
|
|
* @image: kexec image.
|
|
* @slave_code: Slave code for the purgatory.
|
|
* @fdt: Flattened device tree for the next kernel.
|
|
* @kernel_load_addr: Address where the kernel is loaded.
|
|
* @fdt_load_addr: Address where the flattened device tree is loaded.
|
|
*
|
|
* Returns 0 on success, negative errno on error.
|
|
*/
|
|
int setup_purgatory_ppc64(struct kimage *image, const void *slave_code,
|
|
const void *fdt, unsigned long kernel_load_addr,
|
|
unsigned long fdt_load_addr)
|
|
{
|
|
struct device_node *dn = NULL;
|
|
int ret;
|
|
|
|
ret = setup_purgatory(image, slave_code, fdt, kernel_load_addr,
|
|
fdt_load_addr);
|
|
if (ret)
|
|
goto out;
|
|
|
|
if (image->type == KEXEC_TYPE_CRASH) {
|
|
u32 my_run_at_load = 1;
|
|
|
|
/*
|
|
* Tell relocatable kernel to run at load address
|
|
* via the word meant for that at 0x5c.
|
|
*/
|
|
ret = kexec_purgatory_get_set_symbol(image, "run_at_load",
|
|
&my_run_at_load,
|
|
sizeof(my_run_at_load),
|
|
false);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
/* Tell purgatory where to look for backup region */
|
|
ret = kexec_purgatory_get_set_symbol(image, "backup_start",
|
|
&image->arch.backup_start,
|
|
sizeof(image->arch.backup_start),
|
|
false);
|
|
if (ret)
|
|
goto out;
|
|
|
|
/* Setup OPAL base & entry values */
|
|
dn = of_find_node_by_path("/ibm,opal");
|
|
if (dn) {
|
|
u64 val;
|
|
|
|
of_property_read_u64(dn, "opal-base-address", &val);
|
|
ret = kexec_purgatory_get_set_symbol(image, "opal_base", &val,
|
|
sizeof(val), false);
|
|
if (ret)
|
|
goto out;
|
|
|
|
of_property_read_u64(dn, "opal-entry-address", &val);
|
|
ret = kexec_purgatory_get_set_symbol(image, "opal_entry", &val,
|
|
sizeof(val), false);
|
|
}
|
|
out:
|
|
if (ret)
|
|
pr_err("Failed to setup purgatory symbols");
|
|
of_node_put(dn);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* kexec_extra_fdt_size_ppc64 - Return the estimated additional size needed to
|
|
* setup FDT for kexec/kdump kernel.
|
|
* @image: kexec image being loaded.
|
|
*
|
|
* Returns the estimated extra size needed for kexec/kdump kernel FDT.
|
|
*/
|
|
unsigned int kexec_extra_fdt_size_ppc64(struct kimage *image)
|
|
{
|
|
u64 usm_entries;
|
|
|
|
if (image->type != KEXEC_TYPE_CRASH)
|
|
return 0;
|
|
|
|
/*
|
|
* For kdump kernel, account for linux,usable-memory and
|
|
* linux,drconf-usable-memory properties. Get an approximate on the
|
|
* number of usable memory entries and use for FDT size estimation.
|
|
*/
|
|
usm_entries = ((memblock_end_of_DRAM() / drmem_lmb_size()) +
|
|
(2 * (resource_size(&crashk_res) / drmem_lmb_size())));
|
|
return (unsigned int)(usm_entries * sizeof(u64));
|
|
}
|
|
|
|
/**
|
|
* add_node_props - Reads node properties from device node structure and add
|
|
* them to fdt.
|
|
* @fdt: Flattened device tree of the kernel
|
|
* @node_offset: offset of the node to add a property at
|
|
* @dn: device node pointer
|
|
*
|
|
* Returns 0 on success, negative errno on error.
|
|
*/
|
|
static int add_node_props(void *fdt, int node_offset, const struct device_node *dn)
|
|
{
|
|
int ret = 0;
|
|
struct property *pp;
|
|
|
|
if (!dn)
|
|
return -EINVAL;
|
|
|
|
for_each_property_of_node(dn, pp) {
|
|
ret = fdt_setprop(fdt, node_offset, pp->name, pp->value, pp->length);
|
|
if (ret < 0) {
|
|
pr_err("Unable to add %s property: %s\n", pp->name, fdt_strerror(ret));
|
|
return ret;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* update_cpus_node - Update cpus node of flattened device tree using of_root
|
|
* device node.
|
|
* @fdt: Flattened device tree of the kernel.
|
|
*
|
|
* Returns 0 on success, negative errno on error.
|
|
*/
|
|
static int update_cpus_node(void *fdt)
|
|
{
|
|
struct device_node *cpus_node, *dn;
|
|
int cpus_offset, cpus_subnode_offset, ret = 0;
|
|
|
|
cpus_offset = fdt_path_offset(fdt, "/cpus");
|
|
if (cpus_offset < 0 && cpus_offset != -FDT_ERR_NOTFOUND) {
|
|
pr_err("Malformed device tree: error reading /cpus node: %s\n",
|
|
fdt_strerror(cpus_offset));
|
|
return cpus_offset;
|
|
}
|
|
|
|
if (cpus_offset > 0) {
|
|
ret = fdt_del_node(fdt, cpus_offset);
|
|
if (ret < 0) {
|
|
pr_err("Error deleting /cpus node: %s\n", fdt_strerror(ret));
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/* Add cpus node to fdt */
|
|
cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"), "cpus");
|
|
if (cpus_offset < 0) {
|
|
pr_err("Error creating /cpus node: %s\n", fdt_strerror(cpus_offset));
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Add cpus node properties */
|
|
cpus_node = of_find_node_by_path("/cpus");
|
|
ret = add_node_props(fdt, cpus_offset, cpus_node);
|
|
of_node_put(cpus_node);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/* Loop through all subnodes of cpus and add them to fdt */
|
|
for_each_node_by_type(dn, "cpu") {
|
|
cpus_subnode_offset = fdt_add_subnode(fdt, cpus_offset, dn->full_name);
|
|
if (cpus_subnode_offset < 0) {
|
|
pr_err("Unable to add %s subnode: %s\n", dn->full_name,
|
|
fdt_strerror(cpus_subnode_offset));
|
|
ret = cpus_subnode_offset;
|
|
goto out;
|
|
}
|
|
|
|
ret = add_node_props(fdt, cpus_subnode_offset, dn);
|
|
if (ret < 0)
|
|
goto out;
|
|
}
|
|
out:
|
|
of_node_put(dn);
|
|
return ret;
|
|
}
|
|
|
|
static int copy_property(void *fdt, int node_offset, const struct device_node *dn,
|
|
const char *propname)
|
|
{
|
|
const void *prop, *fdtprop;
|
|
int len = 0, fdtlen = 0;
|
|
|
|
prop = of_get_property(dn, propname, &len);
|
|
fdtprop = fdt_getprop(fdt, node_offset, propname, &fdtlen);
|
|
|
|
if (fdtprop && !prop)
|
|
return fdt_delprop(fdt, node_offset, propname);
|
|
else if (prop)
|
|
return fdt_setprop(fdt, node_offset, propname, prop, len);
|
|
else
|
|
return -FDT_ERR_NOTFOUND;
|
|
}
|
|
|
|
static int update_pci_dma_nodes(void *fdt, const char *dmapropname)
|
|
{
|
|
struct device_node *dn;
|
|
int pci_offset, root_offset, ret = 0;
|
|
|
|
if (!firmware_has_feature(FW_FEATURE_LPAR))
|
|
return 0;
|
|
|
|
root_offset = fdt_path_offset(fdt, "/");
|
|
for_each_node_with_property(dn, dmapropname) {
|
|
pci_offset = fdt_subnode_offset(fdt, root_offset, of_node_full_name(dn));
|
|
if (pci_offset < 0)
|
|
continue;
|
|
|
|
ret = copy_property(fdt, pci_offset, dn, "ibm,dma-window");
|
|
if (ret < 0)
|
|
break;
|
|
ret = copy_property(fdt, pci_offset, dn, dmapropname);
|
|
if (ret < 0)
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* setup_new_fdt_ppc64 - Update the flattend device-tree of the kernel
|
|
* being loaded.
|
|
* @image: kexec image being loaded.
|
|
* @fdt: Flattened device tree for the next kernel.
|
|
* @initrd_load_addr: Address where the next initrd will be loaded.
|
|
* @initrd_len: Size of the next initrd, or 0 if there will be none.
|
|
* @cmdline: Command line for the next kernel, or NULL if there will
|
|
* be none.
|
|
*
|
|
* Returns 0 on success, negative errno on error.
|
|
*/
|
|
int setup_new_fdt_ppc64(const struct kimage *image, void *fdt,
|
|
unsigned long initrd_load_addr,
|
|
unsigned long initrd_len, const char *cmdline)
|
|
{
|
|
struct crash_mem *umem = NULL, *rmem = NULL;
|
|
int i, nr_ranges, ret;
|
|
|
|
/*
|
|
* Restrict memory usage for kdump kernel by setting up
|
|
* usable memory ranges and memory reserve map.
|
|
*/
|
|
if (image->type == KEXEC_TYPE_CRASH) {
|
|
ret = get_usable_memory_ranges(&umem);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = update_usable_mem_fdt(fdt, umem);
|
|
if (ret) {
|
|
pr_err("Error setting up usable-memory property for kdump kernel\n");
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Ensure we don't touch crashed kernel's memory except the
|
|
* first 64K of RAM, which will be backed up.
|
|
*/
|
|
ret = fdt_add_mem_rsv(fdt, BACKUP_SRC_END + 1,
|
|
crashk_res.start - BACKUP_SRC_SIZE);
|
|
if (ret) {
|
|
pr_err("Error reserving crash memory: %s\n",
|
|
fdt_strerror(ret));
|
|
goto out;
|
|
}
|
|
|
|
/* Ensure backup region is not used by kdump/capture kernel */
|
|
ret = fdt_add_mem_rsv(fdt, image->arch.backup_start,
|
|
BACKUP_SRC_SIZE);
|
|
if (ret) {
|
|
pr_err("Error reserving memory for backup: %s\n",
|
|
fdt_strerror(ret));
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/* Update cpus nodes information to account hotplug CPUs. */
|
|
ret = update_cpus_node(fdt);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
#define DIRECT64_PROPNAME "linux,direct64-ddr-window-info"
|
|
#define DMA64_PROPNAME "linux,dma64-ddr-window-info"
|
|
ret = update_pci_dma_nodes(fdt, DIRECT64_PROPNAME);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
ret = update_pci_dma_nodes(fdt, DMA64_PROPNAME);
|
|
if (ret < 0)
|
|
goto out;
|
|
#undef DMA64_PROPNAME
|
|
#undef DIRECT64_PROPNAME
|
|
|
|
/* Update memory reserve map */
|
|
ret = get_reserved_memory_ranges(&rmem);
|
|
if (ret)
|
|
goto out;
|
|
|
|
nr_ranges = rmem ? rmem->nr_ranges : 0;
|
|
for (i = 0; i < nr_ranges; i++) {
|
|
u64 base, size;
|
|
|
|
base = rmem->ranges[i].start;
|
|
size = rmem->ranges[i].end - base + 1;
|
|
ret = fdt_add_mem_rsv(fdt, base, size);
|
|
if (ret) {
|
|
pr_err("Error updating memory reserve map: %s\n",
|
|
fdt_strerror(ret));
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
out:
|
|
kfree(rmem);
|
|
kfree(umem);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* arch_kexec_locate_mem_hole - Skip special memory regions like rtas, opal,
|
|
* tce-table, reserved-ranges & such (exclude
|
|
* memory ranges) as they can't be used for kexec
|
|
* segment buffer. Sets kbuf->mem when a suitable
|
|
* memory hole is found.
|
|
* @kbuf: Buffer contents and memory parameters.
|
|
*
|
|
* Assumes minimum of PAGE_SIZE alignment for kbuf->memsz & kbuf->buf_align.
|
|
*
|
|
* Returns 0 on success, negative errno on error.
|
|
*/
|
|
int arch_kexec_locate_mem_hole(struct kexec_buf *kbuf)
|
|
{
|
|
struct crash_mem **emem;
|
|
u64 buf_min, buf_max;
|
|
int ret;
|
|
|
|
/* Look up the exclude ranges list while locating the memory hole */
|
|
emem = &(kbuf->image->arch.exclude_ranges);
|
|
if (!(*emem) || ((*emem)->nr_ranges == 0)) {
|
|
pr_warn("No exclude range list. Using the default locate mem hole method\n");
|
|
return kexec_locate_mem_hole(kbuf);
|
|
}
|
|
|
|
buf_min = kbuf->buf_min;
|
|
buf_max = kbuf->buf_max;
|
|
/* Segments for kdump kernel should be within crashkernel region */
|
|
if (kbuf->image->type == KEXEC_TYPE_CRASH) {
|
|
buf_min = (buf_min < crashk_res.start ?
|
|
crashk_res.start : buf_min);
|
|
buf_max = (buf_max > crashk_res.end ?
|
|
crashk_res.end : buf_max);
|
|
}
|
|
|
|
if (buf_min > buf_max) {
|
|
pr_err("Invalid buffer min and/or max values\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (kbuf->top_down)
|
|
ret = locate_mem_hole_top_down_ppc64(kbuf, buf_min, buf_max,
|
|
*emem);
|
|
else
|
|
ret = locate_mem_hole_bottom_up_ppc64(kbuf, buf_min, buf_max,
|
|
*emem);
|
|
|
|
/* Add the buffer allocated to the exclude list for the next lookup */
|
|
if (!ret) {
|
|
add_mem_range(emem, kbuf->mem, kbuf->memsz);
|
|
sort_memory_ranges(*emem, true);
|
|
} else {
|
|
pr_err("Failed to locate memory buffer of size %lu\n",
|
|
kbuf->memsz);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* arch_kexec_kernel_image_probe - Does additional handling needed to setup
|
|
* kexec segments.
|
|
* @image: kexec image being loaded.
|
|
* @buf: Buffer pointing to elf data.
|
|
* @buf_len: Length of the buffer.
|
|
*
|
|
* Returns 0 on success, negative errno on error.
|
|
*/
|
|
int arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
|
|
unsigned long buf_len)
|
|
{
|
|
int ret;
|
|
|
|
/* Get exclude memory ranges needed for setting up kexec segments */
|
|
ret = get_exclude_memory_ranges(&(image->arch.exclude_ranges));
|
|
if (ret) {
|
|
pr_err("Failed to setup exclude memory ranges for buffer lookup\n");
|
|
return ret;
|
|
}
|
|
|
|
return kexec_image_probe_default(image, buf, buf_len);
|
|
}
|
|
|
|
/**
|
|
* arch_kimage_file_post_load_cleanup - Frees up all the allocations done
|
|
* while loading the image.
|
|
* @image: kexec image being loaded.
|
|
*
|
|
* Returns 0 on success, negative errno on error.
|
|
*/
|
|
int arch_kimage_file_post_load_cleanup(struct kimage *image)
|
|
{
|
|
kfree(image->arch.exclude_ranges);
|
|
image->arch.exclude_ranges = NULL;
|
|
|
|
vfree(image->arch.backup_buf);
|
|
image->arch.backup_buf = NULL;
|
|
|
|
vfree(image->elf_headers);
|
|
image->elf_headers = NULL;
|
|
image->elf_headers_sz = 0;
|
|
|
|
kvfree(image->arch.fdt);
|
|
image->arch.fdt = NULL;
|
|
|
|
return kexec_image_post_load_cleanup_default(image);
|
|
}
|