linux/drivers/pci/host/pci-tegra.c
Peter Daifuku 8d41794c6f PCI: tegra: Fix extended configuration space mapping
The 16 chunks of 64 KiB that need to be stitched together to make up the
configuration space for one bus (1 MiB) are located 24 bits (== 16 MiB)
apart in physical address space.  This is determined by the start of the
extended register field (bits 24-27) in the physical mapping.

Tested-by: Stephen Warren <swarren@nvidia.com>
Signed-off-by: Peter Daifuku <pdaifuku@nvidia.com>
Signed-off-by: Thierry Reding <treding@nvidia.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
2014-09-16 16:55:10 -06:00

1974 lines
49 KiB
C

/*
* PCIe host controller driver for Tegra SoCs
*
* Copyright (c) 2010, CompuLab, Ltd.
* Author: Mike Rapoport <mike@compulab.co.il>
*
* Based on NVIDIA PCIe driver
* Copyright (c) 2008-2009, NVIDIA Corporation.
*
* Bits taken from arch/arm/mach-dove/pcie.c
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <linux/clk.h>
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/export.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/irqdomain.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/msi.h>
#include <linux/of_address.h>
#include <linux/of_pci.h>
#include <linux/of_platform.h>
#include <linux/pci.h>
#include <linux/platform_device.h>
#include <linux/reset.h>
#include <linux/sizes.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/regulator/consumer.h>
#include <soc/tegra/cpuidle.h>
#include <soc/tegra/pmc.h>
#include <asm/mach/irq.h>
#include <asm/mach/map.h>
#include <asm/mach/pci.h>
#define INT_PCI_MSI_NR (8 * 32)
/* register definitions */
#define AFI_AXI_BAR0_SZ 0x00
#define AFI_AXI_BAR1_SZ 0x04
#define AFI_AXI_BAR2_SZ 0x08
#define AFI_AXI_BAR3_SZ 0x0c
#define AFI_AXI_BAR4_SZ 0x10
#define AFI_AXI_BAR5_SZ 0x14
#define AFI_AXI_BAR0_START 0x18
#define AFI_AXI_BAR1_START 0x1c
#define AFI_AXI_BAR2_START 0x20
#define AFI_AXI_BAR3_START 0x24
#define AFI_AXI_BAR4_START 0x28
#define AFI_AXI_BAR5_START 0x2c
#define AFI_FPCI_BAR0 0x30
#define AFI_FPCI_BAR1 0x34
#define AFI_FPCI_BAR2 0x38
#define AFI_FPCI_BAR3 0x3c
#define AFI_FPCI_BAR4 0x40
#define AFI_FPCI_BAR5 0x44
#define AFI_CACHE_BAR0_SZ 0x48
#define AFI_CACHE_BAR0_ST 0x4c
#define AFI_CACHE_BAR1_SZ 0x50
#define AFI_CACHE_BAR1_ST 0x54
#define AFI_MSI_BAR_SZ 0x60
#define AFI_MSI_FPCI_BAR_ST 0x64
#define AFI_MSI_AXI_BAR_ST 0x68
#define AFI_MSI_VEC0 0x6c
#define AFI_MSI_VEC1 0x70
#define AFI_MSI_VEC2 0x74
#define AFI_MSI_VEC3 0x78
#define AFI_MSI_VEC4 0x7c
#define AFI_MSI_VEC5 0x80
#define AFI_MSI_VEC6 0x84
#define AFI_MSI_VEC7 0x88
#define AFI_MSI_EN_VEC0 0x8c
#define AFI_MSI_EN_VEC1 0x90
#define AFI_MSI_EN_VEC2 0x94
#define AFI_MSI_EN_VEC3 0x98
#define AFI_MSI_EN_VEC4 0x9c
#define AFI_MSI_EN_VEC5 0xa0
#define AFI_MSI_EN_VEC6 0xa4
#define AFI_MSI_EN_VEC7 0xa8
#define AFI_CONFIGURATION 0xac
#define AFI_CONFIGURATION_EN_FPCI (1 << 0)
#define AFI_FPCI_ERROR_MASKS 0xb0
#define AFI_INTR_MASK 0xb4
#define AFI_INTR_MASK_INT_MASK (1 << 0)
#define AFI_INTR_MASK_MSI_MASK (1 << 8)
#define AFI_INTR_CODE 0xb8
#define AFI_INTR_CODE_MASK 0xf
#define AFI_INTR_AXI_SLAVE_ERROR 1
#define AFI_INTR_AXI_DECODE_ERROR 2
#define AFI_INTR_TARGET_ABORT 3
#define AFI_INTR_MASTER_ABORT 4
#define AFI_INTR_INVALID_WRITE 5
#define AFI_INTR_LEGACY 6
#define AFI_INTR_FPCI_DECODE_ERROR 7
#define AFI_INTR_SIGNATURE 0xbc
#define AFI_UPPER_FPCI_ADDRESS 0xc0
#define AFI_SM_INTR_ENABLE 0xc4
#define AFI_SM_INTR_INTA_ASSERT (1 << 0)
#define AFI_SM_INTR_INTB_ASSERT (1 << 1)
#define AFI_SM_INTR_INTC_ASSERT (1 << 2)
#define AFI_SM_INTR_INTD_ASSERT (1 << 3)
#define AFI_SM_INTR_INTA_DEASSERT (1 << 4)
#define AFI_SM_INTR_INTB_DEASSERT (1 << 5)
#define AFI_SM_INTR_INTC_DEASSERT (1 << 6)
#define AFI_SM_INTR_INTD_DEASSERT (1 << 7)
#define AFI_AFI_INTR_ENABLE 0xc8
#define AFI_INTR_EN_INI_SLVERR (1 << 0)
#define AFI_INTR_EN_INI_DECERR (1 << 1)
#define AFI_INTR_EN_TGT_SLVERR (1 << 2)
#define AFI_INTR_EN_TGT_DECERR (1 << 3)
#define AFI_INTR_EN_TGT_WRERR (1 << 4)
#define AFI_INTR_EN_DFPCI_DECERR (1 << 5)
#define AFI_INTR_EN_AXI_DECERR (1 << 6)
#define AFI_INTR_EN_FPCI_TIMEOUT (1 << 7)
#define AFI_INTR_EN_PRSNT_SENSE (1 << 8)
#define AFI_PCIE_CONFIG 0x0f8
#define AFI_PCIE_CONFIG_PCIE_DISABLE(x) (1 << ((x) + 1))
#define AFI_PCIE_CONFIG_PCIE_DISABLE_ALL 0xe
#define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_MASK (0xf << 20)
#define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_SINGLE (0x0 << 20)
#define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_420 (0x0 << 20)
#define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_DUAL (0x1 << 20)
#define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_222 (0x1 << 20)
#define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_411 (0x2 << 20)
#define AFI_FUSE 0x104
#define AFI_FUSE_PCIE_T0_GEN2_DIS (1 << 2)
#define AFI_PEX0_CTRL 0x110
#define AFI_PEX1_CTRL 0x118
#define AFI_PEX2_CTRL 0x128
#define AFI_PEX_CTRL_RST (1 << 0)
#define AFI_PEX_CTRL_CLKREQ_EN (1 << 1)
#define AFI_PEX_CTRL_REFCLK_EN (1 << 3)
#define AFI_PEXBIAS_CTRL_0 0x168
#define RP_VEND_XP 0x00000F00
#define RP_VEND_XP_DL_UP (1 << 30)
#define RP_LINK_CONTROL_STATUS 0x00000090
#define RP_LINK_CONTROL_STATUS_DL_LINK_ACTIVE 0x20000000
#define RP_LINK_CONTROL_STATUS_LINKSTAT_MASK 0x3fff0000
#define PADS_CTL_SEL 0x0000009C
#define PADS_CTL 0x000000A0
#define PADS_CTL_IDDQ_1L (1 << 0)
#define PADS_CTL_TX_DATA_EN_1L (1 << 6)
#define PADS_CTL_RX_DATA_EN_1L (1 << 10)
#define PADS_PLL_CTL_TEGRA20 0x000000B8
#define PADS_PLL_CTL_TEGRA30 0x000000B4
#define PADS_PLL_CTL_RST_B4SM (1 << 1)
#define PADS_PLL_CTL_LOCKDET (1 << 8)
#define PADS_PLL_CTL_REFCLK_MASK (0x3 << 16)
#define PADS_PLL_CTL_REFCLK_INTERNAL_CML (0 << 16)
#define PADS_PLL_CTL_REFCLK_INTERNAL_CMOS (1 << 16)
#define PADS_PLL_CTL_REFCLK_EXTERNAL (2 << 16)
#define PADS_PLL_CTL_TXCLKREF_MASK (0x1 << 20)
#define PADS_PLL_CTL_TXCLKREF_DIV10 (0 << 20)
#define PADS_PLL_CTL_TXCLKREF_DIV5 (1 << 20)
#define PADS_PLL_CTL_TXCLKREF_BUF_EN (1 << 22)
#define PADS_REFCLK_CFG0 0x000000C8
#define PADS_REFCLK_CFG1 0x000000CC
/*
* Fields in PADS_REFCLK_CFG*. Those registers form an array of 16-bit
* entries, one entry per PCIe port. These field definitions and desired
* values aren't in the TRM, but do come from NVIDIA.
*/
#define PADS_REFCLK_CFG_TERM_SHIFT 2 /* 6:2 */
#define PADS_REFCLK_CFG_E_TERM_SHIFT 7
#define PADS_REFCLK_CFG_PREDI_SHIFT 8 /* 11:8 */
#define PADS_REFCLK_CFG_DRVI_SHIFT 12 /* 15:12 */
/* Default value provided by HW engineering is 0xfa5c */
#define PADS_REFCLK_CFG_VALUE \
( \
(0x17 << PADS_REFCLK_CFG_TERM_SHIFT) | \
(0 << PADS_REFCLK_CFG_E_TERM_SHIFT) | \
(0xa << PADS_REFCLK_CFG_PREDI_SHIFT) | \
(0xf << PADS_REFCLK_CFG_DRVI_SHIFT) \
)
struct tegra_msi {
struct msi_chip chip;
DECLARE_BITMAP(used, INT_PCI_MSI_NR);
struct irq_domain *domain;
unsigned long pages;
struct mutex lock;
int irq;
};
/* used to differentiate between Tegra SoC generations */
struct tegra_pcie_soc_data {
unsigned int num_ports;
unsigned int msi_base_shift;
u32 pads_pll_ctl;
u32 tx_ref_sel;
bool has_pex_clkreq_en;
bool has_pex_bias_ctrl;
bool has_intr_prsnt_sense;
bool has_cml_clk;
};
static inline struct tegra_msi *to_tegra_msi(struct msi_chip *chip)
{
return container_of(chip, struct tegra_msi, chip);
}
struct tegra_pcie {
struct device *dev;
void __iomem *pads;
void __iomem *afi;
int irq;
struct list_head buses;
struct resource *cs;
struct resource all;
struct resource io;
struct resource mem;
struct resource prefetch;
struct resource busn;
struct clk *pex_clk;
struct clk *afi_clk;
struct clk *pll_e;
struct clk *cml_clk;
struct reset_control *pex_rst;
struct reset_control *afi_rst;
struct reset_control *pcie_xrst;
struct tegra_msi msi;
struct list_head ports;
unsigned int num_ports;
u32 xbar_config;
struct regulator_bulk_data *supplies;
unsigned int num_supplies;
const struct tegra_pcie_soc_data *soc_data;
struct dentry *debugfs;
};
struct tegra_pcie_port {
struct tegra_pcie *pcie;
struct list_head list;
struct resource regs;
void __iomem *base;
unsigned int index;
unsigned int lanes;
};
struct tegra_pcie_bus {
struct vm_struct *area;
struct list_head list;
unsigned int nr;
};
static inline struct tegra_pcie *sys_to_pcie(struct pci_sys_data *sys)
{
return sys->private_data;
}
static inline void afi_writel(struct tegra_pcie *pcie, u32 value,
unsigned long offset)
{
writel(value, pcie->afi + offset);
}
static inline u32 afi_readl(struct tegra_pcie *pcie, unsigned long offset)
{
return readl(pcie->afi + offset);
}
static inline void pads_writel(struct tegra_pcie *pcie, u32 value,
unsigned long offset)
{
writel(value, pcie->pads + offset);
}
static inline u32 pads_readl(struct tegra_pcie *pcie, unsigned long offset)
{
return readl(pcie->pads + offset);
}
/*
* The configuration space mapping on Tegra is somewhat similar to the ECAM
* defined by PCIe. However it deviates a bit in how the 4 bits for extended
* register accesses are mapped:
*
* [27:24] extended register number
* [23:16] bus number
* [15:11] device number
* [10: 8] function number
* [ 7: 0] register number
*
* Mapping the whole extended configuration space would require 256 MiB of
* virtual address space, only a small part of which will actually be used.
* To work around this, a 1 MiB of virtual addresses are allocated per bus
* when the bus is first accessed. When the physical range is mapped, the
* the bus number bits are hidden so that the extended register number bits
* appear as bits [19:16]. Therefore the virtual mapping looks like this:
*
* [19:16] extended register number
* [15:11] device number
* [10: 8] function number
* [ 7: 0] register number
*
* This is achieved by stitching together 16 chunks of 64 KiB of physical
* address space via the MMU.
*/
static unsigned long tegra_pcie_conf_offset(unsigned int devfn, int where)
{
return ((where & 0xf00) << 8) | (PCI_SLOT(devfn) << 11) |
(PCI_FUNC(devfn) << 8) | (where & 0xfc);
}
static struct tegra_pcie_bus *tegra_pcie_bus_alloc(struct tegra_pcie *pcie,
unsigned int busnr)
{
pgprot_t prot = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | L_PTE_XN |
L_PTE_MT_DEV_SHARED | L_PTE_SHARED;
phys_addr_t cs = pcie->cs->start;
struct tegra_pcie_bus *bus;
unsigned int i;
int err;
bus = kzalloc(sizeof(*bus), GFP_KERNEL);
if (!bus)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&bus->list);
bus->nr = busnr;
/* allocate 1 MiB of virtual addresses */
bus->area = get_vm_area(SZ_1M, VM_IOREMAP);
if (!bus->area) {
err = -ENOMEM;
goto free;
}
/* map each of the 16 chunks of 64 KiB each */
for (i = 0; i < 16; i++) {
unsigned long virt = (unsigned long)bus->area->addr +
i * SZ_64K;
phys_addr_t phys = cs + i * SZ_16M + busnr * SZ_64K;
err = ioremap_page_range(virt, virt + SZ_64K, phys, prot);
if (err < 0) {
dev_err(pcie->dev, "ioremap_page_range() failed: %d\n",
err);
goto unmap;
}
}
return bus;
unmap:
vunmap(bus->area->addr);
free:
kfree(bus);
return ERR_PTR(err);
}
/*
* Look up a virtual address mapping for the specified bus number. If no such
* mapping exists, try to create one.
*/
static void __iomem *tegra_pcie_bus_map(struct tegra_pcie *pcie,
unsigned int busnr)
{
struct tegra_pcie_bus *bus;
list_for_each_entry(bus, &pcie->buses, list)
if (bus->nr == busnr)
return (void __iomem *)bus->area->addr;
bus = tegra_pcie_bus_alloc(pcie, busnr);
if (IS_ERR(bus))
return NULL;
list_add_tail(&bus->list, &pcie->buses);
return (void __iomem *)bus->area->addr;
}
static void __iomem *tegra_pcie_conf_address(struct pci_bus *bus,
unsigned int devfn,
int where)
{
struct tegra_pcie *pcie = sys_to_pcie(bus->sysdata);
void __iomem *addr = NULL;
if (bus->number == 0) {
unsigned int slot = PCI_SLOT(devfn);
struct tegra_pcie_port *port;
list_for_each_entry(port, &pcie->ports, list) {
if (port->index + 1 == slot) {
addr = port->base + (where & ~3);
break;
}
}
} else {
addr = tegra_pcie_bus_map(pcie, bus->number);
if (!addr) {
dev_err(pcie->dev,
"failed to map cfg. space for bus %u\n",
bus->number);
return NULL;
}
addr += tegra_pcie_conf_offset(devfn, where);
}
return addr;
}
static int tegra_pcie_read_conf(struct pci_bus *bus, unsigned int devfn,
int where, int size, u32 *value)
{
void __iomem *addr;
addr = tegra_pcie_conf_address(bus, devfn, where);
if (!addr) {
*value = 0xffffffff;
return PCIBIOS_DEVICE_NOT_FOUND;
}
*value = readl(addr);
if (size == 1)
*value = (*value >> (8 * (where & 3))) & 0xff;
else if (size == 2)
*value = (*value >> (8 * (where & 3))) & 0xffff;
return PCIBIOS_SUCCESSFUL;
}
static int tegra_pcie_write_conf(struct pci_bus *bus, unsigned int devfn,
int where, int size, u32 value)
{
void __iomem *addr;
u32 mask, tmp;
addr = tegra_pcie_conf_address(bus, devfn, where);
if (!addr)
return PCIBIOS_DEVICE_NOT_FOUND;
if (size == 4) {
writel(value, addr);
return PCIBIOS_SUCCESSFUL;
}
if (size == 2)
mask = ~(0xffff << ((where & 0x3) * 8));
else if (size == 1)
mask = ~(0xff << ((where & 0x3) * 8));
else
return PCIBIOS_BAD_REGISTER_NUMBER;
tmp = readl(addr) & mask;
tmp |= value << ((where & 0x3) * 8);
writel(tmp, addr);
return PCIBIOS_SUCCESSFUL;
}
static struct pci_ops tegra_pcie_ops = {
.read = tegra_pcie_read_conf,
.write = tegra_pcie_write_conf,
};
static unsigned long tegra_pcie_port_get_pex_ctrl(struct tegra_pcie_port *port)
{
unsigned long ret = 0;
switch (port->index) {
case 0:
ret = AFI_PEX0_CTRL;
break;
case 1:
ret = AFI_PEX1_CTRL;
break;
case 2:
ret = AFI_PEX2_CTRL;
break;
}
return ret;
}
static void tegra_pcie_port_reset(struct tegra_pcie_port *port)
{
unsigned long ctrl = tegra_pcie_port_get_pex_ctrl(port);
unsigned long value;
/* pulse reset signal */
value = afi_readl(port->pcie, ctrl);
value &= ~AFI_PEX_CTRL_RST;
afi_writel(port->pcie, value, ctrl);
usleep_range(1000, 2000);
value = afi_readl(port->pcie, ctrl);
value |= AFI_PEX_CTRL_RST;
afi_writel(port->pcie, value, ctrl);
}
static void tegra_pcie_port_enable(struct tegra_pcie_port *port)
{
const struct tegra_pcie_soc_data *soc = port->pcie->soc_data;
unsigned long ctrl = tegra_pcie_port_get_pex_ctrl(port);
unsigned long value;
/* enable reference clock */
value = afi_readl(port->pcie, ctrl);
value |= AFI_PEX_CTRL_REFCLK_EN;
if (soc->has_pex_clkreq_en)
value |= AFI_PEX_CTRL_CLKREQ_EN;
afi_writel(port->pcie, value, ctrl);
tegra_pcie_port_reset(port);
}
static void tegra_pcie_port_disable(struct tegra_pcie_port *port)
{
const struct tegra_pcie_soc_data *soc = port->pcie->soc_data;
unsigned long ctrl = tegra_pcie_port_get_pex_ctrl(port);
unsigned long value;
/* assert port reset */
value = afi_readl(port->pcie, ctrl);
value &= ~AFI_PEX_CTRL_RST;
afi_writel(port->pcie, value, ctrl);
/* disable reference clock */
value = afi_readl(port->pcie, ctrl);
if (soc->has_pex_clkreq_en)
value &= ~AFI_PEX_CTRL_CLKREQ_EN;
value &= ~AFI_PEX_CTRL_REFCLK_EN;
afi_writel(port->pcie, value, ctrl);
}
static void tegra_pcie_port_free(struct tegra_pcie_port *port)
{
struct tegra_pcie *pcie = port->pcie;
devm_iounmap(pcie->dev, port->base);
devm_release_mem_region(pcie->dev, port->regs.start,
resource_size(&port->regs));
list_del(&port->list);
devm_kfree(pcie->dev, port);
}
static void tegra_pcie_fixup_bridge(struct pci_dev *dev)
{
u16 reg;
if ((dev->class >> 16) == PCI_BASE_CLASS_BRIDGE) {
pci_read_config_word(dev, PCI_COMMAND, &reg);
reg |= (PCI_COMMAND_IO | PCI_COMMAND_MEMORY |
PCI_COMMAND_MASTER | PCI_COMMAND_SERR);
pci_write_config_word(dev, PCI_COMMAND, reg);
}
}
DECLARE_PCI_FIXUP_FINAL(PCI_ANY_ID, PCI_ANY_ID, tegra_pcie_fixup_bridge);
/* Tegra PCIE root complex wrongly reports device class */
static void tegra_pcie_fixup_class(struct pci_dev *dev)
{
dev->class = PCI_CLASS_BRIDGE_PCI << 8;
}
DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_NVIDIA, 0x0bf0, tegra_pcie_fixup_class);
DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_NVIDIA, 0x0bf1, tegra_pcie_fixup_class);
DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_NVIDIA, 0x0e1c, tegra_pcie_fixup_class);
DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_NVIDIA, 0x0e1d, tegra_pcie_fixup_class);
/* Tegra PCIE requires relaxed ordering */
static void tegra_pcie_relax_enable(struct pci_dev *dev)
{
pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
}
DECLARE_PCI_FIXUP_FINAL(PCI_ANY_ID, PCI_ANY_ID, tegra_pcie_relax_enable);
static int tegra_pcie_setup(int nr, struct pci_sys_data *sys)
{
struct tegra_pcie *pcie = sys_to_pcie(sys);
int err;
err = devm_request_resource(pcie->dev, &pcie->all, &pcie->mem);
if (err < 0)
return err;
err = devm_request_resource(pcie->dev, &pcie->all, &pcie->prefetch);
if (err)
return err;
pci_add_resource_offset(&sys->resources, &pcie->mem, sys->mem_offset);
pci_add_resource_offset(&sys->resources, &pcie->prefetch,
sys->mem_offset);
pci_add_resource(&sys->resources, &pcie->busn);
pci_ioremap_io(nr * SZ_64K, pcie->io.start);
return 1;
}
static int tegra_pcie_map_irq(const struct pci_dev *pdev, u8 slot, u8 pin)
{
struct tegra_pcie *pcie = sys_to_pcie(pdev->bus->sysdata);
int irq;
tegra_cpuidle_pcie_irqs_in_use();
irq = of_irq_parse_and_map_pci(pdev, slot, pin);
if (!irq)
irq = pcie->irq;
return irq;
}
static void tegra_pcie_add_bus(struct pci_bus *bus)
{
if (IS_ENABLED(CONFIG_PCI_MSI)) {
struct tegra_pcie *pcie = sys_to_pcie(bus->sysdata);
bus->msi = &pcie->msi.chip;
}
}
static struct pci_bus *tegra_pcie_scan_bus(int nr, struct pci_sys_data *sys)
{
struct tegra_pcie *pcie = sys_to_pcie(sys);
struct pci_bus *bus;
bus = pci_create_root_bus(pcie->dev, sys->busnr, &tegra_pcie_ops, sys,
&sys->resources);
if (!bus)
return NULL;
pci_scan_child_bus(bus);
return bus;
}
static irqreturn_t tegra_pcie_isr(int irq, void *arg)
{
const char *err_msg[] = {
"Unknown",
"AXI slave error",
"AXI decode error",
"Target abort",
"Master abort",
"Invalid write",
"Response decoding error",
"AXI response decoding error",
"Transaction timeout",
};
struct tegra_pcie *pcie = arg;
u32 code, signature;
code = afi_readl(pcie, AFI_INTR_CODE) & AFI_INTR_CODE_MASK;
signature = afi_readl(pcie, AFI_INTR_SIGNATURE);
afi_writel(pcie, 0, AFI_INTR_CODE);
if (code == AFI_INTR_LEGACY)
return IRQ_NONE;
if (code >= ARRAY_SIZE(err_msg))
code = 0;
/*
* do not pollute kernel log with master abort reports since they
* happen a lot during enumeration
*/
if (code == AFI_INTR_MASTER_ABORT)
dev_dbg(pcie->dev, "%s, signature: %08x\n", err_msg[code],
signature);
else
dev_err(pcie->dev, "%s, signature: %08x\n", err_msg[code],
signature);
if (code == AFI_INTR_TARGET_ABORT || code == AFI_INTR_MASTER_ABORT ||
code == AFI_INTR_FPCI_DECODE_ERROR) {
u32 fpci = afi_readl(pcie, AFI_UPPER_FPCI_ADDRESS) & 0xff;
u64 address = (u64)fpci << 32 | (signature & 0xfffffffc);
if (code == AFI_INTR_MASTER_ABORT)
dev_dbg(pcie->dev, " FPCI address: %10llx\n", address);
else
dev_err(pcie->dev, " FPCI address: %10llx\n", address);
}
return IRQ_HANDLED;
}
/*
* FPCI map is as follows:
* - 0xfdfc000000: I/O space
* - 0xfdfe000000: type 0 configuration space
* - 0xfdff000000: type 1 configuration space
* - 0xfe00000000: type 0 extended configuration space
* - 0xfe10000000: type 1 extended configuration space
*/
static void tegra_pcie_setup_translations(struct tegra_pcie *pcie)
{
u32 fpci_bar, size, axi_address;
/* Bar 0: type 1 extended configuration space */
fpci_bar = 0xfe100000;
size = resource_size(pcie->cs);
axi_address = pcie->cs->start;
afi_writel(pcie, axi_address, AFI_AXI_BAR0_START);
afi_writel(pcie, size >> 12, AFI_AXI_BAR0_SZ);
afi_writel(pcie, fpci_bar, AFI_FPCI_BAR0);
/* Bar 1: downstream IO bar */
fpci_bar = 0xfdfc0000;
size = resource_size(&pcie->io);
axi_address = pcie->io.start;
afi_writel(pcie, axi_address, AFI_AXI_BAR1_START);
afi_writel(pcie, size >> 12, AFI_AXI_BAR1_SZ);
afi_writel(pcie, fpci_bar, AFI_FPCI_BAR1);
/* Bar 2: prefetchable memory BAR */
fpci_bar = (((pcie->prefetch.start >> 12) & 0x0fffffff) << 4) | 0x1;
size = resource_size(&pcie->prefetch);
axi_address = pcie->prefetch.start;
afi_writel(pcie, axi_address, AFI_AXI_BAR2_START);
afi_writel(pcie, size >> 12, AFI_AXI_BAR2_SZ);
afi_writel(pcie, fpci_bar, AFI_FPCI_BAR2);
/* Bar 3: non prefetchable memory BAR */
fpci_bar = (((pcie->mem.start >> 12) & 0x0fffffff) << 4) | 0x1;
size = resource_size(&pcie->mem);
axi_address = pcie->mem.start;
afi_writel(pcie, axi_address, AFI_AXI_BAR3_START);
afi_writel(pcie, size >> 12, AFI_AXI_BAR3_SZ);
afi_writel(pcie, fpci_bar, AFI_FPCI_BAR3);
/* NULL out the remaining BARs as they are not used */
afi_writel(pcie, 0, AFI_AXI_BAR4_START);
afi_writel(pcie, 0, AFI_AXI_BAR4_SZ);
afi_writel(pcie, 0, AFI_FPCI_BAR4);
afi_writel(pcie, 0, AFI_AXI_BAR5_START);
afi_writel(pcie, 0, AFI_AXI_BAR5_SZ);
afi_writel(pcie, 0, AFI_FPCI_BAR5);
/* map all upstream transactions as uncached */
afi_writel(pcie, PHYS_OFFSET, AFI_CACHE_BAR0_ST);
afi_writel(pcie, 0, AFI_CACHE_BAR0_SZ);
afi_writel(pcie, 0, AFI_CACHE_BAR1_ST);
afi_writel(pcie, 0, AFI_CACHE_BAR1_SZ);
/* MSI translations are setup only when needed */
afi_writel(pcie, 0, AFI_MSI_FPCI_BAR_ST);
afi_writel(pcie, 0, AFI_MSI_BAR_SZ);
afi_writel(pcie, 0, AFI_MSI_AXI_BAR_ST);
afi_writel(pcie, 0, AFI_MSI_BAR_SZ);
}
static int tegra_pcie_enable_controller(struct tegra_pcie *pcie)
{
const struct tegra_pcie_soc_data *soc = pcie->soc_data;
struct tegra_pcie_port *port;
unsigned int timeout;
unsigned long value;
/* power down PCIe slot clock bias pad */
if (soc->has_pex_bias_ctrl)
afi_writel(pcie, 0, AFI_PEXBIAS_CTRL_0);
/* configure mode and disable all ports */
value = afi_readl(pcie, AFI_PCIE_CONFIG);
value &= ~AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_MASK;
value |= AFI_PCIE_CONFIG_PCIE_DISABLE_ALL | pcie->xbar_config;
list_for_each_entry(port, &pcie->ports, list)
value &= ~AFI_PCIE_CONFIG_PCIE_DISABLE(port->index);
afi_writel(pcie, value, AFI_PCIE_CONFIG);
value = afi_readl(pcie, AFI_FUSE);
value |= AFI_FUSE_PCIE_T0_GEN2_DIS;
afi_writel(pcie, value, AFI_FUSE);
/* initialize internal PHY, enable up to 16 PCIE lanes */
pads_writel(pcie, 0x0, PADS_CTL_SEL);
/* override IDDQ to 1 on all 4 lanes */
value = pads_readl(pcie, PADS_CTL);
value |= PADS_CTL_IDDQ_1L;
pads_writel(pcie, value, PADS_CTL);
/*
* Set up PHY PLL inputs select PLLE output as refclock,
* set TX ref sel to div10 (not div5).
*/
value = pads_readl(pcie, soc->pads_pll_ctl);
value &= ~(PADS_PLL_CTL_REFCLK_MASK | PADS_PLL_CTL_TXCLKREF_MASK);
value |= PADS_PLL_CTL_REFCLK_INTERNAL_CML | soc->tx_ref_sel;
pads_writel(pcie, value, soc->pads_pll_ctl);
/* take PLL out of reset */
value = pads_readl(pcie, soc->pads_pll_ctl);
value |= PADS_PLL_CTL_RST_B4SM;
pads_writel(pcie, value, soc->pads_pll_ctl);
/* Configure the reference clock driver */
value = PADS_REFCLK_CFG_VALUE | (PADS_REFCLK_CFG_VALUE << 16);
pads_writel(pcie, value, PADS_REFCLK_CFG0);
if (soc->num_ports > 2)
pads_writel(pcie, PADS_REFCLK_CFG_VALUE, PADS_REFCLK_CFG1);
/* wait for the PLL to lock */
timeout = 300;
do {
value = pads_readl(pcie, soc->pads_pll_ctl);
usleep_range(1000, 2000);
if (--timeout == 0) {
pr_err("Tegra PCIe error: timeout waiting for PLL\n");
return -EBUSY;
}
} while (!(value & PADS_PLL_CTL_LOCKDET));
/* turn off IDDQ override */
value = pads_readl(pcie, PADS_CTL);
value &= ~PADS_CTL_IDDQ_1L;
pads_writel(pcie, value, PADS_CTL);
/* enable TX/RX data */
value = pads_readl(pcie, PADS_CTL);
value |= PADS_CTL_TX_DATA_EN_1L | PADS_CTL_RX_DATA_EN_1L;
pads_writel(pcie, value, PADS_CTL);
/* take the PCIe interface module out of reset */
reset_control_deassert(pcie->pcie_xrst);
/* finally enable PCIe */
value = afi_readl(pcie, AFI_CONFIGURATION);
value |= AFI_CONFIGURATION_EN_FPCI;
afi_writel(pcie, value, AFI_CONFIGURATION);
value = AFI_INTR_EN_INI_SLVERR | AFI_INTR_EN_INI_DECERR |
AFI_INTR_EN_TGT_SLVERR | AFI_INTR_EN_TGT_DECERR |
AFI_INTR_EN_TGT_WRERR | AFI_INTR_EN_DFPCI_DECERR;
if (soc->has_intr_prsnt_sense)
value |= AFI_INTR_EN_PRSNT_SENSE;
afi_writel(pcie, value, AFI_AFI_INTR_ENABLE);
afi_writel(pcie, 0xffffffff, AFI_SM_INTR_ENABLE);
/* don't enable MSI for now, only when needed */
afi_writel(pcie, AFI_INTR_MASK_INT_MASK, AFI_INTR_MASK);
/* disable all exceptions */
afi_writel(pcie, 0, AFI_FPCI_ERROR_MASKS);
return 0;
}
static void tegra_pcie_power_off(struct tegra_pcie *pcie)
{
int err;
/* TODO: disable and unprepare clocks? */
reset_control_assert(pcie->pcie_xrst);
reset_control_assert(pcie->afi_rst);
reset_control_assert(pcie->pex_rst);
tegra_powergate_power_off(TEGRA_POWERGATE_PCIE);
err = regulator_bulk_disable(pcie->num_supplies, pcie->supplies);
if (err < 0)
dev_warn(pcie->dev, "failed to disable regulators: %d\n", err);
}
static int tegra_pcie_power_on(struct tegra_pcie *pcie)
{
const struct tegra_pcie_soc_data *soc = pcie->soc_data;
int err;
reset_control_assert(pcie->pcie_xrst);
reset_control_assert(pcie->afi_rst);
reset_control_assert(pcie->pex_rst);
tegra_powergate_power_off(TEGRA_POWERGATE_PCIE);
/* enable regulators */
err = regulator_bulk_enable(pcie->num_supplies, pcie->supplies);
if (err < 0)
dev_err(pcie->dev, "failed to enable regulators: %d\n", err);
err = tegra_powergate_sequence_power_up(TEGRA_POWERGATE_PCIE,
pcie->pex_clk,
pcie->pex_rst);
if (err) {
dev_err(pcie->dev, "powerup sequence failed: %d\n", err);
return err;
}
reset_control_deassert(pcie->afi_rst);
err = clk_prepare_enable(pcie->afi_clk);
if (err < 0) {
dev_err(pcie->dev, "failed to enable AFI clock: %d\n", err);
return err;
}
if (soc->has_cml_clk) {
err = clk_prepare_enable(pcie->cml_clk);
if (err < 0) {
dev_err(pcie->dev, "failed to enable CML clock: %d\n",
err);
return err;
}
}
err = clk_prepare_enable(pcie->pll_e);
if (err < 0) {
dev_err(pcie->dev, "failed to enable PLLE clock: %d\n", err);
return err;
}
return 0;
}
static int tegra_pcie_clocks_get(struct tegra_pcie *pcie)
{
const struct tegra_pcie_soc_data *soc = pcie->soc_data;
pcie->pex_clk = devm_clk_get(pcie->dev, "pex");
if (IS_ERR(pcie->pex_clk))
return PTR_ERR(pcie->pex_clk);
pcie->afi_clk = devm_clk_get(pcie->dev, "afi");
if (IS_ERR(pcie->afi_clk))
return PTR_ERR(pcie->afi_clk);
pcie->pll_e = devm_clk_get(pcie->dev, "pll_e");
if (IS_ERR(pcie->pll_e))
return PTR_ERR(pcie->pll_e);
if (soc->has_cml_clk) {
pcie->cml_clk = devm_clk_get(pcie->dev, "cml");
if (IS_ERR(pcie->cml_clk))
return PTR_ERR(pcie->cml_clk);
}
return 0;
}
static int tegra_pcie_resets_get(struct tegra_pcie *pcie)
{
pcie->pex_rst = devm_reset_control_get(pcie->dev, "pex");
if (IS_ERR(pcie->pex_rst))
return PTR_ERR(pcie->pex_rst);
pcie->afi_rst = devm_reset_control_get(pcie->dev, "afi");
if (IS_ERR(pcie->afi_rst))
return PTR_ERR(pcie->afi_rst);
pcie->pcie_xrst = devm_reset_control_get(pcie->dev, "pcie_x");
if (IS_ERR(pcie->pcie_xrst))
return PTR_ERR(pcie->pcie_xrst);
return 0;
}
static int tegra_pcie_get_resources(struct tegra_pcie *pcie)
{
struct platform_device *pdev = to_platform_device(pcie->dev);
struct resource *pads, *afi, *res;
int err;
err = tegra_pcie_clocks_get(pcie);
if (err) {
dev_err(&pdev->dev, "failed to get clocks: %d\n", err);
return err;
}
err = tegra_pcie_resets_get(pcie);
if (err) {
dev_err(&pdev->dev, "failed to get resets: %d\n", err);
return err;
}
err = tegra_pcie_power_on(pcie);
if (err) {
dev_err(&pdev->dev, "failed to power up: %d\n", err);
return err;
}
pads = platform_get_resource_byname(pdev, IORESOURCE_MEM, "pads");
pcie->pads = devm_ioremap_resource(&pdev->dev, pads);
if (IS_ERR(pcie->pads)) {
err = PTR_ERR(pcie->pads);
goto poweroff;
}
afi = platform_get_resource_byname(pdev, IORESOURCE_MEM, "afi");
pcie->afi = devm_ioremap_resource(&pdev->dev, afi);
if (IS_ERR(pcie->afi)) {
err = PTR_ERR(pcie->afi);
goto poweroff;
}
/* request configuration space, but remap later, on demand */
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cs");
if (!res) {
err = -EADDRNOTAVAIL;
goto poweroff;
}
pcie->cs = devm_request_mem_region(pcie->dev, res->start,
resource_size(res), res->name);
if (!pcie->cs) {
err = -EADDRNOTAVAIL;
goto poweroff;
}
/* request interrupt */
err = platform_get_irq_byname(pdev, "intr");
if (err < 0) {
dev_err(&pdev->dev, "failed to get IRQ: %d\n", err);
goto poweroff;
}
pcie->irq = err;
err = request_irq(pcie->irq, tegra_pcie_isr, IRQF_SHARED, "PCIE", pcie);
if (err) {
dev_err(&pdev->dev, "failed to register IRQ: %d\n", err);
goto poweroff;
}
return 0;
poweroff:
tegra_pcie_power_off(pcie);
return err;
}
static int tegra_pcie_put_resources(struct tegra_pcie *pcie)
{
if (pcie->irq > 0)
free_irq(pcie->irq, pcie);
tegra_pcie_power_off(pcie);
return 0;
}
static int tegra_msi_alloc(struct tegra_msi *chip)
{
int msi;
mutex_lock(&chip->lock);
msi = find_first_zero_bit(chip->used, INT_PCI_MSI_NR);
if (msi < INT_PCI_MSI_NR)
set_bit(msi, chip->used);
else
msi = -ENOSPC;
mutex_unlock(&chip->lock);
return msi;
}
static void tegra_msi_free(struct tegra_msi *chip, unsigned long irq)
{
struct device *dev = chip->chip.dev;
mutex_lock(&chip->lock);
if (!test_bit(irq, chip->used))
dev_err(dev, "trying to free unused MSI#%lu\n", irq);
else
clear_bit(irq, chip->used);
mutex_unlock(&chip->lock);
}
static irqreturn_t tegra_pcie_msi_irq(int irq, void *data)
{
struct tegra_pcie *pcie = data;
struct tegra_msi *msi = &pcie->msi;
unsigned int i, processed = 0;
for (i = 0; i < 8; i++) {
unsigned long reg = afi_readl(pcie, AFI_MSI_VEC0 + i * 4);
while (reg) {
unsigned int offset = find_first_bit(&reg, 32);
unsigned int index = i * 32 + offset;
unsigned int irq;
/* clear the interrupt */
afi_writel(pcie, 1 << offset, AFI_MSI_VEC0 + i * 4);
irq = irq_find_mapping(msi->domain, index);
if (irq) {
if (test_bit(index, msi->used))
generic_handle_irq(irq);
else
dev_info(pcie->dev, "unhandled MSI\n");
} else {
/*
* that's weird who triggered this?
* just clear it
*/
dev_info(pcie->dev, "unexpected MSI\n");
}
/* see if there's any more pending in this vector */
reg = afi_readl(pcie, AFI_MSI_VEC0 + i * 4);
processed++;
}
}
return processed > 0 ? IRQ_HANDLED : IRQ_NONE;
}
static int tegra_msi_setup_irq(struct msi_chip *chip, struct pci_dev *pdev,
struct msi_desc *desc)
{
struct tegra_msi *msi = to_tegra_msi(chip);
struct msi_msg msg;
unsigned int irq;
int hwirq;
hwirq = tegra_msi_alloc(msi);
if (hwirq < 0)
return hwirq;
irq = irq_create_mapping(msi->domain, hwirq);
if (!irq) {
tegra_msi_free(msi, hwirq);
return -EINVAL;
}
irq_set_msi_desc(irq, desc);
msg.address_lo = virt_to_phys((void *)msi->pages);
/* 32 bit address only */
msg.address_hi = 0;
msg.data = hwirq;
write_msi_msg(irq, &msg);
return 0;
}
static void tegra_msi_teardown_irq(struct msi_chip *chip, unsigned int irq)
{
struct tegra_msi *msi = to_tegra_msi(chip);
struct irq_data *d = irq_get_irq_data(irq);
irq_hw_number_t hwirq = irqd_to_hwirq(d);
irq_dispose_mapping(irq);
tegra_msi_free(msi, hwirq);
}
static struct irq_chip tegra_msi_irq_chip = {
.name = "Tegra PCIe MSI",
.irq_enable = unmask_msi_irq,
.irq_disable = mask_msi_irq,
.irq_mask = mask_msi_irq,
.irq_unmask = unmask_msi_irq,
};
static int tegra_msi_map(struct irq_domain *domain, unsigned int irq,
irq_hw_number_t hwirq)
{
irq_set_chip_and_handler(irq, &tegra_msi_irq_chip, handle_simple_irq);
irq_set_chip_data(irq, domain->host_data);
set_irq_flags(irq, IRQF_VALID);
tegra_cpuidle_pcie_irqs_in_use();
return 0;
}
static const struct irq_domain_ops msi_domain_ops = {
.map = tegra_msi_map,
};
static int tegra_pcie_enable_msi(struct tegra_pcie *pcie)
{
struct platform_device *pdev = to_platform_device(pcie->dev);
const struct tegra_pcie_soc_data *soc = pcie->soc_data;
struct tegra_msi *msi = &pcie->msi;
unsigned long base;
int err;
u32 reg;
mutex_init(&msi->lock);
msi->chip.dev = pcie->dev;
msi->chip.setup_irq = tegra_msi_setup_irq;
msi->chip.teardown_irq = tegra_msi_teardown_irq;
msi->domain = irq_domain_add_linear(pcie->dev->of_node, INT_PCI_MSI_NR,
&msi_domain_ops, &msi->chip);
if (!msi->domain) {
dev_err(&pdev->dev, "failed to create IRQ domain\n");
return -ENOMEM;
}
err = platform_get_irq_byname(pdev, "msi");
if (err < 0) {
dev_err(&pdev->dev, "failed to get IRQ: %d\n", err);
goto err;
}
msi->irq = err;
err = request_irq(msi->irq, tegra_pcie_msi_irq, 0,
tegra_msi_irq_chip.name, pcie);
if (err < 0) {
dev_err(&pdev->dev, "failed to request IRQ: %d\n", err);
goto err;
}
/* setup AFI/FPCI range */
msi->pages = __get_free_pages(GFP_KERNEL, 0);
base = virt_to_phys((void *)msi->pages);
afi_writel(pcie, base >> soc->msi_base_shift, AFI_MSI_FPCI_BAR_ST);
afi_writel(pcie, base, AFI_MSI_AXI_BAR_ST);
/* this register is in 4K increments */
afi_writel(pcie, 1, AFI_MSI_BAR_SZ);
/* enable all MSI vectors */
afi_writel(pcie, 0xffffffff, AFI_MSI_EN_VEC0);
afi_writel(pcie, 0xffffffff, AFI_MSI_EN_VEC1);
afi_writel(pcie, 0xffffffff, AFI_MSI_EN_VEC2);
afi_writel(pcie, 0xffffffff, AFI_MSI_EN_VEC3);
afi_writel(pcie, 0xffffffff, AFI_MSI_EN_VEC4);
afi_writel(pcie, 0xffffffff, AFI_MSI_EN_VEC5);
afi_writel(pcie, 0xffffffff, AFI_MSI_EN_VEC6);
afi_writel(pcie, 0xffffffff, AFI_MSI_EN_VEC7);
/* and unmask the MSI interrupt */
reg = afi_readl(pcie, AFI_INTR_MASK);
reg |= AFI_INTR_MASK_MSI_MASK;
afi_writel(pcie, reg, AFI_INTR_MASK);
return 0;
err:
irq_domain_remove(msi->domain);
return err;
}
static int tegra_pcie_disable_msi(struct tegra_pcie *pcie)
{
struct tegra_msi *msi = &pcie->msi;
unsigned int i, irq;
u32 value;
/* mask the MSI interrupt */
value = afi_readl(pcie, AFI_INTR_MASK);
value &= ~AFI_INTR_MASK_MSI_MASK;
afi_writel(pcie, value, AFI_INTR_MASK);
/* disable all MSI vectors */
afi_writel(pcie, 0, AFI_MSI_EN_VEC0);
afi_writel(pcie, 0, AFI_MSI_EN_VEC1);
afi_writel(pcie, 0, AFI_MSI_EN_VEC2);
afi_writel(pcie, 0, AFI_MSI_EN_VEC3);
afi_writel(pcie, 0, AFI_MSI_EN_VEC4);
afi_writel(pcie, 0, AFI_MSI_EN_VEC5);
afi_writel(pcie, 0, AFI_MSI_EN_VEC6);
afi_writel(pcie, 0, AFI_MSI_EN_VEC7);
free_pages(msi->pages, 0);
if (msi->irq > 0)
free_irq(msi->irq, pcie);
for (i = 0; i < INT_PCI_MSI_NR; i++) {
irq = irq_find_mapping(msi->domain, i);
if (irq > 0)
irq_dispose_mapping(irq);
}
irq_domain_remove(msi->domain);
return 0;
}
static int tegra_pcie_get_xbar_config(struct tegra_pcie *pcie, u32 lanes,
u32 *xbar)
{
struct device_node *np = pcie->dev->of_node;
if (of_device_is_compatible(np, "nvidia,tegra30-pcie")) {
switch (lanes) {
case 0x00000204:
dev_info(pcie->dev, "4x1, 2x1 configuration\n");
*xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_420;
return 0;
case 0x00020202:
dev_info(pcie->dev, "2x3 configuration\n");
*xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_222;
return 0;
case 0x00010104:
dev_info(pcie->dev, "4x1, 1x2 configuration\n");
*xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_411;
return 0;
}
} else if (of_device_is_compatible(np, "nvidia,tegra20-pcie")) {
switch (lanes) {
case 0x00000004:
dev_info(pcie->dev, "single-mode configuration\n");
*xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_SINGLE;
return 0;
case 0x00000202:
dev_info(pcie->dev, "dual-mode configuration\n");
*xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_DUAL;
return 0;
}
}
return -EINVAL;
}
/*
* Check whether a given set of supplies is available in a device tree node.
* This is used to check whether the new or the legacy device tree bindings
* should be used.
*/
static bool of_regulator_bulk_available(struct device_node *np,
struct regulator_bulk_data *supplies,
unsigned int num_supplies)
{
char property[32];
unsigned int i;
for (i = 0; i < num_supplies; i++) {
snprintf(property, 32, "%s-supply", supplies[i].supply);
if (of_find_property(np, property, NULL) == NULL)
return false;
}
return true;
}
/*
* Old versions of the device tree binding for this device used a set of power
* supplies that didn't match the hardware inputs. This happened to work for a
* number of cases but is not future proof. However to preserve backwards-
* compatibility with old device trees, this function will try to use the old
* set of supplies.
*/
static int tegra_pcie_get_legacy_regulators(struct tegra_pcie *pcie)
{
struct device_node *np = pcie->dev->of_node;
if (of_device_is_compatible(np, "nvidia,tegra30-pcie"))
pcie->num_supplies = 3;
else if (of_device_is_compatible(np, "nvidia,tegra20-pcie"))
pcie->num_supplies = 2;
if (pcie->num_supplies == 0) {
dev_err(pcie->dev, "device %s not supported in legacy mode\n",
np->full_name);
return -ENODEV;
}
pcie->supplies = devm_kcalloc(pcie->dev, pcie->num_supplies,
sizeof(*pcie->supplies),
GFP_KERNEL);
if (!pcie->supplies)
return -ENOMEM;
pcie->supplies[0].supply = "pex-clk";
pcie->supplies[1].supply = "vdd";
if (pcie->num_supplies > 2)
pcie->supplies[2].supply = "avdd";
return devm_regulator_bulk_get(pcie->dev, pcie->num_supplies,
pcie->supplies);
}
/*
* Obtains the list of regulators required for a particular generation of the
* IP block.
*
* This would've been nice to do simply by providing static tables for use
* with the regulator_bulk_*() API, but unfortunately Tegra30 is a bit quirky
* in that it has two pairs or AVDD_PEX and VDD_PEX supplies (PEXA and PEXB)
* and either seems to be optional depending on which ports are being used.
*/
static int tegra_pcie_get_regulators(struct tegra_pcie *pcie, u32 lane_mask)
{
struct device_node *np = pcie->dev->of_node;
unsigned int i = 0;
if (of_device_is_compatible(np, "nvidia,tegra30-pcie")) {
bool need_pexa = false, need_pexb = false;
/* VDD_PEXA and AVDD_PEXA supply lanes 0 to 3 */
if (lane_mask & 0x0f)
need_pexa = true;
/* VDD_PEXB and AVDD_PEXB supply lanes 4 to 5 */
if (lane_mask & 0x30)
need_pexb = true;
pcie->num_supplies = 4 + (need_pexa ? 2 : 0) +
(need_pexb ? 2 : 0);
pcie->supplies = devm_kcalloc(pcie->dev, pcie->num_supplies,
sizeof(*pcie->supplies),
GFP_KERNEL);
if (!pcie->supplies)
return -ENOMEM;
pcie->supplies[i++].supply = "avdd-pex-pll";
pcie->supplies[i++].supply = "hvdd-pex";
pcie->supplies[i++].supply = "vddio-pex-ctl";
pcie->supplies[i++].supply = "avdd-plle";
if (need_pexa) {
pcie->supplies[i++].supply = "avdd-pexa";
pcie->supplies[i++].supply = "vdd-pexa";
}
if (need_pexb) {
pcie->supplies[i++].supply = "avdd-pexb";
pcie->supplies[i++].supply = "vdd-pexb";
}
} else if (of_device_is_compatible(np, "nvidia,tegra20-pcie")) {
pcie->num_supplies = 5;
pcie->supplies = devm_kcalloc(pcie->dev, pcie->num_supplies,
sizeof(*pcie->supplies),
GFP_KERNEL);
if (!pcie->supplies)
return -ENOMEM;
pcie->supplies[0].supply = "avdd-pex";
pcie->supplies[1].supply = "vdd-pex";
pcie->supplies[2].supply = "avdd-pex-pll";
pcie->supplies[3].supply = "avdd-plle";
pcie->supplies[4].supply = "vddio-pex-clk";
}
if (of_regulator_bulk_available(pcie->dev->of_node, pcie->supplies,
pcie->num_supplies))
return devm_regulator_bulk_get(pcie->dev, pcie->num_supplies,
pcie->supplies);
/*
* If not all regulators are available for this new scheme, assume
* that the device tree complies with an older version of the device
* tree binding.
*/
dev_info(pcie->dev, "using legacy DT binding for power supplies\n");
devm_kfree(pcie->dev, pcie->supplies);
pcie->num_supplies = 0;
return tegra_pcie_get_legacy_regulators(pcie);
}
static int tegra_pcie_parse_dt(struct tegra_pcie *pcie)
{
const struct tegra_pcie_soc_data *soc = pcie->soc_data;
struct device_node *np = pcie->dev->of_node, *port;
struct of_pci_range_parser parser;
struct of_pci_range range;
u32 lanes = 0, mask = 0;
unsigned int lane = 0;
struct resource res;
int err;
memset(&pcie->all, 0, sizeof(pcie->all));
pcie->all.flags = IORESOURCE_MEM;
pcie->all.name = np->full_name;
pcie->all.start = ~0;
pcie->all.end = 0;
if (of_pci_range_parser_init(&parser, np)) {
dev_err(pcie->dev, "missing \"ranges\" property\n");
return -EINVAL;
}
for_each_of_pci_range(&parser, &range) {
of_pci_range_to_resource(&range, np, &res);
switch (res.flags & IORESOURCE_TYPE_BITS) {
case IORESOURCE_IO:
memcpy(&pcie->io, &res, sizeof(res));
pcie->io.name = np->full_name;
break;
case IORESOURCE_MEM:
if (res.flags & IORESOURCE_PREFETCH) {
memcpy(&pcie->prefetch, &res, sizeof(res));
pcie->prefetch.name = "prefetchable";
} else {
memcpy(&pcie->mem, &res, sizeof(res));
pcie->mem.name = "non-prefetchable";
}
break;
}
if (res.start <= pcie->all.start)
pcie->all.start = res.start;
if (res.end >= pcie->all.end)
pcie->all.end = res.end;
}
err = devm_request_resource(pcie->dev, &iomem_resource, &pcie->all);
if (err < 0)
return err;
err = of_pci_parse_bus_range(np, &pcie->busn);
if (err < 0) {
dev_err(pcie->dev, "failed to parse ranges property: %d\n",
err);
pcie->busn.name = np->name;
pcie->busn.start = 0;
pcie->busn.end = 0xff;
pcie->busn.flags = IORESOURCE_BUS;
}
/* parse root ports */
for_each_child_of_node(np, port) {
struct tegra_pcie_port *rp;
unsigned int index;
u32 value;
err = of_pci_get_devfn(port);
if (err < 0) {
dev_err(pcie->dev, "failed to parse address: %d\n",
err);
return err;
}
index = PCI_SLOT(err);
if (index < 1 || index > soc->num_ports) {
dev_err(pcie->dev, "invalid port number: %d\n", index);
return -EINVAL;
}
index--;
err = of_property_read_u32(port, "nvidia,num-lanes", &value);
if (err < 0) {
dev_err(pcie->dev, "failed to parse # of lanes: %d\n",
err);
return err;
}
if (value > 16) {
dev_err(pcie->dev, "invalid # of lanes: %u\n", value);
return -EINVAL;
}
lanes |= value << (index << 3);
if (!of_device_is_available(port)) {
lane += value;
continue;
}
mask |= ((1 << value) - 1) << lane;
lane += value;
rp = devm_kzalloc(pcie->dev, sizeof(*rp), GFP_KERNEL);
if (!rp)
return -ENOMEM;
err = of_address_to_resource(port, 0, &rp->regs);
if (err < 0) {
dev_err(pcie->dev, "failed to parse address: %d\n",
err);
return err;
}
INIT_LIST_HEAD(&rp->list);
rp->index = index;
rp->lanes = value;
rp->pcie = pcie;
rp->base = devm_ioremap_resource(pcie->dev, &rp->regs);
if (IS_ERR(rp->base))
return PTR_ERR(rp->base);
list_add_tail(&rp->list, &pcie->ports);
}
err = tegra_pcie_get_xbar_config(pcie, lanes, &pcie->xbar_config);
if (err < 0) {
dev_err(pcie->dev, "invalid lane configuration\n");
return err;
}
err = tegra_pcie_get_regulators(pcie, mask);
if (err < 0)
return err;
return 0;
}
/*
* FIXME: If there are no PCIe cards attached, then calling this function
* can result in the increase of the bootup time as there are big timeout
* loops.
*/
#define TEGRA_PCIE_LINKUP_TIMEOUT 200 /* up to 1.2 seconds */
static bool tegra_pcie_port_check_link(struct tegra_pcie_port *port)
{
unsigned int retries = 3;
unsigned long value;
do {
unsigned int timeout = TEGRA_PCIE_LINKUP_TIMEOUT;
do {
value = readl(port->base + RP_VEND_XP);
if (value & RP_VEND_XP_DL_UP)
break;
usleep_range(1000, 2000);
} while (--timeout);
if (!timeout) {
dev_err(port->pcie->dev, "link %u down, retrying\n",
port->index);
goto retry;
}
timeout = TEGRA_PCIE_LINKUP_TIMEOUT;
do {
value = readl(port->base + RP_LINK_CONTROL_STATUS);
if (value & RP_LINK_CONTROL_STATUS_DL_LINK_ACTIVE)
return true;
usleep_range(1000, 2000);
} while (--timeout);
retry:
tegra_pcie_port_reset(port);
} while (--retries);
return false;
}
static int tegra_pcie_enable(struct tegra_pcie *pcie)
{
struct tegra_pcie_port *port, *tmp;
struct hw_pci hw;
list_for_each_entry_safe(port, tmp, &pcie->ports, list) {
dev_info(pcie->dev, "probing port %u, using %u lanes\n",
port->index, port->lanes);
tegra_pcie_port_enable(port);
if (tegra_pcie_port_check_link(port))
continue;
dev_info(pcie->dev, "link %u down, ignoring\n", port->index);
tegra_pcie_port_disable(port);
tegra_pcie_port_free(port);
}
memset(&hw, 0, sizeof(hw));
hw.nr_controllers = 1;
hw.private_data = (void **)&pcie;
hw.setup = tegra_pcie_setup;
hw.map_irq = tegra_pcie_map_irq;
hw.add_bus = tegra_pcie_add_bus;
hw.scan = tegra_pcie_scan_bus;
hw.ops = &tegra_pcie_ops;
pci_common_init_dev(pcie->dev, &hw);
return 0;
}
static const struct tegra_pcie_soc_data tegra20_pcie_data = {
.num_ports = 2,
.msi_base_shift = 0,
.pads_pll_ctl = PADS_PLL_CTL_TEGRA20,
.tx_ref_sel = PADS_PLL_CTL_TXCLKREF_DIV10,
.has_pex_clkreq_en = false,
.has_pex_bias_ctrl = false,
.has_intr_prsnt_sense = false,
.has_cml_clk = false,
};
static const struct tegra_pcie_soc_data tegra30_pcie_data = {
.num_ports = 3,
.msi_base_shift = 8,
.pads_pll_ctl = PADS_PLL_CTL_TEGRA30,
.tx_ref_sel = PADS_PLL_CTL_TXCLKREF_BUF_EN,
.has_pex_clkreq_en = true,
.has_pex_bias_ctrl = true,
.has_intr_prsnt_sense = true,
.has_cml_clk = true,
};
static const struct of_device_id tegra_pcie_of_match[] = {
{ .compatible = "nvidia,tegra30-pcie", .data = &tegra30_pcie_data },
{ .compatible = "nvidia,tegra20-pcie", .data = &tegra20_pcie_data },
{ },
};
MODULE_DEVICE_TABLE(of, tegra_pcie_of_match);
static void *tegra_pcie_ports_seq_start(struct seq_file *s, loff_t *pos)
{
struct tegra_pcie *pcie = s->private;
if (list_empty(&pcie->ports))
return NULL;
seq_printf(s, "Index Status\n");
return seq_list_start(&pcie->ports, *pos);
}
static void *tegra_pcie_ports_seq_next(struct seq_file *s, void *v, loff_t *pos)
{
struct tegra_pcie *pcie = s->private;
return seq_list_next(v, &pcie->ports, pos);
}
static void tegra_pcie_ports_seq_stop(struct seq_file *s, void *v)
{
}
static int tegra_pcie_ports_seq_show(struct seq_file *s, void *v)
{
bool up = false, active = false;
struct tegra_pcie_port *port;
unsigned int value;
port = list_entry(v, struct tegra_pcie_port, list);
value = readl(port->base + RP_VEND_XP);
if (value & RP_VEND_XP_DL_UP)
up = true;
value = readl(port->base + RP_LINK_CONTROL_STATUS);
if (value & RP_LINK_CONTROL_STATUS_DL_LINK_ACTIVE)
active = true;
seq_printf(s, "%2u ", port->index);
if (up)
seq_printf(s, "up");
if (active) {
if (up)
seq_printf(s, ", ");
seq_printf(s, "active");
}
seq_printf(s, "\n");
return 0;
}
static const struct seq_operations tegra_pcie_ports_seq_ops = {
.start = tegra_pcie_ports_seq_start,
.next = tegra_pcie_ports_seq_next,
.stop = tegra_pcie_ports_seq_stop,
.show = tegra_pcie_ports_seq_show,
};
static int tegra_pcie_ports_open(struct inode *inode, struct file *file)
{
struct tegra_pcie *pcie = inode->i_private;
struct seq_file *s;
int err;
err = seq_open(file, &tegra_pcie_ports_seq_ops);
if (err)
return err;
s = file->private_data;
s->private = pcie;
return 0;
}
static const struct file_operations tegra_pcie_ports_ops = {
.owner = THIS_MODULE,
.open = tegra_pcie_ports_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release,
};
static int tegra_pcie_debugfs_init(struct tegra_pcie *pcie)
{
struct dentry *file;
pcie->debugfs = debugfs_create_dir("pcie", NULL);
if (!pcie->debugfs)
return -ENOMEM;
file = debugfs_create_file("ports", S_IFREG | S_IRUGO, pcie->debugfs,
pcie, &tegra_pcie_ports_ops);
if (!file)
goto remove;
return 0;
remove:
debugfs_remove_recursive(pcie->debugfs);
pcie->debugfs = NULL;
return -ENOMEM;
}
static int tegra_pcie_probe(struct platform_device *pdev)
{
const struct of_device_id *match;
struct tegra_pcie *pcie;
int err;
match = of_match_device(tegra_pcie_of_match, &pdev->dev);
if (!match)
return -ENODEV;
pcie = devm_kzalloc(&pdev->dev, sizeof(*pcie), GFP_KERNEL);
if (!pcie)
return -ENOMEM;
INIT_LIST_HEAD(&pcie->buses);
INIT_LIST_HEAD(&pcie->ports);
pcie->soc_data = match->data;
pcie->dev = &pdev->dev;
err = tegra_pcie_parse_dt(pcie);
if (err < 0)
return err;
pcibios_min_mem = 0;
err = tegra_pcie_get_resources(pcie);
if (err < 0) {
dev_err(&pdev->dev, "failed to request resources: %d\n", err);
return err;
}
err = tegra_pcie_enable_controller(pcie);
if (err)
goto put_resources;
/* setup the AFI address translations */
tegra_pcie_setup_translations(pcie);
if (IS_ENABLED(CONFIG_PCI_MSI)) {
err = tegra_pcie_enable_msi(pcie);
if (err < 0) {
dev_err(&pdev->dev,
"failed to enable MSI support: %d\n",
err);
goto put_resources;
}
}
err = tegra_pcie_enable(pcie);
if (err < 0) {
dev_err(&pdev->dev, "failed to enable PCIe ports: %d\n", err);
goto disable_msi;
}
if (IS_ENABLED(CONFIG_DEBUG_FS)) {
err = tegra_pcie_debugfs_init(pcie);
if (err < 0)
dev_err(&pdev->dev, "failed to setup debugfs: %d\n",
err);
}
platform_set_drvdata(pdev, pcie);
return 0;
disable_msi:
if (IS_ENABLED(CONFIG_PCI_MSI))
tegra_pcie_disable_msi(pcie);
put_resources:
tegra_pcie_put_resources(pcie);
return err;
}
static struct platform_driver tegra_pcie_driver = {
.driver = {
.name = "tegra-pcie",
.owner = THIS_MODULE,
.of_match_table = tegra_pcie_of_match,
.suppress_bind_attrs = true,
},
.probe = tegra_pcie_probe,
};
module_platform_driver(tegra_pcie_driver);
MODULE_AUTHOR("Thierry Reding <treding@nvidia.com>");
MODULE_DESCRIPTION("NVIDIA Tegra PCIe driver");
MODULE_LICENSE("GPL v2");