Thomas Gleixner 612ad43330 PCI/MSI: Split MSI-X descriptor setup
The upcoming mechanism to allocate MSI-X vectors after enabling MSI-X needs
to share some of the MSI-X descriptor setup.

The regular descriptor setup on enable has the following code flow:

    1) Allocate descriptor
    2) Setup descriptor with PCI specific data
    3) Insert descriptor
    4) Allocate interrupts which in turn scans the inserted
       descriptors

This cannot be easily changed because the PCI/MSI code needs to handle the
legacy architecture specific allocation model and the irq domain model
where quite some domains have the assumption that the above flow is how it
works.

Ideally the code flow should look like this:

   1) Invoke allocation at the MSI core
   2) MSI core allocates descriptor
   3) MSI core calls back into the irq domain which fills in
      the domain specific parts

This could be done for underlying parent MSI domains which support
post-enable allocation/free but that would create significantly different
code pathes for MSI/MSI-X enable.

Though for dynamic allocation which wants to share the allocation code with
the upcoming PCI/IMS support it's the right thing to do.

Split the MSI-X descriptor setup into the preallocation part which just sets
the index and fills in the horrible hack of virtual IRQs and the real PCI
specific MSI-X setup part which solely depends on the index in the
descriptor. This allows to provide a common dynamic allocation interface at
the MSI core level for both PCI/MSI-X and PCI/IMS.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Acked-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221124232326.616292598@linutronix.de
2022-12-05 22:22:34 +01:00

921 lines
23 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* PCI Message Signaled Interrupt (MSI)
*
* Copyright (C) 2003-2004 Intel
* Copyright (C) Tom Long Nguyen (tom.l.nguyen@intel.com)
* Copyright (C) 2016 Christoph Hellwig.
*/
#include <linux/err.h>
#include <linux/export.h>
#include <linux/irq.h>
#include "../pci.h"
#include "msi.h"
int pci_msi_enable = 1;
int pci_msi_ignore_mask;
/**
* pci_msi_supported - check whether MSI may be enabled on a device
* @dev: pointer to the pci_dev data structure of MSI device function
* @nvec: how many MSIs have been requested?
*
* Look at global flags, the device itself, and its parent buses
* to determine if MSI/-X are supported for the device. If MSI/-X is
* supported return 1, else return 0.
**/
static int pci_msi_supported(struct pci_dev *dev, int nvec)
{
struct pci_bus *bus;
/* MSI must be globally enabled and supported by the device */
if (!pci_msi_enable)
return 0;
if (!dev || dev->no_msi)
return 0;
/*
* You can't ask to have 0 or less MSIs configured.
* a) it's stupid ..
* b) the list manipulation code assumes nvec >= 1.
*/
if (nvec < 1)
return 0;
/*
* Any bridge which does NOT route MSI transactions from its
* secondary bus to its primary bus must set NO_MSI flag on
* the secondary pci_bus.
*
* The NO_MSI flag can either be set directly by:
* - arch-specific PCI host bus controller drivers (deprecated)
* - quirks for specific PCI bridges
*
* or indirectly by platform-specific PCI host bridge drivers by
* advertising the 'msi_domain' property, which results in
* the NO_MSI flag when no MSI domain is found for this bridge
* at probe time.
*/
for (bus = dev->bus; bus; bus = bus->parent)
if (bus->bus_flags & PCI_BUS_FLAGS_NO_MSI)
return 0;
return 1;
}
static void pcim_msi_release(void *pcidev)
{
struct pci_dev *dev = pcidev;
dev->is_msi_managed = false;
pci_free_irq_vectors(dev);
}
/*
* Needs to be separate from pcim_release to prevent an ordering problem
* vs. msi_device_data_release() in the MSI core code.
*/
static int pcim_setup_msi_release(struct pci_dev *dev)
{
int ret;
if (!pci_is_managed(dev) || dev->is_msi_managed)
return 0;
ret = devm_add_action(&dev->dev, pcim_msi_release, dev);
if (!ret)
dev->is_msi_managed = true;
return ret;
}
/*
* Ordering vs. devres: msi device data has to be installed first so that
* pcim_msi_release() is invoked before it on device release.
*/
static int pci_setup_msi_context(struct pci_dev *dev)
{
int ret = msi_setup_device_data(&dev->dev);
if (!ret)
ret = pcim_setup_msi_release(dev);
return ret;
}
/*
* Helper functions for mask/unmask and MSI message handling
*/
void pci_msi_update_mask(struct msi_desc *desc, u32 clear, u32 set)
{
raw_spinlock_t *lock = &to_pci_dev(desc->dev)->msi_lock;
unsigned long flags;
if (!desc->pci.msi_attrib.can_mask)
return;
raw_spin_lock_irqsave(lock, flags);
desc->pci.msi_mask &= ~clear;
desc->pci.msi_mask |= set;
pci_write_config_dword(msi_desc_to_pci_dev(desc), desc->pci.mask_pos,
desc->pci.msi_mask);
raw_spin_unlock_irqrestore(lock, flags);
}
/**
* pci_msi_mask_irq - Generic IRQ chip callback to mask PCI/MSI interrupts
* @data: pointer to irqdata associated to that interrupt
*/
void pci_msi_mask_irq(struct irq_data *data)
{
struct msi_desc *desc = irq_data_get_msi_desc(data);
__pci_msi_mask_desc(desc, BIT(data->irq - desc->irq));
}
EXPORT_SYMBOL_GPL(pci_msi_mask_irq);
/**
* pci_msi_unmask_irq - Generic IRQ chip callback to unmask PCI/MSI interrupts
* @data: pointer to irqdata associated to that interrupt
*/
void pci_msi_unmask_irq(struct irq_data *data)
{
struct msi_desc *desc = irq_data_get_msi_desc(data);
__pci_msi_unmask_desc(desc, BIT(data->irq - desc->irq));
}
EXPORT_SYMBOL_GPL(pci_msi_unmask_irq);
void __pci_read_msi_msg(struct msi_desc *entry, struct msi_msg *msg)
{
struct pci_dev *dev = msi_desc_to_pci_dev(entry);
BUG_ON(dev->current_state != PCI_D0);
if (entry->pci.msi_attrib.is_msix) {
void __iomem *base = pci_msix_desc_addr(entry);
if (WARN_ON_ONCE(entry->pci.msi_attrib.is_virtual))
return;
msg->address_lo = readl(base + PCI_MSIX_ENTRY_LOWER_ADDR);
msg->address_hi = readl(base + PCI_MSIX_ENTRY_UPPER_ADDR);
msg->data = readl(base + PCI_MSIX_ENTRY_DATA);
} else {
int pos = dev->msi_cap;
u16 data;
pci_read_config_dword(dev, pos + PCI_MSI_ADDRESS_LO,
&msg->address_lo);
if (entry->pci.msi_attrib.is_64) {
pci_read_config_dword(dev, pos + PCI_MSI_ADDRESS_HI,
&msg->address_hi);
pci_read_config_word(dev, pos + PCI_MSI_DATA_64, &data);
} else {
msg->address_hi = 0;
pci_read_config_word(dev, pos + PCI_MSI_DATA_32, &data);
}
msg->data = data;
}
}
static inline void pci_write_msg_msi(struct pci_dev *dev, struct msi_desc *desc,
struct msi_msg *msg)
{
int pos = dev->msi_cap;
u16 msgctl;
pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &msgctl);
msgctl &= ~PCI_MSI_FLAGS_QSIZE;
msgctl |= desc->pci.msi_attrib.multiple << 4;
pci_write_config_word(dev, pos + PCI_MSI_FLAGS, msgctl);
pci_write_config_dword(dev, pos + PCI_MSI_ADDRESS_LO, msg->address_lo);
if (desc->pci.msi_attrib.is_64) {
pci_write_config_dword(dev, pos + PCI_MSI_ADDRESS_HI, msg->address_hi);
pci_write_config_word(dev, pos + PCI_MSI_DATA_64, msg->data);
} else {
pci_write_config_word(dev, pos + PCI_MSI_DATA_32, msg->data);
}
/* Ensure that the writes are visible in the device */
pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &msgctl);
}
static inline void pci_write_msg_msix(struct msi_desc *desc, struct msi_msg *msg)
{
void __iomem *base = pci_msix_desc_addr(desc);
u32 ctrl = desc->pci.msix_ctrl;
bool unmasked = !(ctrl & PCI_MSIX_ENTRY_CTRL_MASKBIT);
if (desc->pci.msi_attrib.is_virtual)
return;
/*
* The specification mandates that the entry is masked
* when the message is modified:
*
* "If software changes the Address or Data value of an
* entry while the entry is unmasked, the result is
* undefined."
*/
if (unmasked)
pci_msix_write_vector_ctrl(desc, ctrl | PCI_MSIX_ENTRY_CTRL_MASKBIT);
writel(msg->address_lo, base + PCI_MSIX_ENTRY_LOWER_ADDR);
writel(msg->address_hi, base + PCI_MSIX_ENTRY_UPPER_ADDR);
writel(msg->data, base + PCI_MSIX_ENTRY_DATA);
if (unmasked)
pci_msix_write_vector_ctrl(desc, ctrl);
/* Ensure that the writes are visible in the device */
readl(base + PCI_MSIX_ENTRY_DATA);
}
void __pci_write_msi_msg(struct msi_desc *entry, struct msi_msg *msg)
{
struct pci_dev *dev = msi_desc_to_pci_dev(entry);
if (dev->current_state != PCI_D0 || pci_dev_is_disconnected(dev)) {
/* Don't touch the hardware now */
} else if (entry->pci.msi_attrib.is_msix) {
pci_write_msg_msix(entry, msg);
} else {
pci_write_msg_msi(dev, entry, msg);
}
entry->msg = *msg;
if (entry->write_msi_msg)
entry->write_msi_msg(entry, entry->write_msi_msg_data);
}
void pci_write_msi_msg(unsigned int irq, struct msi_msg *msg)
{
struct msi_desc *entry = irq_get_msi_desc(irq);
__pci_write_msi_msg(entry, msg);
}
EXPORT_SYMBOL_GPL(pci_write_msi_msg);
/* PCI/MSI specific functionality */
static void pci_intx_for_msi(struct pci_dev *dev, int enable)
{
if (!(dev->dev_flags & PCI_DEV_FLAGS_MSI_INTX_DISABLE_BUG))
pci_intx(dev, enable);
}
static void pci_msi_set_enable(struct pci_dev *dev, int enable)
{
u16 control;
pci_read_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, &control);
control &= ~PCI_MSI_FLAGS_ENABLE;
if (enable)
control |= PCI_MSI_FLAGS_ENABLE;
pci_write_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, control);
}
static int msi_setup_msi_desc(struct pci_dev *dev, int nvec,
struct irq_affinity_desc *masks)
{
struct msi_desc desc;
u16 control;
/* MSI Entry Initialization */
memset(&desc, 0, sizeof(desc));
pci_read_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, &control);
/* Lies, damned lies, and MSIs */
if (dev->dev_flags & PCI_DEV_FLAGS_HAS_MSI_MASKING)
control |= PCI_MSI_FLAGS_MASKBIT;
/* Respect XEN's mask disabling */
if (pci_msi_ignore_mask)
control &= ~PCI_MSI_FLAGS_MASKBIT;
desc.nvec_used = nvec;
desc.pci.msi_attrib.is_64 = !!(control & PCI_MSI_FLAGS_64BIT);
desc.pci.msi_attrib.can_mask = !!(control & PCI_MSI_FLAGS_MASKBIT);
desc.pci.msi_attrib.default_irq = dev->irq;
desc.pci.msi_attrib.multi_cap = (control & PCI_MSI_FLAGS_QMASK) >> 1;
desc.pci.msi_attrib.multiple = ilog2(__roundup_pow_of_two(nvec));
desc.affinity = masks;
if (control & PCI_MSI_FLAGS_64BIT)
desc.pci.mask_pos = dev->msi_cap + PCI_MSI_MASK_64;
else
desc.pci.mask_pos = dev->msi_cap + PCI_MSI_MASK_32;
/* Save the initial mask status */
if (desc.pci.msi_attrib.can_mask)
pci_read_config_dword(dev, desc.pci.mask_pos, &desc.pci.msi_mask);
return msi_insert_msi_desc(&dev->dev, &desc);
}
static int msi_verify_entries(struct pci_dev *dev)
{
struct msi_desc *entry;
if (!dev->no_64bit_msi)
return 0;
msi_for_each_desc(entry, &dev->dev, MSI_DESC_ALL) {
if (entry->msg.address_hi) {
pci_err(dev, "arch assigned 64-bit MSI address %#x%08x but device only supports 32 bits\n",
entry->msg.address_hi, entry->msg.address_lo);
break;
}
}
return !entry ? 0 : -EIO;
}
/**
* msi_capability_init - configure device's MSI capability structure
* @dev: pointer to the pci_dev data structure of MSI device function
* @nvec: number of interrupts to allocate
* @affd: description of automatic IRQ affinity assignments (may be %NULL)
*
* Setup the MSI capability structure of the device with the requested
* number of interrupts. A return value of zero indicates the successful
* setup of an entry with the new MSI IRQ. A negative return value indicates
* an error, and a positive return value indicates the number of interrupts
* which could have been allocated.
*/
static int msi_capability_init(struct pci_dev *dev, int nvec,
struct irq_affinity *affd)
{
struct irq_affinity_desc *masks = NULL;
struct msi_desc *entry;
int ret;
/* Reject multi-MSI early on irq domain enabled architectures */
if (nvec > 1 && !pci_msi_domain_supports(dev, MSI_FLAG_MULTI_PCI_MSI, ALLOW_LEGACY))
return 1;
/*
* Disable MSI during setup in the hardware, but mark it enabled
* so that setup code can evaluate it.
*/
pci_msi_set_enable(dev, 0);
dev->msi_enabled = 1;
if (affd)
masks = irq_create_affinity_masks(nvec, affd);
msi_lock_descs(&dev->dev);
ret = msi_setup_msi_desc(dev, nvec, masks);
if (ret)
goto fail;
/* All MSIs are unmasked by default; mask them all */
entry = msi_first_desc(&dev->dev, MSI_DESC_ALL);
pci_msi_mask(entry, msi_multi_mask(entry));
/* Configure MSI capability structure */
ret = pci_msi_setup_msi_irqs(dev, nvec, PCI_CAP_ID_MSI);
if (ret)
goto err;
ret = msi_verify_entries(dev);
if (ret)
goto err;
/* Set MSI enabled bits */
pci_intx_for_msi(dev, 0);
pci_msi_set_enable(dev, 1);
pcibios_free_irq(dev);
dev->irq = entry->irq;
goto unlock;
err:
pci_msi_unmask(entry, msi_multi_mask(entry));
pci_free_msi_irqs(dev);
fail:
dev->msi_enabled = 0;
unlock:
msi_unlock_descs(&dev->dev);
kfree(masks);
return ret;
}
int __pci_enable_msi_range(struct pci_dev *dev, int minvec, int maxvec,
struct irq_affinity *affd)
{
int nvec;
int rc;
if (!pci_msi_supported(dev, minvec) || dev->current_state != PCI_D0)
return -EINVAL;
/* Check whether driver already requested MSI-X IRQs */
if (dev->msix_enabled) {
pci_info(dev, "can't enable MSI (MSI-X already enabled)\n");
return -EINVAL;
}
if (maxvec < minvec)
return -ERANGE;
if (WARN_ON_ONCE(dev->msi_enabled))
return -EINVAL;
nvec = pci_msi_vec_count(dev);
if (nvec < 0)
return nvec;
if (nvec < minvec)
return -ENOSPC;
if (nvec > maxvec)
nvec = maxvec;
rc = pci_setup_msi_context(dev);
if (rc)
return rc;
if (!pci_setup_msi_device_domain(dev))
return -ENODEV;
for (;;) {
if (affd) {
nvec = irq_calc_affinity_vectors(minvec, nvec, affd);
if (nvec < minvec)
return -ENOSPC;
}
rc = msi_capability_init(dev, nvec, affd);
if (rc == 0)
return nvec;
if (rc < 0)
return rc;
if (rc < minvec)
return -ENOSPC;
nvec = rc;
}
}
/**
* pci_msi_vec_count - Return the number of MSI vectors a device can send
* @dev: device to report about
*
* This function returns the number of MSI vectors a device requested via
* Multiple Message Capable register. It returns a negative errno if the
* device is not capable sending MSI interrupts. Otherwise, the call succeeds
* and returns a power of two, up to a maximum of 2^5 (32), according to the
* MSI specification.
**/
int pci_msi_vec_count(struct pci_dev *dev)
{
int ret;
u16 msgctl;
if (!dev->msi_cap)
return -EINVAL;
pci_read_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, &msgctl);
ret = 1 << ((msgctl & PCI_MSI_FLAGS_QMASK) >> 1);
return ret;
}
EXPORT_SYMBOL(pci_msi_vec_count);
/*
* Architecture override returns true when the PCI MSI message should be
* written by the generic restore function.
*/
bool __weak arch_restore_msi_irqs(struct pci_dev *dev)
{
return true;
}
void __pci_restore_msi_state(struct pci_dev *dev)
{
struct msi_desc *entry;
u16 control;
if (!dev->msi_enabled)
return;
entry = irq_get_msi_desc(dev->irq);
pci_intx_for_msi(dev, 0);
pci_msi_set_enable(dev, 0);
if (arch_restore_msi_irqs(dev))
__pci_write_msi_msg(entry, &entry->msg);
pci_read_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, &control);
pci_msi_update_mask(entry, 0, 0);
control &= ~PCI_MSI_FLAGS_QSIZE;
control |= (entry->pci.msi_attrib.multiple << 4) | PCI_MSI_FLAGS_ENABLE;
pci_write_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, control);
}
void pci_msi_shutdown(struct pci_dev *dev)
{
struct msi_desc *desc;
if (!pci_msi_enable || !dev || !dev->msi_enabled)
return;
pci_msi_set_enable(dev, 0);
pci_intx_for_msi(dev, 1);
dev->msi_enabled = 0;
/* Return the device with MSI unmasked as initial states */
desc = msi_first_desc(&dev->dev, MSI_DESC_ALL);
if (!WARN_ON_ONCE(!desc))
pci_msi_unmask(desc, msi_multi_mask(desc));
/* Restore dev->irq to its default pin-assertion IRQ */
dev->irq = desc->pci.msi_attrib.default_irq;
pcibios_alloc_irq(dev);
}
/* PCI/MSI-X specific functionality */
static void pci_msix_clear_and_set_ctrl(struct pci_dev *dev, u16 clear, u16 set)
{
u16 ctrl;
pci_read_config_word(dev, dev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
ctrl &= ~clear;
ctrl |= set;
pci_write_config_word(dev, dev->msix_cap + PCI_MSIX_FLAGS, ctrl);
}
static void __iomem *msix_map_region(struct pci_dev *dev,
unsigned int nr_entries)
{
resource_size_t phys_addr;
u32 table_offset;
unsigned long flags;
u8 bir;
pci_read_config_dword(dev, dev->msix_cap + PCI_MSIX_TABLE,
&table_offset);
bir = (u8)(table_offset & PCI_MSIX_TABLE_BIR);
flags = pci_resource_flags(dev, bir);
if (!flags || (flags & IORESOURCE_UNSET))
return NULL;
table_offset &= PCI_MSIX_TABLE_OFFSET;
phys_addr = pci_resource_start(dev, bir) + table_offset;
return ioremap(phys_addr, nr_entries * PCI_MSIX_ENTRY_SIZE);
}
/**
* msix_prepare_msi_desc - Prepare a half initialized MSI descriptor for operation
* @dev: The PCI device for which the descriptor is prepared
* @desc: The MSI descriptor for preparation
*
* This is separate from msix_setup_msi_descs() below to handle dynamic
* allocations for MSI-X after initial enablement.
*
* Ideally the whole MSI-X setup would work that way, but there is no way to
* support this for the legacy arch_setup_msi_irqs() mechanism and for the
* fake irq domains like the x86 XEN one. Sigh...
*
* The descriptor is zeroed and only @desc::msi_index and @desc::affinity
* are set. When called from msix_setup_msi_descs() then the is_virtual
* attribute is initialized as well.
*
* Fill in the rest.
*/
void msix_prepare_msi_desc(struct pci_dev *dev, struct msi_desc *desc)
{
desc->nvec_used = 1;
desc->pci.msi_attrib.is_msix = 1;
desc->pci.msi_attrib.is_64 = 1;
desc->pci.msi_attrib.default_irq = dev->irq;
desc->pci.mask_base = dev->msix_base;
desc->pci.msi_attrib.can_mask = !pci_msi_ignore_mask &&
!desc->pci.msi_attrib.is_virtual;
if (desc->pci.msi_attrib.can_mask) {
void __iomem *addr = pci_msix_desc_addr(desc);
desc->pci.msix_ctrl = readl(addr + PCI_MSIX_ENTRY_VECTOR_CTRL);
}
}
static int msix_setup_msi_descs(struct pci_dev *dev, struct msix_entry *entries,
int nvec, struct irq_affinity_desc *masks)
{
int ret = 0, i, vec_count = pci_msix_vec_count(dev);
struct irq_affinity_desc *curmsk;
struct msi_desc desc;
memset(&desc, 0, sizeof(desc));
for (i = 0, curmsk = masks; i < nvec; i++, curmsk++) {
desc.msi_index = entries ? entries[i].entry : i;
desc.affinity = masks ? curmsk : NULL;
desc.pci.msi_attrib.is_virtual = desc.msi_index >= vec_count;
msix_prepare_msi_desc(dev, &desc);
ret = msi_insert_msi_desc(&dev->dev, &desc);
if (ret)
break;
}
return ret;
}
static void msix_update_entries(struct pci_dev *dev, struct msix_entry *entries)
{
struct msi_desc *desc;
if (entries) {
msi_for_each_desc(desc, &dev->dev, MSI_DESC_ALL) {
entries->vector = desc->irq;
entries++;
}
}
}
static void msix_mask_all(void __iomem *base, int tsize)
{
u32 ctrl = PCI_MSIX_ENTRY_CTRL_MASKBIT;
int i;
if (pci_msi_ignore_mask)
return;
for (i = 0; i < tsize; i++, base += PCI_MSIX_ENTRY_SIZE)
writel(ctrl, base + PCI_MSIX_ENTRY_VECTOR_CTRL);
}
static int msix_setup_interrupts(struct pci_dev *dev, struct msix_entry *entries,
int nvec, struct irq_affinity *affd)
{
struct irq_affinity_desc *masks = NULL;
int ret;
if (affd)
masks = irq_create_affinity_masks(nvec, affd);
msi_lock_descs(&dev->dev);
ret = msix_setup_msi_descs(dev, entries, nvec, masks);
if (ret)
goto out_free;
ret = pci_msi_setup_msi_irqs(dev, nvec, PCI_CAP_ID_MSIX);
if (ret)
goto out_free;
/* Check if all MSI entries honor device restrictions */
ret = msi_verify_entries(dev);
if (ret)
goto out_free;
msix_update_entries(dev, entries);
goto out_unlock;
out_free:
pci_free_msi_irqs(dev);
out_unlock:
msi_unlock_descs(&dev->dev);
kfree(masks);
return ret;
}
/**
* msix_capability_init - configure device's MSI-X capability
* @dev: pointer to the pci_dev data structure of MSI-X device function
* @entries: pointer to an array of struct msix_entry entries
* @nvec: number of @entries
* @affd: Optional pointer to enable automatic affinity assignment
*
* Setup the MSI-X capability structure of device function with a
* single MSI-X IRQ. A return of zero indicates the successful setup of
* requested MSI-X entries with allocated IRQs or non-zero for otherwise.
**/
static int msix_capability_init(struct pci_dev *dev, struct msix_entry *entries,
int nvec, struct irq_affinity *affd)
{
int ret, tsize;
u16 control;
/*
* Some devices require MSI-X to be enabled before the MSI-X
* registers can be accessed. Mask all the vectors to prevent
* interrupts coming in before they're fully set up.
*/
pci_msix_clear_and_set_ctrl(dev, 0, PCI_MSIX_FLAGS_MASKALL |
PCI_MSIX_FLAGS_ENABLE);
/* Mark it enabled so setup functions can query it */
dev->msix_enabled = 1;
pci_read_config_word(dev, dev->msix_cap + PCI_MSIX_FLAGS, &control);
/* Request & Map MSI-X table region */
tsize = msix_table_size(control);
dev->msix_base = msix_map_region(dev, tsize);
if (!dev->msix_base) {
ret = -ENOMEM;
goto out_disable;
}
ret = msix_setup_interrupts(dev, entries, nvec, affd);
if (ret)
goto out_disable;
/* Disable INTX */
pci_intx_for_msi(dev, 0);
/*
* Ensure that all table entries are masked to prevent
* stale entries from firing in a crash kernel.
*
* Done late to deal with a broken Marvell NVME device
* which takes the MSI-X mask bits into account even
* when MSI-X is disabled, which prevents MSI delivery.
*/
msix_mask_all(dev->msix_base, tsize);
pci_msix_clear_and_set_ctrl(dev, PCI_MSIX_FLAGS_MASKALL, 0);
pcibios_free_irq(dev);
return 0;
out_disable:
dev->msix_enabled = 0;
pci_msix_clear_and_set_ctrl(dev, PCI_MSIX_FLAGS_MASKALL | PCI_MSIX_FLAGS_ENABLE, 0);
return ret;
}
static bool pci_msix_validate_entries(struct pci_dev *dev, struct msix_entry *entries,
int nvec, int hwsize)
{
bool nogap;
int i, j;
if (!entries)
return true;
nogap = pci_msi_domain_supports(dev, MSI_FLAG_MSIX_CONTIGUOUS, DENY_LEGACY);
for (i = 0; i < nvec; i++) {
/* Entry within hardware limit? */
if (entries[i].entry >= hwsize)
return false;
/* Check for duplicate entries */
for (j = i + 1; j < nvec; j++) {
if (entries[i].entry == entries[j].entry)
return false;
}
/* Check for unsupported gaps */
if (nogap && entries[i].entry != i)
return false;
}
return true;
}
int __pci_enable_msix_range(struct pci_dev *dev, struct msix_entry *entries, int minvec,
int maxvec, struct irq_affinity *affd, int flags)
{
int hwsize, rc, nvec = maxvec;
if (maxvec < minvec)
return -ERANGE;
if (dev->msi_enabled) {
pci_info(dev, "can't enable MSI-X (MSI already enabled)\n");
return -EINVAL;
}
if (WARN_ON_ONCE(dev->msix_enabled))
return -EINVAL;
/* Check MSI-X early on irq domain enabled architectures */
if (!pci_msi_domain_supports(dev, MSI_FLAG_PCI_MSIX, ALLOW_LEGACY))
return -ENOTSUPP;
if (!pci_msi_supported(dev, nvec) || dev->current_state != PCI_D0)
return -EINVAL;
hwsize = pci_msix_vec_count(dev);
if (hwsize < 0)
return hwsize;
if (!pci_msix_validate_entries(dev, entries, nvec, hwsize))
return -EINVAL;
if (hwsize < nvec) {
/* Keep the IRQ virtual hackery working */
if (flags & PCI_IRQ_VIRTUAL)
hwsize = nvec;
else
nvec = hwsize;
}
if (nvec < minvec)
return -ENOSPC;
rc = pci_setup_msi_context(dev);
if (rc)
return rc;
if (!pci_setup_msix_device_domain(dev, hwsize))
return -ENODEV;
for (;;) {
if (affd) {
nvec = irq_calc_affinity_vectors(minvec, nvec, affd);
if (nvec < minvec)
return -ENOSPC;
}
rc = msix_capability_init(dev, entries, nvec, affd);
if (rc == 0)
return nvec;
if (rc < 0)
return rc;
if (rc < minvec)
return -ENOSPC;
nvec = rc;
}
}
void __pci_restore_msix_state(struct pci_dev *dev)
{
struct msi_desc *entry;
bool write_msg;
if (!dev->msix_enabled)
return;
/* route the table */
pci_intx_for_msi(dev, 0);
pci_msix_clear_and_set_ctrl(dev, 0,
PCI_MSIX_FLAGS_ENABLE | PCI_MSIX_FLAGS_MASKALL);
write_msg = arch_restore_msi_irqs(dev);
msi_lock_descs(&dev->dev);
msi_for_each_desc(entry, &dev->dev, MSI_DESC_ALL) {
if (write_msg)
__pci_write_msi_msg(entry, &entry->msg);
pci_msix_write_vector_ctrl(entry, entry->pci.msix_ctrl);
}
msi_unlock_descs(&dev->dev);
pci_msix_clear_and_set_ctrl(dev, PCI_MSIX_FLAGS_MASKALL, 0);
}
void pci_msix_shutdown(struct pci_dev *dev)
{
struct msi_desc *desc;
if (!pci_msi_enable || !dev || !dev->msix_enabled)
return;
if (pci_dev_is_disconnected(dev)) {
dev->msix_enabled = 0;
return;
}
/* Return the device with MSI-X masked as initial states */
msi_for_each_desc(desc, &dev->dev, MSI_DESC_ALL)
pci_msix_mask(desc);
pci_msix_clear_and_set_ctrl(dev, PCI_MSIX_FLAGS_ENABLE, 0);
pci_intx_for_msi(dev, 1);
dev->msix_enabled = 0;
pcibios_alloc_irq(dev);
}
/* Common interfaces */
void pci_free_msi_irqs(struct pci_dev *dev)
{
pci_msi_teardown_msi_irqs(dev);
if (dev->msix_base) {
iounmap(dev->msix_base);
dev->msix_base = NULL;
}
}
/* Misc. infrastructure */
struct pci_dev *msi_desc_to_pci_dev(struct msi_desc *desc)
{
return to_pci_dev(desc->dev);
}
EXPORT_SYMBOL(msi_desc_to_pci_dev);
void pci_no_msi(void)
{
pci_msi_enable = 0;
}