8781fb7e97
The comment describes the old explicit IPI-based flush logic, which is long gone. Signed-off-by: Andy Lutomirski <luto@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/55e44997e56086528140c5180f8337dc53fb7ffc.1498751203.git.luto@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
388 lines
10 KiB
C
388 lines
10 KiB
C
#include <linux/init.h>
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/export.h>
|
|
#include <linux/cpu.h>
|
|
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/cache.h>
|
|
#include <asm/apic.h>
|
|
#include <asm/uv/uv.h>
|
|
#include <linux/debugfs.h>
|
|
|
|
/*
|
|
* TLB flushing, formerly SMP-only
|
|
* c/o Linus Torvalds.
|
|
*
|
|
* These mean you can really definitely utterly forget about
|
|
* writing to user space from interrupts. (Its not allowed anyway).
|
|
*
|
|
* Optimizations Manfred Spraul <manfred@colorfullife.com>
|
|
*
|
|
* More scalable flush, from Andi Kleen
|
|
*
|
|
* Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
|
|
*/
|
|
|
|
void leave_mm(int cpu)
|
|
{
|
|
struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
|
|
|
|
/*
|
|
* It's plausible that we're in lazy TLB mode while our mm is init_mm.
|
|
* If so, our callers still expect us to flush the TLB, but there
|
|
* aren't any user TLB entries in init_mm to worry about.
|
|
*
|
|
* This needs to happen before any other sanity checks due to
|
|
* intel_idle's shenanigans.
|
|
*/
|
|
if (loaded_mm == &init_mm)
|
|
return;
|
|
|
|
if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK)
|
|
BUG();
|
|
|
|
switch_mm(NULL, &init_mm, NULL);
|
|
}
|
|
EXPORT_SYMBOL_GPL(leave_mm);
|
|
|
|
void switch_mm(struct mm_struct *prev, struct mm_struct *next,
|
|
struct task_struct *tsk)
|
|
{
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
switch_mm_irqs_off(prev, next, tsk);
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
|
|
struct task_struct *tsk)
|
|
{
|
|
unsigned cpu = smp_processor_id();
|
|
struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
|
|
|
|
/*
|
|
* NB: The scheduler will call us with prev == next when
|
|
* switching from lazy TLB mode to normal mode if active_mm
|
|
* isn't changing. When this happens, there is no guarantee
|
|
* that CR3 (and hence cpu_tlbstate.loaded_mm) matches next.
|
|
*
|
|
* NB: leave_mm() calls us with prev == NULL and tsk == NULL.
|
|
*/
|
|
|
|
this_cpu_write(cpu_tlbstate.state, TLBSTATE_OK);
|
|
|
|
if (real_prev == next) {
|
|
/*
|
|
* There's nothing to do: we always keep the per-mm control
|
|
* regs in sync with cpu_tlbstate.loaded_mm. Just
|
|
* sanity-check mm_cpumask.
|
|
*/
|
|
if (WARN_ON_ONCE(!cpumask_test_cpu(cpu, mm_cpumask(next))))
|
|
cpumask_set_cpu(cpu, mm_cpumask(next));
|
|
return;
|
|
}
|
|
|
|
if (IS_ENABLED(CONFIG_VMAP_STACK)) {
|
|
/*
|
|
* If our current stack is in vmalloc space and isn't
|
|
* mapped in the new pgd, we'll double-fault. Forcibly
|
|
* map it.
|
|
*/
|
|
unsigned int stack_pgd_index = pgd_index(current_stack_pointer());
|
|
|
|
pgd_t *pgd = next->pgd + stack_pgd_index;
|
|
|
|
if (unlikely(pgd_none(*pgd)))
|
|
set_pgd(pgd, init_mm.pgd[stack_pgd_index]);
|
|
}
|
|
|
|
this_cpu_write(cpu_tlbstate.loaded_mm, next);
|
|
|
|
WARN_ON_ONCE(cpumask_test_cpu(cpu, mm_cpumask(next)));
|
|
cpumask_set_cpu(cpu, mm_cpumask(next));
|
|
|
|
/*
|
|
* Re-load page tables.
|
|
*
|
|
* This logic has an ordering constraint:
|
|
*
|
|
* CPU 0: Write to a PTE for 'next'
|
|
* CPU 0: load bit 1 in mm_cpumask. if nonzero, send IPI.
|
|
* CPU 1: set bit 1 in next's mm_cpumask
|
|
* CPU 1: load from the PTE that CPU 0 writes (implicit)
|
|
*
|
|
* We need to prevent an outcome in which CPU 1 observes
|
|
* the new PTE value and CPU 0 observes bit 1 clear in
|
|
* mm_cpumask. (If that occurs, then the IPI will never
|
|
* be sent, and CPU 0's TLB will contain a stale entry.)
|
|
*
|
|
* The bad outcome can occur if either CPU's load is
|
|
* reordered before that CPU's store, so both CPUs must
|
|
* execute full barriers to prevent this from happening.
|
|
*
|
|
* Thus, switch_mm needs a full barrier between the
|
|
* store to mm_cpumask and any operation that could load
|
|
* from next->pgd. TLB fills are special and can happen
|
|
* due to instruction fetches or for no reason at all,
|
|
* and neither LOCK nor MFENCE orders them.
|
|
* Fortunately, load_cr3() is serializing and gives the
|
|
* ordering guarantee we need.
|
|
*/
|
|
load_cr3(next->pgd);
|
|
|
|
/*
|
|
* This gets called via leave_mm() in the idle path where RCU
|
|
* functions differently. Tracing normally uses RCU, so we have to
|
|
* call the tracepoint specially here.
|
|
*/
|
|
trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
|
|
|
|
/* Stop flush ipis for the previous mm */
|
|
WARN_ON_ONCE(!cpumask_test_cpu(cpu, mm_cpumask(real_prev)) &&
|
|
real_prev != &init_mm);
|
|
cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
|
|
|
|
/* Load per-mm CR4 and LDTR state */
|
|
load_mm_cr4(next);
|
|
switch_ldt(real_prev, next);
|
|
}
|
|
|
|
static void flush_tlb_func_common(const struct flush_tlb_info *f,
|
|
bool local, enum tlb_flush_reason reason)
|
|
{
|
|
/* This code cannot presently handle being reentered. */
|
|
VM_WARN_ON(!irqs_disabled());
|
|
|
|
if (this_cpu_read(cpu_tlbstate.state) != TLBSTATE_OK) {
|
|
leave_mm(smp_processor_id());
|
|
return;
|
|
}
|
|
|
|
if (f->end == TLB_FLUSH_ALL) {
|
|
local_flush_tlb();
|
|
if (local)
|
|
count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
|
|
trace_tlb_flush(reason, TLB_FLUSH_ALL);
|
|
} else {
|
|
unsigned long addr;
|
|
unsigned long nr_pages = (f->end - f->start) >> PAGE_SHIFT;
|
|
addr = f->start;
|
|
while (addr < f->end) {
|
|
__flush_tlb_single(addr);
|
|
addr += PAGE_SIZE;
|
|
}
|
|
if (local)
|
|
count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_pages);
|
|
trace_tlb_flush(reason, nr_pages);
|
|
}
|
|
}
|
|
|
|
static void flush_tlb_func_local(void *info, enum tlb_flush_reason reason)
|
|
{
|
|
const struct flush_tlb_info *f = info;
|
|
|
|
flush_tlb_func_common(f, true, reason);
|
|
}
|
|
|
|
static void flush_tlb_func_remote(void *info)
|
|
{
|
|
const struct flush_tlb_info *f = info;
|
|
|
|
inc_irq_stat(irq_tlb_count);
|
|
|
|
if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm))
|
|
return;
|
|
|
|
count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
|
|
flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN);
|
|
}
|
|
|
|
void native_flush_tlb_others(const struct cpumask *cpumask,
|
|
const struct flush_tlb_info *info)
|
|
{
|
|
count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
|
|
if (info->end == TLB_FLUSH_ALL)
|
|
trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
|
|
else
|
|
trace_tlb_flush(TLB_REMOTE_SEND_IPI,
|
|
(info->end - info->start) >> PAGE_SHIFT);
|
|
|
|
if (is_uv_system()) {
|
|
unsigned int cpu;
|
|
|
|
cpu = smp_processor_id();
|
|
cpumask = uv_flush_tlb_others(cpumask, info);
|
|
if (cpumask)
|
|
smp_call_function_many(cpumask, flush_tlb_func_remote,
|
|
(void *)info, 1);
|
|
return;
|
|
}
|
|
smp_call_function_many(cpumask, flush_tlb_func_remote,
|
|
(void *)info, 1);
|
|
}
|
|
|
|
/*
|
|
* See Documentation/x86/tlb.txt for details. We choose 33
|
|
* because it is large enough to cover the vast majority (at
|
|
* least 95%) of allocations, and is small enough that we are
|
|
* confident it will not cause too much overhead. Each single
|
|
* flush is about 100 ns, so this caps the maximum overhead at
|
|
* _about_ 3,000 ns.
|
|
*
|
|
* This is in units of pages.
|
|
*/
|
|
static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
|
|
|
|
void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
|
|
unsigned long end, unsigned long vmflag)
|
|
{
|
|
int cpu;
|
|
|
|
struct flush_tlb_info info = {
|
|
.mm = mm,
|
|
};
|
|
|
|
cpu = get_cpu();
|
|
|
|
/* Synchronize with switch_mm. */
|
|
smp_mb();
|
|
|
|
/* Should we flush just the requested range? */
|
|
if ((end != TLB_FLUSH_ALL) &&
|
|
!(vmflag & VM_HUGETLB) &&
|
|
((end - start) >> PAGE_SHIFT) <= tlb_single_page_flush_ceiling) {
|
|
info.start = start;
|
|
info.end = end;
|
|
} else {
|
|
info.start = 0UL;
|
|
info.end = TLB_FLUSH_ALL;
|
|
}
|
|
|
|
if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
|
|
VM_WARN_ON(irqs_disabled());
|
|
local_irq_disable();
|
|
flush_tlb_func_local(&info, TLB_LOCAL_MM_SHOOTDOWN);
|
|
local_irq_enable();
|
|
}
|
|
|
|
if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids)
|
|
flush_tlb_others(mm_cpumask(mm), &info);
|
|
put_cpu();
|
|
}
|
|
|
|
|
|
static void do_flush_tlb_all(void *info)
|
|
{
|
|
count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
|
|
__flush_tlb_all();
|
|
if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_LAZY)
|
|
leave_mm(smp_processor_id());
|
|
}
|
|
|
|
void flush_tlb_all(void)
|
|
{
|
|
count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
|
|
on_each_cpu(do_flush_tlb_all, NULL, 1);
|
|
}
|
|
|
|
static void do_kernel_range_flush(void *info)
|
|
{
|
|
struct flush_tlb_info *f = info;
|
|
unsigned long addr;
|
|
|
|
/* flush range by one by one 'invlpg' */
|
|
for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
|
|
__flush_tlb_single(addr);
|
|
}
|
|
|
|
void flush_tlb_kernel_range(unsigned long start, unsigned long end)
|
|
{
|
|
|
|
/* Balance as user space task's flush, a bit conservative */
|
|
if (end == TLB_FLUSH_ALL ||
|
|
(end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
|
|
on_each_cpu(do_flush_tlb_all, NULL, 1);
|
|
} else {
|
|
struct flush_tlb_info info;
|
|
info.start = start;
|
|
info.end = end;
|
|
on_each_cpu(do_kernel_range_flush, &info, 1);
|
|
}
|
|
}
|
|
|
|
void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
|
|
{
|
|
struct flush_tlb_info info = {
|
|
.mm = NULL,
|
|
.start = 0UL,
|
|
.end = TLB_FLUSH_ALL,
|
|
};
|
|
|
|
int cpu = get_cpu();
|
|
|
|
if (cpumask_test_cpu(cpu, &batch->cpumask)) {
|
|
VM_WARN_ON(irqs_disabled());
|
|
local_irq_disable();
|
|
flush_tlb_func_local(&info, TLB_LOCAL_SHOOTDOWN);
|
|
local_irq_enable();
|
|
}
|
|
|
|
if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids)
|
|
flush_tlb_others(&batch->cpumask, &info);
|
|
cpumask_clear(&batch->cpumask);
|
|
|
|
put_cpu();
|
|
}
|
|
|
|
static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
char buf[32];
|
|
unsigned int len;
|
|
|
|
len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
|
|
return simple_read_from_buffer(user_buf, count, ppos, buf, len);
|
|
}
|
|
|
|
static ssize_t tlbflush_write_file(struct file *file,
|
|
const char __user *user_buf, size_t count, loff_t *ppos)
|
|
{
|
|
char buf[32];
|
|
ssize_t len;
|
|
int ceiling;
|
|
|
|
len = min(count, sizeof(buf) - 1);
|
|
if (copy_from_user(buf, user_buf, len))
|
|
return -EFAULT;
|
|
|
|
buf[len] = '\0';
|
|
if (kstrtoint(buf, 0, &ceiling))
|
|
return -EINVAL;
|
|
|
|
if (ceiling < 0)
|
|
return -EINVAL;
|
|
|
|
tlb_single_page_flush_ceiling = ceiling;
|
|
return count;
|
|
}
|
|
|
|
static const struct file_operations fops_tlbflush = {
|
|
.read = tlbflush_read_file,
|
|
.write = tlbflush_write_file,
|
|
.llseek = default_llseek,
|
|
};
|
|
|
|
static int __init create_tlb_single_page_flush_ceiling(void)
|
|
{
|
|
debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
|
|
arch_debugfs_dir, NULL, &fops_tlbflush);
|
|
return 0;
|
|
}
|
|
late_initcall(create_tlb_single_page_flush_ceiling);
|