Dimitris Michailidis 900a659687 cxgb4: dynamically determine flash size and FW image location
Handle the larger flash memories on newer boards:

- get the size and number of sectors by probing the flash
- writes and erases can take longer, adjust the timeouts for these operations
- the FW image can be at different locations depending on flash size,
  find its location dynamically as well.

Signed-off-by: Dimitris Michailidis <dm@chelsio.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2010-06-18 22:08:34 -07:00

3170 lines
97 KiB
C

/*
* This file is part of the Chelsio T4 Ethernet driver for Linux.
*
* Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/init.h>
#include <linux/delay.h>
#include "cxgb4.h"
#include "t4_regs.h"
#include "t4fw_api.h"
/**
* t4_wait_op_done_val - wait until an operation is completed
* @adapter: the adapter performing the operation
* @reg: the register to check for completion
* @mask: a single-bit field within @reg that indicates completion
* @polarity: the value of the field when the operation is completed
* @attempts: number of check iterations
* @delay: delay in usecs between iterations
* @valp: where to store the value of the register at completion time
*
* Wait until an operation is completed by checking a bit in a register
* up to @attempts times. If @valp is not NULL the value of the register
* at the time it indicated completion is stored there. Returns 0 if the
* operation completes and -EAGAIN otherwise.
*/
static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
int polarity, int attempts, int delay, u32 *valp)
{
while (1) {
u32 val = t4_read_reg(adapter, reg);
if (!!(val & mask) == polarity) {
if (valp)
*valp = val;
return 0;
}
if (--attempts == 0)
return -EAGAIN;
if (delay)
udelay(delay);
}
}
static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
int polarity, int attempts, int delay)
{
return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
delay, NULL);
}
/**
* t4_set_reg_field - set a register field to a value
* @adapter: the adapter to program
* @addr: the register address
* @mask: specifies the portion of the register to modify
* @val: the new value for the register field
*
* Sets a register field specified by the supplied mask to the
* given value.
*/
void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
u32 val)
{
u32 v = t4_read_reg(adapter, addr) & ~mask;
t4_write_reg(adapter, addr, v | val);
(void) t4_read_reg(adapter, addr); /* flush */
}
/**
* t4_read_indirect - read indirectly addressed registers
* @adap: the adapter
* @addr_reg: register holding the indirect address
* @data_reg: register holding the value of the indirect register
* @vals: where the read register values are stored
* @nregs: how many indirect registers to read
* @start_idx: index of first indirect register to read
*
* Reads registers that are accessed indirectly through an address/data
* register pair.
*/
static void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
unsigned int data_reg, u32 *vals,
unsigned int nregs, unsigned int start_idx)
{
while (nregs--) {
t4_write_reg(adap, addr_reg, start_idx);
*vals++ = t4_read_reg(adap, data_reg);
start_idx++;
}
}
#if 0
/**
* t4_write_indirect - write indirectly addressed registers
* @adap: the adapter
* @addr_reg: register holding the indirect addresses
* @data_reg: register holding the value for the indirect registers
* @vals: values to write
* @nregs: how many indirect registers to write
* @start_idx: address of first indirect register to write
*
* Writes a sequential block of registers that are accessed indirectly
* through an address/data register pair.
*/
static void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
unsigned int data_reg, const u32 *vals,
unsigned int nregs, unsigned int start_idx)
{
while (nregs--) {
t4_write_reg(adap, addr_reg, start_idx++);
t4_write_reg(adap, data_reg, *vals++);
}
}
#endif
/*
* Get the reply to a mailbox command and store it in @rpl in big-endian order.
*/
static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
u32 mbox_addr)
{
for ( ; nflit; nflit--, mbox_addr += 8)
*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
}
/*
* Handle a FW assertion reported in a mailbox.
*/
static void fw_asrt(struct adapter *adap, u32 mbox_addr)
{
struct fw_debug_cmd asrt;
get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
dev_alert(adap->pdev_dev,
"FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
asrt.u.assert.filename_0_7, ntohl(asrt.u.assert.line),
ntohl(asrt.u.assert.x), ntohl(asrt.u.assert.y));
}
static void dump_mbox(struct adapter *adap, int mbox, u32 data_reg)
{
dev_err(adap->pdev_dev,
"mbox %d: %llx %llx %llx %llx %llx %llx %llx %llx\n", mbox,
(unsigned long long)t4_read_reg64(adap, data_reg),
(unsigned long long)t4_read_reg64(adap, data_reg + 8),
(unsigned long long)t4_read_reg64(adap, data_reg + 16),
(unsigned long long)t4_read_reg64(adap, data_reg + 24),
(unsigned long long)t4_read_reg64(adap, data_reg + 32),
(unsigned long long)t4_read_reg64(adap, data_reg + 40),
(unsigned long long)t4_read_reg64(adap, data_reg + 48),
(unsigned long long)t4_read_reg64(adap, data_reg + 56));
}
/**
* t4_wr_mbox_meat - send a command to FW through the given mailbox
* @adap: the adapter
* @mbox: index of the mailbox to use
* @cmd: the command to write
* @size: command length in bytes
* @rpl: where to optionally store the reply
* @sleep_ok: if true we may sleep while awaiting command completion
*
* Sends the given command to FW through the selected mailbox and waits
* for the FW to execute the command. If @rpl is not %NULL it is used to
* store the FW's reply to the command. The command and its optional
* reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms
* to respond. @sleep_ok determines whether we may sleep while awaiting
* the response. If sleeping is allowed we use progressive backoff
* otherwise we spin.
*
* The return value is 0 on success or a negative errno on failure. A
* failure can happen either because we are not able to execute the
* command or FW executes it but signals an error. In the latter case
* the return value is the error code indicated by FW (negated).
*/
int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
void *rpl, bool sleep_ok)
{
static int delay[] = {
1, 1, 3, 5, 10, 10, 20, 50, 100, 200
};
u32 v;
u64 res;
int i, ms, delay_idx;
const __be64 *p = cmd;
u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA);
u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL);
if ((size & 15) || size > MBOX_LEN)
return -EINVAL;
v = MBOWNER_GET(t4_read_reg(adap, ctl_reg));
for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
v = MBOWNER_GET(t4_read_reg(adap, ctl_reg));
if (v != MBOX_OWNER_DRV)
return v ? -EBUSY : -ETIMEDOUT;
for (i = 0; i < size; i += 8)
t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
t4_write_reg(adap, ctl_reg, MBMSGVALID | MBOWNER(MBOX_OWNER_FW));
t4_read_reg(adap, ctl_reg); /* flush write */
delay_idx = 0;
ms = delay[0];
for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
if (sleep_ok) {
ms = delay[delay_idx]; /* last element may repeat */
if (delay_idx < ARRAY_SIZE(delay) - 1)
delay_idx++;
msleep(ms);
} else
mdelay(ms);
v = t4_read_reg(adap, ctl_reg);
if (MBOWNER_GET(v) == MBOX_OWNER_DRV) {
if (!(v & MBMSGVALID)) {
t4_write_reg(adap, ctl_reg, 0);
continue;
}
res = t4_read_reg64(adap, data_reg);
if (FW_CMD_OP_GET(res >> 32) == FW_DEBUG_CMD) {
fw_asrt(adap, data_reg);
res = FW_CMD_RETVAL(EIO);
} else if (rpl)
get_mbox_rpl(adap, rpl, size / 8, data_reg);
if (FW_CMD_RETVAL_GET((int)res))
dump_mbox(adap, mbox, data_reg);
t4_write_reg(adap, ctl_reg, 0);
return -FW_CMD_RETVAL_GET((int)res);
}
}
dump_mbox(adap, mbox, data_reg);
dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
*(const u8 *)cmd, mbox);
return -ETIMEDOUT;
}
/**
* t4_mc_read - read from MC through backdoor accesses
* @adap: the adapter
* @addr: address of first byte requested
* @data: 64 bytes of data containing the requested address
* @ecc: where to store the corresponding 64-bit ECC word
*
* Read 64 bytes of data from MC starting at a 64-byte-aligned address
* that covers the requested address @addr. If @parity is not %NULL it
* is assigned the 64-bit ECC word for the read data.
*/
int t4_mc_read(struct adapter *adap, u32 addr, __be32 *data, u64 *ecc)
{
int i;
if (t4_read_reg(adap, MC_BIST_CMD) & START_BIST)
return -EBUSY;
t4_write_reg(adap, MC_BIST_CMD_ADDR, addr & ~0x3fU);
t4_write_reg(adap, MC_BIST_CMD_LEN, 64);
t4_write_reg(adap, MC_BIST_DATA_PATTERN, 0xc);
t4_write_reg(adap, MC_BIST_CMD, BIST_OPCODE(1) | START_BIST |
BIST_CMD_GAP(1));
i = t4_wait_op_done(adap, MC_BIST_CMD, START_BIST, 0, 10, 1);
if (i)
return i;
#define MC_DATA(i) MC_BIST_STATUS_REG(MC_BIST_STATUS_RDATA, i)
for (i = 15; i >= 0; i--)
*data++ = htonl(t4_read_reg(adap, MC_DATA(i)));
if (ecc)
*ecc = t4_read_reg64(adap, MC_DATA(16));
#undef MC_DATA
return 0;
}
/**
* t4_edc_read - read from EDC through backdoor accesses
* @adap: the adapter
* @idx: which EDC to access
* @addr: address of first byte requested
* @data: 64 bytes of data containing the requested address
* @ecc: where to store the corresponding 64-bit ECC word
*
* Read 64 bytes of data from EDC starting at a 64-byte-aligned address
* that covers the requested address @addr. If @parity is not %NULL it
* is assigned the 64-bit ECC word for the read data.
*/
int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
{
int i;
idx *= EDC_STRIDE;
if (t4_read_reg(adap, EDC_BIST_CMD + idx) & START_BIST)
return -EBUSY;
t4_write_reg(adap, EDC_BIST_CMD_ADDR + idx, addr & ~0x3fU);
t4_write_reg(adap, EDC_BIST_CMD_LEN + idx, 64);
t4_write_reg(adap, EDC_BIST_DATA_PATTERN + idx, 0xc);
t4_write_reg(adap, EDC_BIST_CMD + idx,
BIST_OPCODE(1) | BIST_CMD_GAP(1) | START_BIST);
i = t4_wait_op_done(adap, EDC_BIST_CMD + idx, START_BIST, 0, 10, 1);
if (i)
return i;
#define EDC_DATA(i) (EDC_BIST_STATUS_REG(EDC_BIST_STATUS_RDATA, i) + idx)
for (i = 15; i >= 0; i--)
*data++ = htonl(t4_read_reg(adap, EDC_DATA(i)));
if (ecc)
*ecc = t4_read_reg64(adap, EDC_DATA(16));
#undef EDC_DATA
return 0;
}
/*
* Partial EEPROM Vital Product Data structure. Includes only the ID and
* VPD-R header.
*/
struct t4_vpd_hdr {
u8 id_tag;
u8 id_len[2];
u8 id_data[ID_LEN];
u8 vpdr_tag;
u8 vpdr_len[2];
};
#define EEPROM_STAT_ADDR 0x7bfc
#define VPD_BASE 0
#define VPD_LEN 512
/**
* t4_seeprom_wp - enable/disable EEPROM write protection
* @adapter: the adapter
* @enable: whether to enable or disable write protection
*
* Enables or disables write protection on the serial EEPROM.
*/
int t4_seeprom_wp(struct adapter *adapter, bool enable)
{
unsigned int v = enable ? 0xc : 0;
int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
return ret < 0 ? ret : 0;
}
/**
* get_vpd_params - read VPD parameters from VPD EEPROM
* @adapter: adapter to read
* @p: where to store the parameters
*
* Reads card parameters stored in VPD EEPROM.
*/
static int get_vpd_params(struct adapter *adapter, struct vpd_params *p)
{
int i, ret;
int ec, sn, v2;
u8 vpd[VPD_LEN], csum;
unsigned int vpdr_len;
const struct t4_vpd_hdr *v;
ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(vpd), vpd);
if (ret < 0)
return ret;
v = (const struct t4_vpd_hdr *)vpd;
vpdr_len = pci_vpd_lrdt_size(&v->vpdr_tag);
if (vpdr_len + sizeof(struct t4_vpd_hdr) > VPD_LEN) {
dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
return -EINVAL;
}
#define FIND_VPD_KW(var, name) do { \
var = pci_vpd_find_info_keyword(&v->id_tag, sizeof(struct t4_vpd_hdr), \
vpdr_len, name); \
if (var < 0) { \
dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
return -EINVAL; \
} \
var += PCI_VPD_INFO_FLD_HDR_SIZE; \
} while (0)
FIND_VPD_KW(i, "RV");
for (csum = 0; i >= 0; i--)
csum += vpd[i];
if (csum) {
dev_err(adapter->pdev_dev,
"corrupted VPD EEPROM, actual csum %u\n", csum);
return -EINVAL;
}
FIND_VPD_KW(ec, "EC");
FIND_VPD_KW(sn, "SN");
FIND_VPD_KW(v2, "V2");
#undef FIND_VPD_KW
p->cclk = simple_strtoul(vpd + v2, NULL, 10);
memcpy(p->id, v->id_data, ID_LEN);
strim(p->id);
memcpy(p->ec, vpd + ec, EC_LEN);
strim(p->ec);
i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
strim(p->sn);
return 0;
}
/* serial flash and firmware constants */
enum {
SF_ATTEMPTS = 10, /* max retries for SF operations */
/* flash command opcodes */
SF_PROG_PAGE = 2, /* program page */
SF_WR_DISABLE = 4, /* disable writes */
SF_RD_STATUS = 5, /* read status register */
SF_WR_ENABLE = 6, /* enable writes */
SF_RD_DATA_FAST = 0xb, /* read flash */
SF_RD_ID = 0x9f, /* read ID */
SF_ERASE_SECTOR = 0xd8, /* erase sector */
FW_MAX_SIZE = 512 * 1024,
};
/**
* sf1_read - read data from the serial flash
* @adapter: the adapter
* @byte_cnt: number of bytes to read
* @cont: whether another operation will be chained
* @lock: whether to lock SF for PL access only
* @valp: where to store the read data
*
* Reads up to 4 bytes of data from the serial flash. The location of
* the read needs to be specified prior to calling this by issuing the
* appropriate commands to the serial flash.
*/
static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
int lock, u32 *valp)
{
int ret;
if (!byte_cnt || byte_cnt > 4)
return -EINVAL;
if (t4_read_reg(adapter, SF_OP) & BUSY)
return -EBUSY;
cont = cont ? SF_CONT : 0;
lock = lock ? SF_LOCK : 0;
t4_write_reg(adapter, SF_OP, lock | cont | BYTECNT(byte_cnt - 1));
ret = t4_wait_op_done(adapter, SF_OP, BUSY, 0, SF_ATTEMPTS, 5);
if (!ret)
*valp = t4_read_reg(adapter, SF_DATA);
return ret;
}
/**
* sf1_write - write data to the serial flash
* @adapter: the adapter
* @byte_cnt: number of bytes to write
* @cont: whether another operation will be chained
* @lock: whether to lock SF for PL access only
* @val: value to write
*
* Writes up to 4 bytes of data to the serial flash. The location of
* the write needs to be specified prior to calling this by issuing the
* appropriate commands to the serial flash.
*/
static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
int lock, u32 val)
{
if (!byte_cnt || byte_cnt > 4)
return -EINVAL;
if (t4_read_reg(adapter, SF_OP) & BUSY)
return -EBUSY;
cont = cont ? SF_CONT : 0;
lock = lock ? SF_LOCK : 0;
t4_write_reg(adapter, SF_DATA, val);
t4_write_reg(adapter, SF_OP, lock |
cont | BYTECNT(byte_cnt - 1) | OP_WR);
return t4_wait_op_done(adapter, SF_OP, BUSY, 0, SF_ATTEMPTS, 5);
}
/**
* flash_wait_op - wait for a flash operation to complete
* @adapter: the adapter
* @attempts: max number of polls of the status register
* @delay: delay between polls in ms
*
* Wait for a flash operation to complete by polling the status register.
*/
static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
{
int ret;
u32 status;
while (1) {
if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
(ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
return ret;
if (!(status & 1))
return 0;
if (--attempts == 0)
return -EAGAIN;
if (delay)
msleep(delay);
}
}
/**
* t4_read_flash - read words from serial flash
* @adapter: the adapter
* @addr: the start address for the read
* @nwords: how many 32-bit words to read
* @data: where to store the read data
* @byte_oriented: whether to store data as bytes or as words
*
* Read the specified number of 32-bit words from the serial flash.
* If @byte_oriented is set the read data is stored as a byte array
* (i.e., big-endian), otherwise as 32-bit words in the platform's
* natural endianess.
*/
static int t4_read_flash(struct adapter *adapter, unsigned int addr,
unsigned int nwords, u32 *data, int byte_oriented)
{
int ret;
if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
return -EINVAL;
addr = swab32(addr) | SF_RD_DATA_FAST;
if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
(ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
return ret;
for ( ; nwords; nwords--, data++) {
ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
if (nwords == 1)
t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
if (ret)
return ret;
if (byte_oriented)
*data = htonl(*data);
}
return 0;
}
/**
* t4_write_flash - write up to a page of data to the serial flash
* @adapter: the adapter
* @addr: the start address to write
* @n: length of data to write in bytes
* @data: the data to write
*
* Writes up to a page of data (256 bytes) to the serial flash starting
* at the given address. All the data must be written to the same page.
*/
static int t4_write_flash(struct adapter *adapter, unsigned int addr,
unsigned int n, const u8 *data)
{
int ret;
u32 buf[64];
unsigned int i, c, left, val, offset = addr & 0xff;
if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
return -EINVAL;
val = swab32(addr) | SF_PROG_PAGE;
if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
(ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
goto unlock;
for (left = n; left; left -= c) {
c = min(left, 4U);
for (val = 0, i = 0; i < c; ++i)
val = (val << 8) + *data++;
ret = sf1_write(adapter, c, c != left, 1, val);
if (ret)
goto unlock;
}
ret = flash_wait_op(adapter, 8, 1);
if (ret)
goto unlock;
t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
/* Read the page to verify the write succeeded */
ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
if (ret)
return ret;
if (memcmp(data - n, (u8 *)buf + offset, n)) {
dev_err(adapter->pdev_dev,
"failed to correctly write the flash page at %#x\n",
addr);
return -EIO;
}
return 0;
unlock:
t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
return ret;
}
/**
* get_fw_version - read the firmware version
* @adapter: the adapter
* @vers: where to place the version
*
* Reads the FW version from flash.
*/
static int get_fw_version(struct adapter *adapter, u32 *vers)
{
return t4_read_flash(adapter, adapter->params.sf_fw_start +
offsetof(struct fw_hdr, fw_ver), 1, vers, 0);
}
/**
* get_tp_version - read the TP microcode version
* @adapter: the adapter
* @vers: where to place the version
*
* Reads the TP microcode version from flash.
*/
static int get_tp_version(struct adapter *adapter, u32 *vers)
{
return t4_read_flash(adapter, adapter->params.sf_fw_start +
offsetof(struct fw_hdr, tp_microcode_ver),
1, vers, 0);
}
/**
* t4_check_fw_version - check if the FW is compatible with this driver
* @adapter: the adapter
*
* Checks if an adapter's FW is compatible with the driver. Returns 0
* if there's exact match, a negative error if the version could not be
* read or there's a major version mismatch, and a positive value if the
* expected major version is found but there's a minor version mismatch.
*/
int t4_check_fw_version(struct adapter *adapter)
{
u32 api_vers[2];
int ret, major, minor, micro;
ret = get_fw_version(adapter, &adapter->params.fw_vers);
if (!ret)
ret = get_tp_version(adapter, &adapter->params.tp_vers);
if (!ret)
ret = t4_read_flash(adapter, adapter->params.sf_fw_start +
offsetof(struct fw_hdr, intfver_nic),
2, api_vers, 1);
if (ret)
return ret;
major = FW_HDR_FW_VER_MAJOR_GET(adapter->params.fw_vers);
minor = FW_HDR_FW_VER_MINOR_GET(adapter->params.fw_vers);
micro = FW_HDR_FW_VER_MICRO_GET(adapter->params.fw_vers);
memcpy(adapter->params.api_vers, api_vers,
sizeof(adapter->params.api_vers));
if (major != FW_VERSION_MAJOR) { /* major mismatch - fail */
dev_err(adapter->pdev_dev,
"card FW has major version %u, driver wants %u\n",
major, FW_VERSION_MAJOR);
return -EINVAL;
}
if (minor == FW_VERSION_MINOR && micro == FW_VERSION_MICRO)
return 0; /* perfect match */
/* Minor/micro version mismatch. Report it but often it's OK. */
return 1;
}
/**
* t4_flash_erase_sectors - erase a range of flash sectors
* @adapter: the adapter
* @start: the first sector to erase
* @end: the last sector to erase
*
* Erases the sectors in the given inclusive range.
*/
static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
{
int ret = 0;
while (start <= end) {
if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
(ret = sf1_write(adapter, 4, 0, 1,
SF_ERASE_SECTOR | (start << 8))) != 0 ||
(ret = flash_wait_op(adapter, 14, 500)) != 0) {
dev_err(adapter->pdev_dev,
"erase of flash sector %d failed, error %d\n",
start, ret);
break;
}
start++;
}
t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
return ret;
}
/**
* t4_load_fw - download firmware
* @adap: the adapter
* @fw_data: the firmware image to write
* @size: image size
*
* Write the supplied firmware image to the card's serial flash.
*/
int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
{
u32 csum;
int ret, addr;
unsigned int i;
u8 first_page[SF_PAGE_SIZE];
const u32 *p = (const u32 *)fw_data;
const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
unsigned int fw_img_start = adap->params.sf_fw_start;
unsigned int fw_start_sec = fw_img_start / sf_sec_size;
if (!size) {
dev_err(adap->pdev_dev, "FW image has no data\n");
return -EINVAL;
}
if (size & 511) {
dev_err(adap->pdev_dev,
"FW image size not multiple of 512 bytes\n");
return -EINVAL;
}
if (ntohs(hdr->len512) * 512 != size) {
dev_err(adap->pdev_dev,
"FW image size differs from size in FW header\n");
return -EINVAL;
}
if (size > FW_MAX_SIZE) {
dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
FW_MAX_SIZE);
return -EFBIG;
}
for (csum = 0, i = 0; i < size / sizeof(csum); i++)
csum += ntohl(p[i]);
if (csum != 0xffffffff) {
dev_err(adap->pdev_dev,
"corrupted firmware image, checksum %#x\n", csum);
return -EINVAL;
}
i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */
ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
if (ret)
goto out;
/*
* We write the correct version at the end so the driver can see a bad
* version if the FW write fails. Start by writing a copy of the
* first page with a bad version.
*/
memcpy(first_page, fw_data, SF_PAGE_SIZE);
((struct fw_hdr *)first_page)->fw_ver = htonl(0xffffffff);
ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page);
if (ret)
goto out;
addr = fw_img_start;
for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
addr += SF_PAGE_SIZE;
fw_data += SF_PAGE_SIZE;
ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
if (ret)
goto out;
}
ret = t4_write_flash(adap,
fw_img_start + offsetof(struct fw_hdr, fw_ver),
sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
out:
if (ret)
dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
ret);
return ret;
}
#define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_ANEG)
/**
* t4_link_start - apply link configuration to MAC/PHY
* @phy: the PHY to setup
* @mac: the MAC to setup
* @lc: the requested link configuration
*
* Set up a port's MAC and PHY according to a desired link configuration.
* - If the PHY can auto-negotiate first decide what to advertise, then
* enable/disable auto-negotiation as desired, and reset.
* - If the PHY does not auto-negotiate just reset it.
* - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
* otherwise do it later based on the outcome of auto-negotiation.
*/
int t4_link_start(struct adapter *adap, unsigned int mbox, unsigned int port,
struct link_config *lc)
{
struct fw_port_cmd c;
unsigned int fc = 0, mdi = FW_PORT_MDI(FW_PORT_MDI_AUTO);
lc->link_ok = 0;
if (lc->requested_fc & PAUSE_RX)
fc |= FW_PORT_CAP_FC_RX;
if (lc->requested_fc & PAUSE_TX)
fc |= FW_PORT_CAP_FC_TX;
memset(&c, 0, sizeof(c));
c.op_to_portid = htonl(FW_CMD_OP(FW_PORT_CMD) | FW_CMD_REQUEST |
FW_CMD_EXEC | FW_PORT_CMD_PORTID(port));
c.action_to_len16 = htonl(FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
FW_LEN16(c));
if (!(lc->supported & FW_PORT_CAP_ANEG)) {
c.u.l1cfg.rcap = htonl((lc->supported & ADVERT_MASK) | fc);
lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
} else if (lc->autoneg == AUTONEG_DISABLE) {
c.u.l1cfg.rcap = htonl(lc->requested_speed | fc | mdi);
lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
} else
c.u.l1cfg.rcap = htonl(lc->advertising | fc | mdi);
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}
/**
* t4_restart_aneg - restart autonegotiation
* @adap: the adapter
* @mbox: mbox to use for the FW command
* @port: the port id
*
* Restarts autonegotiation for the selected port.
*/
int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
{
struct fw_port_cmd c;
memset(&c, 0, sizeof(c));
c.op_to_portid = htonl(FW_CMD_OP(FW_PORT_CMD) | FW_CMD_REQUEST |
FW_CMD_EXEC | FW_PORT_CMD_PORTID(port));
c.action_to_len16 = htonl(FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
FW_LEN16(c));
c.u.l1cfg.rcap = htonl(FW_PORT_CAP_ANEG);
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}
struct intr_info {
unsigned int mask; /* bits to check in interrupt status */
const char *msg; /* message to print or NULL */
short stat_idx; /* stat counter to increment or -1 */
unsigned short fatal; /* whether the condition reported is fatal */
};
/**
* t4_handle_intr_status - table driven interrupt handler
* @adapter: the adapter that generated the interrupt
* @reg: the interrupt status register to process
* @acts: table of interrupt actions
*
* A table driven interrupt handler that applies a set of masks to an
* interrupt status word and performs the corresponding actions if the
* interrupts described by the mask have occured. The actions include
* optionally emitting a warning or alert message. The table is terminated
* by an entry specifying mask 0. Returns the number of fatal interrupt
* conditions.
*/
static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
const struct intr_info *acts)
{
int fatal = 0;
unsigned int mask = 0;
unsigned int status = t4_read_reg(adapter, reg);
for ( ; acts->mask; ++acts) {
if (!(status & acts->mask))
continue;
if (acts->fatal) {
fatal++;
dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
status & acts->mask);
} else if (acts->msg && printk_ratelimit())
dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
status & acts->mask);
mask |= acts->mask;
}
status &= mask;
if (status) /* clear processed interrupts */
t4_write_reg(adapter, reg, status);
return fatal;
}
/*
* Interrupt handler for the PCIE module.
*/
static void pcie_intr_handler(struct adapter *adapter)
{
static struct intr_info sysbus_intr_info[] = {
{ RNPP, "RXNP array parity error", -1, 1 },
{ RPCP, "RXPC array parity error", -1, 1 },
{ RCIP, "RXCIF array parity error", -1, 1 },
{ RCCP, "Rx completions control array parity error", -1, 1 },
{ RFTP, "RXFT array parity error", -1, 1 },
{ 0 }
};
static struct intr_info pcie_port_intr_info[] = {
{ TPCP, "TXPC array parity error", -1, 1 },
{ TNPP, "TXNP array parity error", -1, 1 },
{ TFTP, "TXFT array parity error", -1, 1 },
{ TCAP, "TXCA array parity error", -1, 1 },
{ TCIP, "TXCIF array parity error", -1, 1 },
{ RCAP, "RXCA array parity error", -1, 1 },
{ OTDD, "outbound request TLP discarded", -1, 1 },
{ RDPE, "Rx data parity error", -1, 1 },
{ TDUE, "Tx uncorrectable data error", -1, 1 },
{ 0 }
};
static struct intr_info pcie_intr_info[] = {
{ MSIADDRLPERR, "MSI AddrL parity error", -1, 1 },
{ MSIADDRHPERR, "MSI AddrH parity error", -1, 1 },
{ MSIDATAPERR, "MSI data parity error", -1, 1 },
{ MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
{ MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
{ MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
{ MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
{ PIOCPLPERR, "PCI PIO completion FIFO parity error", -1, 1 },
{ PIOREQPERR, "PCI PIO request FIFO parity error", -1, 1 },
{ TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
{ CCNTPERR, "PCI CMD channel count parity error", -1, 1 },
{ CREQPERR, "PCI CMD channel request parity error", -1, 1 },
{ CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
{ DCNTPERR, "PCI DMA channel count parity error", -1, 1 },
{ DREQPERR, "PCI DMA channel request parity error", -1, 1 },
{ DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
{ HCNTPERR, "PCI HMA channel count parity error", -1, 1 },
{ HREQPERR, "PCI HMA channel request parity error", -1, 1 },
{ HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
{ CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
{ FIDPERR, "PCI FID parity error", -1, 1 },
{ INTXCLRPERR, "PCI INTx clear parity error", -1, 1 },
{ MATAGPERR, "PCI MA tag parity error", -1, 1 },
{ PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
{ RXCPLPERR, "PCI Rx completion parity error", -1, 1 },
{ RXWRPERR, "PCI Rx write parity error", -1, 1 },
{ RPLPERR, "PCI replay buffer parity error", -1, 1 },
{ PCIESINT, "PCI core secondary fault", -1, 1 },
{ PCIEPINT, "PCI core primary fault", -1, 1 },
{ UNXSPLCPLERR, "PCI unexpected split completion error", -1, 0 },
{ 0 }
};
int fat;
fat = t4_handle_intr_status(adapter,
PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
sysbus_intr_info) +
t4_handle_intr_status(adapter,
PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
pcie_port_intr_info) +
t4_handle_intr_status(adapter, PCIE_INT_CAUSE, pcie_intr_info);
if (fat)
t4_fatal_err(adapter);
}
/*
* TP interrupt handler.
*/
static void tp_intr_handler(struct adapter *adapter)
{
static struct intr_info tp_intr_info[] = {
{ 0x3fffffff, "TP parity error", -1, 1 },
{ FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1 },
{ 0 }
};
if (t4_handle_intr_status(adapter, TP_INT_CAUSE, tp_intr_info))
t4_fatal_err(adapter);
}
/*
* SGE interrupt handler.
*/
static void sge_intr_handler(struct adapter *adapter)
{
u64 v;
static struct intr_info sge_intr_info[] = {
{ ERR_CPL_EXCEED_IQE_SIZE,
"SGE received CPL exceeding IQE size", -1, 1 },
{ ERR_INVALID_CIDX_INC,
"SGE GTS CIDX increment too large", -1, 0 },
{ ERR_CPL_OPCODE_0, "SGE received 0-length CPL", -1, 0 },
{ ERR_DROPPED_DB, "SGE doorbell dropped", -1, 0 },
{ ERR_DATA_CPL_ON_HIGH_QID1 | ERR_DATA_CPL_ON_HIGH_QID0,
"SGE IQID > 1023 received CPL for FL", -1, 0 },
{ ERR_BAD_DB_PIDX3, "SGE DBP 3 pidx increment too large", -1,
0 },
{ ERR_BAD_DB_PIDX2, "SGE DBP 2 pidx increment too large", -1,
0 },
{ ERR_BAD_DB_PIDX1, "SGE DBP 1 pidx increment too large", -1,
0 },
{ ERR_BAD_DB_PIDX0, "SGE DBP 0 pidx increment too large", -1,
0 },
{ ERR_ING_CTXT_PRIO,
"SGE too many priority ingress contexts", -1, 0 },
{ ERR_EGR_CTXT_PRIO,
"SGE too many priority egress contexts", -1, 0 },
{ INGRESS_SIZE_ERR, "SGE illegal ingress QID", -1, 0 },
{ EGRESS_SIZE_ERR, "SGE illegal egress QID", -1, 0 },
{ 0 }
};
v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1) |
((u64)t4_read_reg(adapter, SGE_INT_CAUSE2) << 32);
if (v) {
dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
(unsigned long long)v);
t4_write_reg(adapter, SGE_INT_CAUSE1, v);
t4_write_reg(adapter, SGE_INT_CAUSE2, v >> 32);
}
if (t4_handle_intr_status(adapter, SGE_INT_CAUSE3, sge_intr_info) ||
v != 0)
t4_fatal_err(adapter);
}
/*
* CIM interrupt handler.
*/
static void cim_intr_handler(struct adapter *adapter)
{
static struct intr_info cim_intr_info[] = {
{ PREFDROPINT, "CIM control register prefetch drop", -1, 1 },
{ OBQPARERR, "CIM OBQ parity error", -1, 1 },
{ IBQPARERR, "CIM IBQ parity error", -1, 1 },
{ MBUPPARERR, "CIM mailbox uP parity error", -1, 1 },
{ MBHOSTPARERR, "CIM mailbox host parity error", -1, 1 },
{ TIEQINPARERRINT, "CIM TIEQ outgoing parity error", -1, 1 },
{ TIEQOUTPARERRINT, "CIM TIEQ incoming parity error", -1, 1 },
{ 0 }
};
static struct intr_info cim_upintr_info[] = {
{ RSVDSPACEINT, "CIM reserved space access", -1, 1 },
{ ILLTRANSINT, "CIM illegal transaction", -1, 1 },
{ ILLWRINT, "CIM illegal write", -1, 1 },
{ ILLRDINT, "CIM illegal read", -1, 1 },
{ ILLRDBEINT, "CIM illegal read BE", -1, 1 },
{ ILLWRBEINT, "CIM illegal write BE", -1, 1 },
{ SGLRDBOOTINT, "CIM single read from boot space", -1, 1 },
{ SGLWRBOOTINT, "CIM single write to boot space", -1, 1 },
{ BLKWRBOOTINT, "CIM block write to boot space", -1, 1 },
{ SGLRDFLASHINT, "CIM single read from flash space", -1, 1 },
{ SGLWRFLASHINT, "CIM single write to flash space", -1, 1 },
{ BLKWRFLASHINT, "CIM block write to flash space", -1, 1 },
{ SGLRDEEPROMINT, "CIM single EEPROM read", -1, 1 },
{ SGLWREEPROMINT, "CIM single EEPROM write", -1, 1 },
{ BLKRDEEPROMINT, "CIM block EEPROM read", -1, 1 },
{ BLKWREEPROMINT, "CIM block EEPROM write", -1, 1 },
{ SGLRDCTLINT , "CIM single read from CTL space", -1, 1 },
{ SGLWRCTLINT , "CIM single write to CTL space", -1, 1 },
{ BLKRDCTLINT , "CIM block read from CTL space", -1, 1 },
{ BLKWRCTLINT , "CIM block write to CTL space", -1, 1 },
{ SGLRDPLINT , "CIM single read from PL space", -1, 1 },
{ SGLWRPLINT , "CIM single write to PL space", -1, 1 },
{ BLKRDPLINT , "CIM block read from PL space", -1, 1 },
{ BLKWRPLINT , "CIM block write to PL space", -1, 1 },
{ REQOVRLOOKUPINT , "CIM request FIFO overwrite", -1, 1 },
{ RSPOVRLOOKUPINT , "CIM response FIFO overwrite", -1, 1 },
{ TIMEOUTINT , "CIM PIF timeout", -1, 1 },
{ TIMEOUTMAINT , "CIM PIF MA timeout", -1, 1 },
{ 0 }
};
int fat;
fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE,
cim_intr_info) +
t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE,
cim_upintr_info);
if (fat)
t4_fatal_err(adapter);
}
/*
* ULP RX interrupt handler.
*/
static void ulprx_intr_handler(struct adapter *adapter)
{
static struct intr_info ulprx_intr_info[] = {
{ 0x7fffff, "ULPRX parity error", -1, 1 },
{ 0 }
};
if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE, ulprx_intr_info))
t4_fatal_err(adapter);
}
/*
* ULP TX interrupt handler.
*/
static void ulptx_intr_handler(struct adapter *adapter)
{
static struct intr_info ulptx_intr_info[] = {
{ PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds", -1,
0 },
{ PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds", -1,
0 },
{ PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds", -1,
0 },
{ PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds", -1,
0 },
{ 0xfffffff, "ULPTX parity error", -1, 1 },
{ 0 }
};
if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE, ulptx_intr_info))
t4_fatal_err(adapter);
}
/*
* PM TX interrupt handler.
*/
static void pmtx_intr_handler(struct adapter *adapter)
{
static struct intr_info pmtx_intr_info[] = {
{ PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large", -1, 1 },
{ PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large", -1, 1 },
{ PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large", -1, 1 },
{ ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1 },
{ PMTX_FRAMING_ERROR, "PMTX framing error", -1, 1 },
{ OESPI_PAR_ERROR, "PMTX oespi parity error", -1, 1 },
{ DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error", -1, 1 },
{ ICSPI_PAR_ERROR, "PMTX icspi parity error", -1, 1 },
{ C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error", -1, 1},
{ 0 }
};
if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE, pmtx_intr_info))
t4_fatal_err(adapter);
}
/*
* PM RX interrupt handler.
*/
static void pmrx_intr_handler(struct adapter *adapter)
{
static struct intr_info pmrx_intr_info[] = {
{ ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1 },
{ PMRX_FRAMING_ERROR, "PMRX framing error", -1, 1 },
{ OCSPI_PAR_ERROR, "PMRX ocspi parity error", -1, 1 },
{ DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error", -1, 1 },
{ IESPI_PAR_ERROR, "PMRX iespi parity error", -1, 1 },
{ E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error", -1, 1},
{ 0 }
};
if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE, pmrx_intr_info))
t4_fatal_err(adapter);
}
/*
* CPL switch interrupt handler.
*/
static void cplsw_intr_handler(struct adapter *adapter)
{
static struct intr_info cplsw_intr_info[] = {
{ CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error", -1, 1 },
{ CIM_OVFL_ERROR, "CPLSW CIM overflow", -1, 1 },
{ TP_FRAMING_ERROR, "CPLSW TP framing error", -1, 1 },
{ SGE_FRAMING_ERROR, "CPLSW SGE framing error", -1, 1 },
{ CIM_FRAMING_ERROR, "CPLSW CIM framing error", -1, 1 },
{ ZERO_SWITCH_ERROR, "CPLSW no-switch error", -1, 1 },
{ 0 }
};
if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE, cplsw_intr_info))
t4_fatal_err(adapter);
}
/*
* LE interrupt handler.
*/
static void le_intr_handler(struct adapter *adap)
{
static struct intr_info le_intr_info[] = {
{ LIPMISS, "LE LIP miss", -1, 0 },
{ LIP0, "LE 0 LIP error", -1, 0 },
{ PARITYERR, "LE parity error", -1, 1 },
{ UNKNOWNCMD, "LE unknown command", -1, 1 },
{ REQQPARERR, "LE request queue parity error", -1, 1 },
{ 0 }
};
if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE, le_intr_info))
t4_fatal_err(adap);
}
/*
* MPS interrupt handler.
*/
static void mps_intr_handler(struct adapter *adapter)
{
static struct intr_info mps_rx_intr_info[] = {
{ 0xffffff, "MPS Rx parity error", -1, 1 },
{ 0 }
};
static struct intr_info mps_tx_intr_info[] = {
{ TPFIFO, "MPS Tx TP FIFO parity error", -1, 1 },
{ NCSIFIFO, "MPS Tx NC-SI FIFO parity error", -1, 1 },
{ TXDATAFIFO, "MPS Tx data FIFO parity error", -1, 1 },
{ TXDESCFIFO, "MPS Tx desc FIFO parity error", -1, 1 },
{ BUBBLE, "MPS Tx underflow", -1, 1 },
{ SECNTERR, "MPS Tx SOP/EOP error", -1, 1 },
{ FRMERR, "MPS Tx framing error", -1, 1 },
{ 0 }
};
static struct intr_info mps_trc_intr_info[] = {
{ FILTMEM, "MPS TRC filter parity error", -1, 1 },
{ PKTFIFO, "MPS TRC packet FIFO parity error", -1, 1 },
{ MISCPERR, "MPS TRC misc parity error", -1, 1 },
{ 0 }
};
static struct intr_info mps_stat_sram_intr_info[] = {
{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
{ 0 }
};
static struct intr_info mps_stat_tx_intr_info[] = {
{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
{ 0 }
};
static struct intr_info mps_stat_rx_intr_info[] = {
{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
{ 0 }
};
static struct intr_info mps_cls_intr_info[] = {
{ MATCHSRAM, "MPS match SRAM parity error", -1, 1 },
{ MATCHTCAM, "MPS match TCAM parity error", -1, 1 },
{ HASHSRAM, "MPS hash SRAM parity error", -1, 1 },
{ 0 }
};
int fat;
fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE,
mps_rx_intr_info) +
t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE,
mps_tx_intr_info) +
t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE,
mps_trc_intr_info) +
t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM,
mps_stat_sram_intr_info) +
t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
mps_stat_tx_intr_info) +
t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
mps_stat_rx_intr_info) +
t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE,
mps_cls_intr_info);
t4_write_reg(adapter, MPS_INT_CAUSE, CLSINT | TRCINT |
RXINT | TXINT | STATINT);
t4_read_reg(adapter, MPS_INT_CAUSE); /* flush */
if (fat)
t4_fatal_err(adapter);
}
#define MEM_INT_MASK (PERR_INT_CAUSE | ECC_CE_INT_CAUSE | ECC_UE_INT_CAUSE)
/*
* EDC/MC interrupt handler.
*/
static void mem_intr_handler(struct adapter *adapter, int idx)
{
static const char name[3][5] = { "EDC0", "EDC1", "MC" };
unsigned int addr, cnt_addr, v;
if (idx <= MEM_EDC1) {
addr = EDC_REG(EDC_INT_CAUSE, idx);
cnt_addr = EDC_REG(EDC_ECC_STATUS, idx);
} else {
addr = MC_INT_CAUSE;
cnt_addr = MC_ECC_STATUS;
}
v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
if (v & PERR_INT_CAUSE)
dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
name[idx]);
if (v & ECC_CE_INT_CAUSE) {
u32 cnt = ECC_CECNT_GET(t4_read_reg(adapter, cnt_addr));
t4_write_reg(adapter, cnt_addr, ECC_CECNT_MASK);
if (printk_ratelimit())
dev_warn(adapter->pdev_dev,
"%u %s correctable ECC data error%s\n",
cnt, name[idx], cnt > 1 ? "s" : "");
}
if (v & ECC_UE_INT_CAUSE)
dev_alert(adapter->pdev_dev,
"%s uncorrectable ECC data error\n", name[idx]);
t4_write_reg(adapter, addr, v);
if (v & (PERR_INT_CAUSE | ECC_UE_INT_CAUSE))
t4_fatal_err(adapter);
}
/*
* MA interrupt handler.
*/
static void ma_intr_handler(struct adapter *adap)
{
u32 v, status = t4_read_reg(adap, MA_INT_CAUSE);
if (status & MEM_PERR_INT_CAUSE)
dev_alert(adap->pdev_dev,
"MA parity error, parity status %#x\n",
t4_read_reg(adap, MA_PARITY_ERROR_STATUS));
if (status & MEM_WRAP_INT_CAUSE) {
v = t4_read_reg(adap, MA_INT_WRAP_STATUS);
dev_alert(adap->pdev_dev, "MA address wrap-around error by "
"client %u to address %#x\n",
MEM_WRAP_CLIENT_NUM_GET(v),
MEM_WRAP_ADDRESS_GET(v) << 4);
}
t4_write_reg(adap, MA_INT_CAUSE, status);
t4_fatal_err(adap);
}
/*
* SMB interrupt handler.
*/
static void smb_intr_handler(struct adapter *adap)
{
static struct intr_info smb_intr_info[] = {
{ MSTTXFIFOPARINT, "SMB master Tx FIFO parity error", -1, 1 },
{ MSTRXFIFOPARINT, "SMB master Rx FIFO parity error", -1, 1 },
{ SLVFIFOPARINT, "SMB slave FIFO parity error", -1, 1 },
{ 0 }
};
if (t4_handle_intr_status(adap, SMB_INT_CAUSE, smb_intr_info))
t4_fatal_err(adap);
}
/*
* NC-SI interrupt handler.
*/
static void ncsi_intr_handler(struct adapter *adap)
{
static struct intr_info ncsi_intr_info[] = {
{ CIM_DM_PRTY_ERR, "NC-SI CIM parity error", -1, 1 },
{ MPS_DM_PRTY_ERR, "NC-SI MPS parity error", -1, 1 },
{ TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error", -1, 1 },
{ RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error", -1, 1 },
{ 0 }
};
if (t4_handle_intr_status(adap, NCSI_INT_CAUSE, ncsi_intr_info))
t4_fatal_err(adap);
}
/*
* XGMAC interrupt handler.
*/
static void xgmac_intr_handler(struct adapter *adap, int port)
{
u32 v = t4_read_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE));
v &= TXFIFO_PRTY_ERR | RXFIFO_PRTY_ERR;
if (!v)
return;
if (v & TXFIFO_PRTY_ERR)
dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
port);
if (v & RXFIFO_PRTY_ERR)
dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
port);
t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE), v);
t4_fatal_err(adap);
}
/*
* PL interrupt handler.
*/
static void pl_intr_handler(struct adapter *adap)
{
static struct intr_info pl_intr_info[] = {
{ FATALPERR, "T4 fatal parity error", -1, 1 },
{ PERRVFID, "PL VFID_MAP parity error", -1, 1 },
{ 0 }
};
if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE, pl_intr_info))
t4_fatal_err(adap);
}
#define PF_INTR_MASK (PFSW | PFCIM)
#define GLBL_INTR_MASK (CIM | MPS | PL | PCIE | MC | EDC0 | \
EDC1 | LE | TP | MA | PM_TX | PM_RX | ULP_RX | \
CPL_SWITCH | SGE | ULP_TX)
/**
* t4_slow_intr_handler - control path interrupt handler
* @adapter: the adapter
*
* T4 interrupt handler for non-data global interrupt events, e.g., errors.
* The designation 'slow' is because it involves register reads, while
* data interrupts typically don't involve any MMIOs.
*/
int t4_slow_intr_handler(struct adapter *adapter)
{
u32 cause = t4_read_reg(adapter, PL_INT_CAUSE);
if (!(cause & GLBL_INTR_MASK))
return 0;
if (cause & CIM)
cim_intr_handler(adapter);
if (cause & MPS)
mps_intr_handler(adapter);
if (cause & NCSI)
ncsi_intr_handler(adapter);
if (cause & PL)
pl_intr_handler(adapter);
if (cause & SMB)
smb_intr_handler(adapter);
if (cause & XGMAC0)
xgmac_intr_handler(adapter, 0);
if (cause & XGMAC1)
xgmac_intr_handler(adapter, 1);
if (cause & XGMAC_KR0)
xgmac_intr_handler(adapter, 2);
if (cause & XGMAC_KR1)
xgmac_intr_handler(adapter, 3);
if (cause & PCIE)
pcie_intr_handler(adapter);
if (cause & MC)
mem_intr_handler(adapter, MEM_MC);
if (cause & EDC0)
mem_intr_handler(adapter, MEM_EDC0);
if (cause & EDC1)
mem_intr_handler(adapter, MEM_EDC1);
if (cause & LE)
le_intr_handler(adapter);
if (cause & TP)
tp_intr_handler(adapter);
if (cause & MA)
ma_intr_handler(adapter);
if (cause & PM_TX)
pmtx_intr_handler(adapter);
if (cause & PM_RX)
pmrx_intr_handler(adapter);
if (cause & ULP_RX)
ulprx_intr_handler(adapter);
if (cause & CPL_SWITCH)
cplsw_intr_handler(adapter);
if (cause & SGE)
sge_intr_handler(adapter);
if (cause & ULP_TX)
ulptx_intr_handler(adapter);
/* Clear the interrupts just processed for which we are the master. */
t4_write_reg(adapter, PL_INT_CAUSE, cause & GLBL_INTR_MASK);
(void) t4_read_reg(adapter, PL_INT_CAUSE); /* flush */
return 1;
}
/**
* t4_intr_enable - enable interrupts
* @adapter: the adapter whose interrupts should be enabled
*
* Enable PF-specific interrupts for the calling function and the top-level
* interrupt concentrator for global interrupts. Interrupts are already
* enabled at each module, here we just enable the roots of the interrupt
* hierarchies.
*
* Note: this function should be called only when the driver manages
* non PF-specific interrupts from the various HW modules. Only one PCI
* function at a time should be doing this.
*/
void t4_intr_enable(struct adapter *adapter)
{
u32 pf = SOURCEPF_GET(t4_read_reg(adapter, PL_WHOAMI));
t4_write_reg(adapter, SGE_INT_ENABLE3, ERR_CPL_EXCEED_IQE_SIZE |
ERR_INVALID_CIDX_INC | ERR_CPL_OPCODE_0 |
ERR_DROPPED_DB | ERR_DATA_CPL_ON_HIGH_QID1 |
ERR_DATA_CPL_ON_HIGH_QID0 | ERR_BAD_DB_PIDX3 |
ERR_BAD_DB_PIDX2 | ERR_BAD_DB_PIDX1 |
ERR_BAD_DB_PIDX0 | ERR_ING_CTXT_PRIO |
ERR_EGR_CTXT_PRIO | INGRESS_SIZE_ERR |
EGRESS_SIZE_ERR);
t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE), PF_INTR_MASK);
t4_set_reg_field(adapter, PL_INT_MAP0, 0, 1 << pf);
}
/**
* t4_intr_disable - disable interrupts
* @adapter: the adapter whose interrupts should be disabled
*
* Disable interrupts. We only disable the top-level interrupt
* concentrators. The caller must be a PCI function managing global
* interrupts.
*/
void t4_intr_disable(struct adapter *adapter)
{
u32 pf = SOURCEPF_GET(t4_read_reg(adapter, PL_WHOAMI));
t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE), 0);
t4_set_reg_field(adapter, PL_INT_MAP0, 1 << pf, 0);
}
/**
* t4_intr_clear - clear all interrupts
* @adapter: the adapter whose interrupts should be cleared
*
* Clears all interrupts. The caller must be a PCI function managing
* global interrupts.
*/
void t4_intr_clear(struct adapter *adapter)
{
static const unsigned int cause_reg[] = {
SGE_INT_CAUSE1, SGE_INT_CAUSE2, SGE_INT_CAUSE3,
PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
PCIE_NONFAT_ERR, PCIE_INT_CAUSE,
MC_INT_CAUSE,
MA_INT_WRAP_STATUS, MA_PARITY_ERROR_STATUS, MA_INT_CAUSE,
EDC_INT_CAUSE, EDC_REG(EDC_INT_CAUSE, 1),
CIM_HOST_INT_CAUSE, CIM_HOST_UPACC_INT_CAUSE,
MYPF_REG(CIM_PF_HOST_INT_CAUSE),
TP_INT_CAUSE,
ULP_RX_INT_CAUSE, ULP_TX_INT_CAUSE,
PM_RX_INT_CAUSE, PM_TX_INT_CAUSE,
MPS_RX_PERR_INT_CAUSE,
CPL_INTR_CAUSE,
MYPF_REG(PL_PF_INT_CAUSE),
PL_PL_INT_CAUSE,
LE_DB_INT_CAUSE,
};
unsigned int i;
for (i = 0; i < ARRAY_SIZE(cause_reg); ++i)
t4_write_reg(adapter, cause_reg[i], 0xffffffff);
t4_write_reg(adapter, PL_INT_CAUSE, GLBL_INTR_MASK);
(void) t4_read_reg(adapter, PL_INT_CAUSE); /* flush */
}
/**
* hash_mac_addr - return the hash value of a MAC address
* @addr: the 48-bit Ethernet MAC address
*
* Hashes a MAC address according to the hash function used by HW inexact
* (hash) address matching.
*/
static int hash_mac_addr(const u8 *addr)
{
u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
a ^= b;
a ^= (a >> 12);
a ^= (a >> 6);
return a & 0x3f;
}
/**
* t4_config_rss_range - configure a portion of the RSS mapping table
* @adapter: the adapter
* @mbox: mbox to use for the FW command
* @viid: virtual interface whose RSS subtable is to be written
* @start: start entry in the table to write
* @n: how many table entries to write
* @rspq: values for the response queue lookup table
* @nrspq: number of values in @rspq
*
* Programs the selected part of the VI's RSS mapping table with the
* provided values. If @nrspq < @n the supplied values are used repeatedly
* until the full table range is populated.
*
* The caller must ensure the values in @rspq are in the range allowed for
* @viid.
*/
int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
int start, int n, const u16 *rspq, unsigned int nrspq)
{
int ret;
const u16 *rsp = rspq;
const u16 *rsp_end = rspq + nrspq;
struct fw_rss_ind_tbl_cmd cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.op_to_viid = htonl(FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
FW_CMD_REQUEST | FW_CMD_WRITE |
FW_RSS_IND_TBL_CMD_VIID(viid));
cmd.retval_len16 = htonl(FW_LEN16(cmd));
/* each fw_rss_ind_tbl_cmd takes up to 32 entries */
while (n > 0) {
int nq = min(n, 32);
__be32 *qp = &cmd.iq0_to_iq2;
cmd.niqid = htons(nq);
cmd.startidx = htons(start);
start += nq;
n -= nq;
while (nq > 0) {
unsigned int v;
v = FW_RSS_IND_TBL_CMD_IQ0(*rsp);
if (++rsp >= rsp_end)
rsp = rspq;
v |= FW_RSS_IND_TBL_CMD_IQ1(*rsp);
if (++rsp >= rsp_end)
rsp = rspq;
v |= FW_RSS_IND_TBL_CMD_IQ2(*rsp);
if (++rsp >= rsp_end)
rsp = rspq;
*qp++ = htonl(v);
nq -= 3;
}
ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
if (ret)
return ret;
}
return 0;
}
/**
* t4_config_glbl_rss - configure the global RSS mode
* @adapter: the adapter
* @mbox: mbox to use for the FW command
* @mode: global RSS mode
* @flags: mode-specific flags
*
* Sets the global RSS mode.
*/
int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
unsigned int flags)
{
struct fw_rss_glb_config_cmd c;
memset(&c, 0, sizeof(c));
c.op_to_write = htonl(FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
FW_CMD_REQUEST | FW_CMD_WRITE);
c.retval_len16 = htonl(FW_LEN16(c));
if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
c.u.manual.mode_pkd = htonl(FW_RSS_GLB_CONFIG_CMD_MODE(mode));
} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
c.u.basicvirtual.mode_pkd =
htonl(FW_RSS_GLB_CONFIG_CMD_MODE(mode));
c.u.basicvirtual.synmapen_to_hashtoeplitz = htonl(flags);
} else
return -EINVAL;
return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
}
/* Read an RSS table row */
static int rd_rss_row(struct adapter *adap, int row, u32 *val)
{
t4_write_reg(adap, TP_RSS_LKP_TABLE, 0xfff00000 | row);
return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE, LKPTBLROWVLD, 1,
5, 0, val);
}
/**
* t4_read_rss - read the contents of the RSS mapping table
* @adapter: the adapter
* @map: holds the contents of the RSS mapping table
*
* Reads the contents of the RSS hash->queue mapping table.
*/
int t4_read_rss(struct adapter *adapter, u16 *map)
{
u32 val;
int i, ret;
for (i = 0; i < RSS_NENTRIES / 2; ++i) {
ret = rd_rss_row(adapter, i, &val);
if (ret)
return ret;
*map++ = LKPTBLQUEUE0_GET(val);
*map++ = LKPTBLQUEUE1_GET(val);
}
return 0;
}
/**
* t4_tp_get_tcp_stats - read TP's TCP MIB counters
* @adap: the adapter
* @v4: holds the TCP/IP counter values
* @v6: holds the TCP/IPv6 counter values
*
* Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
* Either @v4 or @v6 may be %NULL to skip the corresponding stats.
*/
void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
struct tp_tcp_stats *v6)
{
u32 val[TP_MIB_TCP_RXT_SEG_LO - TP_MIB_TCP_OUT_RST + 1];
#define STAT_IDX(x) ((TP_MIB_TCP_##x) - TP_MIB_TCP_OUT_RST)
#define STAT(x) val[STAT_IDX(x)]
#define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
if (v4) {
t4_read_indirect(adap, TP_MIB_INDEX, TP_MIB_DATA, val,
ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST);
v4->tcpOutRsts = STAT(OUT_RST);
v4->tcpInSegs = STAT64(IN_SEG);
v4->tcpOutSegs = STAT64(OUT_SEG);
v4->tcpRetransSegs = STAT64(RXT_SEG);
}
if (v6) {
t4_read_indirect(adap, TP_MIB_INDEX, TP_MIB_DATA, val,
ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST);
v6->tcpOutRsts = STAT(OUT_RST);
v6->tcpInSegs = STAT64(IN_SEG);
v6->tcpOutSegs = STAT64(OUT_SEG);
v6->tcpRetransSegs = STAT64(RXT_SEG);
}
#undef STAT64
#undef STAT
#undef STAT_IDX
}
/**
* t4_tp_get_err_stats - read TP's error MIB counters
* @adap: the adapter
* @st: holds the counter values
*
* Returns the values of TP's error counters.
*/
void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st)
{
t4_read_indirect(adap, TP_MIB_INDEX, TP_MIB_DATA, st->macInErrs,
12, TP_MIB_MAC_IN_ERR_0);
t4_read_indirect(adap, TP_MIB_INDEX, TP_MIB_DATA, st->tnlCongDrops,
8, TP_MIB_TNL_CNG_DROP_0);
t4_read_indirect(adap, TP_MIB_INDEX, TP_MIB_DATA, st->tnlTxDrops,
4, TP_MIB_TNL_DROP_0);
t4_read_indirect(adap, TP_MIB_INDEX, TP_MIB_DATA, st->ofldVlanDrops,
4, TP_MIB_OFD_VLN_DROP_0);
t4_read_indirect(adap, TP_MIB_INDEX, TP_MIB_DATA, st->tcp6InErrs,
4, TP_MIB_TCP_V6IN_ERR_0);
t4_read_indirect(adap, TP_MIB_INDEX, TP_MIB_DATA, &st->ofldNoNeigh,
2, TP_MIB_OFD_ARP_DROP);
}
/**
* t4_read_mtu_tbl - returns the values in the HW path MTU table
* @adap: the adapter
* @mtus: where to store the MTU values
* @mtu_log: where to store the MTU base-2 log (may be %NULL)
*
* Reads the HW path MTU table.
*/
void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
{
u32 v;
int i;
for (i = 0; i < NMTUS; ++i) {
t4_write_reg(adap, TP_MTU_TABLE,
MTUINDEX(0xff) | MTUVALUE(i));
v = t4_read_reg(adap, TP_MTU_TABLE);
mtus[i] = MTUVALUE_GET(v);
if (mtu_log)
mtu_log[i] = MTUWIDTH_GET(v);
}
}
/**
* init_cong_ctrl - initialize congestion control parameters
* @a: the alpha values for congestion control
* @b: the beta values for congestion control
*
* Initialize the congestion control parameters.
*/
static void __devinit init_cong_ctrl(unsigned short *a, unsigned short *b)
{
a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
a[9] = 2;
a[10] = 3;
a[11] = 4;
a[12] = 5;
a[13] = 6;
a[14] = 7;
a[15] = 8;
a[16] = 9;
a[17] = 10;
a[18] = 14;
a[19] = 17;
a[20] = 21;
a[21] = 25;
a[22] = 30;
a[23] = 35;
a[24] = 45;
a[25] = 60;
a[26] = 80;
a[27] = 100;
a[28] = 200;
a[29] = 300;
a[30] = 400;
a[31] = 500;
b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
b[9] = b[10] = 1;
b[11] = b[12] = 2;
b[13] = b[14] = b[15] = b[16] = 3;
b[17] = b[18] = b[19] = b[20] = b[21] = 4;
b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
b[28] = b[29] = 6;
b[30] = b[31] = 7;
}
/* The minimum additive increment value for the congestion control table */
#define CC_MIN_INCR 2U
/**
* t4_load_mtus - write the MTU and congestion control HW tables
* @adap: the adapter
* @mtus: the values for the MTU table
* @alpha: the values for the congestion control alpha parameter
* @beta: the values for the congestion control beta parameter
*
* Write the HW MTU table with the supplied MTUs and the high-speed
* congestion control table with the supplied alpha, beta, and MTUs.
* We write the two tables together because the additive increments
* depend on the MTUs.
*/
void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
const unsigned short *alpha, const unsigned short *beta)
{
static const unsigned int avg_pkts[NCCTRL_WIN] = {
2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
28672, 40960, 57344, 81920, 114688, 163840, 229376
};
unsigned int i, w;
for (i = 0; i < NMTUS; ++i) {
unsigned int mtu = mtus[i];
unsigned int log2 = fls(mtu);
if (!(mtu & ((1 << log2) >> 2))) /* round */
log2--;
t4_write_reg(adap, TP_MTU_TABLE, MTUINDEX(i) |
MTUWIDTH(log2) | MTUVALUE(mtu));
for (w = 0; w < NCCTRL_WIN; ++w) {
unsigned int inc;
inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
CC_MIN_INCR);
t4_write_reg(adap, TP_CCTRL_TABLE, (i << 21) |
(w << 16) | (beta[w] << 13) | inc);
}
}
}
/**
* t4_set_trace_filter - configure one of the tracing filters
* @adap: the adapter
* @tp: the desired trace filter parameters
* @idx: which filter to configure
* @enable: whether to enable or disable the filter
*
* Configures one of the tracing filters available in HW. If @enable is
* %0 @tp is not examined and may be %NULL.
*/
int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
int idx, int enable)
{
int i, ofst = idx * 4;
u32 data_reg, mask_reg, cfg;
u32 multitrc = TRCMULTIFILTER;
if (!enable) {
t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A + ofst, 0);
goto out;
}
if (tp->port > 11 || tp->invert > 1 || tp->skip_len > 0x1f ||
tp->skip_ofst > 0x1f || tp->min_len > 0x1ff ||
tp->snap_len > 9600 || (idx && tp->snap_len > 256))
return -EINVAL;
if (tp->snap_len > 256) { /* must be tracer 0 */
if ((t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A + 4) |
t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A + 8) |
t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A + 12)) & TFEN)
return -EINVAL; /* other tracers are enabled */
multitrc = 0;
} else if (idx) {
i = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B);
if (TFCAPTUREMAX_GET(i) > 256 &&
(t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A) & TFEN))
return -EINVAL;
}
/* stop the tracer we'll be changing */
t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A + ofst, 0);
/* disable tracing globally if running in the wrong single/multi mode */
cfg = t4_read_reg(adap, MPS_TRC_CFG);
if ((cfg & TRCEN) && multitrc != (cfg & TRCMULTIFILTER)) {
t4_write_reg(adap, MPS_TRC_CFG, cfg ^ TRCEN);
t4_read_reg(adap, MPS_TRC_CFG); /* flush */
msleep(1);
if (!(t4_read_reg(adap, MPS_TRC_CFG) & TRCFIFOEMPTY))
return -ETIMEDOUT;
}
/*
* At this point either the tracing is enabled and in the right mode or
* disabled.
*/
idx *= (MPS_TRC_FILTER1_MATCH - MPS_TRC_FILTER0_MATCH);
data_reg = MPS_TRC_FILTER0_MATCH + idx;
mask_reg = MPS_TRC_FILTER0_DONT_CARE + idx;
for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
t4_write_reg(adap, data_reg, tp->data[i]);
t4_write_reg(adap, mask_reg, ~tp->mask[i]);
}
t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B + ofst,
TFCAPTUREMAX(tp->snap_len) |
TFMINPKTSIZE(tp->min_len));
t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A + ofst,
TFOFFSET(tp->skip_ofst) | TFLENGTH(tp->skip_len) |
TFPORT(tp->port) | TFEN |
(tp->invert ? TFINVERTMATCH : 0));
cfg &= ~TRCMULTIFILTER;
t4_write_reg(adap, MPS_TRC_CFG, cfg | TRCEN | multitrc);
out: t4_read_reg(adap, MPS_TRC_CFG); /* flush */
return 0;
}
/**
* t4_get_trace_filter - query one of the tracing filters
* @adap: the adapter
* @tp: the current trace filter parameters
* @idx: which trace filter to query
* @enabled: non-zero if the filter is enabled
*
* Returns the current settings of one of the HW tracing filters.
*/
void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
int *enabled)
{
u32 ctla, ctlb;
int i, ofst = idx * 4;
u32 data_reg, mask_reg;
ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A + ofst);
ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B + ofst);
*enabled = !!(ctla & TFEN);
tp->snap_len = TFCAPTUREMAX_GET(ctlb);
tp->min_len = TFMINPKTSIZE_GET(ctlb);
tp->skip_ofst = TFOFFSET_GET(ctla);
tp->skip_len = TFLENGTH_GET(ctla);
tp->invert = !!(ctla & TFINVERTMATCH);
tp->port = TFPORT_GET(ctla);
ofst = (MPS_TRC_FILTER1_MATCH - MPS_TRC_FILTER0_MATCH) * idx;
data_reg = MPS_TRC_FILTER0_MATCH + ofst;
mask_reg = MPS_TRC_FILTER0_DONT_CARE + ofst;
for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
tp->mask[i] = ~t4_read_reg(adap, mask_reg);
tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
}
}
/**
* get_mps_bg_map - return the buffer groups associated with a port
* @adap: the adapter
* @idx: the port index
*
* Returns a bitmap indicating which MPS buffer groups are associated
* with the given port. Bit i is set if buffer group i is used by the
* port.
*/
static unsigned int get_mps_bg_map(struct adapter *adap, int idx)
{
u32 n = NUMPORTS_GET(t4_read_reg(adap, MPS_CMN_CTL));
if (n == 0)
return idx == 0 ? 0xf : 0;
if (n == 1)
return idx < 2 ? (3 << (2 * idx)) : 0;
return 1 << idx;
}
/**
* t4_get_port_stats - collect port statistics
* @adap: the adapter
* @idx: the port index
* @p: the stats structure to fill
*
* Collect statistics related to the given port from HW.
*/
void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
{
u32 bgmap = get_mps_bg_map(adap, idx);
#define GET_STAT(name) \
t4_read_reg64(adap, PORT_REG(idx, MPS_PORT_STAT_##name##_L))
#define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
p->tx_octets = GET_STAT(TX_PORT_BYTES);
p->tx_frames = GET_STAT(TX_PORT_FRAMES);
p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST);
p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST);
p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST);
p->tx_error_frames = GET_STAT(TX_PORT_ERROR);
p->tx_frames_64 = GET_STAT(TX_PORT_64B);
p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B);
p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B);
p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B);
p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B);
p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX);
p->tx_drop = GET_STAT(TX_PORT_DROP);
p->tx_pause = GET_STAT(TX_PORT_PAUSE);
p->tx_ppp0 = GET_STAT(TX_PORT_PPP0);
p->tx_ppp1 = GET_STAT(TX_PORT_PPP1);
p->tx_ppp2 = GET_STAT(TX_PORT_PPP2);
p->tx_ppp3 = GET_STAT(TX_PORT_PPP3);
p->tx_ppp4 = GET_STAT(TX_PORT_PPP4);
p->tx_ppp5 = GET_STAT(TX_PORT_PPP5);
p->tx_ppp6 = GET_STAT(TX_PORT_PPP6);
p->tx_ppp7 = GET_STAT(TX_PORT_PPP7);
p->rx_octets = GET_STAT(RX_PORT_BYTES);
p->rx_frames = GET_STAT(RX_PORT_FRAMES);
p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST);
p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST);
p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST);
p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR);
p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR);
p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR);
p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR);
p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR);
p->rx_runt = GET_STAT(RX_PORT_LESS_64B);
p->rx_frames_64 = GET_STAT(RX_PORT_64B);
p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B);
p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B);
p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B);
p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B);
p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX);
p->rx_pause = GET_STAT(RX_PORT_PAUSE);
p->rx_ppp0 = GET_STAT(RX_PORT_PPP0);
p->rx_ppp1 = GET_STAT(RX_PORT_PPP1);
p->rx_ppp2 = GET_STAT(RX_PORT_PPP2);
p->rx_ppp3 = GET_STAT(RX_PORT_PPP3);
p->rx_ppp4 = GET_STAT(RX_PORT_PPP4);
p->rx_ppp5 = GET_STAT(RX_PORT_PPP5);
p->rx_ppp6 = GET_STAT(RX_PORT_PPP6);
p->rx_ppp7 = GET_STAT(RX_PORT_PPP7);
p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
#undef GET_STAT
#undef GET_STAT_COM
}
/**
* t4_get_lb_stats - collect loopback port statistics
* @adap: the adapter
* @idx: the loopback port index
* @p: the stats structure to fill
*
* Return HW statistics for the given loopback port.
*/
void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
{
u32 bgmap = get_mps_bg_map(adap, idx);
#define GET_STAT(name) \
t4_read_reg64(adap, PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L))
#define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
p->octets = GET_STAT(BYTES);
p->frames = GET_STAT(FRAMES);
p->bcast_frames = GET_STAT(BCAST);
p->mcast_frames = GET_STAT(MCAST);
p->ucast_frames = GET_STAT(UCAST);
p->error_frames = GET_STAT(ERROR);
p->frames_64 = GET_STAT(64B);
p->frames_65_127 = GET_STAT(65B_127B);
p->frames_128_255 = GET_STAT(128B_255B);
p->frames_256_511 = GET_STAT(256B_511B);
p->frames_512_1023 = GET_STAT(512B_1023B);
p->frames_1024_1518 = GET_STAT(1024B_1518B);
p->frames_1519_max = GET_STAT(1519B_MAX);
p->drop = t4_read_reg(adap, PORT_REG(idx,
MPS_PORT_STAT_LB_PORT_DROP_FRAMES));
p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
#undef GET_STAT
#undef GET_STAT_COM
}
/**
* t4_wol_magic_enable - enable/disable magic packet WoL
* @adap: the adapter
* @port: the physical port index
* @addr: MAC address expected in magic packets, %NULL to disable
*
* Enables/disables magic packet wake-on-LAN for the selected port.
*/
void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
const u8 *addr)
{
if (addr) {
t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_MAGIC_MACID_LO),
(addr[2] << 24) | (addr[3] << 16) |
(addr[4] << 8) | addr[5]);
t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_MAGIC_MACID_HI),
(addr[0] << 8) | addr[1]);
}
t4_set_reg_field(adap, PORT_REG(port, XGMAC_PORT_CFG2), MAGICEN,
addr ? MAGICEN : 0);
}
/**
* t4_wol_pat_enable - enable/disable pattern-based WoL
* @adap: the adapter
* @port: the physical port index
* @map: bitmap of which HW pattern filters to set
* @mask0: byte mask for bytes 0-63 of a packet
* @mask1: byte mask for bytes 64-127 of a packet
* @crc: Ethernet CRC for selected bytes
* @enable: enable/disable switch
*
* Sets the pattern filters indicated in @map to mask out the bytes
* specified in @mask0/@mask1 in received packets and compare the CRC of
* the resulting packet against @crc. If @enable is %true pattern-based
* WoL is enabled, otherwise disabled.
*/
int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
u64 mask0, u64 mask1, unsigned int crc, bool enable)
{
int i;
if (!enable) {
t4_set_reg_field(adap, PORT_REG(port, XGMAC_PORT_CFG2),
PATEN, 0);
return 0;
}
if (map > 0xff)
return -EINVAL;
#define EPIO_REG(name) PORT_REG(port, XGMAC_PORT_EPIO_##name)
t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
t4_write_reg(adap, EPIO_REG(DATA2), mask1);
t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
if (!(map & 1))
continue;
/* write byte masks */
t4_write_reg(adap, EPIO_REG(DATA0), mask0);
t4_write_reg(adap, EPIO_REG(OP), ADDRESS(i) | EPIOWR);
t4_read_reg(adap, EPIO_REG(OP)); /* flush */
if (t4_read_reg(adap, EPIO_REG(OP)) & BUSY)
return -ETIMEDOUT;
/* write CRC */
t4_write_reg(adap, EPIO_REG(DATA0), crc);
t4_write_reg(adap, EPIO_REG(OP), ADDRESS(i + 32) | EPIOWR);
t4_read_reg(adap, EPIO_REG(OP)); /* flush */
if (t4_read_reg(adap, EPIO_REG(OP)) & BUSY)
return -ETIMEDOUT;
}
#undef EPIO_REG
t4_set_reg_field(adap, PORT_REG(port, XGMAC_PORT_CFG2), 0, PATEN);
return 0;
}
#define INIT_CMD(var, cmd, rd_wr) do { \
(var).op_to_write = htonl(FW_CMD_OP(FW_##cmd##_CMD) | \
FW_CMD_REQUEST | FW_CMD_##rd_wr); \
(var).retval_len16 = htonl(FW_LEN16(var)); \
} while (0)
/**
* t4_mdio_rd - read a PHY register through MDIO
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @phy_addr: the PHY address
* @mmd: the PHY MMD to access (0 for clause 22 PHYs)
* @reg: the register to read
* @valp: where to store the value
*
* Issues a FW command through the given mailbox to read a PHY register.
*/
int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
unsigned int mmd, unsigned int reg, u16 *valp)
{
int ret;
struct fw_ldst_cmd c;
memset(&c, 0, sizeof(c));
c.op_to_addrspace = htonl(FW_CMD_OP(FW_LDST_CMD) | FW_CMD_REQUEST |
FW_CMD_READ | FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO));
c.cycles_to_len16 = htonl(FW_LEN16(c));
c.u.mdio.paddr_mmd = htons(FW_LDST_CMD_PADDR(phy_addr) |
FW_LDST_CMD_MMD(mmd));
c.u.mdio.raddr = htons(reg);
ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
if (ret == 0)
*valp = ntohs(c.u.mdio.rval);
return ret;
}
/**
* t4_mdio_wr - write a PHY register through MDIO
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @phy_addr: the PHY address
* @mmd: the PHY MMD to access (0 for clause 22 PHYs)
* @reg: the register to write
* @valp: value to write
*
* Issues a FW command through the given mailbox to write a PHY register.
*/
int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
unsigned int mmd, unsigned int reg, u16 val)
{
struct fw_ldst_cmd c;
memset(&c, 0, sizeof(c));
c.op_to_addrspace = htonl(FW_CMD_OP(FW_LDST_CMD) | FW_CMD_REQUEST |
FW_CMD_WRITE | FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO));
c.cycles_to_len16 = htonl(FW_LEN16(c));
c.u.mdio.paddr_mmd = htons(FW_LDST_CMD_PADDR(phy_addr) |
FW_LDST_CMD_MMD(mmd));
c.u.mdio.raddr = htons(reg);
c.u.mdio.rval = htons(val);
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}
/**
* t4_fw_hello - establish communication with FW
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @evt_mbox: mailbox to receive async FW events
* @master: specifies the caller's willingness to be the device master
* @state: returns the current device state
*
* Issues a command to establish communication with FW.
*/
int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
enum dev_master master, enum dev_state *state)
{
int ret;
struct fw_hello_cmd c;
INIT_CMD(c, HELLO, WRITE);
c.err_to_mbasyncnot = htonl(
FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ? mbox : 0xff) |
FW_HELLO_CMD_MBASYNCNOT(evt_mbox));
ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
if (ret == 0 && state) {
u32 v = ntohl(c.err_to_mbasyncnot);
if (v & FW_HELLO_CMD_INIT)
*state = DEV_STATE_INIT;
else if (v & FW_HELLO_CMD_ERR)
*state = DEV_STATE_ERR;
else
*state = DEV_STATE_UNINIT;
}
return ret;
}
/**
* t4_fw_bye - end communication with FW
* @adap: the adapter
* @mbox: mailbox to use for the FW command
*
* Issues a command to terminate communication with FW.
*/
int t4_fw_bye(struct adapter *adap, unsigned int mbox)
{
struct fw_bye_cmd c;
INIT_CMD(c, BYE, WRITE);
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}
/**
* t4_init_cmd - ask FW to initialize the device
* @adap: the adapter
* @mbox: mailbox to use for the FW command
*
* Issues a command to FW to partially initialize the device. This
* performs initialization that generally doesn't depend on user input.
*/
int t4_early_init(struct adapter *adap, unsigned int mbox)
{
struct fw_initialize_cmd c;
INIT_CMD(c, INITIALIZE, WRITE);
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}
/**
* t4_fw_reset - issue a reset to FW
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @reset: specifies the type of reset to perform
*
* Issues a reset command of the specified type to FW.
*/
int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
{
struct fw_reset_cmd c;
INIT_CMD(c, RESET, WRITE);
c.val = htonl(reset);
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}
/**
* t4_query_params - query FW or device parameters
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @pf: the PF
* @vf: the VF
* @nparams: the number of parameters
* @params: the parameter names
* @val: the parameter values
*
* Reads the value of FW or device parameters. Up to 7 parameters can be
* queried at once.
*/
int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
unsigned int vf, unsigned int nparams, const u32 *params,
u32 *val)
{
int i, ret;
struct fw_params_cmd c;
__be32 *p = &c.param[0].mnem;
if (nparams > 7)
return -EINVAL;
memset(&c, 0, sizeof(c));
c.op_to_vfn = htonl(FW_CMD_OP(FW_PARAMS_CMD) | FW_CMD_REQUEST |
FW_CMD_READ | FW_PARAMS_CMD_PFN(pf) |
FW_PARAMS_CMD_VFN(vf));
c.retval_len16 = htonl(FW_LEN16(c));
for (i = 0; i < nparams; i++, p += 2)
*p = htonl(*params++);
ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
if (ret == 0)
for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
*val++ = ntohl(*p);
return ret;
}
/**
* t4_set_params - sets FW or device parameters
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @pf: the PF
* @vf: the VF
* @nparams: the number of parameters
* @params: the parameter names
* @val: the parameter values
*
* Sets the value of FW or device parameters. Up to 7 parameters can be
* specified at once.
*/
int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
unsigned int vf, unsigned int nparams, const u32 *params,
const u32 *val)
{
struct fw_params_cmd c;
__be32 *p = &c.param[0].mnem;
if (nparams > 7)
return -EINVAL;
memset(&c, 0, sizeof(c));
c.op_to_vfn = htonl(FW_CMD_OP(FW_PARAMS_CMD) | FW_CMD_REQUEST |
FW_CMD_WRITE | FW_PARAMS_CMD_PFN(pf) |
FW_PARAMS_CMD_VFN(vf));
c.retval_len16 = htonl(FW_LEN16(c));
while (nparams--) {
*p++ = htonl(*params++);
*p++ = htonl(*val++);
}
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}
/**
* t4_cfg_pfvf - configure PF/VF resource limits
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @pf: the PF being configured
* @vf: the VF being configured
* @txq: the max number of egress queues
* @txq_eth_ctrl: the max number of egress Ethernet or control queues
* @rxqi: the max number of interrupt-capable ingress queues
* @rxq: the max number of interruptless ingress queues
* @tc: the PCI traffic class
* @vi: the max number of virtual interfaces
* @cmask: the channel access rights mask for the PF/VF
* @pmask: the port access rights mask for the PF/VF
* @nexact: the maximum number of exact MPS filters
* @rcaps: read capabilities
* @wxcaps: write/execute capabilities
*
* Configures resource limits and capabilities for a physical or virtual
* function.
*/
int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
unsigned int rxqi, unsigned int rxq, unsigned int tc,
unsigned int vi, unsigned int cmask, unsigned int pmask,
unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
{
struct fw_pfvf_cmd c;
memset(&c, 0, sizeof(c));
c.op_to_vfn = htonl(FW_CMD_OP(FW_PFVF_CMD) | FW_CMD_REQUEST |
FW_CMD_WRITE | FW_PFVF_CMD_PFN(pf) |
FW_PFVF_CMD_VFN(vf));
c.retval_len16 = htonl(FW_LEN16(c));
c.niqflint_niq = htonl(FW_PFVF_CMD_NIQFLINT(rxqi) |
FW_PFVF_CMD_NIQ(rxq));
c.cmask_to_neq = htonl(FW_PFVF_CMD_CMASK(cmask) |
FW_PFVF_CMD_PMASK(pmask) |
FW_PFVF_CMD_NEQ(txq));
c.tc_to_nexactf = htonl(FW_PFVF_CMD_TC(tc) | FW_PFVF_CMD_NVI(vi) |
FW_PFVF_CMD_NEXACTF(nexact));
c.r_caps_to_nethctrl = htonl(FW_PFVF_CMD_R_CAPS(rcaps) |
FW_PFVF_CMD_WX_CAPS(wxcaps) |
FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}
/**
* t4_alloc_vi - allocate a virtual interface
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @port: physical port associated with the VI
* @pf: the PF owning the VI
* @vf: the VF owning the VI
* @nmac: number of MAC addresses needed (1 to 5)
* @mac: the MAC addresses of the VI
* @rss_size: size of RSS table slice associated with this VI
*
* Allocates a virtual interface for the given physical port. If @mac is
* not %NULL it contains the MAC addresses of the VI as assigned by FW.
* @mac should be large enough to hold @nmac Ethernet addresses, they are
* stored consecutively so the space needed is @nmac * 6 bytes.
* Returns a negative error number or the non-negative VI id.
*/
int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
unsigned int *rss_size)
{
int ret;
struct fw_vi_cmd c;
memset(&c, 0, sizeof(c));
c.op_to_vfn = htonl(FW_CMD_OP(FW_VI_CMD) | FW_CMD_REQUEST |
FW_CMD_WRITE | FW_CMD_EXEC |
FW_VI_CMD_PFN(pf) | FW_VI_CMD_VFN(vf));
c.alloc_to_len16 = htonl(FW_VI_CMD_ALLOC | FW_LEN16(c));
c.portid_pkd = FW_VI_CMD_PORTID(port);
c.nmac = nmac - 1;
ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
if (ret)
return ret;
if (mac) {
memcpy(mac, c.mac, sizeof(c.mac));
switch (nmac) {
case 5:
memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
case 4:
memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
case 3:
memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
case 2:
memcpy(mac + 6, c.nmac0, sizeof(c.nmac0));
}
}
if (rss_size)
*rss_size = FW_VI_CMD_RSSSIZE_GET(ntohs(c.rsssize_pkd));
return ntohs(c.viid_pkd);
}
/**
* t4_free_vi - free a virtual interface
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @pf: the PF owning the VI
* @vf: the VF owning the VI
* @viid: virtual interface identifiler
*
* Free a previously allocated virtual interface.
*/
int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
unsigned int vf, unsigned int viid)
{
struct fw_vi_cmd c;
memset(&c, 0, sizeof(c));
c.op_to_vfn = htonl(FW_CMD_OP(FW_VI_CMD) | FW_CMD_REQUEST |
FW_CMD_EXEC | FW_VI_CMD_PFN(pf) |
FW_VI_CMD_VFN(vf));
c.alloc_to_len16 = htonl(FW_VI_CMD_FREE | FW_LEN16(c));
c.viid_pkd = htons(FW_VI_CMD_VIID(viid));
return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
}
/**
* t4_set_rxmode - set Rx properties of a virtual interface
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @viid: the VI id
* @mtu: the new MTU or -1
* @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
* @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
* @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
* @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
* @sleep_ok: if true we may sleep while awaiting command completion
*
* Sets Rx properties of a virtual interface.
*/
int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
int mtu, int promisc, int all_multi, int bcast, int vlanex,
bool sleep_ok)
{
struct fw_vi_rxmode_cmd c;
/* convert to FW values */
if (mtu < 0)
mtu = FW_RXMODE_MTU_NO_CHG;
if (promisc < 0)
promisc = FW_VI_RXMODE_CMD_PROMISCEN_MASK;
if (all_multi < 0)
all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_MASK;
if (bcast < 0)
bcast = FW_VI_RXMODE_CMD_BROADCASTEN_MASK;
if (vlanex < 0)
vlanex = FW_VI_RXMODE_CMD_VLANEXEN_MASK;
memset(&c, 0, sizeof(c));
c.op_to_viid = htonl(FW_CMD_OP(FW_VI_RXMODE_CMD) | FW_CMD_REQUEST |
FW_CMD_WRITE | FW_VI_RXMODE_CMD_VIID(viid));
c.retval_len16 = htonl(FW_LEN16(c));
c.mtu_to_vlanexen = htonl(FW_VI_RXMODE_CMD_MTU(mtu) |
FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
}
/**
* t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @viid: the VI id
* @free: if true any existing filters for this VI id are first removed
* @naddr: the number of MAC addresses to allocate filters for (up to 7)
* @addr: the MAC address(es)
* @idx: where to store the index of each allocated filter
* @hash: pointer to hash address filter bitmap
* @sleep_ok: call is allowed to sleep
*
* Allocates an exact-match filter for each of the supplied addresses and
* sets it to the corresponding address. If @idx is not %NULL it should
* have at least @naddr entries, each of which will be set to the index of
* the filter allocated for the corresponding MAC address. If a filter
* could not be allocated for an address its index is set to 0xffff.
* If @hash is not %NULL addresses that fail to allocate an exact filter
* are hashed and update the hash filter bitmap pointed at by @hash.
*
* Returns a negative error number or the number of filters allocated.
*/
int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
unsigned int viid, bool free, unsigned int naddr,
const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
{
int i, ret;
struct fw_vi_mac_cmd c;
struct fw_vi_mac_exact *p;
if (naddr > 7)
return -EINVAL;
memset(&c, 0, sizeof(c));
c.op_to_viid = htonl(FW_CMD_OP(FW_VI_MAC_CMD) | FW_CMD_REQUEST |
FW_CMD_WRITE | (free ? FW_CMD_EXEC : 0) |
FW_VI_MAC_CMD_VIID(viid));
c.freemacs_to_len16 = htonl(FW_VI_MAC_CMD_FREEMACS(free) |
FW_CMD_LEN16((naddr + 2) / 2));
for (i = 0, p = c.u.exact; i < naddr; i++, p++) {
p->valid_to_idx = htons(FW_VI_MAC_CMD_VALID |
FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
memcpy(p->macaddr, addr[i], sizeof(p->macaddr));
}
ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
if (ret)
return ret;
for (i = 0, p = c.u.exact; i < naddr; i++, p++) {
u16 index = FW_VI_MAC_CMD_IDX_GET(ntohs(p->valid_to_idx));
if (idx)
idx[i] = index >= NEXACT_MAC ? 0xffff : index;
if (index < NEXACT_MAC)
ret++;
else if (hash)
*hash |= (1 << hash_mac_addr(addr[i]));
}
return ret;
}
/**
* t4_change_mac - modifies the exact-match filter for a MAC address
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @viid: the VI id
* @idx: index of existing filter for old value of MAC address, or -1
* @addr: the new MAC address value
* @persist: whether a new MAC allocation should be persistent
* @add_smt: if true also add the address to the HW SMT
*
* Modifies an exact-match filter and sets it to the new MAC address.
* Note that in general it is not possible to modify the value of a given
* filter so the generic way to modify an address filter is to free the one
* being used by the old address value and allocate a new filter for the
* new address value. @idx can be -1 if the address is a new addition.
*
* Returns a negative error number or the index of the filter with the new
* MAC value.
*/
int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
int idx, const u8 *addr, bool persist, bool add_smt)
{
int ret, mode;
struct fw_vi_mac_cmd c;
struct fw_vi_mac_exact *p = c.u.exact;
if (idx < 0) /* new allocation */
idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
memset(&c, 0, sizeof(c));
c.op_to_viid = htonl(FW_CMD_OP(FW_VI_MAC_CMD) | FW_CMD_REQUEST |
FW_CMD_WRITE | FW_VI_MAC_CMD_VIID(viid));
c.freemacs_to_len16 = htonl(FW_CMD_LEN16(1));
p->valid_to_idx = htons(FW_VI_MAC_CMD_VALID |
FW_VI_MAC_CMD_SMAC_RESULT(mode) |
FW_VI_MAC_CMD_IDX(idx));
memcpy(p->macaddr, addr, sizeof(p->macaddr));
ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
if (ret == 0) {
ret = FW_VI_MAC_CMD_IDX_GET(ntohs(p->valid_to_idx));
if (ret >= NEXACT_MAC)
ret = -ENOMEM;
}
return ret;
}
/**
* t4_set_addr_hash - program the MAC inexact-match hash filter
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @viid: the VI id
* @ucast: whether the hash filter should also match unicast addresses
* @vec: the value to be written to the hash filter
* @sleep_ok: call is allowed to sleep
*
* Sets the 64-bit inexact-match hash filter for a virtual interface.
*/
int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
bool ucast, u64 vec, bool sleep_ok)
{
struct fw_vi_mac_cmd c;
memset(&c, 0, sizeof(c));
c.op_to_viid = htonl(FW_CMD_OP(FW_VI_MAC_CMD) | FW_CMD_REQUEST |
FW_CMD_WRITE | FW_VI_ENABLE_CMD_VIID(viid));
c.freemacs_to_len16 = htonl(FW_VI_MAC_CMD_HASHVECEN |
FW_VI_MAC_CMD_HASHUNIEN(ucast) |
FW_CMD_LEN16(1));
c.u.hash.hashvec = cpu_to_be64(vec);
return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
}
/**
* t4_enable_vi - enable/disable a virtual interface
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @viid: the VI id
* @rx_en: 1=enable Rx, 0=disable Rx
* @tx_en: 1=enable Tx, 0=disable Tx
*
* Enables/disables a virtual interface.
*/
int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
bool rx_en, bool tx_en)
{
struct fw_vi_enable_cmd c;
memset(&c, 0, sizeof(c));
c.op_to_viid = htonl(FW_CMD_OP(FW_VI_ENABLE_CMD) | FW_CMD_REQUEST |
FW_CMD_EXEC | FW_VI_ENABLE_CMD_VIID(viid));
c.ien_to_len16 = htonl(FW_VI_ENABLE_CMD_IEN(rx_en) |
FW_VI_ENABLE_CMD_EEN(tx_en) | FW_LEN16(c));
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}
/**
* t4_identify_port - identify a VI's port by blinking its LED
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @viid: the VI id
* @nblinks: how many times to blink LED at 2.5 Hz
*
* Identifies a VI's port by blinking its LED.
*/
int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
unsigned int nblinks)
{
struct fw_vi_enable_cmd c;
c.op_to_viid = htonl(FW_CMD_OP(FW_VI_ENABLE_CMD) | FW_CMD_REQUEST |
FW_CMD_EXEC | FW_VI_ENABLE_CMD_VIID(viid));
c.ien_to_len16 = htonl(FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
c.blinkdur = htons(nblinks);
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}
/**
* t4_iq_start_stop - enable/disable an ingress queue and its FLs
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @start: %true to enable the queues, %false to disable them
* @pf: the PF owning the queues
* @vf: the VF owning the queues
* @iqid: ingress queue id
* @fl0id: FL0 queue id or 0xffff if no attached FL0
* @fl1id: FL1 queue id or 0xffff if no attached FL1
*
* Starts or stops an ingress queue and its associated FLs, if any.
*/
int t4_iq_start_stop(struct adapter *adap, unsigned int mbox, bool start,
unsigned int pf, unsigned int vf, unsigned int iqid,
unsigned int fl0id, unsigned int fl1id)
{
struct fw_iq_cmd c;
memset(&c, 0, sizeof(c));
c.op_to_vfn = htonl(FW_CMD_OP(FW_IQ_CMD) | FW_CMD_REQUEST |
FW_CMD_EXEC | FW_IQ_CMD_PFN(pf) |
FW_IQ_CMD_VFN(vf));
c.alloc_to_len16 = htonl(FW_IQ_CMD_IQSTART(start) |
FW_IQ_CMD_IQSTOP(!start) | FW_LEN16(c));
c.iqid = htons(iqid);
c.fl0id = htons(fl0id);
c.fl1id = htons(fl1id);
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}
/**
* t4_iq_free - free an ingress queue and its FLs
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @pf: the PF owning the queues
* @vf: the VF owning the queues
* @iqtype: the ingress queue type
* @iqid: ingress queue id
* @fl0id: FL0 queue id or 0xffff if no attached FL0
* @fl1id: FL1 queue id or 0xffff if no attached FL1
*
* Frees an ingress queue and its associated FLs, if any.
*/
int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
unsigned int vf, unsigned int iqtype, unsigned int iqid,
unsigned int fl0id, unsigned int fl1id)
{
struct fw_iq_cmd c;
memset(&c, 0, sizeof(c));
c.op_to_vfn = htonl(FW_CMD_OP(FW_IQ_CMD) | FW_CMD_REQUEST |
FW_CMD_EXEC | FW_IQ_CMD_PFN(pf) |
FW_IQ_CMD_VFN(vf));
c.alloc_to_len16 = htonl(FW_IQ_CMD_FREE | FW_LEN16(c));
c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE(iqtype));
c.iqid = htons(iqid);
c.fl0id = htons(fl0id);
c.fl1id = htons(fl1id);
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}
/**
* t4_eth_eq_free - free an Ethernet egress queue
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @pf: the PF owning the queue
* @vf: the VF owning the queue
* @eqid: egress queue id
*
* Frees an Ethernet egress queue.
*/
int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
unsigned int vf, unsigned int eqid)
{
struct fw_eq_eth_cmd c;
memset(&c, 0, sizeof(c));
c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_ETH_CMD) | FW_CMD_REQUEST |
FW_CMD_EXEC | FW_EQ_ETH_CMD_PFN(pf) |
FW_EQ_ETH_CMD_VFN(vf));
c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
c.eqid_pkd = htonl(FW_EQ_ETH_CMD_EQID(eqid));
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}
/**
* t4_ctrl_eq_free - free a control egress queue
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @pf: the PF owning the queue
* @vf: the VF owning the queue
* @eqid: egress queue id
*
* Frees a control egress queue.
*/
int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
unsigned int vf, unsigned int eqid)
{
struct fw_eq_ctrl_cmd c;
memset(&c, 0, sizeof(c));
c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST |
FW_CMD_EXEC | FW_EQ_CTRL_CMD_PFN(pf) |
FW_EQ_CTRL_CMD_VFN(vf));
c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_EQID(eqid));
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}
/**
* t4_ofld_eq_free - free an offload egress queue
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @pf: the PF owning the queue
* @vf: the VF owning the queue
* @eqid: egress queue id
*
* Frees a control egress queue.
*/
int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
unsigned int vf, unsigned int eqid)
{
struct fw_eq_ofld_cmd c;
memset(&c, 0, sizeof(c));
c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_OFLD_CMD) | FW_CMD_REQUEST |
FW_CMD_EXEC | FW_EQ_OFLD_CMD_PFN(pf) |
FW_EQ_OFLD_CMD_VFN(vf));
c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
c.eqid_pkd = htonl(FW_EQ_OFLD_CMD_EQID(eqid));
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}
/**
* t4_handle_fw_rpl - process a FW reply message
* @adap: the adapter
* @rpl: start of the FW message
*
* Processes a FW message, such as link state change messages.
*/
int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
{
u8 opcode = *(const u8 *)rpl;
if (opcode == FW_PORT_CMD) { /* link/module state change message */
int speed = 0, fc = 0;
const struct fw_port_cmd *p = (void *)rpl;
int chan = FW_PORT_CMD_PORTID_GET(ntohl(p->op_to_portid));
int port = adap->chan_map[chan];
struct port_info *pi = adap2pinfo(adap, port);
struct link_config *lc = &pi->link_cfg;
u32 stat = ntohl(p->u.info.lstatus_to_modtype);
int link_ok = (stat & FW_PORT_CMD_LSTATUS) != 0;
u32 mod = FW_PORT_CMD_MODTYPE_GET(stat);
if (stat & FW_PORT_CMD_RXPAUSE)
fc |= PAUSE_RX;
if (stat & FW_PORT_CMD_TXPAUSE)
fc |= PAUSE_TX;
if (stat & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
speed = SPEED_100;
else if (stat & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
speed = SPEED_1000;
else if (stat & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
speed = SPEED_10000;
if (link_ok != lc->link_ok || speed != lc->speed ||
fc != lc->fc) { /* something changed */
lc->link_ok = link_ok;
lc->speed = speed;
lc->fc = fc;
t4_os_link_changed(adap, port, link_ok);
}
if (mod != pi->mod_type) {
pi->mod_type = mod;
t4_os_portmod_changed(adap, port);
}
}
return 0;
}
static void __devinit get_pci_mode(struct adapter *adapter,
struct pci_params *p)
{
u16 val;
u32 pcie_cap = pci_pcie_cap(adapter->pdev);
if (pcie_cap) {
pci_read_config_word(adapter->pdev, pcie_cap + PCI_EXP_LNKSTA,
&val);
p->speed = val & PCI_EXP_LNKSTA_CLS;
p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
}
}
/**
* init_link_config - initialize a link's SW state
* @lc: structure holding the link state
* @caps: link capabilities
*
* Initializes the SW state maintained for each link, including the link's
* capabilities and default speed/flow-control/autonegotiation settings.
*/
static void __devinit init_link_config(struct link_config *lc,
unsigned int caps)
{
lc->supported = caps;
lc->requested_speed = 0;
lc->speed = 0;
lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
if (lc->supported & FW_PORT_CAP_ANEG) {
lc->advertising = lc->supported & ADVERT_MASK;
lc->autoneg = AUTONEG_ENABLE;
lc->requested_fc |= PAUSE_AUTONEG;
} else {
lc->advertising = 0;
lc->autoneg = AUTONEG_DISABLE;
}
}
static int __devinit wait_dev_ready(struct adapter *adap)
{
if (t4_read_reg(adap, PL_WHOAMI) != 0xffffffff)
return 0;
msleep(500);
return t4_read_reg(adap, PL_WHOAMI) != 0xffffffff ? 0 : -EIO;
}
static int __devinit get_flash_params(struct adapter *adap)
{
int ret;
u32 info;
ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
if (!ret)
ret = sf1_read(adap, 3, 0, 1, &info);
t4_write_reg(adap, SF_OP, 0); /* unlock SF */
if (ret)
return ret;
if ((info & 0xff) != 0x20) /* not a Numonix flash */
return -EINVAL;
info >>= 16; /* log2 of size */
if (info >= 0x14 && info < 0x18)
adap->params.sf_nsec = 1 << (info - 16);
else if (info == 0x18)
adap->params.sf_nsec = 64;
else
return -EINVAL;
adap->params.sf_size = 1 << info;
adap->params.sf_fw_start =
t4_read_reg(adap, CIM_BOOT_CFG) & BOOTADDR_MASK;
return 0;
}
/**
* t4_prep_adapter - prepare SW and HW for operation
* @adapter: the adapter
* @reset: if true perform a HW reset
*
* Initialize adapter SW state for the various HW modules, set initial
* values for some adapter tunables, take PHYs out of reset, and
* initialize the MDIO interface.
*/
int __devinit t4_prep_adapter(struct adapter *adapter)
{
int ret;
ret = wait_dev_ready(adapter);
if (ret < 0)
return ret;
get_pci_mode(adapter, &adapter->params.pci);
adapter->params.rev = t4_read_reg(adapter, PL_REV);
ret = get_flash_params(adapter);
if (ret < 0) {
dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
return ret;
}
ret = get_vpd_params(adapter, &adapter->params.vpd);
if (ret < 0)
return ret;
init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
/*
* Default port for debugging in case we can't reach FW.
*/
adapter->params.nports = 1;
adapter->params.portvec = 1;
return 0;
}
int __devinit t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
{
u8 addr[6];
int ret, i, j = 0;
struct fw_port_cmd c;
memset(&c, 0, sizeof(c));
for_each_port(adap, i) {
unsigned int rss_size;
struct port_info *p = adap2pinfo(adap, i);
while ((adap->params.portvec & (1 << j)) == 0)
j++;
c.op_to_portid = htonl(FW_CMD_OP(FW_PORT_CMD) |
FW_CMD_REQUEST | FW_CMD_READ |
FW_PORT_CMD_PORTID(j));
c.action_to_len16 = htonl(
FW_PORT_CMD_ACTION(FW_PORT_ACTION_GET_PORT_INFO) |
FW_LEN16(c));
ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
if (ret)
return ret;
ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
if (ret < 0)
return ret;
p->viid = ret;
p->tx_chan = j;
p->lport = j;
p->rss_size = rss_size;
memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
memcpy(adap->port[i]->perm_addr, addr, ETH_ALEN);
ret = ntohl(c.u.info.lstatus_to_modtype);
p->mdio_addr = (ret & FW_PORT_CMD_MDIOCAP) ?
FW_PORT_CMD_MDIOADDR_GET(ret) : -1;
p->port_type = FW_PORT_CMD_PTYPE_GET(ret);
p->mod_type = FW_PORT_CMD_MODTYPE_GET(ret);
init_link_config(&p->link_cfg, ntohs(c.u.info.pcap));
j++;
}
return 0;
}