Currently the KMD is using enum i915_cache_level to set caching policy for buffer objects. This is flaky because the PAT index which really controls the caching behavior in PTE has far more levels than what's defined in the enum. In addition, the PAT index is platform dependent, having to translate between i915_cache_level and PAT index is not reliable, and makes the code more complicated. From UMD's perspective there is also a necessity to set caching policy for performance fine tuning. It's much easier for the UMD to directly use PAT index because the behavior of each PAT index is clearly defined in Bspec. Having the abstracted i915_cache_level sitting in between would only cause more ambiguity. PAT is expected to work much like MOCS already works today, and by design userspace is expected to select the index that exactly matches the desired behavior described in the hardware specification. For these reasons this patch replaces i915_cache_level with PAT index. Also note, the cache_level is not completely removed yet, because the KMD still has the need of creating buffer objects with simple cache settings such as cached, uncached, or writethrough. For kernel objects, cache_level is used for simplicity and backward compatibility. For Pre-gen12 platforms PAT can have 1:1 mapping to i915_cache_level, so these two are interchangeable. see the use of LEGACY_CACHELEVEL. One consequence of this change is that gen8_pte_encode is no longer working for gen12 platforms due to the fact that gen12 platforms has different PAT definitions. In the meantime the mtl_pte_encode introduced specfically for MTL becomes generic for all gen12 platforms. This patch renames the MTL PTE encode function into gen12_pte_encode and apply it to all gen12. Even though this change looks unrelated, but separating them would temporarily break gen12 PTE encoding, thus squash them in one patch. Special note: this patch changes the way caching behavior is controlled in the sense that some objects are left to be managed by userspace. For such objects we need to be careful not to change the userspace settings.There are kerneldoc and comments added around obj->cache_coherent, cache_dirty, and how to bypass the checkings by i915_gem_object_has_cache_level. For full understanding, these changes need to be looked at together with the two follow-up patches, one disables the {set|get}_caching ioctl's and the other adds set_pat extension to the GEM_CREATE uAPI. Bspec: 63019 Cc: Chris Wilson <chris.p.wilson@linux.intel.com> Signed-off-by: Fei Yang <fei.yang@intel.com> Reviewed-by: Andi Shyti <andi.shyti@linux.intel.com> Reviewed-by: Matt Roper <matthew.d.roper@intel.com> Signed-off-by: Andi Shyti <andi.shyti@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20230509165200.1740-3-fei.yang@intel.com
1165 lines
28 KiB
C
1165 lines
28 KiB
C
// SPDX-License-Identifier: MIT
|
|
/*
|
|
* Copyright © 2020 Intel Corporation
|
|
*/
|
|
|
|
#include "i915_drv.h"
|
|
#include "intel_context.h"
|
|
#include "intel_gpu_commands.h"
|
|
#include "intel_gt.h"
|
|
#include "intel_gtt.h"
|
|
#include "intel_migrate.h"
|
|
#include "intel_ring.h"
|
|
#include "gem/i915_gem_lmem.h"
|
|
|
|
struct insert_pte_data {
|
|
u64 offset;
|
|
};
|
|
|
|
#define CHUNK_SZ SZ_8M /* ~1ms at 8GiB/s preemption delay */
|
|
|
|
#define GET_CCS_BYTES(i915, size) (HAS_FLAT_CCS(i915) ? \
|
|
DIV_ROUND_UP(size, NUM_BYTES_PER_CCS_BYTE) : 0)
|
|
static bool engine_supports_migration(struct intel_engine_cs *engine)
|
|
{
|
|
if (!engine)
|
|
return false;
|
|
|
|
/*
|
|
* We need the ability to prevent aribtration (MI_ARB_ON_OFF),
|
|
* the ability to write PTE using inline data (MI_STORE_DATA)
|
|
* and of course the ability to do the block transfer (blits).
|
|
*/
|
|
GEM_BUG_ON(engine->class != COPY_ENGINE_CLASS);
|
|
|
|
return true;
|
|
}
|
|
|
|
static void xehpsdv_toggle_pdes(struct i915_address_space *vm,
|
|
struct i915_page_table *pt,
|
|
void *data)
|
|
{
|
|
struct insert_pte_data *d = data;
|
|
|
|
/*
|
|
* Insert a dummy PTE into every PT that will map to LMEM to ensure
|
|
* we have a correctly setup PDE structure for later use.
|
|
*/
|
|
vm->insert_page(vm, 0, d->offset,
|
|
i915_gem_get_pat_index(vm->i915, I915_CACHE_NONE),
|
|
PTE_LM);
|
|
GEM_BUG_ON(!pt->is_compact);
|
|
d->offset += SZ_2M;
|
|
}
|
|
|
|
static void xehpsdv_insert_pte(struct i915_address_space *vm,
|
|
struct i915_page_table *pt,
|
|
void *data)
|
|
{
|
|
struct insert_pte_data *d = data;
|
|
|
|
/*
|
|
* We are playing tricks here, since the actual pt, from the hw
|
|
* pov, is only 256bytes with 32 entries, or 4096bytes with 512
|
|
* entries, but we are still guaranteed that the physical
|
|
* alignment is 64K underneath for the pt, and we are careful
|
|
* not to access the space in the void.
|
|
*/
|
|
vm->insert_page(vm, px_dma(pt), d->offset,
|
|
i915_gem_get_pat_index(vm->i915, I915_CACHE_NONE),
|
|
PTE_LM);
|
|
d->offset += SZ_64K;
|
|
}
|
|
|
|
static void insert_pte(struct i915_address_space *vm,
|
|
struct i915_page_table *pt,
|
|
void *data)
|
|
{
|
|
struct insert_pte_data *d = data;
|
|
|
|
vm->insert_page(vm, px_dma(pt), d->offset,
|
|
i915_gem_get_pat_index(vm->i915, I915_CACHE_NONE),
|
|
i915_gem_object_is_lmem(pt->base) ? PTE_LM : 0);
|
|
d->offset += PAGE_SIZE;
|
|
}
|
|
|
|
static struct i915_address_space *migrate_vm(struct intel_gt *gt)
|
|
{
|
|
struct i915_vm_pt_stash stash = {};
|
|
struct i915_ppgtt *vm;
|
|
int err;
|
|
int i;
|
|
|
|
/*
|
|
* We construct a very special VM for use by all migration contexts,
|
|
* it is kept pinned so that it can be used at any time. As we need
|
|
* to pre-allocate the page directories for the migration VM, this
|
|
* limits us to only using a small number of prepared vma.
|
|
*
|
|
* To be able to pipeline and reschedule migration operations while
|
|
* avoiding unnecessary contention on the vm itself, the PTE updates
|
|
* are inline with the blits. All the blits use the same fixed
|
|
* addresses, with the backing store redirection being updated on the
|
|
* fly. Only 2 implicit vma are used for all migration operations.
|
|
*
|
|
* We lay the ppGTT out as:
|
|
*
|
|
* [0, CHUNK_SZ) -> first object
|
|
* [CHUNK_SZ, 2 * CHUNK_SZ) -> second object
|
|
* [2 * CHUNK_SZ, 2 * CHUNK_SZ + 2 * CHUNK_SZ >> 9] -> PTE
|
|
*
|
|
* By exposing the dma addresses of the page directories themselves
|
|
* within the ppGTT, we are then able to rewrite the PTE prior to use.
|
|
* But the PTE update and subsequent migration operation must be atomic,
|
|
* i.e. within the same non-preemptible window so that we do not switch
|
|
* to another migration context that overwrites the PTE.
|
|
*
|
|
* This changes quite a bit on platforms with HAS_64K_PAGES support,
|
|
* where we instead have three windows, each CHUNK_SIZE in size. The
|
|
* first is reserved for mapping system-memory, and that just uses the
|
|
* 512 entry layout using 4K GTT pages. The other two windows just map
|
|
* lmem pages and must use the new compact 32 entry layout using 64K GTT
|
|
* pages, which ensures we can address any lmem object that the user
|
|
* throws at us. We then also use the xehpsdv_toggle_pdes as a way of
|
|
* just toggling the PDE bit(GEN12_PDE_64K) for us, to enable the
|
|
* compact layout for each of these page-tables, that fall within the
|
|
* [CHUNK_SIZE, 3 * CHUNK_SIZE) range.
|
|
*
|
|
* We lay the ppGTT out as:
|
|
*
|
|
* [0, CHUNK_SZ) -> first window/object, maps smem
|
|
* [CHUNK_SZ, 2 * CHUNK_SZ) -> second window/object, maps lmem src
|
|
* [2 * CHUNK_SZ, 3 * CHUNK_SZ) -> third window/object, maps lmem dst
|
|
*
|
|
* For the PTE window it's also quite different, since each PTE must
|
|
* point to some 64K page, one for each PT(since it's in lmem), and yet
|
|
* each is only <= 4096bytes, but since the unused space within that PTE
|
|
* range is never touched, this should be fine.
|
|
*
|
|
* So basically each PT now needs 64K of virtual memory, instead of 4K,
|
|
* which looks like:
|
|
*
|
|
* [3 * CHUNK_SZ, 3 * CHUNK_SZ + ((3 * CHUNK_SZ / SZ_2M) * SZ_64K)] -> PTE
|
|
*/
|
|
|
|
vm = i915_ppgtt_create(gt, I915_BO_ALLOC_PM_EARLY);
|
|
if (IS_ERR(vm))
|
|
return ERR_CAST(vm);
|
|
|
|
if (!vm->vm.allocate_va_range || !vm->vm.foreach) {
|
|
err = -ENODEV;
|
|
goto err_vm;
|
|
}
|
|
|
|
if (HAS_64K_PAGES(gt->i915))
|
|
stash.pt_sz = I915_GTT_PAGE_SIZE_64K;
|
|
|
|
/*
|
|
* Each engine instance is assigned its own chunk in the VM, so
|
|
* that we can run multiple instances concurrently
|
|
*/
|
|
for (i = 0; i < ARRAY_SIZE(gt->engine_class[COPY_ENGINE_CLASS]); i++) {
|
|
struct intel_engine_cs *engine;
|
|
u64 base = (u64)i << 32;
|
|
struct insert_pte_data d = {};
|
|
struct i915_gem_ww_ctx ww;
|
|
u64 sz;
|
|
|
|
engine = gt->engine_class[COPY_ENGINE_CLASS][i];
|
|
if (!engine_supports_migration(engine))
|
|
continue;
|
|
|
|
/*
|
|
* We copy in 8MiB chunks. Each PDE covers 2MiB, so we need
|
|
* 4x2 page directories for source/destination.
|
|
*/
|
|
if (HAS_64K_PAGES(gt->i915))
|
|
sz = 3 * CHUNK_SZ;
|
|
else
|
|
sz = 2 * CHUNK_SZ;
|
|
d.offset = base + sz;
|
|
|
|
/*
|
|
* We need another page directory setup so that we can write
|
|
* the 8x512 PTE in each chunk.
|
|
*/
|
|
if (HAS_64K_PAGES(gt->i915))
|
|
sz += (sz / SZ_2M) * SZ_64K;
|
|
else
|
|
sz += (sz >> 12) * sizeof(u64);
|
|
|
|
err = i915_vm_alloc_pt_stash(&vm->vm, &stash, sz);
|
|
if (err)
|
|
goto err_vm;
|
|
|
|
for_i915_gem_ww(&ww, err, true) {
|
|
err = i915_vm_lock_objects(&vm->vm, &ww);
|
|
if (err)
|
|
continue;
|
|
err = i915_vm_map_pt_stash(&vm->vm, &stash);
|
|
if (err)
|
|
continue;
|
|
|
|
vm->vm.allocate_va_range(&vm->vm, &stash, base, sz);
|
|
}
|
|
i915_vm_free_pt_stash(&vm->vm, &stash);
|
|
if (err)
|
|
goto err_vm;
|
|
|
|
/* Now allow the GPU to rewrite the PTE via its own ppGTT */
|
|
if (HAS_64K_PAGES(gt->i915)) {
|
|
vm->vm.foreach(&vm->vm, base, d.offset - base,
|
|
xehpsdv_insert_pte, &d);
|
|
d.offset = base + CHUNK_SZ;
|
|
vm->vm.foreach(&vm->vm,
|
|
d.offset,
|
|
2 * CHUNK_SZ,
|
|
xehpsdv_toggle_pdes, &d);
|
|
} else {
|
|
vm->vm.foreach(&vm->vm, base, d.offset - base,
|
|
insert_pte, &d);
|
|
}
|
|
}
|
|
|
|
return &vm->vm;
|
|
|
|
err_vm:
|
|
i915_vm_put(&vm->vm);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
static struct intel_engine_cs *first_copy_engine(struct intel_gt *gt)
|
|
{
|
|
struct intel_engine_cs *engine;
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(gt->engine_class[COPY_ENGINE_CLASS]); i++) {
|
|
engine = gt->engine_class[COPY_ENGINE_CLASS][i];
|
|
if (engine_supports_migration(engine))
|
|
return engine;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static struct intel_context *pinned_context(struct intel_gt *gt)
|
|
{
|
|
static struct lock_class_key key;
|
|
struct intel_engine_cs *engine;
|
|
struct i915_address_space *vm;
|
|
struct intel_context *ce;
|
|
|
|
engine = first_copy_engine(gt);
|
|
if (!engine)
|
|
return ERR_PTR(-ENODEV);
|
|
|
|
vm = migrate_vm(gt);
|
|
if (IS_ERR(vm))
|
|
return ERR_CAST(vm);
|
|
|
|
ce = intel_engine_create_pinned_context(engine, vm, SZ_512K,
|
|
I915_GEM_HWS_MIGRATE,
|
|
&key, "migrate");
|
|
i915_vm_put(vm);
|
|
return ce;
|
|
}
|
|
|
|
int intel_migrate_init(struct intel_migrate *m, struct intel_gt *gt)
|
|
{
|
|
struct intel_context *ce;
|
|
|
|
memset(m, 0, sizeof(*m));
|
|
|
|
ce = pinned_context(gt);
|
|
if (IS_ERR(ce))
|
|
return PTR_ERR(ce);
|
|
|
|
m->context = ce;
|
|
return 0;
|
|
}
|
|
|
|
static int random_index(unsigned int max)
|
|
{
|
|
return upper_32_bits(mul_u32_u32(get_random_u32(), max));
|
|
}
|
|
|
|
static struct intel_context *__migrate_engines(struct intel_gt *gt)
|
|
{
|
|
struct intel_engine_cs *engines[MAX_ENGINE_INSTANCE];
|
|
struct intel_engine_cs *engine;
|
|
unsigned int count, i;
|
|
|
|
count = 0;
|
|
for (i = 0; i < ARRAY_SIZE(gt->engine_class[COPY_ENGINE_CLASS]); i++) {
|
|
engine = gt->engine_class[COPY_ENGINE_CLASS][i];
|
|
if (engine_supports_migration(engine))
|
|
engines[count++] = engine;
|
|
}
|
|
|
|
return intel_context_create(engines[random_index(count)]);
|
|
}
|
|
|
|
struct intel_context *intel_migrate_create_context(struct intel_migrate *m)
|
|
{
|
|
struct intel_context *ce;
|
|
|
|
/*
|
|
* We randomly distribute contexts across the engines upon constrction,
|
|
* as they all share the same pinned vm, and so in order to allow
|
|
* multiple blits to run in parallel, we must construct each blit
|
|
* to use a different range of the vm for its GTT. This has to be
|
|
* known at construction, so we can not use the late greedy load
|
|
* balancing of the virtual-engine.
|
|
*/
|
|
ce = __migrate_engines(m->context->engine->gt);
|
|
if (IS_ERR(ce))
|
|
return ce;
|
|
|
|
ce->ring = NULL;
|
|
ce->ring_size = SZ_256K;
|
|
|
|
i915_vm_put(ce->vm);
|
|
ce->vm = i915_vm_get(m->context->vm);
|
|
|
|
return ce;
|
|
}
|
|
|
|
static inline struct sgt_dma sg_sgt(struct scatterlist *sg)
|
|
{
|
|
dma_addr_t addr = sg_dma_address(sg);
|
|
|
|
return (struct sgt_dma){ sg, addr, addr + sg_dma_len(sg) };
|
|
}
|
|
|
|
static int emit_no_arbitration(struct i915_request *rq)
|
|
{
|
|
u32 *cs;
|
|
|
|
cs = intel_ring_begin(rq, 2);
|
|
if (IS_ERR(cs))
|
|
return PTR_ERR(cs);
|
|
|
|
/* Explicitly disable preemption for this request. */
|
|
*cs++ = MI_ARB_ON_OFF;
|
|
*cs++ = MI_NOOP;
|
|
intel_ring_advance(rq, cs);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int max_pte_pkt_size(struct i915_request *rq, int pkt)
|
|
{
|
|
struct intel_ring *ring = rq->ring;
|
|
|
|
pkt = min_t(int, pkt, (ring->space - rq->reserved_space) / sizeof(u32) + 5);
|
|
pkt = min_t(int, pkt, (ring->size - ring->emit) / sizeof(u32) + 5);
|
|
|
|
return pkt;
|
|
}
|
|
|
|
#define I915_EMIT_PTE_NUM_DWORDS 6
|
|
|
|
static int emit_pte(struct i915_request *rq,
|
|
struct sgt_dma *it,
|
|
unsigned int pat_index,
|
|
bool is_lmem,
|
|
u64 offset,
|
|
int length)
|
|
{
|
|
bool has_64K_pages = HAS_64K_PAGES(rq->engine->i915);
|
|
const u64 encode = rq->context->vm->pte_encode(0, pat_index,
|
|
is_lmem ? PTE_LM : 0);
|
|
struct intel_ring *ring = rq->ring;
|
|
int pkt, dword_length;
|
|
u32 total = 0;
|
|
u32 page_size;
|
|
u32 *hdr, *cs;
|
|
|
|
GEM_BUG_ON(GRAPHICS_VER(rq->engine->i915) < 8);
|
|
|
|
page_size = I915_GTT_PAGE_SIZE;
|
|
dword_length = 0x400;
|
|
|
|
/* Compute the page directory offset for the target address range */
|
|
if (has_64K_pages) {
|
|
GEM_BUG_ON(!IS_ALIGNED(offset, SZ_2M));
|
|
|
|
offset /= SZ_2M;
|
|
offset *= SZ_64K;
|
|
offset += 3 * CHUNK_SZ;
|
|
|
|
if (is_lmem) {
|
|
page_size = I915_GTT_PAGE_SIZE_64K;
|
|
dword_length = 0x40;
|
|
}
|
|
} else {
|
|
offset >>= 12;
|
|
offset *= sizeof(u64);
|
|
offset += 2 * CHUNK_SZ;
|
|
}
|
|
|
|
offset += (u64)rq->engine->instance << 32;
|
|
|
|
cs = intel_ring_begin(rq, I915_EMIT_PTE_NUM_DWORDS);
|
|
if (IS_ERR(cs))
|
|
return PTR_ERR(cs);
|
|
|
|
/* Pack as many PTE updates as possible into a single MI command */
|
|
pkt = max_pte_pkt_size(rq, dword_length);
|
|
|
|
hdr = cs;
|
|
*cs++ = MI_STORE_DATA_IMM | REG_BIT(21); /* as qword elements */
|
|
*cs++ = lower_32_bits(offset);
|
|
*cs++ = upper_32_bits(offset);
|
|
|
|
do {
|
|
if (cs - hdr >= pkt) {
|
|
int dword_rem;
|
|
|
|
*hdr += cs - hdr - 2;
|
|
*cs++ = MI_NOOP;
|
|
|
|
ring->emit = (void *)cs - ring->vaddr;
|
|
intel_ring_advance(rq, cs);
|
|
intel_ring_update_space(ring);
|
|
|
|
cs = intel_ring_begin(rq, I915_EMIT_PTE_NUM_DWORDS);
|
|
if (IS_ERR(cs))
|
|
return PTR_ERR(cs);
|
|
|
|
dword_rem = dword_length;
|
|
if (has_64K_pages) {
|
|
if (IS_ALIGNED(total, SZ_2M)) {
|
|
offset = round_up(offset, SZ_64K);
|
|
} else {
|
|
dword_rem = SZ_2M - (total & (SZ_2M - 1));
|
|
dword_rem /= page_size;
|
|
dword_rem *= 2;
|
|
}
|
|
}
|
|
|
|
pkt = max_pte_pkt_size(rq, dword_rem);
|
|
|
|
hdr = cs;
|
|
*cs++ = MI_STORE_DATA_IMM | REG_BIT(21);
|
|
*cs++ = lower_32_bits(offset);
|
|
*cs++ = upper_32_bits(offset);
|
|
}
|
|
|
|
GEM_BUG_ON(!IS_ALIGNED(it->dma, page_size));
|
|
|
|
*cs++ = lower_32_bits(encode | it->dma);
|
|
*cs++ = upper_32_bits(encode | it->dma);
|
|
|
|
offset += 8;
|
|
total += page_size;
|
|
|
|
it->dma += page_size;
|
|
if (it->dma >= it->max) {
|
|
it->sg = __sg_next(it->sg);
|
|
if (!it->sg || sg_dma_len(it->sg) == 0)
|
|
break;
|
|
|
|
it->dma = sg_dma_address(it->sg);
|
|
it->max = it->dma + sg_dma_len(it->sg);
|
|
}
|
|
} while (total < length);
|
|
|
|
*hdr += cs - hdr - 2;
|
|
*cs++ = MI_NOOP;
|
|
|
|
ring->emit = (void *)cs - ring->vaddr;
|
|
intel_ring_advance(rq, cs);
|
|
intel_ring_update_space(ring);
|
|
|
|
return total;
|
|
}
|
|
|
|
static bool wa_1209644611_applies(int ver, u32 size)
|
|
{
|
|
u32 height = size >> PAGE_SHIFT;
|
|
|
|
if (ver != 11)
|
|
return false;
|
|
|
|
return height % 4 == 3 && height <= 8;
|
|
}
|
|
|
|
/**
|
|
* DOC: Flat-CCS - Memory compression for Local memory
|
|
*
|
|
* On Xe-HP and later devices, we use dedicated compression control state (CCS)
|
|
* stored in local memory for each surface, to support the 3D and media
|
|
* compression formats.
|
|
*
|
|
* The memory required for the CCS of the entire local memory is 1/256 of the
|
|
* local memory size. So before the kernel boot, the required memory is reserved
|
|
* for the CCS data and a secure register will be programmed with the CCS base
|
|
* address.
|
|
*
|
|
* Flat CCS data needs to be cleared when a lmem object is allocated.
|
|
* And CCS data can be copied in and out of CCS region through
|
|
* XY_CTRL_SURF_COPY_BLT. CPU can't access the CCS data directly.
|
|
*
|
|
* I915 supports Flat-CCS on lmem only objects. When an objects has smem in
|
|
* its preference list, on memory pressure, i915 needs to migrate the lmem
|
|
* content into smem. If the lmem object is Flat-CCS compressed by userspace,
|
|
* then i915 needs to decompress it. But I915 lack the required information
|
|
* for such decompression. Hence I915 supports Flat-CCS only on lmem only objects.
|
|
*
|
|
* When we exhaust the lmem, Flat-CCS capable objects' lmem backing memory can
|
|
* be temporarily evicted to smem, along with the auxiliary CCS state, where
|
|
* it can be potentially swapped-out at a later point, if required.
|
|
* If userspace later touches the evicted pages, then we always move
|
|
* the backing memory back to lmem, which includes restoring the saved CCS state,
|
|
* and potentially performing any required swap-in.
|
|
*
|
|
* For the migration of the lmem objects with smem in placement list, such as
|
|
* {lmem, smem}, objects are treated as non Flat-CCS capable objects.
|
|
*/
|
|
|
|
static inline u32 *i915_flush_dw(u32 *cmd, u32 flags)
|
|
{
|
|
*cmd++ = MI_FLUSH_DW | flags;
|
|
*cmd++ = 0;
|
|
*cmd++ = 0;
|
|
|
|
return cmd;
|
|
}
|
|
|
|
static int emit_copy_ccs(struct i915_request *rq,
|
|
u32 dst_offset, u8 dst_access,
|
|
u32 src_offset, u8 src_access, int size)
|
|
{
|
|
struct drm_i915_private *i915 = rq->engine->i915;
|
|
int mocs = rq->engine->gt->mocs.uc_index << 1;
|
|
u32 num_ccs_blks;
|
|
u32 *cs;
|
|
|
|
cs = intel_ring_begin(rq, 12);
|
|
if (IS_ERR(cs))
|
|
return PTR_ERR(cs);
|
|
|
|
num_ccs_blks = DIV_ROUND_UP(GET_CCS_BYTES(i915, size),
|
|
NUM_CCS_BYTES_PER_BLOCK);
|
|
GEM_BUG_ON(num_ccs_blks > NUM_CCS_BLKS_PER_XFER);
|
|
cs = i915_flush_dw(cs, MI_FLUSH_DW_LLC | MI_FLUSH_DW_CCS);
|
|
|
|
/*
|
|
* The XY_CTRL_SURF_COPY_BLT instruction is used to copy the CCS
|
|
* data in and out of the CCS region.
|
|
*
|
|
* We can copy at most 1024 blocks of 256 bytes using one
|
|
* XY_CTRL_SURF_COPY_BLT instruction.
|
|
*
|
|
* In case we need to copy more than 1024 blocks, we need to add
|
|
* another instruction to the same batch buffer.
|
|
*
|
|
* 1024 blocks of 256 bytes of CCS represent a total 256KB of CCS.
|
|
*
|
|
* 256 KB of CCS represents 256 * 256 KB = 64 MB of LMEM.
|
|
*/
|
|
*cs++ = XY_CTRL_SURF_COPY_BLT |
|
|
src_access << SRC_ACCESS_TYPE_SHIFT |
|
|
dst_access << DST_ACCESS_TYPE_SHIFT |
|
|
((num_ccs_blks - 1) & CCS_SIZE_MASK) << CCS_SIZE_SHIFT;
|
|
*cs++ = src_offset;
|
|
*cs++ = rq->engine->instance |
|
|
FIELD_PREP(XY_CTRL_SURF_MOCS_MASK, mocs);
|
|
*cs++ = dst_offset;
|
|
*cs++ = rq->engine->instance |
|
|
FIELD_PREP(XY_CTRL_SURF_MOCS_MASK, mocs);
|
|
|
|
cs = i915_flush_dw(cs, MI_FLUSH_DW_LLC | MI_FLUSH_DW_CCS);
|
|
*cs++ = MI_NOOP;
|
|
|
|
intel_ring_advance(rq, cs);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int emit_copy(struct i915_request *rq,
|
|
u32 dst_offset, u32 src_offset, int size)
|
|
{
|
|
const int ver = GRAPHICS_VER(rq->engine->i915);
|
|
u32 instance = rq->engine->instance;
|
|
u32 *cs;
|
|
|
|
cs = intel_ring_begin(rq, ver >= 8 ? 10 : 6);
|
|
if (IS_ERR(cs))
|
|
return PTR_ERR(cs);
|
|
|
|
if (ver >= 9 && !wa_1209644611_applies(ver, size)) {
|
|
*cs++ = GEN9_XY_FAST_COPY_BLT_CMD | (10 - 2);
|
|
*cs++ = BLT_DEPTH_32 | PAGE_SIZE;
|
|
*cs++ = 0;
|
|
*cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4;
|
|
*cs++ = dst_offset;
|
|
*cs++ = instance;
|
|
*cs++ = 0;
|
|
*cs++ = PAGE_SIZE;
|
|
*cs++ = src_offset;
|
|
*cs++ = instance;
|
|
} else if (ver >= 8) {
|
|
*cs++ = XY_SRC_COPY_BLT_CMD | BLT_WRITE_RGBA | (10 - 2);
|
|
*cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | PAGE_SIZE;
|
|
*cs++ = 0;
|
|
*cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4;
|
|
*cs++ = dst_offset;
|
|
*cs++ = instance;
|
|
*cs++ = 0;
|
|
*cs++ = PAGE_SIZE;
|
|
*cs++ = src_offset;
|
|
*cs++ = instance;
|
|
} else {
|
|
GEM_BUG_ON(instance);
|
|
*cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA | (6 - 2);
|
|
*cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | PAGE_SIZE;
|
|
*cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE;
|
|
*cs++ = dst_offset;
|
|
*cs++ = PAGE_SIZE;
|
|
*cs++ = src_offset;
|
|
}
|
|
|
|
intel_ring_advance(rq, cs);
|
|
return 0;
|
|
}
|
|
|
|
static u64 scatter_list_length(struct scatterlist *sg)
|
|
{
|
|
u64 len = 0;
|
|
|
|
while (sg && sg_dma_len(sg)) {
|
|
len += sg_dma_len(sg);
|
|
sg = sg_next(sg);
|
|
}
|
|
|
|
return len;
|
|
}
|
|
|
|
static int
|
|
calculate_chunk_sz(struct drm_i915_private *i915, bool src_is_lmem,
|
|
u64 bytes_to_cpy, u64 ccs_bytes_to_cpy)
|
|
{
|
|
if (ccs_bytes_to_cpy && !src_is_lmem)
|
|
/*
|
|
* When CHUNK_SZ is passed all the pages upto CHUNK_SZ
|
|
* will be taken for the blt. in Flat-ccs supported
|
|
* platform Smem obj will have more pages than required
|
|
* for main meory hence limit it to the required size
|
|
* for main memory
|
|
*/
|
|
return min_t(u64, bytes_to_cpy, CHUNK_SZ);
|
|
else
|
|
return CHUNK_SZ;
|
|
}
|
|
|
|
static void get_ccs_sg_sgt(struct sgt_dma *it, u64 bytes_to_cpy)
|
|
{
|
|
u64 len;
|
|
|
|
do {
|
|
GEM_BUG_ON(!it->sg || !sg_dma_len(it->sg));
|
|
len = it->max - it->dma;
|
|
if (len > bytes_to_cpy) {
|
|
it->dma += bytes_to_cpy;
|
|
break;
|
|
}
|
|
|
|
bytes_to_cpy -= len;
|
|
|
|
it->sg = __sg_next(it->sg);
|
|
it->dma = sg_dma_address(it->sg);
|
|
it->max = it->dma + sg_dma_len(it->sg);
|
|
} while (bytes_to_cpy);
|
|
}
|
|
|
|
int
|
|
intel_context_migrate_copy(struct intel_context *ce,
|
|
const struct i915_deps *deps,
|
|
struct scatterlist *src,
|
|
unsigned int src_pat_index,
|
|
bool src_is_lmem,
|
|
struct scatterlist *dst,
|
|
unsigned int dst_pat_index,
|
|
bool dst_is_lmem,
|
|
struct i915_request **out)
|
|
{
|
|
struct sgt_dma it_src = sg_sgt(src), it_dst = sg_sgt(dst), it_ccs;
|
|
struct drm_i915_private *i915 = ce->engine->i915;
|
|
u64 ccs_bytes_to_cpy = 0, bytes_to_cpy;
|
|
unsigned int ccs_pat_index;
|
|
u32 src_offset, dst_offset;
|
|
u8 src_access, dst_access;
|
|
struct i915_request *rq;
|
|
u64 src_sz, dst_sz;
|
|
bool ccs_is_src, overwrite_ccs;
|
|
int err;
|
|
|
|
GEM_BUG_ON(ce->vm != ce->engine->gt->migrate.context->vm);
|
|
GEM_BUG_ON(IS_DGFX(ce->engine->i915) && (!src_is_lmem && !dst_is_lmem));
|
|
*out = NULL;
|
|
|
|
GEM_BUG_ON(ce->ring->size < SZ_64K);
|
|
|
|
src_sz = scatter_list_length(src);
|
|
bytes_to_cpy = src_sz;
|
|
|
|
if (HAS_FLAT_CCS(i915) && src_is_lmem ^ dst_is_lmem) {
|
|
src_access = !src_is_lmem && dst_is_lmem;
|
|
dst_access = !src_access;
|
|
|
|
dst_sz = scatter_list_length(dst);
|
|
if (src_is_lmem) {
|
|
it_ccs = it_dst;
|
|
ccs_pat_index = dst_pat_index;
|
|
ccs_is_src = false;
|
|
} else if (dst_is_lmem) {
|
|
bytes_to_cpy = dst_sz;
|
|
it_ccs = it_src;
|
|
ccs_pat_index = src_pat_index;
|
|
ccs_is_src = true;
|
|
}
|
|
|
|
/*
|
|
* When there is a eviction of ccs needed smem will have the
|
|
* extra pages for the ccs data
|
|
*
|
|
* TO-DO: Want to move the size mismatch check to a WARN_ON,
|
|
* but still we have some requests of smem->lmem with same size.
|
|
* Need to fix it.
|
|
*/
|
|
ccs_bytes_to_cpy = src_sz != dst_sz ? GET_CCS_BYTES(i915, bytes_to_cpy) : 0;
|
|
if (ccs_bytes_to_cpy)
|
|
get_ccs_sg_sgt(&it_ccs, bytes_to_cpy);
|
|
}
|
|
|
|
overwrite_ccs = HAS_FLAT_CCS(i915) && !ccs_bytes_to_cpy && dst_is_lmem;
|
|
|
|
src_offset = 0;
|
|
dst_offset = CHUNK_SZ;
|
|
if (HAS_64K_PAGES(ce->engine->i915)) {
|
|
src_offset = 0;
|
|
dst_offset = 0;
|
|
if (src_is_lmem)
|
|
src_offset = CHUNK_SZ;
|
|
if (dst_is_lmem)
|
|
dst_offset = 2 * CHUNK_SZ;
|
|
}
|
|
|
|
do {
|
|
int len;
|
|
|
|
rq = i915_request_create(ce);
|
|
if (IS_ERR(rq)) {
|
|
err = PTR_ERR(rq);
|
|
goto out_ce;
|
|
}
|
|
|
|
if (deps) {
|
|
err = i915_request_await_deps(rq, deps);
|
|
if (err)
|
|
goto out_rq;
|
|
|
|
if (rq->engine->emit_init_breadcrumb) {
|
|
err = rq->engine->emit_init_breadcrumb(rq);
|
|
if (err)
|
|
goto out_rq;
|
|
}
|
|
|
|
deps = NULL;
|
|
}
|
|
|
|
/* The PTE updates + copy must not be interrupted. */
|
|
err = emit_no_arbitration(rq);
|
|
if (err)
|
|
goto out_rq;
|
|
|
|
src_sz = calculate_chunk_sz(i915, src_is_lmem,
|
|
bytes_to_cpy, ccs_bytes_to_cpy);
|
|
|
|
len = emit_pte(rq, &it_src, src_pat_index, src_is_lmem,
|
|
src_offset, src_sz);
|
|
if (!len) {
|
|
err = -EINVAL;
|
|
goto out_rq;
|
|
}
|
|
if (len < 0) {
|
|
err = len;
|
|
goto out_rq;
|
|
}
|
|
|
|
err = emit_pte(rq, &it_dst, dst_pat_index, dst_is_lmem,
|
|
dst_offset, len);
|
|
if (err < 0)
|
|
goto out_rq;
|
|
if (err < len) {
|
|
err = -EINVAL;
|
|
goto out_rq;
|
|
}
|
|
|
|
err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
|
|
if (err)
|
|
goto out_rq;
|
|
|
|
err = emit_copy(rq, dst_offset, src_offset, len);
|
|
if (err)
|
|
goto out_rq;
|
|
|
|
bytes_to_cpy -= len;
|
|
|
|
if (ccs_bytes_to_cpy) {
|
|
int ccs_sz;
|
|
|
|
err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
|
|
if (err)
|
|
goto out_rq;
|
|
|
|
ccs_sz = GET_CCS_BYTES(i915, len);
|
|
err = emit_pte(rq, &it_ccs, ccs_pat_index, false,
|
|
ccs_is_src ? src_offset : dst_offset,
|
|
ccs_sz);
|
|
if (err < 0)
|
|
goto out_rq;
|
|
if (err < ccs_sz) {
|
|
err = -EINVAL;
|
|
goto out_rq;
|
|
}
|
|
|
|
err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
|
|
if (err)
|
|
goto out_rq;
|
|
|
|
err = emit_copy_ccs(rq, dst_offset, dst_access,
|
|
src_offset, src_access, len);
|
|
if (err)
|
|
goto out_rq;
|
|
|
|
err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
|
|
if (err)
|
|
goto out_rq;
|
|
ccs_bytes_to_cpy -= ccs_sz;
|
|
} else if (overwrite_ccs) {
|
|
err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
|
|
if (err)
|
|
goto out_rq;
|
|
|
|
if (src_is_lmem) {
|
|
/*
|
|
* If the src is already in lmem, then we must
|
|
* be doing an lmem -> lmem transfer, and so
|
|
* should be safe to directly copy the CCS
|
|
* state. In this case we have either
|
|
* initialised the CCS aux state when first
|
|
* clearing the pages (since it is already
|
|
* allocated in lmem), or the user has
|
|
* potentially populated it, in which case we
|
|
* need to copy the CCS state as-is.
|
|
*/
|
|
err = emit_copy_ccs(rq,
|
|
dst_offset, INDIRECT_ACCESS,
|
|
src_offset, INDIRECT_ACCESS,
|
|
len);
|
|
} else {
|
|
/*
|
|
* While we can't always restore/manage the CCS
|
|
* state, we still need to ensure we don't leak
|
|
* the CCS state from the previous user, so make
|
|
* sure we overwrite it with something.
|
|
*/
|
|
err = emit_copy_ccs(rq,
|
|
dst_offset, INDIRECT_ACCESS,
|
|
dst_offset, DIRECT_ACCESS,
|
|
len);
|
|
}
|
|
|
|
if (err)
|
|
goto out_rq;
|
|
|
|
err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
|
|
if (err)
|
|
goto out_rq;
|
|
}
|
|
|
|
/* Arbitration is re-enabled between requests. */
|
|
out_rq:
|
|
if (*out)
|
|
i915_request_put(*out);
|
|
*out = i915_request_get(rq);
|
|
i915_request_add(rq);
|
|
|
|
if (err)
|
|
break;
|
|
|
|
if (!bytes_to_cpy && !ccs_bytes_to_cpy) {
|
|
if (src_is_lmem)
|
|
WARN_ON(it_src.sg && sg_dma_len(it_src.sg));
|
|
else
|
|
WARN_ON(it_dst.sg && sg_dma_len(it_dst.sg));
|
|
break;
|
|
}
|
|
|
|
if (WARN_ON(!it_src.sg || !sg_dma_len(it_src.sg) ||
|
|
!it_dst.sg || !sg_dma_len(it_dst.sg) ||
|
|
(ccs_bytes_to_cpy && (!it_ccs.sg ||
|
|
!sg_dma_len(it_ccs.sg))))) {
|
|
err = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
cond_resched();
|
|
} while (1);
|
|
|
|
out_ce:
|
|
return err;
|
|
}
|
|
|
|
static int emit_clear(struct i915_request *rq, u32 offset, int size,
|
|
u32 value, bool is_lmem)
|
|
{
|
|
struct drm_i915_private *i915 = rq->engine->i915;
|
|
int mocs = rq->engine->gt->mocs.uc_index << 1;
|
|
const int ver = GRAPHICS_VER(i915);
|
|
int ring_sz;
|
|
u32 *cs;
|
|
|
|
GEM_BUG_ON(size >> PAGE_SHIFT > S16_MAX);
|
|
|
|
if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50))
|
|
ring_sz = XY_FAST_COLOR_BLT_DW;
|
|
else if (ver >= 8)
|
|
ring_sz = 8;
|
|
else
|
|
ring_sz = 6;
|
|
|
|
cs = intel_ring_begin(rq, ring_sz);
|
|
if (IS_ERR(cs))
|
|
return PTR_ERR(cs);
|
|
|
|
if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) {
|
|
*cs++ = XY_FAST_COLOR_BLT_CMD | XY_FAST_COLOR_BLT_DEPTH_32 |
|
|
(XY_FAST_COLOR_BLT_DW - 2);
|
|
*cs++ = FIELD_PREP(XY_FAST_COLOR_BLT_MOCS_MASK, mocs) |
|
|
(PAGE_SIZE - 1);
|
|
*cs++ = 0;
|
|
*cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4;
|
|
*cs++ = offset;
|
|
*cs++ = rq->engine->instance;
|
|
*cs++ = !is_lmem << XY_FAST_COLOR_BLT_MEM_TYPE_SHIFT;
|
|
/* BG7 */
|
|
*cs++ = value;
|
|
*cs++ = 0;
|
|
*cs++ = 0;
|
|
*cs++ = 0;
|
|
/* BG11 */
|
|
*cs++ = 0;
|
|
*cs++ = 0;
|
|
/* BG13 */
|
|
*cs++ = 0;
|
|
*cs++ = 0;
|
|
*cs++ = 0;
|
|
} else if (ver >= 8) {
|
|
*cs++ = XY_COLOR_BLT_CMD | BLT_WRITE_RGBA | (7 - 2);
|
|
*cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | PAGE_SIZE;
|
|
*cs++ = 0;
|
|
*cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4;
|
|
*cs++ = offset;
|
|
*cs++ = rq->engine->instance;
|
|
*cs++ = value;
|
|
*cs++ = MI_NOOP;
|
|
} else {
|
|
*cs++ = XY_COLOR_BLT_CMD | BLT_WRITE_RGBA | (6 - 2);
|
|
*cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | PAGE_SIZE;
|
|
*cs++ = 0;
|
|
*cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4;
|
|
*cs++ = offset;
|
|
*cs++ = value;
|
|
}
|
|
|
|
intel_ring_advance(rq, cs);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
intel_context_migrate_clear(struct intel_context *ce,
|
|
const struct i915_deps *deps,
|
|
struct scatterlist *sg,
|
|
unsigned int pat_index,
|
|
bool is_lmem,
|
|
u32 value,
|
|
struct i915_request **out)
|
|
{
|
|
struct drm_i915_private *i915 = ce->engine->i915;
|
|
struct sgt_dma it = sg_sgt(sg);
|
|
struct i915_request *rq;
|
|
u32 offset;
|
|
int err;
|
|
|
|
GEM_BUG_ON(ce->vm != ce->engine->gt->migrate.context->vm);
|
|
*out = NULL;
|
|
|
|
GEM_BUG_ON(ce->ring->size < SZ_64K);
|
|
|
|
offset = 0;
|
|
if (HAS_64K_PAGES(i915) && is_lmem)
|
|
offset = CHUNK_SZ;
|
|
|
|
do {
|
|
int len;
|
|
|
|
rq = i915_request_create(ce);
|
|
if (IS_ERR(rq)) {
|
|
err = PTR_ERR(rq);
|
|
goto out_ce;
|
|
}
|
|
|
|
if (deps) {
|
|
err = i915_request_await_deps(rq, deps);
|
|
if (err)
|
|
goto out_rq;
|
|
|
|
if (rq->engine->emit_init_breadcrumb) {
|
|
err = rq->engine->emit_init_breadcrumb(rq);
|
|
if (err)
|
|
goto out_rq;
|
|
}
|
|
|
|
deps = NULL;
|
|
}
|
|
|
|
/* The PTE updates + clear must not be interrupted. */
|
|
err = emit_no_arbitration(rq);
|
|
if (err)
|
|
goto out_rq;
|
|
|
|
len = emit_pte(rq, &it, pat_index, is_lmem, offset, CHUNK_SZ);
|
|
if (len <= 0) {
|
|
err = len;
|
|
goto out_rq;
|
|
}
|
|
|
|
err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
|
|
if (err)
|
|
goto out_rq;
|
|
|
|
err = emit_clear(rq, offset, len, value, is_lmem);
|
|
if (err)
|
|
goto out_rq;
|
|
|
|
if (HAS_FLAT_CCS(i915) && is_lmem && !value) {
|
|
/*
|
|
* copy the content of memory into corresponding
|
|
* ccs surface
|
|
*/
|
|
err = emit_copy_ccs(rq, offset, INDIRECT_ACCESS, offset,
|
|
DIRECT_ACCESS, len);
|
|
if (err)
|
|
goto out_rq;
|
|
}
|
|
|
|
err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
|
|
|
|
/* Arbitration is re-enabled between requests. */
|
|
out_rq:
|
|
if (*out)
|
|
i915_request_put(*out);
|
|
*out = i915_request_get(rq);
|
|
i915_request_add(rq);
|
|
if (err || !it.sg || !sg_dma_len(it.sg))
|
|
break;
|
|
|
|
cond_resched();
|
|
} while (1);
|
|
|
|
out_ce:
|
|
return err;
|
|
}
|
|
|
|
int intel_migrate_copy(struct intel_migrate *m,
|
|
struct i915_gem_ww_ctx *ww,
|
|
const struct i915_deps *deps,
|
|
struct scatterlist *src,
|
|
unsigned int src_pat_index,
|
|
bool src_is_lmem,
|
|
struct scatterlist *dst,
|
|
unsigned int dst_pat_index,
|
|
bool dst_is_lmem,
|
|
struct i915_request **out)
|
|
{
|
|
struct intel_context *ce;
|
|
int err;
|
|
|
|
*out = NULL;
|
|
if (!m->context)
|
|
return -ENODEV;
|
|
|
|
ce = intel_migrate_create_context(m);
|
|
if (IS_ERR(ce))
|
|
ce = intel_context_get(m->context);
|
|
GEM_BUG_ON(IS_ERR(ce));
|
|
|
|
err = intel_context_pin_ww(ce, ww);
|
|
if (err)
|
|
goto out;
|
|
|
|
err = intel_context_migrate_copy(ce, deps,
|
|
src, src_pat_index, src_is_lmem,
|
|
dst, dst_pat_index, dst_is_lmem,
|
|
out);
|
|
|
|
intel_context_unpin(ce);
|
|
out:
|
|
intel_context_put(ce);
|
|
return err;
|
|
}
|
|
|
|
int
|
|
intel_migrate_clear(struct intel_migrate *m,
|
|
struct i915_gem_ww_ctx *ww,
|
|
const struct i915_deps *deps,
|
|
struct scatterlist *sg,
|
|
unsigned int pat_index,
|
|
bool is_lmem,
|
|
u32 value,
|
|
struct i915_request **out)
|
|
{
|
|
struct intel_context *ce;
|
|
int err;
|
|
|
|
*out = NULL;
|
|
if (!m->context)
|
|
return -ENODEV;
|
|
|
|
ce = intel_migrate_create_context(m);
|
|
if (IS_ERR(ce))
|
|
ce = intel_context_get(m->context);
|
|
GEM_BUG_ON(IS_ERR(ce));
|
|
|
|
err = intel_context_pin_ww(ce, ww);
|
|
if (err)
|
|
goto out;
|
|
|
|
err = intel_context_migrate_clear(ce, deps, sg, pat_index,
|
|
is_lmem, value, out);
|
|
|
|
intel_context_unpin(ce);
|
|
out:
|
|
intel_context_put(ce);
|
|
return err;
|
|
}
|
|
|
|
void intel_migrate_fini(struct intel_migrate *m)
|
|
{
|
|
struct intel_context *ce;
|
|
|
|
ce = fetch_and_zero(&m->context);
|
|
if (!ce)
|
|
return;
|
|
|
|
intel_engine_destroy_pinned_context(ce);
|
|
}
|
|
|
|
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
|
|
#include "selftest_migrate.c"
|
|
#endif
|