linux/kernel/sched/fair.c
Linus Torvalds ecae0bd517 Many singleton patches against the MM code. The patch series which are
included in this merge do the following:
 
 - Kemeng Shi has contributed some compation maintenance work in the
   series "Fixes and cleanups to compaction".
 
 - Joel Fernandes has a patchset ("Optimize mremap during mutual
   alignment within PMD") which fixes an obscure issue with mremap()'s
   pagetable handling during a subsequent exec(), based upon an
   implementation which Linus suggested.
 
 - More DAMON/DAMOS maintenance and feature work from SeongJae Park i the
   following patch series:
 
 	mm/damon: misc fixups for documents, comments and its tracepoint
 	mm/damon: add a tracepoint for damos apply target regions
 	mm/damon: provide pseudo-moving sum based access rate
 	mm/damon: implement DAMOS apply intervals
 	mm/damon/core-test: Fix memory leaks in core-test
 	mm/damon/sysfs-schemes: Do DAMOS tried regions update for only one apply interval
 
 - In the series "Do not try to access unaccepted memory" Adrian Hunter
   provides some fixups for the recently-added "unaccepted memory' feature.
   To increase the feature's checking coverage.  "Plug a few gaps where
   RAM is exposed without checking if it is unaccepted memory".
 
 - In the series "cleanups for lockless slab shrink" Qi Zheng has done
   some maintenance work which is preparation for the lockless slab
   shrinking code.
 
 - Qi Zheng has redone the earlier (and reverted) attempt to make slab
   shrinking lockless in the series "use refcount+RCU method to implement
   lockless slab shrink".
 
 - David Hildenbrand contributes some maintenance work for the rmap code
   in the series "Anon rmap cleanups".
 
 - Kefeng Wang does more folio conversions and some maintenance work in
   the migration code.  Series "mm: migrate: more folio conversion and
   unification".
 
 - Matthew Wilcox has fixed an issue in the buffer_head code which was
   causing long stalls under some heavy memory/IO loads.  Some cleanups
   were added on the way.  Series "Add and use bdev_getblk()".
 
 - In the series "Use nth_page() in place of direct struct page
   manipulation" Zi Yan has fixed a potential issue with the direct
   manipulation of hugetlb page frames.
 
 - In the series "mm: hugetlb: Skip initialization of gigantic tail
   struct pages if freed by HVO" has improved our handling of gigantic
   pages in the hugetlb vmmemmep optimizaton code.  This provides
   significant boot time improvements when significant amounts of gigantic
   pages are in use.
 
 - Matthew Wilcox has sent the series "Small hugetlb cleanups" - code
   rationalization and folio conversions in the hugetlb code.
 
 - Yin Fengwei has improved mlock()'s handling of large folios in the
   series "support large folio for mlock"
 
 - In the series "Expose swapcache stat for memcg v1" Liu Shixin has
   added statistics for memcg v1 users which are available (and useful)
   under memcg v2.
 
 - Florent Revest has enhanced the MDWE (Memory-Deny-Write-Executable)
   prctl so that userspace may direct the kernel to not automatically
   propagate the denial to child processes.  The series is named "MDWE
   without inheritance".
 
 - Kefeng Wang has provided the series "mm: convert numa balancing
   functions to use a folio" which does what it says.
 
 - In the series "mm/ksm: add fork-exec support for prctl" Stefan Roesch
   makes is possible for a process to propagate KSM treatment across
   exec().
 
 - Huang Ying has enhanced memory tiering's calculation of memory
   distances.  This is used to permit the dax/kmem driver to use "high
   bandwidth memory" in addition to Optane Data Center Persistent Memory
   Modules (DCPMM).  The series is named "memory tiering: calculate
   abstract distance based on ACPI HMAT"
 
 - In the series "Smart scanning mode for KSM" Stefan Roesch has
   optimized KSM by teaching it to retain and use some historical
   information from previous scans.
 
 - Yosry Ahmed has fixed some inconsistencies in memcg statistics in the
   series "mm: memcg: fix tracking of pending stats updates values".
 
 - In the series "Implement IOCTL to get and optionally clear info about
   PTEs" Peter Xu has added an ioctl to /proc/<pid>/pagemap which permits
   us to atomically read-then-clear page softdirty state.  This is mainly
   used by CRIU.
 
 - Hugh Dickins contributed the series "shmem,tmpfs: general maintenance"
   - a bunch of relatively minor maintenance tweaks to this code.
 
 - Matthew Wilcox has increased the use of the VMA lock over file-backed
   page faults in the series "Handle more faults under the VMA lock".  Some
   rationalizations of the fault path became possible as a result.
 
 - In the series "mm/rmap: convert page_move_anon_rmap() to
   folio_move_anon_rmap()" David Hildenbrand has implemented some cleanups
   and folio conversions.
 
 - In the series "various improvements to the GUP interface" Lorenzo
   Stoakes has simplified and improved the GUP interface with an eye to
   providing groundwork for future improvements.
 
 - Andrey Konovalov has sent along the series "kasan: assorted fixes and
   improvements" which does those things.
 
 - Some page allocator maintenance work from Kemeng Shi in the series
   "Two minor cleanups to break_down_buddy_pages".
 
 - In thes series "New selftest for mm" Breno Leitao has developed
   another MM self test which tickles a race we had between madvise() and
   page faults.
 
 - In the series "Add folio_end_read" Matthew Wilcox provides cleanups
   and an optimization to the core pagecache code.
 
 - Nhat Pham has added memcg accounting for hugetlb memory in the series
   "hugetlb memcg accounting".
 
 - Cleanups and rationalizations to the pagemap code from Lorenzo
   Stoakes, in the series "Abstract vma_merge() and split_vma()".
 
 - Audra Mitchell has fixed issues in the procfs page_owner code's new
   timestamping feature which was causing some misbehaviours.  In the
   series "Fix page_owner's use of free timestamps".
 
 - Lorenzo Stoakes has fixed the handling of new mappings of sealed files
   in the series "permit write-sealed memfd read-only shared mappings".
 
 - Mike Kravetz has optimized the hugetlb vmemmap optimization in the
   series "Batch hugetlb vmemmap modification operations".
 
 - Some buffer_head folio conversions and cleanups from Matthew Wilcox in
   the series "Finish the create_empty_buffers() transition".
 
 - As a page allocator performance optimization Huang Ying has added
   automatic tuning to the allocator's per-cpu-pages feature, in the series
   "mm: PCP high auto-tuning".
 
 - Roman Gushchin has contributed the patchset "mm: improve performance
   of accounted kernel memory allocations" which improves their performance
   by ~30% as measured by a micro-benchmark.
 
 - folio conversions from Kefeng Wang in the series "mm: convert page
   cpupid functions to folios".
 
 - Some kmemleak fixups in Liu Shixin's series "Some bugfix about
   kmemleak".
 
 - Qi Zheng has improved our handling of memoryless nodes by keeping them
   off the allocation fallback list.  This is done in the series "handle
   memoryless nodes more appropriately".
 
 - khugepaged conversions from Vishal Moola in the series "Some
   khugepaged folio conversions".
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZULEMwAKCRDdBJ7gKXxA
 jhQHAQCYpD3g849x69DmHnHWHm/EHQLvQmRMDeYZI+nx/sCJOwEAw4AKg0Oemv9y
 FgeUPAD1oasg6CP+INZvCj34waNxwAc=
 =E+Y4
 -----END PGP SIGNATURE-----

Merge tag 'mm-stable-2023-11-01-14-33' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm

Pull MM updates from Andrew Morton:
 "Many singleton patches against the MM code. The patch series which are
  included in this merge do the following:

   - Kemeng Shi has contributed some compation maintenance work in the
     series 'Fixes and cleanups to compaction'

   - Joel Fernandes has a patchset ('Optimize mremap during mutual
     alignment within PMD') which fixes an obscure issue with mremap()'s
     pagetable handling during a subsequent exec(), based upon an
     implementation which Linus suggested

   - More DAMON/DAMOS maintenance and feature work from SeongJae Park i
     the following patch series:

	mm/damon: misc fixups for documents, comments and its tracepoint
	mm/damon: add a tracepoint for damos apply target regions
	mm/damon: provide pseudo-moving sum based access rate
	mm/damon: implement DAMOS apply intervals
	mm/damon/core-test: Fix memory leaks in core-test
	mm/damon/sysfs-schemes: Do DAMOS tried regions update for only one apply interval

   - In the series 'Do not try to access unaccepted memory' Adrian
     Hunter provides some fixups for the recently-added 'unaccepted
     memory' feature. To increase the feature's checking coverage. 'Plug
     a few gaps where RAM is exposed without checking if it is
     unaccepted memory'

   - In the series 'cleanups for lockless slab shrink' Qi Zheng has done
     some maintenance work which is preparation for the lockless slab
     shrinking code

   - Qi Zheng has redone the earlier (and reverted) attempt to make slab
     shrinking lockless in the series 'use refcount+RCU method to
     implement lockless slab shrink'

   - David Hildenbrand contributes some maintenance work for the rmap
     code in the series 'Anon rmap cleanups'

   - Kefeng Wang does more folio conversions and some maintenance work
     in the migration code. Series 'mm: migrate: more folio conversion
     and unification'

   - Matthew Wilcox has fixed an issue in the buffer_head code which was
     causing long stalls under some heavy memory/IO loads. Some cleanups
     were added on the way. Series 'Add and use bdev_getblk()'

   - In the series 'Use nth_page() in place of direct struct page
     manipulation' Zi Yan has fixed a potential issue with the direct
     manipulation of hugetlb page frames

   - In the series 'mm: hugetlb: Skip initialization of gigantic tail
     struct pages if freed by HVO' has improved our handling of gigantic
     pages in the hugetlb vmmemmep optimizaton code. This provides
     significant boot time improvements when significant amounts of
     gigantic pages are in use

   - Matthew Wilcox has sent the series 'Small hugetlb cleanups' - code
     rationalization and folio conversions in the hugetlb code

   - Yin Fengwei has improved mlock()'s handling of large folios in the
     series 'support large folio for mlock'

   - In the series 'Expose swapcache stat for memcg v1' Liu Shixin has
     added statistics for memcg v1 users which are available (and
     useful) under memcg v2

   - Florent Revest has enhanced the MDWE (Memory-Deny-Write-Executable)
     prctl so that userspace may direct the kernel to not automatically
     propagate the denial to child processes. The series is named 'MDWE
     without inheritance'

   - Kefeng Wang has provided the series 'mm: convert numa balancing
     functions to use a folio' which does what it says

   - In the series 'mm/ksm: add fork-exec support for prctl' Stefan
     Roesch makes is possible for a process to propagate KSM treatment
     across exec()

   - Huang Ying has enhanced memory tiering's calculation of memory
     distances. This is used to permit the dax/kmem driver to use 'high
     bandwidth memory' in addition to Optane Data Center Persistent
     Memory Modules (DCPMM). The series is named 'memory tiering:
     calculate abstract distance based on ACPI HMAT'

   - In the series 'Smart scanning mode for KSM' Stefan Roesch has
     optimized KSM by teaching it to retain and use some historical
     information from previous scans

   - Yosry Ahmed has fixed some inconsistencies in memcg statistics in
     the series 'mm: memcg: fix tracking of pending stats updates
     values'

   - In the series 'Implement IOCTL to get and optionally clear info
     about PTEs' Peter Xu has added an ioctl to /proc/<pid>/pagemap
     which permits us to atomically read-then-clear page softdirty
     state. This is mainly used by CRIU

   - Hugh Dickins contributed the series 'shmem,tmpfs: general
     maintenance', a bunch of relatively minor maintenance tweaks to
     this code

   - Matthew Wilcox has increased the use of the VMA lock over
     file-backed page faults in the series 'Handle more faults under the
     VMA lock'. Some rationalizations of the fault path became possible
     as a result

   - In the series 'mm/rmap: convert page_move_anon_rmap() to
     folio_move_anon_rmap()' David Hildenbrand has implemented some
     cleanups and folio conversions

   - In the series 'various improvements to the GUP interface' Lorenzo
     Stoakes has simplified and improved the GUP interface with an eye
     to providing groundwork for future improvements

   - Andrey Konovalov has sent along the series 'kasan: assorted fixes
     and improvements' which does those things

   - Some page allocator maintenance work from Kemeng Shi in the series
     'Two minor cleanups to break_down_buddy_pages'

   - In thes series 'New selftest for mm' Breno Leitao has developed
     another MM self test which tickles a race we had between madvise()
     and page faults

   - In the series 'Add folio_end_read' Matthew Wilcox provides cleanups
     and an optimization to the core pagecache code

   - Nhat Pham has added memcg accounting for hugetlb memory in the
     series 'hugetlb memcg accounting'

   - Cleanups and rationalizations to the pagemap code from Lorenzo
     Stoakes, in the series 'Abstract vma_merge() and split_vma()'

   - Audra Mitchell has fixed issues in the procfs page_owner code's new
     timestamping feature which was causing some misbehaviours. In the
     series 'Fix page_owner's use of free timestamps'

   - Lorenzo Stoakes has fixed the handling of new mappings of sealed
     files in the series 'permit write-sealed memfd read-only shared
     mappings'

   - Mike Kravetz has optimized the hugetlb vmemmap optimization in the
     series 'Batch hugetlb vmemmap modification operations'

   - Some buffer_head folio conversions and cleanups from Matthew Wilcox
     in the series 'Finish the create_empty_buffers() transition'

   - As a page allocator performance optimization Huang Ying has added
     automatic tuning to the allocator's per-cpu-pages feature, in the
     series 'mm: PCP high auto-tuning'

   - Roman Gushchin has contributed the patchset 'mm: improve
     performance of accounted kernel memory allocations' which improves
     their performance by ~30% as measured by a micro-benchmark

   - folio conversions from Kefeng Wang in the series 'mm: convert page
     cpupid functions to folios'

   - Some kmemleak fixups in Liu Shixin's series 'Some bugfix about
     kmemleak'

   - Qi Zheng has improved our handling of memoryless nodes by keeping
     them off the allocation fallback list. This is done in the series
     'handle memoryless nodes more appropriately'

   - khugepaged conversions from Vishal Moola in the series 'Some
     khugepaged folio conversions'"

[ bcachefs conflicts with the dynamically allocated shrinkers have been
  resolved as per Stephen Rothwell in

     https://lore.kernel.org/all/20230913093553.4290421e@canb.auug.org.au/

  with help from Qi Zheng.

  The clone3 test filtering conflict was half-arsed by yours truly ]

* tag 'mm-stable-2023-11-01-14-33' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (406 commits)
  mm/damon/sysfs: update monitoring target regions for online input commit
  mm/damon/sysfs: remove requested targets when online-commit inputs
  selftests: add a sanity check for zswap
  Documentation: maple_tree: fix word spelling error
  mm/vmalloc: fix the unchecked dereference warning in vread_iter()
  zswap: export compression failure stats
  Documentation: ubsan: drop "the" from article title
  mempolicy: migration attempt to match interleave nodes
  mempolicy: mmap_lock is not needed while migrating folios
  mempolicy: alloc_pages_mpol() for NUMA policy without vma
  mm: add page_rmappable_folio() wrapper
  mempolicy: remove confusing MPOL_MF_LAZY dead code
  mempolicy: mpol_shared_policy_init() without pseudo-vma
  mempolicy trivia: use pgoff_t in shared mempolicy tree
  mempolicy trivia: slightly more consistent naming
  mempolicy trivia: delete those ancient pr_debug()s
  mempolicy: fix migrate_pages(2) syscall return nr_failed
  kernfs: drop shared NUMA mempolicy hooks
  hugetlbfs: drop shared NUMA mempolicy pretence
  mm/damon/sysfs-test: add a unit test for damon_sysfs_set_targets()
  ...
2023-11-02 19:38:47 -10:00

13077 lines
348 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
*
* Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
*
* Interactivity improvements by Mike Galbraith
* (C) 2007 Mike Galbraith <efault@gmx.de>
*
* Various enhancements by Dmitry Adamushko.
* (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
*
* Group scheduling enhancements by Srivatsa Vaddagiri
* Copyright IBM Corporation, 2007
* Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
*
* Scaled math optimizations by Thomas Gleixner
* Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
*
* Adaptive scheduling granularity, math enhancements by Peter Zijlstra
* Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
*/
#include <linux/energy_model.h>
#include <linux/mmap_lock.h>
#include <linux/hugetlb_inline.h>
#include <linux/jiffies.h>
#include <linux/mm_api.h>
#include <linux/highmem.h>
#include <linux/spinlock_api.h>
#include <linux/cpumask_api.h>
#include <linux/lockdep_api.h>
#include <linux/softirq.h>
#include <linux/refcount_api.h>
#include <linux/topology.h>
#include <linux/sched/clock.h>
#include <linux/sched/cond_resched.h>
#include <linux/sched/cputime.h>
#include <linux/sched/isolation.h>
#include <linux/sched/nohz.h>
#include <linux/cpuidle.h>
#include <linux/interrupt.h>
#include <linux/memory-tiers.h>
#include <linux/mempolicy.h>
#include <linux/mutex_api.h>
#include <linux/profile.h>
#include <linux/psi.h>
#include <linux/ratelimit.h>
#include <linux/task_work.h>
#include <linux/rbtree_augmented.h>
#include <asm/switch_to.h>
#include "sched.h"
#include "stats.h"
#include "autogroup.h"
/*
* The initial- and re-scaling of tunables is configurable
*
* Options are:
*
* SCHED_TUNABLESCALING_NONE - unscaled, always *1
* SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
* SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
*
* (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
*/
unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
/*
* Minimal preemption granularity for CPU-bound tasks:
*
* (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
*/
unsigned int sysctl_sched_base_slice = 750000ULL;
static unsigned int normalized_sysctl_sched_base_slice = 750000ULL;
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
int sched_thermal_decay_shift;
static int __init setup_sched_thermal_decay_shift(char *str)
{
int _shift = 0;
if (kstrtoint(str, 0, &_shift))
pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
sched_thermal_decay_shift = clamp(_shift, 0, 10);
return 1;
}
__setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
#ifdef CONFIG_SMP
/*
* For asym packing, by default the lower numbered CPU has higher priority.
*/
int __weak arch_asym_cpu_priority(int cpu)
{
return -cpu;
}
/*
* The margin used when comparing utilization with CPU capacity.
*
* (default: ~20%)
*/
#define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
/*
* The margin used when comparing CPU capacities.
* is 'cap1' noticeably greater than 'cap2'
*
* (default: ~5%)
*/
#define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
#endif
#ifdef CONFIG_CFS_BANDWIDTH
/*
* Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
* each time a cfs_rq requests quota.
*
* Note: in the case that the slice exceeds the runtime remaining (either due
* to consumption or the quota being specified to be smaller than the slice)
* we will always only issue the remaining available time.
*
* (default: 5 msec, units: microseconds)
*/
static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
#endif
#ifdef CONFIG_NUMA_BALANCING
/* Restrict the NUMA promotion throughput (MB/s) for each target node. */
static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536;
#endif
#ifdef CONFIG_SYSCTL
static struct ctl_table sched_fair_sysctls[] = {
#ifdef CONFIG_CFS_BANDWIDTH
{
.procname = "sched_cfs_bandwidth_slice_us",
.data = &sysctl_sched_cfs_bandwidth_slice,
.maxlen = sizeof(unsigned int),
.mode = 0644,
.proc_handler = proc_dointvec_minmax,
.extra1 = SYSCTL_ONE,
},
#endif
#ifdef CONFIG_NUMA_BALANCING
{
.procname = "numa_balancing_promote_rate_limit_MBps",
.data = &sysctl_numa_balancing_promote_rate_limit,
.maxlen = sizeof(unsigned int),
.mode = 0644,
.proc_handler = proc_dointvec_minmax,
.extra1 = SYSCTL_ZERO,
},
#endif /* CONFIG_NUMA_BALANCING */
{}
};
static int __init sched_fair_sysctl_init(void)
{
register_sysctl_init("kernel", sched_fair_sysctls);
return 0;
}
late_initcall(sched_fair_sysctl_init);
#endif
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
{
lw->weight += inc;
lw->inv_weight = 0;
}
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
{
lw->weight -= dec;
lw->inv_weight = 0;
}
static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
lw->weight = w;
lw->inv_weight = 0;
}
/*
* Increase the granularity value when there are more CPUs,
* because with more CPUs the 'effective latency' as visible
* to users decreases. But the relationship is not linear,
* so pick a second-best guess by going with the log2 of the
* number of CPUs.
*
* This idea comes from the SD scheduler of Con Kolivas:
*/
static unsigned int get_update_sysctl_factor(void)
{
unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
unsigned int factor;
switch (sysctl_sched_tunable_scaling) {
case SCHED_TUNABLESCALING_NONE:
factor = 1;
break;
case SCHED_TUNABLESCALING_LINEAR:
factor = cpus;
break;
case SCHED_TUNABLESCALING_LOG:
default:
factor = 1 + ilog2(cpus);
break;
}
return factor;
}
static void update_sysctl(void)
{
unsigned int factor = get_update_sysctl_factor();
#define SET_SYSCTL(name) \
(sysctl_##name = (factor) * normalized_sysctl_##name)
SET_SYSCTL(sched_base_slice);
#undef SET_SYSCTL
}
void __init sched_init_granularity(void)
{
update_sysctl();
}
#define WMULT_CONST (~0U)
#define WMULT_SHIFT 32
static void __update_inv_weight(struct load_weight *lw)
{
unsigned long w;
if (likely(lw->inv_weight))
return;
w = scale_load_down(lw->weight);
if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
lw->inv_weight = 1;
else if (unlikely(!w))
lw->inv_weight = WMULT_CONST;
else
lw->inv_weight = WMULT_CONST / w;
}
/*
* delta_exec * weight / lw.weight
* OR
* (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
*
* Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
* we're guaranteed shift stays positive because inv_weight is guaranteed to
* fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
*
* Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
* weight/lw.weight <= 1, and therefore our shift will also be positive.
*/
static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
{
u64 fact = scale_load_down(weight);
u32 fact_hi = (u32)(fact >> 32);
int shift = WMULT_SHIFT;
int fs;
__update_inv_weight(lw);
if (unlikely(fact_hi)) {
fs = fls(fact_hi);
shift -= fs;
fact >>= fs;
}
fact = mul_u32_u32(fact, lw->inv_weight);
fact_hi = (u32)(fact >> 32);
if (fact_hi) {
fs = fls(fact_hi);
shift -= fs;
fact >>= fs;
}
return mul_u64_u32_shr(delta_exec, fact, shift);
}
/*
* delta /= w
*/
static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
{
if (unlikely(se->load.weight != NICE_0_LOAD))
delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
return delta;
}
const struct sched_class fair_sched_class;
/**************************************************************
* CFS operations on generic schedulable entities:
*/
#ifdef CONFIG_FAIR_GROUP_SCHED
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
for (; se; se = se->parent)
static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
struct rq *rq = rq_of(cfs_rq);
int cpu = cpu_of(rq);
if (cfs_rq->on_list)
return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
cfs_rq->on_list = 1;
/*
* Ensure we either appear before our parent (if already
* enqueued) or force our parent to appear after us when it is
* enqueued. The fact that we always enqueue bottom-up
* reduces this to two cases and a special case for the root
* cfs_rq. Furthermore, it also means that we will always reset
* tmp_alone_branch either when the branch is connected
* to a tree or when we reach the top of the tree
*/
if (cfs_rq->tg->parent &&
cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
/*
* If parent is already on the list, we add the child
* just before. Thanks to circular linked property of
* the list, this means to put the child at the tail
* of the list that starts by parent.
*/
list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
/*
* The branch is now connected to its tree so we can
* reset tmp_alone_branch to the beginning of the
* list.
*/
rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
return true;
}
if (!cfs_rq->tg->parent) {
/*
* cfs rq without parent should be put
* at the tail of the list.
*/
list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
&rq->leaf_cfs_rq_list);
/*
* We have reach the top of a tree so we can reset
* tmp_alone_branch to the beginning of the list.
*/
rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
return true;
}
/*
* The parent has not already been added so we want to
* make sure that it will be put after us.
* tmp_alone_branch points to the begin of the branch
* where we will add parent.
*/
list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
/*
* update tmp_alone_branch to points to the new begin
* of the branch
*/
rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
return false;
}
static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
if (cfs_rq->on_list) {
struct rq *rq = rq_of(cfs_rq);
/*
* With cfs_rq being unthrottled/throttled during an enqueue,
* it can happen the tmp_alone_branch points the a leaf that
* we finally want to del. In this case, tmp_alone_branch moves
* to the prev element but it will point to rq->leaf_cfs_rq_list
* at the end of the enqueue.
*/
if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
cfs_rq->on_list = 0;
}
}
static inline void assert_list_leaf_cfs_rq(struct rq *rq)
{
SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
}
/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
leaf_cfs_rq_list)
/* Do the two (enqueued) entities belong to the same group ? */
static inline struct cfs_rq *
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
if (se->cfs_rq == pse->cfs_rq)
return se->cfs_rq;
return NULL;
}
static inline struct sched_entity *parent_entity(const struct sched_entity *se)
{
return se->parent;
}
static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
int se_depth, pse_depth;
/*
* preemption test can be made between sibling entities who are in the
* same cfs_rq i.e who have a common parent. Walk up the hierarchy of
* both tasks until we find their ancestors who are siblings of common
* parent.
*/
/* First walk up until both entities are at same depth */
se_depth = (*se)->depth;
pse_depth = (*pse)->depth;
while (se_depth > pse_depth) {
se_depth--;
*se = parent_entity(*se);
}
while (pse_depth > se_depth) {
pse_depth--;
*pse = parent_entity(*pse);
}
while (!is_same_group(*se, *pse)) {
*se = parent_entity(*se);
*pse = parent_entity(*pse);
}
}
static int tg_is_idle(struct task_group *tg)
{
return tg->idle > 0;
}
static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
{
return cfs_rq->idle > 0;
}
static int se_is_idle(struct sched_entity *se)
{
if (entity_is_task(se))
return task_has_idle_policy(task_of(se));
return cfs_rq_is_idle(group_cfs_rq(se));
}
#else /* !CONFIG_FAIR_GROUP_SCHED */
#define for_each_sched_entity(se) \
for (; se; se = NULL)
static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
return true;
}
static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}
static inline void assert_list_leaf_cfs_rq(struct rq *rq)
{
}
#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
return NULL;
}
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}
static inline int tg_is_idle(struct task_group *tg)
{
return 0;
}
static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
{
return 0;
}
static int se_is_idle(struct sched_entity *se)
{
return 0;
}
#endif /* CONFIG_FAIR_GROUP_SCHED */
static __always_inline
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
/**************************************************************
* Scheduling class tree data structure manipulation methods:
*/
static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
{
s64 delta = (s64)(vruntime - max_vruntime);
if (delta > 0)
max_vruntime = vruntime;
return max_vruntime;
}
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
{
s64 delta = (s64)(vruntime - min_vruntime);
if (delta < 0)
min_vruntime = vruntime;
return min_vruntime;
}
static inline bool entity_before(const struct sched_entity *a,
const struct sched_entity *b)
{
return (s64)(a->vruntime - b->vruntime) < 0;
}
static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
return (s64)(se->vruntime - cfs_rq->min_vruntime);
}
#define __node_2_se(node) \
rb_entry((node), struct sched_entity, run_node)
/*
* Compute virtual time from the per-task service numbers:
*
* Fair schedulers conserve lag:
*
* \Sum lag_i = 0
*
* Where lag_i is given by:
*
* lag_i = S - s_i = w_i * (V - v_i)
*
* Where S is the ideal service time and V is it's virtual time counterpart.
* Therefore:
*
* \Sum lag_i = 0
* \Sum w_i * (V - v_i) = 0
* \Sum w_i * V - w_i * v_i = 0
*
* From which we can solve an expression for V in v_i (which we have in
* se->vruntime):
*
* \Sum v_i * w_i \Sum v_i * w_i
* V = -------------- = --------------
* \Sum w_i W
*
* Specifically, this is the weighted average of all entity virtual runtimes.
*
* [[ NOTE: this is only equal to the ideal scheduler under the condition
* that join/leave operations happen at lag_i = 0, otherwise the
* virtual time has non-continguous motion equivalent to:
*
* V +-= lag_i / W
*
* Also see the comment in place_entity() that deals with this. ]]
*
* However, since v_i is u64, and the multiplcation could easily overflow
* transform it into a relative form that uses smaller quantities:
*
* Substitute: v_i == (v_i - v0) + v0
*
* \Sum ((v_i - v0) + v0) * w_i \Sum (v_i - v0) * w_i
* V = ---------------------------- = --------------------- + v0
* W W
*
* Which we track using:
*
* v0 := cfs_rq->min_vruntime
* \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime
* \Sum w_i := cfs_rq->avg_load
*
* Since min_vruntime is a monotonic increasing variable that closely tracks
* the per-task service, these deltas: (v_i - v), will be in the order of the
* maximal (virtual) lag induced in the system due to quantisation.
*
* Also, we use scale_load_down() to reduce the size.
*
* As measured, the max (key * weight) value was ~44 bits for a kernel build.
*/
static void
avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
unsigned long weight = scale_load_down(se->load.weight);
s64 key = entity_key(cfs_rq, se);
cfs_rq->avg_vruntime += key * weight;
cfs_rq->avg_load += weight;
}
static void
avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
unsigned long weight = scale_load_down(se->load.weight);
s64 key = entity_key(cfs_rq, se);
cfs_rq->avg_vruntime -= key * weight;
cfs_rq->avg_load -= weight;
}
static inline
void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta)
{
/*
* v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load
*/
cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta;
}
/*
* Specifically: avg_runtime() + 0 must result in entity_eligible() := true
* For this to be so, the result of this function must have a left bias.
*/
u64 avg_vruntime(struct cfs_rq *cfs_rq)
{
struct sched_entity *curr = cfs_rq->curr;
s64 avg = cfs_rq->avg_vruntime;
long load = cfs_rq->avg_load;
if (curr && curr->on_rq) {
unsigned long weight = scale_load_down(curr->load.weight);
avg += entity_key(cfs_rq, curr) * weight;
load += weight;
}
if (load) {
/* sign flips effective floor / ceil */
if (avg < 0)
avg -= (load - 1);
avg = div_s64(avg, load);
}
return cfs_rq->min_vruntime + avg;
}
/*
* lag_i = S - s_i = w_i * (V - v_i)
*
* However, since V is approximated by the weighted average of all entities it
* is possible -- by addition/removal/reweight to the tree -- to move V around
* and end up with a larger lag than we started with.
*
* Limit this to either double the slice length with a minimum of TICK_NSEC
* since that is the timing granularity.
*
* EEVDF gives the following limit for a steady state system:
*
* -r_max < lag < max(r_max, q)
*
* XXX could add max_slice to the augmented data to track this.
*/
static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
s64 lag, limit;
SCHED_WARN_ON(!se->on_rq);
lag = avg_vruntime(cfs_rq) - se->vruntime;
limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se);
se->vlag = clamp(lag, -limit, limit);
}
/*
* Entity is eligible once it received less service than it ought to have,
* eg. lag >= 0.
*
* lag_i = S - s_i = w_i*(V - v_i)
*
* lag_i >= 0 -> V >= v_i
*
* \Sum (v_i - v)*w_i
* V = ------------------ + v
* \Sum w_i
*
* lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i)
*
* Note: using 'avg_vruntime() > se->vruntime' is inacurate due
* to the loss in precision caused by the division.
*/
int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
struct sched_entity *curr = cfs_rq->curr;
s64 avg = cfs_rq->avg_vruntime;
long load = cfs_rq->avg_load;
if (curr && curr->on_rq) {
unsigned long weight = scale_load_down(curr->load.weight);
avg += entity_key(cfs_rq, curr) * weight;
load += weight;
}
return avg >= entity_key(cfs_rq, se) * load;
}
static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime)
{
u64 min_vruntime = cfs_rq->min_vruntime;
/*
* open coded max_vruntime() to allow updating avg_vruntime
*/
s64 delta = (s64)(vruntime - min_vruntime);
if (delta > 0) {
avg_vruntime_update(cfs_rq, delta);
min_vruntime = vruntime;
}
return min_vruntime;
}
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
struct sched_entity *se = __pick_first_entity(cfs_rq);
struct sched_entity *curr = cfs_rq->curr;
u64 vruntime = cfs_rq->min_vruntime;
if (curr) {
if (curr->on_rq)
vruntime = curr->vruntime;
else
curr = NULL;
}
if (se) {
if (!curr)
vruntime = se->vruntime;
else
vruntime = min_vruntime(vruntime, se->vruntime);
}
/* ensure we never gain time by being placed backwards. */
u64_u32_store(cfs_rq->min_vruntime,
__update_min_vruntime(cfs_rq, vruntime));
}
static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
{
return entity_before(__node_2_se(a), __node_2_se(b));
}
#define deadline_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; })
static inline void __update_min_deadline(struct sched_entity *se, struct rb_node *node)
{
if (node) {
struct sched_entity *rse = __node_2_se(node);
if (deadline_gt(min_deadline, se, rse))
se->min_deadline = rse->min_deadline;
}
}
/*
* se->min_deadline = min(se->deadline, left->min_deadline, right->min_deadline)
*/
static inline bool min_deadline_update(struct sched_entity *se, bool exit)
{
u64 old_min_deadline = se->min_deadline;
struct rb_node *node = &se->run_node;
se->min_deadline = se->deadline;
__update_min_deadline(se, node->rb_right);
__update_min_deadline(se, node->rb_left);
return se->min_deadline == old_min_deadline;
}
RB_DECLARE_CALLBACKS(static, min_deadline_cb, struct sched_entity,
run_node, min_deadline, min_deadline_update);
/*
* Enqueue an entity into the rb-tree:
*/
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
avg_vruntime_add(cfs_rq, se);
se->min_deadline = se->deadline;
rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
__entity_less, &min_deadline_cb);
}
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
&min_deadline_cb);
avg_vruntime_sub(cfs_rq, se);
}
struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
{
struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
if (!left)
return NULL;
return __node_2_se(left);
}
/*
* Earliest Eligible Virtual Deadline First
*
* In order to provide latency guarantees for different request sizes
* EEVDF selects the best runnable task from two criteria:
*
* 1) the task must be eligible (must be owed service)
*
* 2) from those tasks that meet 1), we select the one
* with the earliest virtual deadline.
*
* We can do this in O(log n) time due to an augmented RB-tree. The
* tree keeps the entries sorted on service, but also functions as a
* heap based on the deadline by keeping:
*
* se->min_deadline = min(se->deadline, se->{left,right}->min_deadline)
*
* Which allows an EDF like search on (sub)trees.
*/
static struct sched_entity *__pick_eevdf(struct cfs_rq *cfs_rq)
{
struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node;
struct sched_entity *curr = cfs_rq->curr;
struct sched_entity *best = NULL;
struct sched_entity *best_left = NULL;
if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr)))
curr = NULL;
best = curr;
/*
* Once selected, run a task until it either becomes non-eligible or
* until it gets a new slice. See the HACK in set_next_entity().
*/
if (sched_feat(RUN_TO_PARITY) && curr && curr->vlag == curr->deadline)
return curr;
while (node) {
struct sched_entity *se = __node_2_se(node);
/*
* If this entity is not eligible, try the left subtree.
*/
if (!entity_eligible(cfs_rq, se)) {
node = node->rb_left;
continue;
}
/*
* Now we heap search eligible trees for the best (min_)deadline
*/
if (!best || deadline_gt(deadline, best, se))
best = se;
/*
* Every se in a left branch is eligible, keep track of the
* branch with the best min_deadline
*/
if (node->rb_left) {
struct sched_entity *left = __node_2_se(node->rb_left);
if (!best_left || deadline_gt(min_deadline, best_left, left))
best_left = left;
/*
* min_deadline is in the left branch. rb_left and all
* descendants are eligible, so immediately switch to the second
* loop.
*/
if (left->min_deadline == se->min_deadline)
break;
}
/* min_deadline is at this node, no need to look right */
if (se->deadline == se->min_deadline)
break;
/* else min_deadline is in the right branch. */
node = node->rb_right;
}
/*
* We ran into an eligible node which is itself the best.
* (Or nr_running == 0 and both are NULL)
*/
if (!best_left || (s64)(best_left->min_deadline - best->deadline) > 0)
return best;
/*
* Now best_left and all of its children are eligible, and we are just
* looking for deadline == min_deadline
*/
node = &best_left->run_node;
while (node) {
struct sched_entity *se = __node_2_se(node);
/* min_deadline is the current node */
if (se->deadline == se->min_deadline)
return se;
/* min_deadline is in the left branch */
if (node->rb_left &&
__node_2_se(node->rb_left)->min_deadline == se->min_deadline) {
node = node->rb_left;
continue;
}
/* else min_deadline is in the right branch */
node = node->rb_right;
}
return NULL;
}
static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq)
{
struct sched_entity *se = __pick_eevdf(cfs_rq);
if (!se) {
struct sched_entity *left = __pick_first_entity(cfs_rq);
if (left) {
pr_err("EEVDF scheduling fail, picking leftmost\n");
return left;
}
}
return se;
}
#ifdef CONFIG_SCHED_DEBUG
struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
{
struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
if (!last)
return NULL;
return __node_2_se(last);
}
/**************************************************************
* Scheduling class statistics methods:
*/
#ifdef CONFIG_SMP
int sched_update_scaling(void)
{
unsigned int factor = get_update_sysctl_factor();
#define WRT_SYSCTL(name) \
(normalized_sysctl_##name = sysctl_##name / (factor))
WRT_SYSCTL(sched_base_slice);
#undef WRT_SYSCTL
return 0;
}
#endif
#endif
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se);
/*
* XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i
* this is probably good enough.
*/
static void update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
if ((s64)(se->vruntime - se->deadline) < 0)
return;
/*
* For EEVDF the virtual time slope is determined by w_i (iow.
* nice) while the request time r_i is determined by
* sysctl_sched_base_slice.
*/
se->slice = sysctl_sched_base_slice;
/*
* EEVDF: vd_i = ve_i + r_i / w_i
*/
se->deadline = se->vruntime + calc_delta_fair(se->slice, se);
/*
* The task has consumed its request, reschedule.
*/
if (cfs_rq->nr_running > 1) {
resched_curr(rq_of(cfs_rq));
clear_buddies(cfs_rq, se);
}
}
#include "pelt.h"
#ifdef CONFIG_SMP
static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
static unsigned long task_h_load(struct task_struct *p);
static unsigned long capacity_of(int cpu);
/* Give new sched_entity start runnable values to heavy its load in infant time */
void init_entity_runnable_average(struct sched_entity *se)
{
struct sched_avg *sa = &se->avg;
memset(sa, 0, sizeof(*sa));
/*
* Tasks are initialized with full load to be seen as heavy tasks until
* they get a chance to stabilize to their real load level.
* Group entities are initialized with zero load to reflect the fact that
* nothing has been attached to the task group yet.
*/
if (entity_is_task(se))
sa->load_avg = scale_load_down(se->load.weight);
/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
}
/*
* With new tasks being created, their initial util_avgs are extrapolated
* based on the cfs_rq's current util_avg:
*
* util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
*
* However, in many cases, the above util_avg does not give a desired
* value. Moreover, the sum of the util_avgs may be divergent, such
* as when the series is a harmonic series.
*
* To solve this problem, we also cap the util_avg of successive tasks to
* only 1/2 of the left utilization budget:
*
* util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
*
* where n denotes the nth task and cpu_scale the CPU capacity.
*
* For example, for a CPU with 1024 of capacity, a simplest series from
* the beginning would be like:
*
* task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
* cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
*
* Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
* if util_avg > util_avg_cap.
*/
void post_init_entity_util_avg(struct task_struct *p)
{
struct sched_entity *se = &p->se;
struct cfs_rq *cfs_rq = cfs_rq_of(se);
struct sched_avg *sa = &se->avg;
long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
if (p->sched_class != &fair_sched_class) {
/*
* For !fair tasks do:
*
update_cfs_rq_load_avg(now, cfs_rq);
attach_entity_load_avg(cfs_rq, se);
switched_from_fair(rq, p);
*
* such that the next switched_to_fair() has the
* expected state.
*/
se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
return;
}
if (cap > 0) {
if (cfs_rq->avg.util_avg != 0) {
sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
sa->util_avg /= (cfs_rq->avg.load_avg + 1);
if (sa->util_avg > cap)
sa->util_avg = cap;
} else {
sa->util_avg = cap;
}
}
sa->runnable_avg = sa->util_avg;
}
#else /* !CONFIG_SMP */
void init_entity_runnable_average(struct sched_entity *se)
{
}
void post_init_entity_util_avg(struct task_struct *p)
{
}
static void update_tg_load_avg(struct cfs_rq *cfs_rq)
{
}
#endif /* CONFIG_SMP */
/*
* Update the current task's runtime statistics.
*/
static void update_curr(struct cfs_rq *cfs_rq)
{
struct sched_entity *curr = cfs_rq->curr;
u64 now = rq_clock_task(rq_of(cfs_rq));
u64 delta_exec;
if (unlikely(!curr))
return;
delta_exec = now - curr->exec_start;
if (unlikely((s64)delta_exec <= 0))
return;
curr->exec_start = now;
if (schedstat_enabled()) {
struct sched_statistics *stats;
stats = __schedstats_from_se(curr);
__schedstat_set(stats->exec_max,
max(delta_exec, stats->exec_max));
}
curr->sum_exec_runtime += delta_exec;
schedstat_add(cfs_rq->exec_clock, delta_exec);
curr->vruntime += calc_delta_fair(delta_exec, curr);
update_deadline(cfs_rq, curr);
update_min_vruntime(cfs_rq);
if (entity_is_task(curr)) {
struct task_struct *curtask = task_of(curr);
trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
cgroup_account_cputime(curtask, delta_exec);
account_group_exec_runtime(curtask, delta_exec);
}
account_cfs_rq_runtime(cfs_rq, delta_exec);
}
static void update_curr_fair(struct rq *rq)
{
update_curr(cfs_rq_of(&rq->curr->se));
}
static inline void
update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
struct sched_statistics *stats;
struct task_struct *p = NULL;
if (!schedstat_enabled())
return;
stats = __schedstats_from_se(se);
if (entity_is_task(se))
p = task_of(se);
__update_stats_wait_start(rq_of(cfs_rq), p, stats);
}
static inline void
update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
struct sched_statistics *stats;
struct task_struct *p = NULL;
if (!schedstat_enabled())
return;
stats = __schedstats_from_se(se);
/*
* When the sched_schedstat changes from 0 to 1, some sched se
* maybe already in the runqueue, the se->statistics.wait_start
* will be 0.So it will let the delta wrong. We need to avoid this
* scenario.
*/
if (unlikely(!schedstat_val(stats->wait_start)))
return;
if (entity_is_task(se))
p = task_of(se);
__update_stats_wait_end(rq_of(cfs_rq), p, stats);
}
static inline void
update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
struct sched_statistics *stats;
struct task_struct *tsk = NULL;
if (!schedstat_enabled())
return;
stats = __schedstats_from_se(se);
if (entity_is_task(se))
tsk = task_of(se);
__update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
}
/*
* Task is being enqueued - update stats:
*/
static inline void
update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
{
if (!schedstat_enabled())
return;
/*
* Are we enqueueing a waiting task? (for current tasks
* a dequeue/enqueue event is a NOP)
*/
if (se != cfs_rq->curr)
update_stats_wait_start_fair(cfs_rq, se);
if (flags & ENQUEUE_WAKEUP)
update_stats_enqueue_sleeper_fair(cfs_rq, se);
}
static inline void
update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
{
if (!schedstat_enabled())
return;
/*
* Mark the end of the wait period if dequeueing a
* waiting task:
*/
if (se != cfs_rq->curr)
update_stats_wait_end_fair(cfs_rq, se);
if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
struct task_struct *tsk = task_of(se);
unsigned int state;
/* XXX racy against TTWU */
state = READ_ONCE(tsk->__state);
if (state & TASK_INTERRUPTIBLE)
__schedstat_set(tsk->stats.sleep_start,
rq_clock(rq_of(cfs_rq)));
if (state & TASK_UNINTERRUPTIBLE)
__schedstat_set(tsk->stats.block_start,
rq_clock(rq_of(cfs_rq)));
}
}
/*
* We are picking a new current task - update its stats:
*/
static inline void
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
/*
* We are starting a new run period:
*/
se->exec_start = rq_clock_task(rq_of(cfs_rq));
}
/**************************************************
* Scheduling class queueing methods:
*/
static inline bool is_core_idle(int cpu)
{
#ifdef CONFIG_SCHED_SMT
int sibling;
for_each_cpu(sibling, cpu_smt_mask(cpu)) {
if (cpu == sibling)
continue;
if (!idle_cpu(sibling))
return false;
}
#endif
return true;
}
#ifdef CONFIG_NUMA
#define NUMA_IMBALANCE_MIN 2
static inline long
adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr)
{
/*
* Allow a NUMA imbalance if busy CPUs is less than the maximum
* threshold. Above this threshold, individual tasks may be contending
* for both memory bandwidth and any shared HT resources. This is an
* approximation as the number of running tasks may not be related to
* the number of busy CPUs due to sched_setaffinity.
*/
if (dst_running > imb_numa_nr)
return imbalance;
/*
* Allow a small imbalance based on a simple pair of communicating
* tasks that remain local when the destination is lightly loaded.
*/
if (imbalance <= NUMA_IMBALANCE_MIN)
return 0;
return imbalance;
}
#endif /* CONFIG_NUMA */
#ifdef CONFIG_NUMA_BALANCING
/*
* Approximate time to scan a full NUMA task in ms. The task scan period is
* calculated based on the tasks virtual memory size and
* numa_balancing_scan_size.
*/
unsigned int sysctl_numa_balancing_scan_period_min = 1000;
unsigned int sysctl_numa_balancing_scan_period_max = 60000;
/* Portion of address space to scan in MB */
unsigned int sysctl_numa_balancing_scan_size = 256;
/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
unsigned int sysctl_numa_balancing_scan_delay = 1000;
/* The page with hint page fault latency < threshold in ms is considered hot */
unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC;
struct numa_group {
refcount_t refcount;
spinlock_t lock; /* nr_tasks, tasks */
int nr_tasks;
pid_t gid;
int active_nodes;
struct rcu_head rcu;
unsigned long total_faults;
unsigned long max_faults_cpu;
/*
* faults[] array is split into two regions: faults_mem and faults_cpu.
*
* Faults_cpu is used to decide whether memory should move
* towards the CPU. As a consequence, these stats are weighted
* more by CPU use than by memory faults.
*/
unsigned long faults[];
};
/*
* For functions that can be called in multiple contexts that permit reading
* ->numa_group (see struct task_struct for locking rules).
*/
static struct numa_group *deref_task_numa_group(struct task_struct *p)
{
return rcu_dereference_check(p->numa_group, p == current ||
(lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
}
static struct numa_group *deref_curr_numa_group(struct task_struct *p)
{
return rcu_dereference_protected(p->numa_group, p == current);
}
static inline unsigned long group_faults_priv(struct numa_group *ng);
static inline unsigned long group_faults_shared(struct numa_group *ng);
static unsigned int task_nr_scan_windows(struct task_struct *p)
{
unsigned long rss = 0;
unsigned long nr_scan_pages;
/*
* Calculations based on RSS as non-present and empty pages are skipped
* by the PTE scanner and NUMA hinting faults should be trapped based
* on resident pages
*/
nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
rss = get_mm_rss(p->mm);
if (!rss)
rss = nr_scan_pages;
rss = round_up(rss, nr_scan_pages);
return rss / nr_scan_pages;
}
/* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
#define MAX_SCAN_WINDOW 2560
static unsigned int task_scan_min(struct task_struct *p)
{
unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
unsigned int scan, floor;
unsigned int windows = 1;
if (scan_size < MAX_SCAN_WINDOW)
windows = MAX_SCAN_WINDOW / scan_size;
floor = 1000 / windows;
scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
return max_t(unsigned int, floor, scan);
}
static unsigned int task_scan_start(struct task_struct *p)
{
unsigned long smin = task_scan_min(p);
unsigned long period = smin;
struct numa_group *ng;
/* Scale the maximum scan period with the amount of shared memory. */
rcu_read_lock();
ng = rcu_dereference(p->numa_group);
if (ng) {
unsigned long shared = group_faults_shared(ng);
unsigned long private = group_faults_priv(ng);
period *= refcount_read(&ng->refcount);
period *= shared + 1;
period /= private + shared + 1;
}
rcu_read_unlock();
return max(smin, period);
}
static unsigned int task_scan_max(struct task_struct *p)
{
unsigned long smin = task_scan_min(p);
unsigned long smax;
struct numa_group *ng;
/* Watch for min being lower than max due to floor calculations */
smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
/* Scale the maximum scan period with the amount of shared memory. */
ng = deref_curr_numa_group(p);
if (ng) {
unsigned long shared = group_faults_shared(ng);
unsigned long private = group_faults_priv(ng);
unsigned long period = smax;
period *= refcount_read(&ng->refcount);
period *= shared + 1;
period /= private + shared + 1;
smax = max(smax, period);
}
return max(smin, smax);
}
static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
}
static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
}
/* Shared or private faults. */
#define NR_NUMA_HINT_FAULT_TYPES 2
/* Memory and CPU locality */
#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
/* Averaged statistics, and temporary buffers. */
#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
pid_t task_numa_group_id(struct task_struct *p)
{
struct numa_group *ng;
pid_t gid = 0;
rcu_read_lock();
ng = rcu_dereference(p->numa_group);
if (ng)
gid = ng->gid;
rcu_read_unlock();
return gid;
}
/*
* The averaged statistics, shared & private, memory & CPU,
* occupy the first half of the array. The second half of the
* array is for current counters, which are averaged into the
* first set by task_numa_placement.
*/
static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
{
return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
}
static inline unsigned long task_faults(struct task_struct *p, int nid)
{
if (!p->numa_faults)
return 0;
return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
}
static inline unsigned long group_faults(struct task_struct *p, int nid)
{
struct numa_group *ng = deref_task_numa_group(p);
if (!ng)
return 0;
return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
}
static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
{
return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
}
static inline unsigned long group_faults_priv(struct numa_group *ng)
{
unsigned long faults = 0;
int node;
for_each_online_node(node) {
faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
}
return faults;
}
static inline unsigned long group_faults_shared(struct numa_group *ng)
{
unsigned long faults = 0;
int node;
for_each_online_node(node) {
faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
}
return faults;
}
/*
* A node triggering more than 1/3 as many NUMA faults as the maximum is
* considered part of a numa group's pseudo-interleaving set. Migrations
* between these nodes are slowed down, to allow things to settle down.
*/
#define ACTIVE_NODE_FRACTION 3
static bool numa_is_active_node(int nid, struct numa_group *ng)
{
return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
}
/* Handle placement on systems where not all nodes are directly connected. */
static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
int lim_dist, bool task)
{
unsigned long score = 0;
int node, max_dist;
/*
* All nodes are directly connected, and the same distance
* from each other. No need for fancy placement algorithms.
*/
if (sched_numa_topology_type == NUMA_DIRECT)
return 0;
/* sched_max_numa_distance may be changed in parallel. */
max_dist = READ_ONCE(sched_max_numa_distance);
/*
* This code is called for each node, introducing N^2 complexity,
* which should be ok given the number of nodes rarely exceeds 8.
*/
for_each_online_node(node) {
unsigned long faults;
int dist = node_distance(nid, node);
/*
* The furthest away nodes in the system are not interesting
* for placement; nid was already counted.
*/
if (dist >= max_dist || node == nid)
continue;
/*
* On systems with a backplane NUMA topology, compare groups
* of nodes, and move tasks towards the group with the most
* memory accesses. When comparing two nodes at distance
* "hoplimit", only nodes closer by than "hoplimit" are part
* of each group. Skip other nodes.
*/
if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
continue;
/* Add up the faults from nearby nodes. */
if (task)
faults = task_faults(p, node);
else
faults = group_faults(p, node);
/*
* On systems with a glueless mesh NUMA topology, there are
* no fixed "groups of nodes". Instead, nodes that are not
* directly connected bounce traffic through intermediate
* nodes; a numa_group can occupy any set of nodes.
* The further away a node is, the less the faults count.
* This seems to result in good task placement.
*/
if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
faults *= (max_dist - dist);
faults /= (max_dist - LOCAL_DISTANCE);
}
score += faults;
}
return score;
}
/*
* These return the fraction of accesses done by a particular task, or
* task group, on a particular numa node. The group weight is given a
* larger multiplier, in order to group tasks together that are almost
* evenly spread out between numa nodes.
*/
static inline unsigned long task_weight(struct task_struct *p, int nid,
int dist)
{
unsigned long faults, total_faults;
if (!p->numa_faults)
return 0;
total_faults = p->total_numa_faults;
if (!total_faults)
return 0;
faults = task_faults(p, nid);
faults += score_nearby_nodes(p, nid, dist, true);
return 1000 * faults / total_faults;
}
static inline unsigned long group_weight(struct task_struct *p, int nid,
int dist)
{
struct numa_group *ng = deref_task_numa_group(p);
unsigned long faults, total_faults;
if (!ng)
return 0;
total_faults = ng->total_faults;
if (!total_faults)
return 0;
faults = group_faults(p, nid);
faults += score_nearby_nodes(p, nid, dist, false);
return 1000 * faults / total_faults;
}
/*
* If memory tiering mode is enabled, cpupid of slow memory page is
* used to record scan time instead of CPU and PID. When tiering mode
* is disabled at run time, the scan time (in cpupid) will be
* interpreted as CPU and PID. So CPU needs to be checked to avoid to
* access out of array bound.
*/
static inline bool cpupid_valid(int cpupid)
{
return cpupid_to_cpu(cpupid) < nr_cpu_ids;
}
/*
* For memory tiering mode, if there are enough free pages (more than
* enough watermark defined here) in fast memory node, to take full
* advantage of fast memory capacity, all recently accessed slow
* memory pages will be migrated to fast memory node without
* considering hot threshold.
*/
static bool pgdat_free_space_enough(struct pglist_data *pgdat)
{
int z;
unsigned long enough_wmark;
enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT,
pgdat->node_present_pages >> 4);
for (z = pgdat->nr_zones - 1; z >= 0; z--) {
struct zone *zone = pgdat->node_zones + z;
if (!populated_zone(zone))
continue;
if (zone_watermark_ok(zone, 0,
wmark_pages(zone, WMARK_PROMO) + enough_wmark,
ZONE_MOVABLE, 0))
return true;
}
return false;
}
/*
* For memory tiering mode, when page tables are scanned, the scan
* time will be recorded in struct page in addition to make page
* PROT_NONE for slow memory page. So when the page is accessed, in
* hint page fault handler, the hint page fault latency is calculated
* via,
*
* hint page fault latency = hint page fault time - scan time
*
* The smaller the hint page fault latency, the higher the possibility
* for the page to be hot.
*/
static int numa_hint_fault_latency(struct folio *folio)
{
int last_time, time;
time = jiffies_to_msecs(jiffies);
last_time = folio_xchg_access_time(folio, time);
return (time - last_time) & PAGE_ACCESS_TIME_MASK;
}
/*
* For memory tiering mode, too high promotion/demotion throughput may
* hurt application latency. So we provide a mechanism to rate limit
* the number of pages that are tried to be promoted.
*/
static bool numa_promotion_rate_limit(struct pglist_data *pgdat,
unsigned long rate_limit, int nr)
{
unsigned long nr_cand;
unsigned int now, start;
now = jiffies_to_msecs(jiffies);
mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr);
nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
start = pgdat->nbp_rl_start;
if (now - start > MSEC_PER_SEC &&
cmpxchg(&pgdat->nbp_rl_start, start, now) == start)
pgdat->nbp_rl_nr_cand = nr_cand;
if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit)
return true;
return false;
}
#define NUMA_MIGRATION_ADJUST_STEPS 16
static void numa_promotion_adjust_threshold(struct pglist_data *pgdat,
unsigned long rate_limit,
unsigned int ref_th)
{
unsigned int now, start, th_period, unit_th, th;
unsigned long nr_cand, ref_cand, diff_cand;
now = jiffies_to_msecs(jiffies);
th_period = sysctl_numa_balancing_scan_period_max;
start = pgdat->nbp_th_start;
if (now - start > th_period &&
cmpxchg(&pgdat->nbp_th_start, start, now) == start) {
ref_cand = rate_limit *
sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC;
nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
diff_cand = nr_cand - pgdat->nbp_th_nr_cand;
unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS;
th = pgdat->nbp_threshold ? : ref_th;
if (diff_cand > ref_cand * 11 / 10)
th = max(th - unit_th, unit_th);
else if (diff_cand < ref_cand * 9 / 10)
th = min(th + unit_th, ref_th * 2);
pgdat->nbp_th_nr_cand = nr_cand;
pgdat->nbp_threshold = th;
}
}
bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio,
int src_nid, int dst_cpu)
{
struct numa_group *ng = deref_curr_numa_group(p);
int dst_nid = cpu_to_node(dst_cpu);
int last_cpupid, this_cpupid;
/*
* The pages in slow memory node should be migrated according
* to hot/cold instead of private/shared.
*/
if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
!node_is_toptier(src_nid)) {
struct pglist_data *pgdat;
unsigned long rate_limit;
unsigned int latency, th, def_th;
pgdat = NODE_DATA(dst_nid);
if (pgdat_free_space_enough(pgdat)) {
/* workload changed, reset hot threshold */
pgdat->nbp_threshold = 0;
return true;
}
def_th = sysctl_numa_balancing_hot_threshold;
rate_limit = sysctl_numa_balancing_promote_rate_limit << \
(20 - PAGE_SHIFT);
numa_promotion_adjust_threshold(pgdat, rate_limit, def_th);
th = pgdat->nbp_threshold ? : def_th;
latency = numa_hint_fault_latency(folio);
if (latency >= th)
return false;
return !numa_promotion_rate_limit(pgdat, rate_limit,
folio_nr_pages(folio));
}
this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid);
if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
!node_is_toptier(src_nid) && !cpupid_valid(last_cpupid))
return false;
/*
* Allow first faults or private faults to migrate immediately early in
* the lifetime of a task. The magic number 4 is based on waiting for
* two full passes of the "multi-stage node selection" test that is
* executed below.
*/
if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
(cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
return true;
/*
* Multi-stage node selection is used in conjunction with a periodic
* migration fault to build a temporal task<->page relation. By using
* a two-stage filter we remove short/unlikely relations.
*
* Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
* a task's usage of a particular page (n_p) per total usage of this
* page (n_t) (in a given time-span) to a probability.
*
* Our periodic faults will sample this probability and getting the
* same result twice in a row, given these samples are fully
* independent, is then given by P(n)^2, provided our sample period
* is sufficiently short compared to the usage pattern.
*
* This quadric squishes small probabilities, making it less likely we
* act on an unlikely task<->page relation.
*/
if (!cpupid_pid_unset(last_cpupid) &&
cpupid_to_nid(last_cpupid) != dst_nid)
return false;
/* Always allow migrate on private faults */
if (cpupid_match_pid(p, last_cpupid))
return true;
/* A shared fault, but p->numa_group has not been set up yet. */
if (!ng)
return true;
/*
* Destination node is much more heavily used than the source
* node? Allow migration.
*/
if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
ACTIVE_NODE_FRACTION)
return true;
/*
* Distribute memory according to CPU & memory use on each node,
* with 3/4 hysteresis to avoid unnecessary memory migrations:
*
* faults_cpu(dst) 3 faults_cpu(src)
* --------------- * - > ---------------
* faults_mem(dst) 4 faults_mem(src)
*/
return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
}
/*
* 'numa_type' describes the node at the moment of load balancing.
*/
enum numa_type {
/* The node has spare capacity that can be used to run more tasks. */
node_has_spare = 0,
/*
* The node is fully used and the tasks don't compete for more CPU
* cycles. Nevertheless, some tasks might wait before running.
*/
node_fully_busy,
/*
* The node is overloaded and can't provide expected CPU cycles to all
* tasks.
*/
node_overloaded
};
/* Cached statistics for all CPUs within a node */
struct numa_stats {
unsigned long load;
unsigned long runnable;
unsigned long util;
/* Total compute capacity of CPUs on a node */
unsigned long compute_capacity;
unsigned int nr_running;
unsigned int weight;
enum numa_type node_type;
int idle_cpu;
};
struct task_numa_env {
struct task_struct *p;
int src_cpu, src_nid;
int dst_cpu, dst_nid;
int imb_numa_nr;
struct numa_stats src_stats, dst_stats;
int imbalance_pct;
int dist;
struct task_struct *best_task;
long best_imp;
int best_cpu;
};
static unsigned long cpu_load(struct rq *rq);
static unsigned long cpu_runnable(struct rq *rq);
static inline enum
numa_type numa_classify(unsigned int imbalance_pct,
struct numa_stats *ns)
{
if ((ns->nr_running > ns->weight) &&
(((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
return node_overloaded;
if ((ns->nr_running < ns->weight) ||
(((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
return node_has_spare;
return node_fully_busy;
}
#ifdef CONFIG_SCHED_SMT
/* Forward declarations of select_idle_sibling helpers */
static inline bool test_idle_cores(int cpu);
static inline int numa_idle_core(int idle_core, int cpu)
{
if (!static_branch_likely(&sched_smt_present) ||
idle_core >= 0 || !test_idle_cores(cpu))
return idle_core;
/*
* Prefer cores instead of packing HT siblings
* and triggering future load balancing.
*/
if (is_core_idle(cpu))
idle_core = cpu;
return idle_core;
}
#else
static inline int numa_idle_core(int idle_core, int cpu)
{
return idle_core;
}
#endif
/*
* Gather all necessary information to make NUMA balancing placement
* decisions that are compatible with standard load balancer. This
* borrows code and logic from update_sg_lb_stats but sharing a
* common implementation is impractical.
*/
static void update_numa_stats(struct task_numa_env *env,
struct numa_stats *ns, int nid,
bool find_idle)
{
int cpu, idle_core = -1;
memset(ns, 0, sizeof(*ns));
ns->idle_cpu = -1;
rcu_read_lock();
for_each_cpu(cpu, cpumask_of_node(nid)) {
struct rq *rq = cpu_rq(cpu);
ns->load += cpu_load(rq);
ns->runnable += cpu_runnable(rq);
ns->util += cpu_util_cfs(cpu);
ns->nr_running += rq->cfs.h_nr_running;
ns->compute_capacity += capacity_of(cpu);
if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) {
if (READ_ONCE(rq->numa_migrate_on) ||
!cpumask_test_cpu(cpu, env->p->cpus_ptr))
continue;
if (ns->idle_cpu == -1)
ns->idle_cpu = cpu;
idle_core = numa_idle_core(idle_core, cpu);
}
}
rcu_read_unlock();
ns->weight = cpumask_weight(cpumask_of_node(nid));
ns->node_type = numa_classify(env->imbalance_pct, ns);
if (idle_core >= 0)
ns->idle_cpu = idle_core;
}
static void task_numa_assign(struct task_numa_env *env,
struct task_struct *p, long imp)
{
struct rq *rq = cpu_rq(env->dst_cpu);
/* Check if run-queue part of active NUMA balance. */
if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
int cpu;
int start = env->dst_cpu;
/* Find alternative idle CPU. */
for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) {
if (cpu == env->best_cpu || !idle_cpu(cpu) ||
!cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
continue;
}
env->dst_cpu = cpu;
rq = cpu_rq(env->dst_cpu);
if (!xchg(&rq->numa_migrate_on, 1))
goto assign;
}
/* Failed to find an alternative idle CPU */
return;
}
assign:
/*
* Clear previous best_cpu/rq numa-migrate flag, since task now
* found a better CPU to move/swap.
*/
if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
rq = cpu_rq(env->best_cpu);
WRITE_ONCE(rq->numa_migrate_on, 0);
}
if (env->best_task)
put_task_struct(env->best_task);
if (p)
get_task_struct(p);
env->best_task = p;
env->best_imp = imp;
env->best_cpu = env->dst_cpu;
}
static bool load_too_imbalanced(long src_load, long dst_load,
struct task_numa_env *env)
{
long imb, old_imb;
long orig_src_load, orig_dst_load;
long src_capacity, dst_capacity;
/*
* The load is corrected for the CPU capacity available on each node.
*
* src_load dst_load
* ------------ vs ---------
* src_capacity dst_capacity
*/
src_capacity = env->src_stats.compute_capacity;
dst_capacity = env->dst_stats.compute_capacity;
imb = abs(dst_load * src_capacity - src_load * dst_capacity);
orig_src_load = env->src_stats.load;
orig_dst_load = env->dst_stats.load;
old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
/* Would this change make things worse? */
return (imb > old_imb);
}
/*
* Maximum NUMA importance can be 1998 (2*999);
* SMALLIMP @ 30 would be close to 1998/64.
* Used to deter task migration.
*/
#define SMALLIMP 30
/*
* This checks if the overall compute and NUMA accesses of the system would
* be improved if the source tasks was migrated to the target dst_cpu taking
* into account that it might be best if task running on the dst_cpu should
* be exchanged with the source task
*/
static bool task_numa_compare(struct task_numa_env *env,
long taskimp, long groupimp, bool maymove)
{
struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
struct rq *dst_rq = cpu_rq(env->dst_cpu);
long imp = p_ng ? groupimp : taskimp;
struct task_struct *cur;
long src_load, dst_load;
int dist = env->dist;
long moveimp = imp;
long load;
bool stopsearch = false;
if (READ_ONCE(dst_rq->numa_migrate_on))
return false;
rcu_read_lock();
cur = rcu_dereference(dst_rq->curr);
if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
cur = NULL;
/*
* Because we have preemption enabled we can get migrated around and
* end try selecting ourselves (current == env->p) as a swap candidate.
*/
if (cur == env->p) {
stopsearch = true;
goto unlock;
}
if (!cur) {
if (maymove && moveimp >= env->best_imp)
goto assign;
else
goto unlock;
}
/* Skip this swap candidate if cannot move to the source cpu. */
if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
goto unlock;
/*
* Skip this swap candidate if it is not moving to its preferred
* node and the best task is.
*/
if (env->best_task &&
env->best_task->numa_preferred_nid == env->src_nid &&
cur->numa_preferred_nid != env->src_nid) {
goto unlock;
}
/*
* "imp" is the fault differential for the source task between the
* source and destination node. Calculate the total differential for
* the source task and potential destination task. The more negative
* the value is, the more remote accesses that would be expected to
* be incurred if the tasks were swapped.
*
* If dst and source tasks are in the same NUMA group, or not
* in any group then look only at task weights.
*/
cur_ng = rcu_dereference(cur->numa_group);
if (cur_ng == p_ng) {
/*
* Do not swap within a group or between tasks that have
* no group if there is spare capacity. Swapping does
* not address the load imbalance and helps one task at
* the cost of punishing another.
*/
if (env->dst_stats.node_type == node_has_spare)
goto unlock;
imp = taskimp + task_weight(cur, env->src_nid, dist) -
task_weight(cur, env->dst_nid, dist);
/*
* Add some hysteresis to prevent swapping the
* tasks within a group over tiny differences.
*/
if (cur_ng)
imp -= imp / 16;
} else {
/*
* Compare the group weights. If a task is all by itself
* (not part of a group), use the task weight instead.
*/
if (cur_ng && p_ng)
imp += group_weight(cur, env->src_nid, dist) -
group_weight(cur, env->dst_nid, dist);
else
imp += task_weight(cur, env->src_nid, dist) -
task_weight(cur, env->dst_nid, dist);
}
/* Discourage picking a task already on its preferred node */
if (cur->numa_preferred_nid == env->dst_nid)
imp -= imp / 16;
/*
* Encourage picking a task that moves to its preferred node.
* This potentially makes imp larger than it's maximum of
* 1998 (see SMALLIMP and task_weight for why) but in this
* case, it does not matter.
*/
if (cur->numa_preferred_nid == env->src_nid)
imp += imp / 8;
if (maymove && moveimp > imp && moveimp > env->best_imp) {
imp = moveimp;
cur = NULL;
goto assign;
}
/*
* Prefer swapping with a task moving to its preferred node over a
* task that is not.
*/
if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
env->best_task->numa_preferred_nid != env->src_nid) {
goto assign;
}
/*
* If the NUMA importance is less than SMALLIMP,
* task migration might only result in ping pong
* of tasks and also hurt performance due to cache
* misses.
*/
if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
goto unlock;
/*
* In the overloaded case, try and keep the load balanced.
*/
load = task_h_load(env->p) - task_h_load(cur);
if (!load)
goto assign;
dst_load = env->dst_stats.load + load;
src_load = env->src_stats.load - load;
if (load_too_imbalanced(src_load, dst_load, env))
goto unlock;
assign:
/* Evaluate an idle CPU for a task numa move. */
if (!cur) {
int cpu = env->dst_stats.idle_cpu;
/* Nothing cached so current CPU went idle since the search. */
if (cpu < 0)
cpu = env->dst_cpu;
/*
* If the CPU is no longer truly idle and the previous best CPU
* is, keep using it.
*/
if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
idle_cpu(env->best_cpu)) {
cpu = env->best_cpu;
}
env->dst_cpu = cpu;
}
task_numa_assign(env, cur, imp);
/*
* If a move to idle is allowed because there is capacity or load
* balance improves then stop the search. While a better swap
* candidate may exist, a search is not free.
*/
if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
stopsearch = true;
/*
* If a swap candidate must be identified and the current best task
* moves its preferred node then stop the search.
*/
if (!maymove && env->best_task &&
env->best_task->numa_preferred_nid == env->src_nid) {
stopsearch = true;
}
unlock:
rcu_read_unlock();
return stopsearch;
}
static void task_numa_find_cpu(struct task_numa_env *env,
long taskimp, long groupimp)
{
bool maymove = false;
int cpu;
/*
* If dst node has spare capacity, then check if there is an
* imbalance that would be overruled by the load balancer.
*/
if (env->dst_stats.node_type == node_has_spare) {
unsigned int imbalance;
int src_running, dst_running;
/*
* Would movement cause an imbalance? Note that if src has
* more running tasks that the imbalance is ignored as the
* move improves the imbalance from the perspective of the
* CPU load balancer.
* */
src_running = env->src_stats.nr_running - 1;
dst_running = env->dst_stats.nr_running + 1;
imbalance = max(0, dst_running - src_running);
imbalance = adjust_numa_imbalance(imbalance, dst_running,
env->imb_numa_nr);
/* Use idle CPU if there is no imbalance */
if (!imbalance) {
maymove = true;
if (env->dst_stats.idle_cpu >= 0) {
env->dst_cpu = env->dst_stats.idle_cpu;
task_numa_assign(env, NULL, 0);
return;
}
}
} else {
long src_load, dst_load, load;
/*
* If the improvement from just moving env->p direction is better
* than swapping tasks around, check if a move is possible.
*/
load = task_h_load(env->p);
dst_load = env->dst_stats.load + load;
src_load = env->src_stats.load - load;
maymove = !load_too_imbalanced(src_load, dst_load, env);
}
for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
/* Skip this CPU if the source task cannot migrate */
if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
continue;
env->dst_cpu = cpu;
if (task_numa_compare(env, taskimp, groupimp, maymove))
break;
}
}
static int task_numa_migrate(struct task_struct *p)
{
struct task_numa_env env = {
.p = p,
.src_cpu = task_cpu(p),
.src_nid = task_node(p),
.imbalance_pct = 112,
.best_task = NULL,
.best_imp = 0,
.best_cpu = -1,
};
unsigned long taskweight, groupweight;
struct sched_domain *sd;
long taskimp, groupimp;
struct numa_group *ng;
struct rq *best_rq;
int nid, ret, dist;
/*
* Pick the lowest SD_NUMA domain, as that would have the smallest
* imbalance and would be the first to start moving tasks about.
*
* And we want to avoid any moving of tasks about, as that would create
* random movement of tasks -- counter the numa conditions we're trying
* to satisfy here.
*/
rcu_read_lock();
sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
if (sd) {
env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
env.imb_numa_nr = sd->imb_numa_nr;
}
rcu_read_unlock();
/*
* Cpusets can break the scheduler domain tree into smaller
* balance domains, some of which do not cross NUMA boundaries.
* Tasks that are "trapped" in such domains cannot be migrated
* elsewhere, so there is no point in (re)trying.
*/
if (unlikely(!sd)) {
sched_setnuma(p, task_node(p));
return -EINVAL;
}
env.dst_nid = p->numa_preferred_nid;
dist = env.dist = node_distance(env.src_nid, env.dst_nid);
taskweight = task_weight(p, env.src_nid, dist);
groupweight = group_weight(p, env.src_nid, dist);
update_numa_stats(&env, &env.src_stats, env.src_nid, false);
taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
/* Try to find a spot on the preferred nid. */
task_numa_find_cpu(&env, taskimp, groupimp);
/*
* Look at other nodes in these cases:
* - there is no space available on the preferred_nid
* - the task is part of a numa_group that is interleaved across
* multiple NUMA nodes; in order to better consolidate the group,
* we need to check other locations.
*/
ng = deref_curr_numa_group(p);
if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
for_each_node_state(nid, N_CPU) {
if (nid == env.src_nid || nid == p->numa_preferred_nid)
continue;
dist = node_distance(env.src_nid, env.dst_nid);
if (sched_numa_topology_type == NUMA_BACKPLANE &&
dist != env.dist) {
taskweight = task_weight(p, env.src_nid, dist);
groupweight = group_weight(p, env.src_nid, dist);
}
/* Only consider nodes where both task and groups benefit */
taskimp = task_weight(p, nid, dist) - taskweight;
groupimp = group_weight(p, nid, dist) - groupweight;
if (taskimp < 0 && groupimp < 0)
continue;
env.dist = dist;
env.dst_nid = nid;
update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
task_numa_find_cpu(&env, taskimp, groupimp);
}
}
/*
* If the task is part of a workload that spans multiple NUMA nodes,
* and is migrating into one of the workload's active nodes, remember
* this node as the task's preferred numa node, so the workload can
* settle down.
* A task that migrated to a second choice node will be better off
* trying for a better one later. Do not set the preferred node here.
*/
if (ng) {
if (env.best_cpu == -1)
nid = env.src_nid;
else
nid = cpu_to_node(env.best_cpu);
if (nid != p->numa_preferred_nid)
sched_setnuma(p, nid);
}
/* No better CPU than the current one was found. */
if (env.best_cpu == -1) {
trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
return -EAGAIN;
}
best_rq = cpu_rq(env.best_cpu);
if (env.best_task == NULL) {
ret = migrate_task_to(p, env.best_cpu);
WRITE_ONCE(best_rq->numa_migrate_on, 0);
if (ret != 0)
trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
return ret;
}
ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
WRITE_ONCE(best_rq->numa_migrate_on, 0);
if (ret != 0)
trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
put_task_struct(env.best_task);
return ret;
}
/* Attempt to migrate a task to a CPU on the preferred node. */
static void numa_migrate_preferred(struct task_struct *p)
{
unsigned long interval = HZ;
/* This task has no NUMA fault statistics yet */
if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
return;
/* Periodically retry migrating the task to the preferred node */
interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
p->numa_migrate_retry = jiffies + interval;
/* Success if task is already running on preferred CPU */
if (task_node(p) == p->numa_preferred_nid)
return;
/* Otherwise, try migrate to a CPU on the preferred node */
task_numa_migrate(p);
}
/*
* Find out how many nodes the workload is actively running on. Do this by
* tracking the nodes from which NUMA hinting faults are triggered. This can
* be different from the set of nodes where the workload's memory is currently
* located.
*/
static void numa_group_count_active_nodes(struct numa_group *numa_group)
{
unsigned long faults, max_faults = 0;
int nid, active_nodes = 0;
for_each_node_state(nid, N_CPU) {
faults = group_faults_cpu(numa_group, nid);
if (faults > max_faults)
max_faults = faults;
}
for_each_node_state(nid, N_CPU) {
faults = group_faults_cpu(numa_group, nid);
if (faults * ACTIVE_NODE_FRACTION > max_faults)
active_nodes++;
}
numa_group->max_faults_cpu = max_faults;
numa_group->active_nodes = active_nodes;
}
/*
* When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
* increments. The more local the fault statistics are, the higher the scan
* period will be for the next scan window. If local/(local+remote) ratio is
* below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
* the scan period will decrease. Aim for 70% local accesses.
*/
#define NUMA_PERIOD_SLOTS 10
#define NUMA_PERIOD_THRESHOLD 7
/*
* Increase the scan period (slow down scanning) if the majority of
* our memory is already on our local node, or if the majority of
* the page accesses are shared with other processes.
* Otherwise, decrease the scan period.
*/
static void update_task_scan_period(struct task_struct *p,
unsigned long shared, unsigned long private)
{
unsigned int period_slot;
int lr_ratio, ps_ratio;
int diff;
unsigned long remote = p->numa_faults_locality[0];
unsigned long local = p->numa_faults_locality[1];
/*
* If there were no record hinting faults then either the task is
* completely idle or all activity is in areas that are not of interest
* to automatic numa balancing. Related to that, if there were failed
* migration then it implies we are migrating too quickly or the local
* node is overloaded. In either case, scan slower
*/
if (local + shared == 0 || p->numa_faults_locality[2]) {
p->numa_scan_period = min(p->numa_scan_period_max,
p->numa_scan_period << 1);
p->mm->numa_next_scan = jiffies +
msecs_to_jiffies(p->numa_scan_period);
return;
}
/*
* Prepare to scale scan period relative to the current period.
* == NUMA_PERIOD_THRESHOLD scan period stays the same
* < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
* >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
*/
period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
/*
* Most memory accesses are local. There is no need to
* do fast NUMA scanning, since memory is already local.
*/
int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
if (!slot)
slot = 1;
diff = slot * period_slot;
} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
/*
* Most memory accesses are shared with other tasks.
* There is no point in continuing fast NUMA scanning,
* since other tasks may just move the memory elsewhere.
*/
int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
if (!slot)
slot = 1;
diff = slot * period_slot;
} else {
/*
* Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
* yet they are not on the local NUMA node. Speed up
* NUMA scanning to get the memory moved over.
*/
int ratio = max(lr_ratio, ps_ratio);
diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
}
p->numa_scan_period = clamp(p->numa_scan_period + diff,
task_scan_min(p), task_scan_max(p));
memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
}
/*
* Get the fraction of time the task has been running since the last
* NUMA placement cycle. The scheduler keeps similar statistics, but
* decays those on a 32ms period, which is orders of magnitude off
* from the dozens-of-seconds NUMA balancing period. Use the scheduler
* stats only if the task is so new there are no NUMA statistics yet.
*/
static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
{
u64 runtime, delta, now;
/* Use the start of this time slice to avoid calculations. */
now = p->se.exec_start;
runtime = p->se.sum_exec_runtime;
if (p->last_task_numa_placement) {
delta = runtime - p->last_sum_exec_runtime;
*period = now - p->last_task_numa_placement;
/* Avoid time going backwards, prevent potential divide error: */
if (unlikely((s64)*period < 0))
*period = 0;
} else {
delta = p->se.avg.load_sum;
*period = LOAD_AVG_MAX;
}
p->last_sum_exec_runtime = runtime;
p->last_task_numa_placement = now;
return delta;
}
/*
* Determine the preferred nid for a task in a numa_group. This needs to
* be done in a way that produces consistent results with group_weight,
* otherwise workloads might not converge.
*/
static int preferred_group_nid(struct task_struct *p, int nid)
{
nodemask_t nodes;
int dist;
/* Direct connections between all NUMA nodes. */
if (sched_numa_topology_type == NUMA_DIRECT)
return nid;
/*
* On a system with glueless mesh NUMA topology, group_weight
* scores nodes according to the number of NUMA hinting faults on
* both the node itself, and on nearby nodes.
*/
if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
unsigned long score, max_score = 0;
int node, max_node = nid;
dist = sched_max_numa_distance;
for_each_node_state(node, N_CPU) {
score = group_weight(p, node, dist);
if (score > max_score) {
max_score = score;
max_node = node;
}
}
return max_node;
}
/*
* Finding the preferred nid in a system with NUMA backplane
* interconnect topology is more involved. The goal is to locate
* tasks from numa_groups near each other in the system, and
* untangle workloads from different sides of the system. This requires
* searching down the hierarchy of node groups, recursively searching
* inside the highest scoring group of nodes. The nodemask tricks
* keep the complexity of the search down.
*/
nodes = node_states[N_CPU];
for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
unsigned long max_faults = 0;
nodemask_t max_group = NODE_MASK_NONE;
int a, b;
/* Are there nodes at this distance from each other? */
if (!find_numa_distance(dist))
continue;
for_each_node_mask(a, nodes) {
unsigned long faults = 0;
nodemask_t this_group;
nodes_clear(this_group);
/* Sum group's NUMA faults; includes a==b case. */
for_each_node_mask(b, nodes) {
if (node_distance(a, b) < dist) {
faults += group_faults(p, b);
node_set(b, this_group);
node_clear(b, nodes);
}
}
/* Remember the top group. */
if (faults > max_faults) {
max_faults = faults;
max_group = this_group;
/*
* subtle: at the smallest distance there is
* just one node left in each "group", the
* winner is the preferred nid.
*/
nid = a;
}
}
/* Next round, evaluate the nodes within max_group. */
if (!max_faults)
break;
nodes = max_group;
}
return nid;
}
static void task_numa_placement(struct task_struct *p)
{
int seq, nid, max_nid = NUMA_NO_NODE;
unsigned long max_faults = 0;
unsigned long fault_types[2] = { 0, 0 };
unsigned long total_faults;
u64 runtime, period;
spinlock_t *group_lock = NULL;
struct numa_group *ng;
/*
* The p->mm->numa_scan_seq field gets updated without
* exclusive access. Use READ_ONCE() here to ensure
* that the field is read in a single access:
*/
seq = READ_ONCE(p->mm->numa_scan_seq);
if (p->numa_scan_seq == seq)
return;
p->numa_scan_seq = seq;
p->numa_scan_period_max = task_scan_max(p);
total_faults = p->numa_faults_locality[0] +
p->numa_faults_locality[1];
runtime = numa_get_avg_runtime(p, &period);
/* If the task is part of a group prevent parallel updates to group stats */
ng = deref_curr_numa_group(p);
if (ng) {
group_lock = &ng->lock;
spin_lock_irq(group_lock);
}
/* Find the node with the highest number of faults */
for_each_online_node(nid) {
/* Keep track of the offsets in numa_faults array */
int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
unsigned long faults = 0, group_faults = 0;
int priv;
for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
long diff, f_diff, f_weight;
mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
/* Decay existing window, copy faults since last scan */
diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
fault_types[priv] += p->numa_faults[membuf_idx];
p->numa_faults[membuf_idx] = 0;
/*
* Normalize the faults_from, so all tasks in a group
* count according to CPU use, instead of by the raw
* number of faults. Tasks with little runtime have
* little over-all impact on throughput, and thus their
* faults are less important.
*/
f_weight = div64_u64(runtime << 16, period + 1);
f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
(total_faults + 1);
f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
p->numa_faults[cpubuf_idx] = 0;
p->numa_faults[mem_idx] += diff;
p->numa_faults[cpu_idx] += f_diff;
faults += p->numa_faults[mem_idx];
p->total_numa_faults += diff;
if (ng) {
/*
* safe because we can only change our own group
*
* mem_idx represents the offset for a given
* nid and priv in a specific region because it
* is at the beginning of the numa_faults array.
*/
ng->faults[mem_idx] += diff;
ng->faults[cpu_idx] += f_diff;
ng->total_faults += diff;
group_faults += ng->faults[mem_idx];
}
}
if (!ng) {
if (faults > max_faults) {
max_faults = faults;
max_nid = nid;
}
} else if (group_faults > max_faults) {
max_faults = group_faults;
max_nid = nid;
}
}
/* Cannot migrate task to CPU-less node */
max_nid = numa_nearest_node(max_nid, N_CPU);
if (ng) {
numa_group_count_active_nodes(ng);
spin_unlock_irq(group_lock);
max_nid = preferred_group_nid(p, max_nid);
}
if (max_faults) {
/* Set the new preferred node */
if (max_nid != p->numa_preferred_nid)
sched_setnuma(p, max_nid);
}
update_task_scan_period(p, fault_types[0], fault_types[1]);
}
static inline int get_numa_group(struct numa_group *grp)
{
return refcount_inc_not_zero(&grp->refcount);
}
static inline void put_numa_group(struct numa_group *grp)
{
if (refcount_dec_and_test(&grp->refcount))
kfree_rcu(grp, rcu);
}
static void task_numa_group(struct task_struct *p, int cpupid, int flags,
int *priv)
{
struct numa_group *grp, *my_grp;
struct task_struct *tsk;
bool join = false;
int cpu = cpupid_to_cpu(cpupid);
int i;
if (unlikely(!deref_curr_numa_group(p))) {
unsigned int size = sizeof(struct numa_group) +
NR_NUMA_HINT_FAULT_STATS *
nr_node_ids * sizeof(unsigned long);
grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
if (!grp)
return;
refcount_set(&grp->refcount, 1);
grp->active_nodes = 1;
grp->max_faults_cpu = 0;
spin_lock_init(&grp->lock);
grp->gid = p->pid;
for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
grp->faults[i] = p->numa_faults[i];
grp->total_faults = p->total_numa_faults;
grp->nr_tasks++;
rcu_assign_pointer(p->numa_group, grp);
}
rcu_read_lock();
tsk = READ_ONCE(cpu_rq(cpu)->curr);
if (!cpupid_match_pid(tsk, cpupid))
goto no_join;
grp = rcu_dereference(tsk->numa_group);
if (!grp)
goto no_join;
my_grp = deref_curr_numa_group(p);
if (grp == my_grp)
goto no_join;
/*
* Only join the other group if its bigger; if we're the bigger group,
* the other task will join us.
*/
if (my_grp->nr_tasks > grp->nr_tasks)
goto no_join;
/*
* Tie-break on the grp address.
*/
if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
goto no_join;
/* Always join threads in the same process. */
if (tsk->mm == current->mm)
join = true;
/* Simple filter to avoid false positives due to PID collisions */
if (flags & TNF_SHARED)
join = true;
/* Update priv based on whether false sharing was detected */
*priv = !join;
if (join && !get_numa_group(grp))
goto no_join;
rcu_read_unlock();
if (!join)
return;
WARN_ON_ONCE(irqs_disabled());
double_lock_irq(&my_grp->lock, &grp->lock);
for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
my_grp->faults[i] -= p->numa_faults[i];
grp->faults[i] += p->numa_faults[i];
}
my_grp->total_faults -= p->total_numa_faults;
grp->total_faults += p->total_numa_faults;
my_grp->nr_tasks--;
grp->nr_tasks++;
spin_unlock(&my_grp->lock);
spin_unlock_irq(&grp->lock);
rcu_assign_pointer(p->numa_group, grp);
put_numa_group(my_grp);
return;
no_join:
rcu_read_unlock();
return;
}
/*
* Get rid of NUMA statistics associated with a task (either current or dead).
* If @final is set, the task is dead and has reached refcount zero, so we can
* safely free all relevant data structures. Otherwise, there might be
* concurrent reads from places like load balancing and procfs, and we should
* reset the data back to default state without freeing ->numa_faults.
*/
void task_numa_free(struct task_struct *p, bool final)
{
/* safe: p either is current or is being freed by current */
struct numa_group *grp = rcu_dereference_raw(p->numa_group);
unsigned long *numa_faults = p->numa_faults;
unsigned long flags;
int i;
if (!numa_faults)
return;
if (grp) {
spin_lock_irqsave(&grp->lock, flags);
for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
grp->faults[i] -= p->numa_faults[i];
grp->total_faults -= p->total_numa_faults;
grp->nr_tasks--;
spin_unlock_irqrestore(&grp->lock, flags);
RCU_INIT_POINTER(p->numa_group, NULL);
put_numa_group(grp);
}
if (final) {
p->numa_faults = NULL;
kfree(numa_faults);
} else {
p->total_numa_faults = 0;
for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
numa_faults[i] = 0;
}
}
/*
* Got a PROT_NONE fault for a page on @node.
*/
void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
{
struct task_struct *p = current;
bool migrated = flags & TNF_MIGRATED;
int cpu_node = task_node(current);
int local = !!(flags & TNF_FAULT_LOCAL);
struct numa_group *ng;
int priv;
if (!static_branch_likely(&sched_numa_balancing))
return;
/* for example, ksmd faulting in a user's mm */
if (!p->mm)
return;
/*
* NUMA faults statistics are unnecessary for the slow memory
* node for memory tiering mode.
*/
if (!node_is_toptier(mem_node) &&
(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ||
!cpupid_valid(last_cpupid)))
return;
/* Allocate buffer to track faults on a per-node basis */
if (unlikely(!p->numa_faults)) {
int size = sizeof(*p->numa_faults) *
NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
if (!p->numa_faults)
return;
p->total_numa_faults = 0;
memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
}
/*
* First accesses are treated as private, otherwise consider accesses
* to be private if the accessing pid has not changed
*/
if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
priv = 1;
} else {
priv = cpupid_match_pid(p, last_cpupid);
if (!priv && !(flags & TNF_NO_GROUP))
task_numa_group(p, last_cpupid, flags, &priv);
}
/*
* If a workload spans multiple NUMA nodes, a shared fault that
* occurs wholly within the set of nodes that the workload is
* actively using should be counted as local. This allows the
* scan rate to slow down when a workload has settled down.
*/
ng = deref_curr_numa_group(p);
if (!priv && !local && ng && ng->active_nodes > 1 &&
numa_is_active_node(cpu_node, ng) &&
numa_is_active_node(mem_node, ng))
local = 1;
/*
* Retry to migrate task to preferred node periodically, in case it
* previously failed, or the scheduler moved us.
*/
if (time_after(jiffies, p->numa_migrate_retry)) {
task_numa_placement(p);
numa_migrate_preferred(p);
}
if (migrated)
p->numa_pages_migrated += pages;
if (flags & TNF_MIGRATE_FAIL)
p->numa_faults_locality[2] += pages;
p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
p->numa_faults_locality[local] += pages;
}
static void reset_ptenuma_scan(struct task_struct *p)
{
/*
* We only did a read acquisition of the mmap sem, so
* p->mm->numa_scan_seq is written to without exclusive access
* and the update is not guaranteed to be atomic. That's not
* much of an issue though, since this is just used for
* statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
* expensive, to avoid any form of compiler optimizations:
*/
WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
p->mm->numa_scan_offset = 0;
}
static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma)
{
unsigned long pids;
/*
* Allow unconditional access first two times, so that all the (pages)
* of VMAs get prot_none fault introduced irrespective of accesses.
* This is also done to avoid any side effect of task scanning
* amplifying the unfairness of disjoint set of VMAs' access.
*/
if (READ_ONCE(current->mm->numa_scan_seq) < 2)
return true;
pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1];
if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids))
return true;
/*
* Complete a scan that has already started regardless of PID access, or
* some VMAs may never be scanned in multi-threaded applications:
*/
if (mm->numa_scan_offset > vma->vm_start) {
trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID);
return true;
}
return false;
}
#define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay)
/*
* The expensive part of numa migration is done from task_work context.
* Triggered from task_tick_numa().
*/
static void task_numa_work(struct callback_head *work)
{
unsigned long migrate, next_scan, now = jiffies;
struct task_struct *p = current;
struct mm_struct *mm = p->mm;
u64 runtime = p->se.sum_exec_runtime;
struct vm_area_struct *vma;
unsigned long start, end;
unsigned long nr_pte_updates = 0;
long pages, virtpages;
struct vma_iterator vmi;
bool vma_pids_skipped;
bool vma_pids_forced = false;
SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
work->next = work;
/*
* Who cares about NUMA placement when they're dying.
*
* NOTE: make sure not to dereference p->mm before this check,
* exit_task_work() happens _after_ exit_mm() so we could be called
* without p->mm even though we still had it when we enqueued this
* work.
*/
if (p->flags & PF_EXITING)
return;
if (!mm->numa_next_scan) {
mm->numa_next_scan = now +
msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
}
/*
* Enforce maximal scan/migration frequency..
*/
migrate = mm->numa_next_scan;
if (time_before(now, migrate))
return;
if (p->numa_scan_period == 0) {
p->numa_scan_period_max = task_scan_max(p);
p->numa_scan_period = task_scan_start(p);
}
next_scan = now + msecs_to_jiffies(p->numa_scan_period);
if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan))
return;
/*
* Delay this task enough that another task of this mm will likely win
* the next time around.
*/
p->node_stamp += 2 * TICK_NSEC;
pages = sysctl_numa_balancing_scan_size;
pages <<= 20 - PAGE_SHIFT; /* MB in pages */
virtpages = pages * 8; /* Scan up to this much virtual space */
if (!pages)
return;
if (!mmap_read_trylock(mm))
return;
/*
* VMAs are skipped if the current PID has not trapped a fault within
* the VMA recently. Allow scanning to be forced if there is no
* suitable VMA remaining.
*/
vma_pids_skipped = false;
retry_pids:
start = mm->numa_scan_offset;
vma_iter_init(&vmi, mm, start);
vma = vma_next(&vmi);
if (!vma) {
reset_ptenuma_scan(p);
start = 0;
vma_iter_set(&vmi, start);
vma = vma_next(&vmi);
}
do {
if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE);
continue;
}
/*
* Shared library pages mapped by multiple processes are not
* migrated as it is expected they are cache replicated. Avoid
* hinting faults in read-only file-backed mappings or the vdso
* as migrating the pages will be of marginal benefit.
*/
if (!vma->vm_mm ||
(vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) {
trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO);
continue;
}
/*
* Skip inaccessible VMAs to avoid any confusion between
* PROT_NONE and NUMA hinting ptes
*/
if (!vma_is_accessible(vma)) {
trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE);
continue;
}
/* Initialise new per-VMA NUMAB state. */
if (!vma->numab_state) {
vma->numab_state = kzalloc(sizeof(struct vma_numab_state),
GFP_KERNEL);
if (!vma->numab_state)
continue;
vma->numab_state->next_scan = now +
msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
/* Reset happens after 4 times scan delay of scan start */
vma->numab_state->pids_active_reset = vma->numab_state->next_scan +
msecs_to_jiffies(VMA_PID_RESET_PERIOD);
/*
* Ensure prev_scan_seq does not match numa_scan_seq,
* to prevent VMAs being skipped prematurely on the
* first scan:
*/
vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1;
}
/*
* Scanning the VMA's of short lived tasks add more overhead. So
* delay the scan for new VMAs.
*/
if (mm->numa_scan_seq && time_before(jiffies,
vma->numab_state->next_scan)) {
trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY);
continue;
}
/* RESET access PIDs regularly for old VMAs. */
if (mm->numa_scan_seq &&
time_after(jiffies, vma->numab_state->pids_active_reset)) {
vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset +
msecs_to_jiffies(VMA_PID_RESET_PERIOD);
vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]);
vma->numab_state->pids_active[1] = 0;
}
/* Do not rescan VMAs twice within the same sequence. */
if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) {
mm->numa_scan_offset = vma->vm_end;
trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED);
continue;
}
/*
* Do not scan the VMA if task has not accessed it, unless no other
* VMA candidate exists.
*/
if (!vma_pids_forced && !vma_is_accessed(mm, vma)) {
vma_pids_skipped = true;
trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE);
continue;
}
do {
start = max(start, vma->vm_start);
end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
end = min(end, vma->vm_end);
nr_pte_updates = change_prot_numa(vma, start, end);
/*
* Try to scan sysctl_numa_balancing_size worth of
* hpages that have at least one present PTE that
* is not already pte-numa. If the VMA contains
* areas that are unused or already full of prot_numa
* PTEs, scan up to virtpages, to skip through those
* areas faster.
*/
if (nr_pte_updates)
pages -= (end - start) >> PAGE_SHIFT;
virtpages -= (end - start) >> PAGE_SHIFT;
start = end;
if (pages <= 0 || virtpages <= 0)
goto out;
cond_resched();
} while (end != vma->vm_end);
/* VMA scan is complete, do not scan until next sequence. */
vma->numab_state->prev_scan_seq = mm->numa_scan_seq;
/*
* Only force scan within one VMA at a time, to limit the
* cost of scanning a potentially uninteresting VMA.
*/
if (vma_pids_forced)
break;
} for_each_vma(vmi, vma);
/*
* If no VMAs are remaining and VMAs were skipped due to the PID
* not accessing the VMA previously, then force a scan to ensure
* forward progress:
*/
if (!vma && !vma_pids_forced && vma_pids_skipped) {
vma_pids_forced = true;
goto retry_pids;
}
out:
/*
* It is possible to reach the end of the VMA list but the last few
* VMAs are not guaranteed to the vma_migratable. If they are not, we
* would find the !migratable VMA on the next scan but not reset the
* scanner to the start so check it now.
*/
if (vma)
mm->numa_scan_offset = start;
else
reset_ptenuma_scan(p);
mmap_read_unlock(mm);
/*
* Make sure tasks use at least 32x as much time to run other code
* than they used here, to limit NUMA PTE scanning overhead to 3% max.
* Usually update_task_scan_period slows down scanning enough; on an
* overloaded system we need to limit overhead on a per task basis.
*/
if (unlikely(p->se.sum_exec_runtime != runtime)) {
u64 diff = p->se.sum_exec_runtime - runtime;
p->node_stamp += 32 * diff;
}
}
void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
{
int mm_users = 0;
struct mm_struct *mm = p->mm;
if (mm) {
mm_users = atomic_read(&mm->mm_users);
if (mm_users == 1) {
mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
mm->numa_scan_seq = 0;
}
}
p->node_stamp = 0;
p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
p->numa_scan_period = sysctl_numa_balancing_scan_delay;
p->numa_migrate_retry = 0;
/* Protect against double add, see task_tick_numa and task_numa_work */
p->numa_work.next = &p->numa_work;
p->numa_faults = NULL;
p->numa_pages_migrated = 0;
p->total_numa_faults = 0;
RCU_INIT_POINTER(p->numa_group, NULL);
p->last_task_numa_placement = 0;
p->last_sum_exec_runtime = 0;
init_task_work(&p->numa_work, task_numa_work);
/* New address space, reset the preferred nid */
if (!(clone_flags & CLONE_VM)) {
p->numa_preferred_nid = NUMA_NO_NODE;
return;
}
/*
* New thread, keep existing numa_preferred_nid which should be copied
* already by arch_dup_task_struct but stagger when scans start.
*/
if (mm) {
unsigned int delay;
delay = min_t(unsigned int, task_scan_max(current),
current->numa_scan_period * mm_users * NSEC_PER_MSEC);
delay += 2 * TICK_NSEC;
p->node_stamp = delay;
}
}
/*
* Drive the periodic memory faults..
*/
static void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
struct callback_head *work = &curr->numa_work;
u64 period, now;
/*
* We don't care about NUMA placement if we don't have memory.
*/
if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
return;
/*
* Using runtime rather than walltime has the dual advantage that
* we (mostly) drive the selection from busy threads and that the
* task needs to have done some actual work before we bother with
* NUMA placement.
*/
now = curr->se.sum_exec_runtime;
period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
if (now > curr->node_stamp + period) {
if (!curr->node_stamp)
curr->numa_scan_period = task_scan_start(curr);
curr->node_stamp += period;
if (!time_before(jiffies, curr->mm->numa_next_scan))
task_work_add(curr, work, TWA_RESUME);
}
}
static void update_scan_period(struct task_struct *p, int new_cpu)
{
int src_nid = cpu_to_node(task_cpu(p));
int dst_nid = cpu_to_node(new_cpu);
if (!static_branch_likely(&sched_numa_balancing))
return;
if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
return;
if (src_nid == dst_nid)
return;
/*
* Allow resets if faults have been trapped before one scan
* has completed. This is most likely due to a new task that
* is pulled cross-node due to wakeups or load balancing.
*/
if (p->numa_scan_seq) {
/*
* Avoid scan adjustments if moving to the preferred
* node or if the task was not previously running on
* the preferred node.
*/
if (dst_nid == p->numa_preferred_nid ||
(p->numa_preferred_nid != NUMA_NO_NODE &&
src_nid != p->numa_preferred_nid))
return;
}
p->numa_scan_period = task_scan_start(p);
}
#else
static void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
}
static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
}
static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
}
static inline void update_scan_period(struct task_struct *p, int new_cpu)
{
}
#endif /* CONFIG_NUMA_BALANCING */
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
update_load_add(&cfs_rq->load, se->load.weight);
#ifdef CONFIG_SMP
if (entity_is_task(se)) {
struct rq *rq = rq_of(cfs_rq);
account_numa_enqueue(rq, task_of(se));
list_add(&se->group_node, &rq->cfs_tasks);
}
#endif
cfs_rq->nr_running++;
if (se_is_idle(se))
cfs_rq->idle_nr_running++;
}
static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
update_load_sub(&cfs_rq->load, se->load.weight);
#ifdef CONFIG_SMP
if (entity_is_task(se)) {
account_numa_dequeue(rq_of(cfs_rq), task_of(se));
list_del_init(&se->group_node);
}
#endif
cfs_rq->nr_running--;
if (se_is_idle(se))
cfs_rq->idle_nr_running--;
}
/*
* Signed add and clamp on underflow.
*
* Explicitly do a load-store to ensure the intermediate value never hits
* memory. This allows lockless observations without ever seeing the negative
* values.
*/
#define add_positive(_ptr, _val) do { \
typeof(_ptr) ptr = (_ptr); \
typeof(_val) val = (_val); \
typeof(*ptr) res, var = READ_ONCE(*ptr); \
\
res = var + val; \
\
if (val < 0 && res > var) \
res = 0; \
\
WRITE_ONCE(*ptr, res); \
} while (0)
/*
* Unsigned subtract and clamp on underflow.
*
* Explicitly do a load-store to ensure the intermediate value never hits
* memory. This allows lockless observations without ever seeing the negative
* values.
*/
#define sub_positive(_ptr, _val) do { \
typeof(_ptr) ptr = (_ptr); \
typeof(*ptr) val = (_val); \
typeof(*ptr) res, var = READ_ONCE(*ptr); \
res = var - val; \
if (res > var) \
res = 0; \
WRITE_ONCE(*ptr, res); \
} while (0)
/*
* Remove and clamp on negative, from a local variable.
*
* A variant of sub_positive(), which does not use explicit load-store
* and is thus optimized for local variable updates.
*/
#define lsub_positive(_ptr, _val) do { \
typeof(_ptr) ptr = (_ptr); \
*ptr -= min_t(typeof(*ptr), *ptr, _val); \
} while (0)
#ifdef CONFIG_SMP
static inline void
enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
cfs_rq->avg.load_avg += se->avg.load_avg;
cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
}
static inline void
dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
/* See update_cfs_rq_load_avg() */
cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
}
#else
static inline void
enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
static inline void
dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
#endif
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
unsigned long weight)
{
unsigned long old_weight = se->load.weight;
if (se->on_rq) {
/* commit outstanding execution time */
if (cfs_rq->curr == se)
update_curr(cfs_rq);
else
avg_vruntime_sub(cfs_rq, se);
update_load_sub(&cfs_rq->load, se->load.weight);
}
dequeue_load_avg(cfs_rq, se);
update_load_set(&se->load, weight);
if (!se->on_rq) {
/*
* Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i),
* we need to scale se->vlag when w_i changes.
*/
se->vlag = div_s64(se->vlag * old_weight, weight);
} else {
s64 deadline = se->deadline - se->vruntime;
/*
* When the weight changes, the virtual time slope changes and
* we should adjust the relative virtual deadline accordingly.
*/
deadline = div_s64(deadline * old_weight, weight);
se->deadline = se->vruntime + deadline;
if (se != cfs_rq->curr)
min_deadline_cb_propagate(&se->run_node, NULL);
}
#ifdef CONFIG_SMP
do {
u32 divider = get_pelt_divider(&se->avg);
se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
} while (0);
#endif
enqueue_load_avg(cfs_rq, se);
if (se->on_rq) {
update_load_add(&cfs_rq->load, se->load.weight);
if (cfs_rq->curr != se)
avg_vruntime_add(cfs_rq, se);
}
}
void reweight_task(struct task_struct *p, int prio)
{
struct sched_entity *se = &p->se;
struct cfs_rq *cfs_rq = cfs_rq_of(se);
struct load_weight *load = &se->load;
unsigned long weight = scale_load(sched_prio_to_weight[prio]);
reweight_entity(cfs_rq, se, weight);
load->inv_weight = sched_prio_to_wmult[prio];
}
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_SMP
/*
* All this does is approximate the hierarchical proportion which includes that
* global sum we all love to hate.
*
* That is, the weight of a group entity, is the proportional share of the
* group weight based on the group runqueue weights. That is:
*
* tg->weight * grq->load.weight
* ge->load.weight = ----------------------------- (1)
* \Sum grq->load.weight
*
* Now, because computing that sum is prohibitively expensive to compute (been
* there, done that) we approximate it with this average stuff. The average
* moves slower and therefore the approximation is cheaper and more stable.
*
* So instead of the above, we substitute:
*
* grq->load.weight -> grq->avg.load_avg (2)
*
* which yields the following:
*
* tg->weight * grq->avg.load_avg
* ge->load.weight = ------------------------------ (3)
* tg->load_avg
*
* Where: tg->load_avg ~= \Sum grq->avg.load_avg
*
* That is shares_avg, and it is right (given the approximation (2)).
*
* The problem with it is that because the average is slow -- it was designed
* to be exactly that of course -- this leads to transients in boundary
* conditions. In specific, the case where the group was idle and we start the
* one task. It takes time for our CPU's grq->avg.load_avg to build up,
* yielding bad latency etc..
*
* Now, in that special case (1) reduces to:
*
* tg->weight * grq->load.weight
* ge->load.weight = ----------------------------- = tg->weight (4)
* grp->load.weight
*
* That is, the sum collapses because all other CPUs are idle; the UP scenario.
*
* So what we do is modify our approximation (3) to approach (4) in the (near)
* UP case, like:
*
* ge->load.weight =
*
* tg->weight * grq->load.weight
* --------------------------------------------------- (5)
* tg->load_avg - grq->avg.load_avg + grq->load.weight
*
* But because grq->load.weight can drop to 0, resulting in a divide by zero,
* we need to use grq->avg.load_avg as its lower bound, which then gives:
*
*
* tg->weight * grq->load.weight
* ge->load.weight = ----------------------------- (6)
* tg_load_avg'
*
* Where:
*
* tg_load_avg' = tg->load_avg - grq->avg.load_avg +
* max(grq->load.weight, grq->avg.load_avg)
*
* And that is shares_weight and is icky. In the (near) UP case it approaches
* (4) while in the normal case it approaches (3). It consistently
* overestimates the ge->load.weight and therefore:
*
* \Sum ge->load.weight >= tg->weight
*
* hence icky!
*/
static long calc_group_shares(struct cfs_rq *cfs_rq)
{
long tg_weight, tg_shares, load, shares;
struct task_group *tg = cfs_rq->tg;
tg_shares = READ_ONCE(tg->shares);
load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
tg_weight = atomic_long_read(&tg->load_avg);
/* Ensure tg_weight >= load */
tg_weight -= cfs_rq->tg_load_avg_contrib;
tg_weight += load;
shares = (tg_shares * load);
if (tg_weight)
shares /= tg_weight;
/*
* MIN_SHARES has to be unscaled here to support per-CPU partitioning
* of a group with small tg->shares value. It is a floor value which is
* assigned as a minimum load.weight to the sched_entity representing
* the group on a CPU.
*
* E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
* on an 8-core system with 8 tasks each runnable on one CPU shares has
* to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
* case no task is runnable on a CPU MIN_SHARES=2 should be returned
* instead of 0.
*/
return clamp_t(long, shares, MIN_SHARES, tg_shares);
}
#endif /* CONFIG_SMP */
/*
* Recomputes the group entity based on the current state of its group
* runqueue.
*/
static void update_cfs_group(struct sched_entity *se)
{
struct cfs_rq *gcfs_rq = group_cfs_rq(se);
long shares;
if (!gcfs_rq)
return;
if (throttled_hierarchy(gcfs_rq))
return;
#ifndef CONFIG_SMP
shares = READ_ONCE(gcfs_rq->tg->shares);
if (likely(se->load.weight == shares))
return;
#else
shares = calc_group_shares(gcfs_rq);
#endif
reweight_entity(cfs_rq_of(se), se, shares);
}
#else /* CONFIG_FAIR_GROUP_SCHED */
static inline void update_cfs_group(struct sched_entity *se)
{
}
#endif /* CONFIG_FAIR_GROUP_SCHED */
static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
{
struct rq *rq = rq_of(cfs_rq);
if (&rq->cfs == cfs_rq) {
/*
* There are a few boundary cases this might miss but it should
* get called often enough that that should (hopefully) not be
* a real problem.
*
* It will not get called when we go idle, because the idle
* thread is a different class (!fair), nor will the utilization
* number include things like RT tasks.
*
* As is, the util number is not freq-invariant (we'd have to
* implement arch_scale_freq_capacity() for that).
*
* See cpu_util_cfs().
*/
cpufreq_update_util(rq, flags);
}
}
#ifdef CONFIG_SMP
static inline bool load_avg_is_decayed(struct sched_avg *sa)
{
if (sa->load_sum)
return false;
if (sa->util_sum)
return false;
if (sa->runnable_sum)
return false;
/*
* _avg must be null when _sum are null because _avg = _sum / divider
* Make sure that rounding and/or propagation of PELT values never
* break this.
*/
SCHED_WARN_ON(sa->load_avg ||
sa->util_avg ||
sa->runnable_avg);
return true;
}
static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
{
return u64_u32_load_copy(cfs_rq->avg.last_update_time,
cfs_rq->last_update_time_copy);
}
#ifdef CONFIG_FAIR_GROUP_SCHED
/*
* Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
* immediately before a parent cfs_rq, and cfs_rqs are removed from the list
* bottom-up, we only have to test whether the cfs_rq before us on the list
* is our child.
* If cfs_rq is not on the list, test whether a child needs its to be added to
* connect a branch to the tree * (see list_add_leaf_cfs_rq() for details).
*/
static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
{
struct cfs_rq *prev_cfs_rq;
struct list_head *prev;
if (cfs_rq->on_list) {
prev = cfs_rq->leaf_cfs_rq_list.prev;
} else {
struct rq *rq = rq_of(cfs_rq);
prev = rq->tmp_alone_branch;
}
prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
return (prev_cfs_rq->tg->parent == cfs_rq->tg);
}
static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
{
if (cfs_rq->load.weight)
return false;
if (!load_avg_is_decayed(&cfs_rq->avg))
return false;
if (child_cfs_rq_on_list(cfs_rq))
return false;
return true;
}
/**
* update_tg_load_avg - update the tg's load avg
* @cfs_rq: the cfs_rq whose avg changed
*
* This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
* However, because tg->load_avg is a global value there are performance
* considerations.
*
* In order to avoid having to look at the other cfs_rq's, we use a
* differential update where we store the last value we propagated. This in
* turn allows skipping updates if the differential is 'small'.
*
* Updating tg's load_avg is necessary before update_cfs_share().
*/
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
{
long delta;
u64 now;
/*
* No need to update load_avg for root_task_group as it is not used.
*/
if (cfs_rq->tg == &root_task_group)
return;
/*
* For migration heavy workloads, access to tg->load_avg can be
* unbound. Limit the update rate to at most once per ms.
*/
now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC)
return;
delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
atomic_long_add(delta, &cfs_rq->tg->load_avg);
cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
cfs_rq->last_update_tg_load_avg = now;
}
}
/*
* Called within set_task_rq() right before setting a task's CPU. The
* caller only guarantees p->pi_lock is held; no other assumptions,
* including the state of rq->lock, should be made.
*/
void set_task_rq_fair(struct sched_entity *se,
struct cfs_rq *prev, struct cfs_rq *next)
{
u64 p_last_update_time;
u64 n_last_update_time;
if (!sched_feat(ATTACH_AGE_LOAD))
return;
/*
* We are supposed to update the task to "current" time, then its up to
* date and ready to go to new CPU/cfs_rq. But we have difficulty in
* getting what current time is, so simply throw away the out-of-date
* time. This will result in the wakee task is less decayed, but giving
* the wakee more load sounds not bad.
*/
if (!(se->avg.last_update_time && prev))
return;
p_last_update_time = cfs_rq_last_update_time(prev);
n_last_update_time = cfs_rq_last_update_time(next);
__update_load_avg_blocked_se(p_last_update_time, se);
se->avg.last_update_time = n_last_update_time;
}
/*
* When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
* propagate its contribution. The key to this propagation is the invariant
* that for each group:
*
* ge->avg == grq->avg (1)
*
* _IFF_ we look at the pure running and runnable sums. Because they
* represent the very same entity, just at different points in the hierarchy.
*
* Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
* and simply copies the running/runnable sum over (but still wrong, because
* the group entity and group rq do not have their PELT windows aligned).
*
* However, update_tg_cfs_load() is more complex. So we have:
*
* ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
*
* And since, like util, the runnable part should be directly transferable,
* the following would _appear_ to be the straight forward approach:
*
* grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
*
* And per (1) we have:
*
* ge->avg.runnable_avg == grq->avg.runnable_avg
*
* Which gives:
*
* ge->load.weight * grq->avg.load_avg
* ge->avg.load_avg = ----------------------------------- (4)
* grq->load.weight
*
* Except that is wrong!
*
* Because while for entities historical weight is not important and we
* really only care about our future and therefore can consider a pure
* runnable sum, runqueues can NOT do this.
*
* We specifically want runqueues to have a load_avg that includes
* historical weights. Those represent the blocked load, the load we expect
* to (shortly) return to us. This only works by keeping the weights as
* integral part of the sum. We therefore cannot decompose as per (3).
*
* Another reason this doesn't work is that runnable isn't a 0-sum entity.
* Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
* rq itself is runnable anywhere between 2/3 and 1 depending on how the
* runnable section of these tasks overlap (or not). If they were to perfectly
* align the rq as a whole would be runnable 2/3 of the time. If however we
* always have at least 1 runnable task, the rq as a whole is always runnable.
*
* So we'll have to approximate.. :/
*
* Given the constraint:
*
* ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
*
* We can construct a rule that adds runnable to a rq by assuming minimal
* overlap.
*
* On removal, we'll assume each task is equally runnable; which yields:
*
* grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
*
* XXX: only do this for the part of runnable > running ?
*
*/
static inline void
update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
{
long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg;
u32 new_sum, divider;
/* Nothing to update */
if (!delta_avg)
return;
/*
* cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
* See ___update_load_avg() for details.
*/
divider = get_pelt_divider(&cfs_rq->avg);
/* Set new sched_entity's utilization */
se->avg.util_avg = gcfs_rq->avg.util_avg;
new_sum = se->avg.util_avg * divider;
delta_sum = (long)new_sum - (long)se->avg.util_sum;
se->avg.util_sum = new_sum;
/* Update parent cfs_rq utilization */
add_positive(&cfs_rq->avg.util_avg, delta_avg);
add_positive(&cfs_rq->avg.util_sum, delta_sum);
/* See update_cfs_rq_load_avg() */
cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
}
static inline void
update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
{
long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
u32 new_sum, divider;
/* Nothing to update */
if (!delta_avg)
return;
/*
* cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
* See ___update_load_avg() for details.
*/
divider = get_pelt_divider(&cfs_rq->avg);
/* Set new sched_entity's runnable */
se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
new_sum = se->avg.runnable_avg * divider;
delta_sum = (long)new_sum - (long)se->avg.runnable_sum;
se->avg.runnable_sum = new_sum;
/* Update parent cfs_rq runnable */
add_positive(&cfs_rq->avg.runnable_avg, delta_avg);
add_positive(&cfs_rq->avg.runnable_sum, delta_sum);
/* See update_cfs_rq_load_avg() */
cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
}
static inline void
update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
{
long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
unsigned long load_avg;
u64 load_sum = 0;
s64 delta_sum;
u32 divider;
if (!runnable_sum)
return;
gcfs_rq->prop_runnable_sum = 0;
/*
* cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
* See ___update_load_avg() for details.
*/
divider = get_pelt_divider(&cfs_rq->avg);
if (runnable_sum >= 0) {
/*
* Add runnable; clip at LOAD_AVG_MAX. Reflects that until
* the CPU is saturated running == runnable.
*/
runnable_sum += se->avg.load_sum;
runnable_sum = min_t(long, runnable_sum, divider);
} else {
/*
* Estimate the new unweighted runnable_sum of the gcfs_rq by
* assuming all tasks are equally runnable.
*/
if (scale_load_down(gcfs_rq->load.weight)) {
load_sum = div_u64(gcfs_rq->avg.load_sum,
scale_load_down(gcfs_rq->load.weight));
}
/* But make sure to not inflate se's runnable */
runnable_sum = min(se->avg.load_sum, load_sum);
}
/*
* runnable_sum can't be lower than running_sum
* Rescale running sum to be in the same range as runnable sum
* running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
* runnable_sum is in [0 : LOAD_AVG_MAX]
*/
running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
runnable_sum = max(runnable_sum, running_sum);
load_sum = se_weight(se) * runnable_sum;
load_avg = div_u64(load_sum, divider);
delta_avg = load_avg - se->avg.load_avg;
if (!delta_avg)
return;
delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
se->avg.load_sum = runnable_sum;
se->avg.load_avg = load_avg;
add_positive(&cfs_rq->avg.load_avg, delta_avg);
add_positive(&cfs_rq->avg.load_sum, delta_sum);
/* See update_cfs_rq_load_avg() */
cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
}
static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
{
cfs_rq->propagate = 1;
cfs_rq->prop_runnable_sum += runnable_sum;
}
/* Update task and its cfs_rq load average */
static inline int propagate_entity_load_avg(struct sched_entity *se)
{
struct cfs_rq *cfs_rq, *gcfs_rq;
if (entity_is_task(se))
return 0;
gcfs_rq = group_cfs_rq(se);
if (!gcfs_rq->propagate)
return 0;
gcfs_rq->propagate = 0;
cfs_rq = cfs_rq_of(se);
add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
update_tg_cfs_util(cfs_rq, se, gcfs_rq);
update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
update_tg_cfs_load(cfs_rq, se, gcfs_rq);
trace_pelt_cfs_tp(cfs_rq);
trace_pelt_se_tp(se);
return 1;
}
/*
* Check if we need to update the load and the utilization of a blocked
* group_entity:
*/
static inline bool skip_blocked_update(struct sched_entity *se)
{
struct cfs_rq *gcfs_rq = group_cfs_rq(se);
/*
* If sched_entity still have not zero load or utilization, we have to
* decay it:
*/
if (se->avg.load_avg || se->avg.util_avg)
return false;
/*
* If there is a pending propagation, we have to update the load and
* the utilization of the sched_entity:
*/
if (gcfs_rq->propagate)
return false;
/*
* Otherwise, the load and the utilization of the sched_entity is
* already zero and there is no pending propagation, so it will be a
* waste of time to try to decay it:
*/
return true;
}
#else /* CONFIG_FAIR_GROUP_SCHED */
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
static inline int propagate_entity_load_avg(struct sched_entity *se)
{
return 0;
}
static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
#endif /* CONFIG_FAIR_GROUP_SCHED */
#ifdef CONFIG_NO_HZ_COMMON
static inline void migrate_se_pelt_lag(struct sched_entity *se)
{
u64 throttled = 0, now, lut;
struct cfs_rq *cfs_rq;
struct rq *rq;
bool is_idle;
if (load_avg_is_decayed(&se->avg))
return;
cfs_rq = cfs_rq_of(se);
rq = rq_of(cfs_rq);
rcu_read_lock();
is_idle = is_idle_task(rcu_dereference(rq->curr));
rcu_read_unlock();
/*
* The lag estimation comes with a cost we don't want to pay all the
* time. Hence, limiting to the case where the source CPU is idle and
* we know we are at the greatest risk to have an outdated clock.
*/
if (!is_idle)
return;
/*
* Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where:
*
* last_update_time (the cfs_rq's last_update_time)
* = cfs_rq_clock_pelt()@cfs_rq_idle
* = rq_clock_pelt()@cfs_rq_idle
* - cfs->throttled_clock_pelt_time@cfs_rq_idle
*
* cfs_idle_lag (delta between rq's update and cfs_rq's update)
* = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle
*
* rq_idle_lag (delta between now and rq's update)
* = sched_clock_cpu() - rq_clock()@rq_idle
*
* We can then write:
*
* now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time +
* sched_clock_cpu() - rq_clock()@rq_idle
* Where:
* rq_clock_pelt()@rq_idle is rq->clock_pelt_idle
* rq_clock()@rq_idle is rq->clock_idle
* cfs->throttled_clock_pelt_time@cfs_rq_idle
* is cfs_rq->throttled_pelt_idle
*/
#ifdef CONFIG_CFS_BANDWIDTH
throttled = u64_u32_load(cfs_rq->throttled_pelt_idle);
/* The clock has been stopped for throttling */
if (throttled == U64_MAX)
return;
#endif
now = u64_u32_load(rq->clock_pelt_idle);
/*
* Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case
* is observed the old clock_pelt_idle value and the new clock_idle,
* which lead to an underestimation. The opposite would lead to an
* overestimation.
*/
smp_rmb();
lut = cfs_rq_last_update_time(cfs_rq);
now -= throttled;
if (now < lut)
/*
* cfs_rq->avg.last_update_time is more recent than our
* estimation, let's use it.
*/
now = lut;
else
now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle);
__update_load_avg_blocked_se(now, se);
}
#else
static void migrate_se_pelt_lag(struct sched_entity *se) {}
#endif
/**
* update_cfs_rq_load_avg - update the cfs_rq's load/util averages
* @now: current time, as per cfs_rq_clock_pelt()
* @cfs_rq: cfs_rq to update
*
* The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
* avg. The immediate corollary is that all (fair) tasks must be attached.
*
* cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
*
* Return: true if the load decayed or we removed load.
*
* Since both these conditions indicate a changed cfs_rq->avg.load we should
* call update_tg_load_avg() when this function returns true.
*/
static inline int
update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
{
unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
struct sched_avg *sa = &cfs_rq->avg;
int decayed = 0;
if (cfs_rq->removed.nr) {
unsigned long r;
u32 divider = get_pelt_divider(&cfs_rq->avg);
raw_spin_lock(&cfs_rq->removed.lock);
swap(cfs_rq->removed.util_avg, removed_util);
swap(cfs_rq->removed.load_avg, removed_load);
swap(cfs_rq->removed.runnable_avg, removed_runnable);
cfs_rq->removed.nr = 0;
raw_spin_unlock(&cfs_rq->removed.lock);
r = removed_load;
sub_positive(&sa->load_avg, r);
sub_positive(&sa->load_sum, r * divider);
/* See sa->util_sum below */
sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER);
r = removed_util;
sub_positive(&sa->util_avg, r);
sub_positive(&sa->util_sum, r * divider);
/*
* Because of rounding, se->util_sum might ends up being +1 more than
* cfs->util_sum. Although this is not a problem by itself, detaching
* a lot of tasks with the rounding problem between 2 updates of
* util_avg (~1ms) can make cfs->util_sum becoming null whereas
* cfs_util_avg is not.
* Check that util_sum is still above its lower bound for the new
* util_avg. Given that period_contrib might have moved since the last
* sync, we are only sure that util_sum must be above or equal to
* util_avg * minimum possible divider
*/
sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
r = removed_runnable;
sub_positive(&sa->runnable_avg, r);
sub_positive(&sa->runnable_sum, r * divider);
/* See sa->util_sum above */
sa->runnable_sum = max_t(u32, sa->runnable_sum,
sa->runnable_avg * PELT_MIN_DIVIDER);
/*
* removed_runnable is the unweighted version of removed_load so we
* can use it to estimate removed_load_sum.
*/
add_tg_cfs_propagate(cfs_rq,
-(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
decayed = 1;
}
decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
u64_u32_store_copy(sa->last_update_time,
cfs_rq->last_update_time_copy,
sa->last_update_time);
return decayed;
}
/**
* attach_entity_load_avg - attach this entity to its cfs_rq load avg
* @cfs_rq: cfs_rq to attach to
* @se: sched_entity to attach
*
* Must call update_cfs_rq_load_avg() before this, since we rely on
* cfs_rq->avg.last_update_time being current.
*/
static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
/*
* cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
* See ___update_load_avg() for details.
*/
u32 divider = get_pelt_divider(&cfs_rq->avg);
/*
* When we attach the @se to the @cfs_rq, we must align the decay
* window because without that, really weird and wonderful things can
* happen.
*
* XXX illustrate
*/
se->avg.last_update_time = cfs_rq->avg.last_update_time;
se->avg.period_contrib = cfs_rq->avg.period_contrib;
/*
* Hell(o) Nasty stuff.. we need to recompute _sum based on the new
* period_contrib. This isn't strictly correct, but since we're
* entirely outside of the PELT hierarchy, nobody cares if we truncate
* _sum a little.
*/
se->avg.util_sum = se->avg.util_avg * divider;
se->avg.runnable_sum = se->avg.runnable_avg * divider;
se->avg.load_sum = se->avg.load_avg * divider;
if (se_weight(se) < se->avg.load_sum)
se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
else
se->avg.load_sum = 1;
enqueue_load_avg(cfs_rq, se);
cfs_rq->avg.util_avg += se->avg.util_avg;
cfs_rq->avg.util_sum += se->avg.util_sum;
cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
cfs_rq_util_change(cfs_rq, 0);
trace_pelt_cfs_tp(cfs_rq);
}
/**
* detach_entity_load_avg - detach this entity from its cfs_rq load avg
* @cfs_rq: cfs_rq to detach from
* @se: sched_entity to detach
*
* Must call update_cfs_rq_load_avg() before this, since we rely on
* cfs_rq->avg.last_update_time being current.
*/
static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
dequeue_load_avg(cfs_rq, se);
sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
/* See update_cfs_rq_load_avg() */
cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
/* See update_cfs_rq_load_avg() */
cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
cfs_rq_util_change(cfs_rq, 0);
trace_pelt_cfs_tp(cfs_rq);
}
/*
* Optional action to be done while updating the load average
*/
#define UPDATE_TG 0x1
#define SKIP_AGE_LOAD 0x2
#define DO_ATTACH 0x4
#define DO_DETACH 0x8
/* Update task and its cfs_rq load average */
static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
{
u64 now = cfs_rq_clock_pelt(cfs_rq);
int decayed;
/*
* Track task load average for carrying it to new CPU after migrated, and
* track group sched_entity load average for task_h_load calc in migration
*/
if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
__update_load_avg_se(now, cfs_rq, se);
decayed = update_cfs_rq_load_avg(now, cfs_rq);
decayed |= propagate_entity_load_avg(se);
if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
/*
* DO_ATTACH means we're here from enqueue_entity().
* !last_update_time means we've passed through
* migrate_task_rq_fair() indicating we migrated.
*
* IOW we're enqueueing a task on a new CPU.
*/
attach_entity_load_avg(cfs_rq, se);
update_tg_load_avg(cfs_rq);
} else if (flags & DO_DETACH) {
/*
* DO_DETACH means we're here from dequeue_entity()
* and we are migrating task out of the CPU.
*/
detach_entity_load_avg(cfs_rq, se);
update_tg_load_avg(cfs_rq);
} else if (decayed) {
cfs_rq_util_change(cfs_rq, 0);
if (flags & UPDATE_TG)
update_tg_load_avg(cfs_rq);
}
}
/*
* Synchronize entity load avg of dequeued entity without locking
* the previous rq.
*/
static void sync_entity_load_avg(struct sched_entity *se)
{
struct cfs_rq *cfs_rq = cfs_rq_of(se);
u64 last_update_time;
last_update_time = cfs_rq_last_update_time(cfs_rq);
__update_load_avg_blocked_se(last_update_time, se);
}
/*
* Task first catches up with cfs_rq, and then subtract
* itself from the cfs_rq (task must be off the queue now).
*/
static void remove_entity_load_avg(struct sched_entity *se)
{
struct cfs_rq *cfs_rq = cfs_rq_of(se);
unsigned long flags;
/*
* tasks cannot exit without having gone through wake_up_new_task() ->
* enqueue_task_fair() which will have added things to the cfs_rq,
* so we can remove unconditionally.
*/
sync_entity_load_avg(se);
raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
++cfs_rq->removed.nr;
cfs_rq->removed.util_avg += se->avg.util_avg;
cfs_rq->removed.load_avg += se->avg.load_avg;
cfs_rq->removed.runnable_avg += se->avg.runnable_avg;
raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
}
static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
{
return cfs_rq->avg.runnable_avg;
}
static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
{
return cfs_rq->avg.load_avg;
}
static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
static inline unsigned long task_util(struct task_struct *p)
{
return READ_ONCE(p->se.avg.util_avg);
}
static inline unsigned long _task_util_est(struct task_struct *p)
{
struct util_est ue = READ_ONCE(p->se.avg.util_est);
return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED));
}
static inline unsigned long task_util_est(struct task_struct *p)
{
return max(task_util(p), _task_util_est(p));
}
static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
struct task_struct *p)
{
unsigned int enqueued;
if (!sched_feat(UTIL_EST))
return;
/* Update root cfs_rq's estimated utilization */
enqueued = cfs_rq->avg.util_est.enqueued;
enqueued += _task_util_est(p);
WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
trace_sched_util_est_cfs_tp(cfs_rq);
}
static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
struct task_struct *p)
{
unsigned int enqueued;
if (!sched_feat(UTIL_EST))
return;
/* Update root cfs_rq's estimated utilization */
enqueued = cfs_rq->avg.util_est.enqueued;
enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
trace_sched_util_est_cfs_tp(cfs_rq);
}
#define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
/*
* Check if a (signed) value is within a specified (unsigned) margin,
* based on the observation that:
*
* abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
*
* NOTE: this only works when value + margin < INT_MAX.
*/
static inline bool within_margin(int value, int margin)
{
return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
}
static inline void util_est_update(struct cfs_rq *cfs_rq,
struct task_struct *p,
bool task_sleep)
{
long last_ewma_diff, last_enqueued_diff;
struct util_est ue;
if (!sched_feat(UTIL_EST))
return;
/*
* Skip update of task's estimated utilization when the task has not
* yet completed an activation, e.g. being migrated.
*/
if (!task_sleep)
return;
/*
* If the PELT values haven't changed since enqueue time,
* skip the util_est update.
*/
ue = p->se.avg.util_est;
if (ue.enqueued & UTIL_AVG_UNCHANGED)
return;
last_enqueued_diff = ue.enqueued;
/*
* Reset EWMA on utilization increases, the moving average is used only
* to smooth utilization decreases.
*/
ue.enqueued = task_util(p);
if (sched_feat(UTIL_EST_FASTUP)) {
if (ue.ewma < ue.enqueued) {
ue.ewma = ue.enqueued;
goto done;
}
}
/*
* Skip update of task's estimated utilization when its members are
* already ~1% close to its last activation value.
*/
last_ewma_diff = ue.enqueued - ue.ewma;
last_enqueued_diff -= ue.enqueued;
if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) {
if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN))
goto done;
return;
}
/*
* To avoid overestimation of actual task utilization, skip updates if
* we cannot grant there is idle time in this CPU.
*/
if (task_util(p) > arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))))
return;
/*
* Update Task's estimated utilization
*
* When *p completes an activation we can consolidate another sample
* of the task size. This is done by storing the current PELT value
* as ue.enqueued and by using this value to update the Exponential
* Weighted Moving Average (EWMA):
*
* ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
* = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
* = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
* = w * ( last_ewma_diff ) + ewma(t-1)
* = w * (last_ewma_diff + ewma(t-1) / w)
*
* Where 'w' is the weight of new samples, which is configured to be
* 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
*/
ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
ue.ewma += last_ewma_diff;
ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
done:
ue.enqueued |= UTIL_AVG_UNCHANGED;
WRITE_ONCE(p->se.avg.util_est, ue);
trace_sched_util_est_se_tp(&p->se);
}
static inline int util_fits_cpu(unsigned long util,
unsigned long uclamp_min,
unsigned long uclamp_max,
int cpu)
{
unsigned long capacity_orig, capacity_orig_thermal;
unsigned long capacity = capacity_of(cpu);
bool fits, uclamp_max_fits;
/*
* Check if the real util fits without any uclamp boost/cap applied.
*/
fits = fits_capacity(util, capacity);
if (!uclamp_is_used())
return fits;
/*
* We must use arch_scale_cpu_capacity() for comparing against uclamp_min and
* uclamp_max. We only care about capacity pressure (by using
* capacity_of()) for comparing against the real util.
*
* If a task is boosted to 1024 for example, we don't want a tiny
* pressure to skew the check whether it fits a CPU or not.
*
* Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it
* should fit a little cpu even if there's some pressure.
*
* Only exception is for thermal pressure since it has a direct impact
* on available OPP of the system.
*
* We honour it for uclamp_min only as a drop in performance level
* could result in not getting the requested minimum performance level.
*
* For uclamp_max, we can tolerate a drop in performance level as the
* goal is to cap the task. So it's okay if it's getting less.
*/
capacity_orig = arch_scale_cpu_capacity(cpu);
capacity_orig_thermal = capacity_orig - arch_scale_thermal_pressure(cpu);
/*
* We want to force a task to fit a cpu as implied by uclamp_max.
* But we do have some corner cases to cater for..
*
*
* C=z
* | ___
* | C=y | |
* |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
* | C=x | | | |
* | ___ | | | |
* | | | | | | | (util somewhere in this region)
* | | | | | | |
* | | | | | | |
* +----------------------------------------
* cpu0 cpu1 cpu2
*
* In the above example if a task is capped to a specific performance
* point, y, then when:
*
* * util = 80% of x then it does not fit on cpu0 and should migrate
* to cpu1
* * util = 80% of y then it is forced to fit on cpu1 to honour
* uclamp_max request.
*
* which is what we're enforcing here. A task always fits if
* uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig,
* the normal upmigration rules should withhold still.
*
* Only exception is when we are on max capacity, then we need to be
* careful not to block overutilized state. This is so because:
*
* 1. There's no concept of capping at max_capacity! We can't go
* beyond this performance level anyway.
* 2. The system is being saturated when we're operating near
* max capacity, it doesn't make sense to block overutilized.
*/
uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE);
uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig);
fits = fits || uclamp_max_fits;
/*
*
* C=z
* | ___ (region a, capped, util >= uclamp_max)
* | C=y | |
* |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
* | C=x | | | |
* | ___ | | | | (region b, uclamp_min <= util <= uclamp_max)
* |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min
* | | | | | | |
* | | | | | | | (region c, boosted, util < uclamp_min)
* +----------------------------------------
* cpu0 cpu1 cpu2
*
* a) If util > uclamp_max, then we're capped, we don't care about
* actual fitness value here. We only care if uclamp_max fits
* capacity without taking margin/pressure into account.
* See comment above.
*
* b) If uclamp_min <= util <= uclamp_max, then the normal
* fits_capacity() rules apply. Except we need to ensure that we
* enforce we remain within uclamp_max, see comment above.
*
* c) If util < uclamp_min, then we are boosted. Same as (b) but we
* need to take into account the boosted value fits the CPU without
* taking margin/pressure into account.
*
* Cases (a) and (b) are handled in the 'fits' variable already. We
* just need to consider an extra check for case (c) after ensuring we
* handle the case uclamp_min > uclamp_max.
*/
uclamp_min = min(uclamp_min, uclamp_max);
if (fits && (util < uclamp_min) && (uclamp_min > capacity_orig_thermal))
return -1;
return fits;
}
static inline int task_fits_cpu(struct task_struct *p, int cpu)
{
unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN);
unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX);
unsigned long util = task_util_est(p);
/*
* Return true only if the cpu fully fits the task requirements, which
* include the utilization but also the performance hints.
*/
return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0);
}
static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
{
if (!sched_asym_cpucap_active())
return;
if (!p || p->nr_cpus_allowed == 1) {
rq->misfit_task_load = 0;
return;
}
if (task_fits_cpu(p, cpu_of(rq))) {
rq->misfit_task_load = 0;
return;
}
/*
* Make sure that misfit_task_load will not be null even if
* task_h_load() returns 0.
*/
rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
}
#else /* CONFIG_SMP */
static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
{
return !cfs_rq->nr_running;
}
#define UPDATE_TG 0x0
#define SKIP_AGE_LOAD 0x0
#define DO_ATTACH 0x0
#define DO_DETACH 0x0
static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
{
cfs_rq_util_change(cfs_rq, 0);
}
static inline void remove_entity_load_avg(struct sched_entity *se) {}
static inline void
attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
static inline void
detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
{
return 0;
}
static inline void
util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
static inline void
util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
static inline void
util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
bool task_sleep) {}
static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
#endif /* CONFIG_SMP */
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
{
u64 vslice, vruntime = avg_vruntime(cfs_rq);
s64 lag = 0;
se->slice = sysctl_sched_base_slice;
vslice = calc_delta_fair(se->slice, se);
/*
* Due to how V is constructed as the weighted average of entities,
* adding tasks with positive lag, or removing tasks with negative lag
* will move 'time' backwards, this can screw around with the lag of
* other tasks.
*
* EEVDF: placement strategy #1 / #2
*/
if (sched_feat(PLACE_LAG) && cfs_rq->nr_running) {
struct sched_entity *curr = cfs_rq->curr;
unsigned long load;
lag = se->vlag;
/*
* If we want to place a task and preserve lag, we have to
* consider the effect of the new entity on the weighted
* average and compensate for this, otherwise lag can quickly
* evaporate.
*
* Lag is defined as:
*
* lag_i = S - s_i = w_i * (V - v_i)
*
* To avoid the 'w_i' term all over the place, we only track
* the virtual lag:
*
* vl_i = V - v_i <=> v_i = V - vl_i
*
* And we take V to be the weighted average of all v:
*
* V = (\Sum w_j*v_j) / W
*
* Where W is: \Sum w_j
*
* Then, the weighted average after adding an entity with lag
* vl_i is given by:
*
* V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i)
* = (W*V + w_i*(V - vl_i)) / (W + w_i)
* = (W*V + w_i*V - w_i*vl_i) / (W + w_i)
* = (V*(W + w_i) - w_i*l) / (W + w_i)
* = V - w_i*vl_i / (W + w_i)
*
* And the actual lag after adding an entity with vl_i is:
*
* vl'_i = V' - v_i
* = V - w_i*vl_i / (W + w_i) - (V - vl_i)
* = vl_i - w_i*vl_i / (W + w_i)
*
* Which is strictly less than vl_i. So in order to preserve lag
* we should inflate the lag before placement such that the
* effective lag after placement comes out right.
*
* As such, invert the above relation for vl'_i to get the vl_i
* we need to use such that the lag after placement is the lag
* we computed before dequeue.
*
* vl'_i = vl_i - w_i*vl_i / (W + w_i)
* = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i)
*
* (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i
* = W*vl_i
*
* vl_i = (W + w_i)*vl'_i / W
*/
load = cfs_rq->avg_load;
if (curr && curr->on_rq)
load += scale_load_down(curr->load.weight);
lag *= load + scale_load_down(se->load.weight);
if (WARN_ON_ONCE(!load))
load = 1;
lag = div_s64(lag, load);
}
se->vruntime = vruntime - lag;
/*
* When joining the competition; the exisiting tasks will be,
* on average, halfway through their slice, as such start tasks
* off with half a slice to ease into the competition.
*/
if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL))
vslice /= 2;
/*
* EEVDF: vd_i = ve_i + r_i/w_i
*/
se->deadline = se->vruntime + vslice;
}
static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq);
static inline bool cfs_bandwidth_used(void);
static void
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
{
bool curr = cfs_rq->curr == se;
/*
* If we're the current task, we must renormalise before calling
* update_curr().
*/
if (curr)
place_entity(cfs_rq, se, flags);
update_curr(cfs_rq);
/*
* When enqueuing a sched_entity, we must:
* - Update loads to have both entity and cfs_rq synced with now.
* - For group_entity, update its runnable_weight to reflect the new
* h_nr_running of its group cfs_rq.
* - For group_entity, update its weight to reflect the new share of
* its group cfs_rq
* - Add its new weight to cfs_rq->load.weight
*/
update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
se_update_runnable(se);
/*
* XXX update_load_avg() above will have attached us to the pelt sum;
* but update_cfs_group() here will re-adjust the weight and have to
* undo/redo all that. Seems wasteful.
*/
update_cfs_group(se);
/*
* XXX now that the entity has been re-weighted, and it's lag adjusted,
* we can place the entity.
*/
if (!curr)
place_entity(cfs_rq, se, flags);
account_entity_enqueue(cfs_rq, se);
/* Entity has migrated, no longer consider this task hot */
if (flags & ENQUEUE_MIGRATED)
se->exec_start = 0;
check_schedstat_required();
update_stats_enqueue_fair(cfs_rq, se, flags);
if (!curr)
__enqueue_entity(cfs_rq, se);
se->on_rq = 1;
if (cfs_rq->nr_running == 1) {
check_enqueue_throttle(cfs_rq);
if (!throttled_hierarchy(cfs_rq)) {
list_add_leaf_cfs_rq(cfs_rq);
} else {
#ifdef CONFIG_CFS_BANDWIDTH
struct rq *rq = rq_of(cfs_rq);
if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock)
cfs_rq->throttled_clock = rq_clock(rq);
if (!cfs_rq->throttled_clock_self)
cfs_rq->throttled_clock_self = rq_clock(rq);
#endif
}
}
}
static void __clear_buddies_next(struct sched_entity *se)
{
for_each_sched_entity(se) {
struct cfs_rq *cfs_rq = cfs_rq_of(se);
if (cfs_rq->next != se)
break;
cfs_rq->next = NULL;
}
}
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
if (cfs_rq->next == se)
__clear_buddies_next(se);
}
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
static void
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
{
int action = UPDATE_TG;
if (entity_is_task(se) && task_on_rq_migrating(task_of(se)))
action |= DO_DETACH;
/*
* Update run-time statistics of the 'current'.
*/
update_curr(cfs_rq);
/*
* When dequeuing a sched_entity, we must:
* - Update loads to have both entity and cfs_rq synced with now.
* - For group_entity, update its runnable_weight to reflect the new
* h_nr_running of its group cfs_rq.
* - Subtract its previous weight from cfs_rq->load.weight.
* - For group entity, update its weight to reflect the new share
* of its group cfs_rq.
*/
update_load_avg(cfs_rq, se, action);
se_update_runnable(se);
update_stats_dequeue_fair(cfs_rq, se, flags);
clear_buddies(cfs_rq, se);
update_entity_lag(cfs_rq, se);
if (se != cfs_rq->curr)
__dequeue_entity(cfs_rq, se);
se->on_rq = 0;
account_entity_dequeue(cfs_rq, se);
/* return excess runtime on last dequeue */
return_cfs_rq_runtime(cfs_rq);
update_cfs_group(se);
/*
* Now advance min_vruntime if @se was the entity holding it back,
* except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
* put back on, and if we advance min_vruntime, we'll be placed back
* further than we started -- ie. we'll be penalized.
*/
if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
update_min_vruntime(cfs_rq);
if (cfs_rq->nr_running == 0)
update_idle_cfs_rq_clock_pelt(cfs_rq);
}
static void
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
clear_buddies(cfs_rq, se);
/* 'current' is not kept within the tree. */
if (se->on_rq) {
/*
* Any task has to be enqueued before it get to execute on
* a CPU. So account for the time it spent waiting on the
* runqueue.
*/
update_stats_wait_end_fair(cfs_rq, se);
__dequeue_entity(cfs_rq, se);
update_load_avg(cfs_rq, se, UPDATE_TG);
/*
* HACK, stash a copy of deadline at the point of pick in vlag,
* which isn't used until dequeue.
*/
se->vlag = se->deadline;
}
update_stats_curr_start(cfs_rq, se);
cfs_rq->curr = se;
/*
* Track our maximum slice length, if the CPU's load is at
* least twice that of our own weight (i.e. dont track it
* when there are only lesser-weight tasks around):
*/
if (schedstat_enabled() &&
rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
struct sched_statistics *stats;
stats = __schedstats_from_se(se);
__schedstat_set(stats->slice_max,
max((u64)stats->slice_max,
se->sum_exec_runtime - se->prev_sum_exec_runtime));
}
se->prev_sum_exec_runtime = se->sum_exec_runtime;
}
/*
* Pick the next process, keeping these things in mind, in this order:
* 1) keep things fair between processes/task groups
* 2) pick the "next" process, since someone really wants that to run
* 3) pick the "last" process, for cache locality
* 4) do not run the "skip" process, if something else is available
*/
static struct sched_entity *
pick_next_entity(struct cfs_rq *cfs_rq)
{
/*
* Enabling NEXT_BUDDY will affect latency but not fairness.
*/
if (sched_feat(NEXT_BUDDY) &&
cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next))
return cfs_rq->next;
return pick_eevdf(cfs_rq);
}
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
{
/*
* If still on the runqueue then deactivate_task()
* was not called and update_curr() has to be done:
*/
if (prev->on_rq)
update_curr(cfs_rq);
/* throttle cfs_rqs exceeding runtime */
check_cfs_rq_runtime(cfs_rq);
if (prev->on_rq) {
update_stats_wait_start_fair(cfs_rq, prev);
/* Put 'current' back into the tree. */
__enqueue_entity(cfs_rq, prev);
/* in !on_rq case, update occurred at dequeue */
update_load_avg(cfs_rq, prev, 0);
}
cfs_rq->curr = NULL;
}
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
{
/*
* Update run-time statistics of the 'current'.
*/
update_curr(cfs_rq);
/*
* Ensure that runnable average is periodically updated.
*/
update_load_avg(cfs_rq, curr, UPDATE_TG);
update_cfs_group(curr);
#ifdef CONFIG_SCHED_HRTICK
/*
* queued ticks are scheduled to match the slice, so don't bother
* validating it and just reschedule.
*/
if (queued) {
resched_curr(rq_of(cfs_rq));
return;
}
/*
* don't let the period tick interfere with the hrtick preemption
*/
if (!sched_feat(DOUBLE_TICK) &&
hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
return;
#endif
}
/**************************************************
* CFS bandwidth control machinery
*/
#ifdef CONFIG_CFS_BANDWIDTH
#ifdef CONFIG_JUMP_LABEL
static struct static_key __cfs_bandwidth_used;
static inline bool cfs_bandwidth_used(void)
{
return static_key_false(&__cfs_bandwidth_used);
}
void cfs_bandwidth_usage_inc(void)
{
static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
}
void cfs_bandwidth_usage_dec(void)
{
static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
}
#else /* CONFIG_JUMP_LABEL */
static bool cfs_bandwidth_used(void)
{
return true;
}
void cfs_bandwidth_usage_inc(void) {}
void cfs_bandwidth_usage_dec(void) {}
#endif /* CONFIG_JUMP_LABEL */
/*
* default period for cfs group bandwidth.
* default: 0.1s, units: nanoseconds
*/
static inline u64 default_cfs_period(void)
{
return 100000000ULL;
}
static inline u64 sched_cfs_bandwidth_slice(void)
{
return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
}
/*
* Replenish runtime according to assigned quota. We use sched_clock_cpu
* directly instead of rq->clock to avoid adding additional synchronization
* around rq->lock.
*
* requires cfs_b->lock
*/
void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
{
s64 runtime;
if (unlikely(cfs_b->quota == RUNTIME_INF))
return;
cfs_b->runtime += cfs_b->quota;
runtime = cfs_b->runtime_snap - cfs_b->runtime;
if (runtime > 0) {
cfs_b->burst_time += runtime;
cfs_b->nr_burst++;
}
cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
cfs_b->runtime_snap = cfs_b->runtime;
}
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
return &tg->cfs_bandwidth;
}
/* returns 0 on failure to allocate runtime */
static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
struct cfs_rq *cfs_rq, u64 target_runtime)
{
u64 min_amount, amount = 0;
lockdep_assert_held(&cfs_b->lock);
/* note: this is a positive sum as runtime_remaining <= 0 */
min_amount = target_runtime - cfs_rq->runtime_remaining;
if (cfs_b->quota == RUNTIME_INF)
amount = min_amount;
else {
start_cfs_bandwidth(cfs_b);
if (cfs_b->runtime > 0) {
amount = min(cfs_b->runtime, min_amount);
cfs_b->runtime -= amount;
cfs_b->idle = 0;
}
}
cfs_rq->runtime_remaining += amount;
return cfs_rq->runtime_remaining > 0;
}
/* returns 0 on failure to allocate runtime */
static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
int ret;
raw_spin_lock(&cfs_b->lock);
ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
raw_spin_unlock(&cfs_b->lock);
return ret;
}
static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
{
/* dock delta_exec before expiring quota (as it could span periods) */
cfs_rq->runtime_remaining -= delta_exec;
if (likely(cfs_rq->runtime_remaining > 0))
return;
if (cfs_rq->throttled)
return;
/*
* if we're unable to extend our runtime we resched so that the active
* hierarchy can be throttled
*/
if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
resched_curr(rq_of(cfs_rq));
}
static __always_inline
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
{
if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
return;
__account_cfs_rq_runtime(cfs_rq, delta_exec);
}
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
return cfs_bandwidth_used() && cfs_rq->throttled;
}
/* check whether cfs_rq, or any parent, is throttled */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
return cfs_bandwidth_used() && cfs_rq->throttle_count;
}
/*
* Ensure that neither of the group entities corresponding to src_cpu or
* dest_cpu are members of a throttled hierarchy when performing group
* load-balance operations.
*/
static inline int throttled_lb_pair(struct task_group *tg,
int src_cpu, int dest_cpu)
{
struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
src_cfs_rq = tg->cfs_rq[src_cpu];
dest_cfs_rq = tg->cfs_rq[dest_cpu];
return throttled_hierarchy(src_cfs_rq) ||
throttled_hierarchy(dest_cfs_rq);
}
static int tg_unthrottle_up(struct task_group *tg, void *data)
{
struct rq *rq = data;
struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
cfs_rq->throttle_count--;
if (!cfs_rq->throttle_count) {
cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
cfs_rq->throttled_clock_pelt;
/* Add cfs_rq with load or one or more already running entities to the list */
if (!cfs_rq_is_decayed(cfs_rq))
list_add_leaf_cfs_rq(cfs_rq);
if (cfs_rq->throttled_clock_self) {
u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self;
cfs_rq->throttled_clock_self = 0;
if (SCHED_WARN_ON((s64)delta < 0))
delta = 0;
cfs_rq->throttled_clock_self_time += delta;
}
}
return 0;
}
static int tg_throttle_down(struct task_group *tg, void *data)
{
struct rq *rq = data;
struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
/* group is entering throttled state, stop time */
if (!cfs_rq->throttle_count) {
cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
list_del_leaf_cfs_rq(cfs_rq);
SCHED_WARN_ON(cfs_rq->throttled_clock_self);
if (cfs_rq->nr_running)
cfs_rq->throttled_clock_self = rq_clock(rq);
}
cfs_rq->throttle_count++;
return 0;
}
static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
{
struct rq *rq = rq_of(cfs_rq);
struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
struct sched_entity *se;
long task_delta, idle_task_delta, dequeue = 1;
raw_spin_lock(&cfs_b->lock);
/* This will start the period timer if necessary */
if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
/*
* We have raced with bandwidth becoming available, and if we
* actually throttled the timer might not unthrottle us for an
* entire period. We additionally needed to make sure that any
* subsequent check_cfs_rq_runtime calls agree not to throttle
* us, as we may commit to do cfs put_prev+pick_next, so we ask
* for 1ns of runtime rather than just check cfs_b.
*/
dequeue = 0;
} else {
list_add_tail_rcu(&cfs_rq->throttled_list,
&cfs_b->throttled_cfs_rq);
}
raw_spin_unlock(&cfs_b->lock);
if (!dequeue)
return false; /* Throttle no longer required. */
se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
/* freeze hierarchy runnable averages while throttled */
rcu_read_lock();
walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
rcu_read_unlock();
task_delta = cfs_rq->h_nr_running;
idle_task_delta = cfs_rq->idle_h_nr_running;
for_each_sched_entity(se) {
struct cfs_rq *qcfs_rq = cfs_rq_of(se);
/* throttled entity or throttle-on-deactivate */
if (!se->on_rq)
goto done;
dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
if (cfs_rq_is_idle(group_cfs_rq(se)))
idle_task_delta = cfs_rq->h_nr_running;
qcfs_rq->h_nr_running -= task_delta;
qcfs_rq->idle_h_nr_running -= idle_task_delta;
if (qcfs_rq->load.weight) {
/* Avoid re-evaluating load for this entity: */
se = parent_entity(se);
break;
}
}
for_each_sched_entity(se) {
struct cfs_rq *qcfs_rq = cfs_rq_of(se);
/* throttled entity or throttle-on-deactivate */
if (!se->on_rq)
goto done;
update_load_avg(qcfs_rq, se, 0);
se_update_runnable(se);
if (cfs_rq_is_idle(group_cfs_rq(se)))
idle_task_delta = cfs_rq->h_nr_running;
qcfs_rq->h_nr_running -= task_delta;
qcfs_rq->idle_h_nr_running -= idle_task_delta;
}
/* At this point se is NULL and we are at root level*/
sub_nr_running(rq, task_delta);
done:
/*
* Note: distribution will already see us throttled via the
* throttled-list. rq->lock protects completion.
*/
cfs_rq->throttled = 1;
SCHED_WARN_ON(cfs_rq->throttled_clock);
if (cfs_rq->nr_running)
cfs_rq->throttled_clock = rq_clock(rq);
return true;
}
void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
{
struct rq *rq = rq_of(cfs_rq);
struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
struct sched_entity *se;
long task_delta, idle_task_delta;
se = cfs_rq->tg->se[cpu_of(rq)];
cfs_rq->throttled = 0;
update_rq_clock(rq);
raw_spin_lock(&cfs_b->lock);
if (cfs_rq->throttled_clock) {
cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
cfs_rq->throttled_clock = 0;
}
list_del_rcu(&cfs_rq->throttled_list);
raw_spin_unlock(&cfs_b->lock);
/* update hierarchical throttle state */
walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
if (!cfs_rq->load.weight) {
if (!cfs_rq->on_list)
return;
/*
* Nothing to run but something to decay (on_list)?
* Complete the branch.
*/
for_each_sched_entity(se) {
if (list_add_leaf_cfs_rq(cfs_rq_of(se)))
break;
}
goto unthrottle_throttle;
}
task_delta = cfs_rq->h_nr_running;
idle_task_delta = cfs_rq->idle_h_nr_running;
for_each_sched_entity(se) {
struct cfs_rq *qcfs_rq = cfs_rq_of(se);
if (se->on_rq)
break;
enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
if (cfs_rq_is_idle(group_cfs_rq(se)))
idle_task_delta = cfs_rq->h_nr_running;
qcfs_rq->h_nr_running += task_delta;
qcfs_rq->idle_h_nr_running += idle_task_delta;
/* end evaluation on encountering a throttled cfs_rq */
if (cfs_rq_throttled(qcfs_rq))
goto unthrottle_throttle;
}
for_each_sched_entity(se) {
struct cfs_rq *qcfs_rq = cfs_rq_of(se);
update_load_avg(qcfs_rq, se, UPDATE_TG);
se_update_runnable(se);
if (cfs_rq_is_idle(group_cfs_rq(se)))
idle_task_delta = cfs_rq->h_nr_running;
qcfs_rq->h_nr_running += task_delta;
qcfs_rq->idle_h_nr_running += idle_task_delta;
/* end evaluation on encountering a throttled cfs_rq */
if (cfs_rq_throttled(qcfs_rq))
goto unthrottle_throttle;
}
/* At this point se is NULL and we are at root level*/
add_nr_running(rq, task_delta);
unthrottle_throttle:
assert_list_leaf_cfs_rq(rq);
/* Determine whether we need to wake up potentially idle CPU: */
if (rq->curr == rq->idle && rq->cfs.nr_running)
resched_curr(rq);
}
#ifdef CONFIG_SMP
static void __cfsb_csd_unthrottle(void *arg)
{
struct cfs_rq *cursor, *tmp;
struct rq *rq = arg;
struct rq_flags rf;
rq_lock(rq, &rf);
/*
* Iterating over the list can trigger several call to
* update_rq_clock() in unthrottle_cfs_rq().
* Do it once and skip the potential next ones.
*/
update_rq_clock(rq);
rq_clock_start_loop_update(rq);
/*
* Since we hold rq lock we're safe from concurrent manipulation of
* the CSD list. However, this RCU critical section annotates the
* fact that we pair with sched_free_group_rcu(), so that we cannot
* race with group being freed in the window between removing it
* from the list and advancing to the next entry in the list.
*/
rcu_read_lock();
list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list,
throttled_csd_list) {
list_del_init(&cursor->throttled_csd_list);
if (cfs_rq_throttled(cursor))
unthrottle_cfs_rq(cursor);
}
rcu_read_unlock();
rq_clock_stop_loop_update(rq);
rq_unlock(rq, &rf);
}
static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
{
struct rq *rq = rq_of(cfs_rq);
bool first;
if (rq == this_rq()) {
unthrottle_cfs_rq(cfs_rq);
return;
}
/* Already enqueued */
if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list)))
return;
first = list_empty(&rq->cfsb_csd_list);
list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list);
if (first)
smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd);
}
#else
static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
{
unthrottle_cfs_rq(cfs_rq);
}
#endif
static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
{
lockdep_assert_rq_held(rq_of(cfs_rq));
if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) ||
cfs_rq->runtime_remaining <= 0))
return;
__unthrottle_cfs_rq_async(cfs_rq);
}
static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
{
int this_cpu = smp_processor_id();
u64 runtime, remaining = 1;
bool throttled = false;
struct cfs_rq *cfs_rq, *tmp;
struct rq_flags rf;
struct rq *rq;
LIST_HEAD(local_unthrottle);
rcu_read_lock();
list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
throttled_list) {
rq = rq_of(cfs_rq);
if (!remaining) {
throttled = true;
break;
}
rq_lock_irqsave(rq, &rf);
if (!cfs_rq_throttled(cfs_rq))
goto next;
/* Already queued for async unthrottle */
if (!list_empty(&cfs_rq->throttled_csd_list))
goto next;
/* By the above checks, this should never be true */
SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
raw_spin_lock(&cfs_b->lock);
runtime = -cfs_rq->runtime_remaining + 1;
if (runtime > cfs_b->runtime)
runtime = cfs_b->runtime;
cfs_b->runtime -= runtime;
remaining = cfs_b->runtime;
raw_spin_unlock(&cfs_b->lock);
cfs_rq->runtime_remaining += runtime;
/* we check whether we're throttled above */
if (cfs_rq->runtime_remaining > 0) {
if (cpu_of(rq) != this_cpu) {
unthrottle_cfs_rq_async(cfs_rq);
} else {
/*
* We currently only expect to be unthrottling
* a single cfs_rq locally.
*/
SCHED_WARN_ON(!list_empty(&local_unthrottle));
list_add_tail(&cfs_rq->throttled_csd_list,
&local_unthrottle);
}
} else {
throttled = true;
}
next:
rq_unlock_irqrestore(rq, &rf);
}
list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle,
throttled_csd_list) {
struct rq *rq = rq_of(cfs_rq);
rq_lock_irqsave(rq, &rf);
list_del_init(&cfs_rq->throttled_csd_list);
if (cfs_rq_throttled(cfs_rq))
unthrottle_cfs_rq(cfs_rq);
rq_unlock_irqrestore(rq, &rf);
}
SCHED_WARN_ON(!list_empty(&local_unthrottle));
rcu_read_unlock();
return throttled;
}
/*
* Responsible for refilling a task_group's bandwidth and unthrottling its
* cfs_rqs as appropriate. If there has been no activity within the last
* period the timer is deactivated until scheduling resumes; cfs_b->idle is
* used to track this state.
*/
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
{
int throttled;
/* no need to continue the timer with no bandwidth constraint */
if (cfs_b->quota == RUNTIME_INF)
goto out_deactivate;
throttled = !list_empty(&cfs_b->throttled_cfs_rq);
cfs_b->nr_periods += overrun;
/* Refill extra burst quota even if cfs_b->idle */
__refill_cfs_bandwidth_runtime(cfs_b);
/*
* idle depends on !throttled (for the case of a large deficit), and if
* we're going inactive then everything else can be deferred
*/
if (cfs_b->idle && !throttled)
goto out_deactivate;
if (!throttled) {
/* mark as potentially idle for the upcoming period */
cfs_b->idle = 1;
return 0;
}
/* account preceding periods in which throttling occurred */
cfs_b->nr_throttled += overrun;
/*
* This check is repeated as we release cfs_b->lock while we unthrottle.
*/
while (throttled && cfs_b->runtime > 0) {
raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
/* we can't nest cfs_b->lock while distributing bandwidth */
throttled = distribute_cfs_runtime(cfs_b);
raw_spin_lock_irqsave(&cfs_b->lock, flags);
}
/*
* While we are ensured activity in the period following an
* unthrottle, this also covers the case in which the new bandwidth is
* insufficient to cover the existing bandwidth deficit. (Forcing the
* timer to remain active while there are any throttled entities.)
*/
cfs_b->idle = 0;
return 0;
out_deactivate:
return 1;
}
/* a cfs_rq won't donate quota below this amount */
static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
/* minimum remaining period time to redistribute slack quota */
static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
/* how long we wait to gather additional slack before distributing */
static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
/*
* Are we near the end of the current quota period?
*
* Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
* hrtimer base being cleared by hrtimer_start. In the case of
* migrate_hrtimers, base is never cleared, so we are fine.
*/
static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
{
struct hrtimer *refresh_timer = &cfs_b->period_timer;
s64 remaining;
/* if the call-back is running a quota refresh is already occurring */
if (hrtimer_callback_running(refresh_timer))
return 1;
/* is a quota refresh about to occur? */
remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
if (remaining < (s64)min_expire)
return 1;
return 0;
}
static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
{
u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
/* if there's a quota refresh soon don't bother with slack */
if (runtime_refresh_within(cfs_b, min_left))
return;
/* don't push forwards an existing deferred unthrottle */
if (cfs_b->slack_started)
return;
cfs_b->slack_started = true;
hrtimer_start(&cfs_b->slack_timer,
ns_to_ktime(cfs_bandwidth_slack_period),
HRTIMER_MODE_REL);
}
/* we know any runtime found here is valid as update_curr() precedes return */
static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
if (slack_runtime <= 0)
return;
raw_spin_lock(&cfs_b->lock);
if (cfs_b->quota != RUNTIME_INF) {
cfs_b->runtime += slack_runtime;
/* we are under rq->lock, defer unthrottling using a timer */
if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
!list_empty(&cfs_b->throttled_cfs_rq))
start_cfs_slack_bandwidth(cfs_b);
}
raw_spin_unlock(&cfs_b->lock);
/* even if it's not valid for return we don't want to try again */
cfs_rq->runtime_remaining -= slack_runtime;
}
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
if (!cfs_bandwidth_used())
return;
if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
return;
__return_cfs_rq_runtime(cfs_rq);
}
/*
* This is done with a timer (instead of inline with bandwidth return) since
* it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
*/
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
{
u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
unsigned long flags;
/* confirm we're still not at a refresh boundary */
raw_spin_lock_irqsave(&cfs_b->lock, flags);
cfs_b->slack_started = false;
if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
return;
}
if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
runtime = cfs_b->runtime;
raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
if (!runtime)
return;
distribute_cfs_runtime(cfs_b);
}
/*
* When a group wakes up we want to make sure that its quota is not already
* expired/exceeded, otherwise it may be allowed to steal additional ticks of
* runtime as update_curr() throttling can not trigger until it's on-rq.
*/
static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
{
if (!cfs_bandwidth_used())
return;
/* an active group must be handled by the update_curr()->put() path */
if (!cfs_rq->runtime_enabled || cfs_rq->curr)
return;
/* ensure the group is not already throttled */
if (cfs_rq_throttled(cfs_rq))
return;
/* update runtime allocation */
account_cfs_rq_runtime(cfs_rq, 0);
if (cfs_rq->runtime_remaining <= 0)
throttle_cfs_rq(cfs_rq);
}
static void sync_throttle(struct task_group *tg, int cpu)
{
struct cfs_rq *pcfs_rq, *cfs_rq;
if (!cfs_bandwidth_used())
return;
if (!tg->parent)
return;
cfs_rq = tg->cfs_rq[cpu];
pcfs_rq = tg->parent->cfs_rq[cpu];
cfs_rq->throttle_count = pcfs_rq->throttle_count;
cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu));
}
/* conditionally throttle active cfs_rq's from put_prev_entity() */
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
if (!cfs_bandwidth_used())
return false;
if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
return false;
/*
* it's possible for a throttled entity to be forced into a running
* state (e.g. set_curr_task), in this case we're finished.
*/
if (cfs_rq_throttled(cfs_rq))
return true;
return throttle_cfs_rq(cfs_rq);
}
static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
{
struct cfs_bandwidth *cfs_b =
container_of(timer, struct cfs_bandwidth, slack_timer);
do_sched_cfs_slack_timer(cfs_b);
return HRTIMER_NORESTART;
}
extern const u64 max_cfs_quota_period;
static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
{
struct cfs_bandwidth *cfs_b =
container_of(timer, struct cfs_bandwidth, period_timer);
unsigned long flags;
int overrun;
int idle = 0;
int count = 0;
raw_spin_lock_irqsave(&cfs_b->lock, flags);
for (;;) {
overrun = hrtimer_forward_now(timer, cfs_b->period);
if (!overrun)
break;
idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
if (++count > 3) {
u64 new, old = ktime_to_ns(cfs_b->period);
/*
* Grow period by a factor of 2 to avoid losing precision.
* Precision loss in the quota/period ratio can cause __cfs_schedulable
* to fail.
*/
new = old * 2;
if (new < max_cfs_quota_period) {
cfs_b->period = ns_to_ktime(new);
cfs_b->quota *= 2;
cfs_b->burst *= 2;
pr_warn_ratelimited(
"cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
smp_processor_id(),
div_u64(new, NSEC_PER_USEC),
div_u64(cfs_b->quota, NSEC_PER_USEC));
} else {
pr_warn_ratelimited(
"cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
smp_processor_id(),
div_u64(old, NSEC_PER_USEC),
div_u64(cfs_b->quota, NSEC_PER_USEC));
}
/* reset count so we don't come right back in here */
count = 0;
}
}
if (idle)
cfs_b->period_active = 0;
raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}
void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent)
{
raw_spin_lock_init(&cfs_b->lock);
cfs_b->runtime = 0;
cfs_b->quota = RUNTIME_INF;
cfs_b->period = ns_to_ktime(default_cfs_period());
cfs_b->burst = 0;
cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF;
INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
cfs_b->period_timer.function = sched_cfs_period_timer;
/* Add a random offset so that timers interleave */
hrtimer_set_expires(&cfs_b->period_timer,
get_random_u32_below(cfs_b->period));
hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
cfs_b->slack_timer.function = sched_cfs_slack_timer;
cfs_b->slack_started = false;
}
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
cfs_rq->runtime_enabled = 0;
INIT_LIST_HEAD(&cfs_rq->throttled_list);
INIT_LIST_HEAD(&cfs_rq->throttled_csd_list);
}
void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
lockdep_assert_held(&cfs_b->lock);
if (cfs_b->period_active)
return;
cfs_b->period_active = 1;
hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
}
static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
int __maybe_unused i;
/* init_cfs_bandwidth() was not called */
if (!cfs_b->throttled_cfs_rq.next)
return;
hrtimer_cancel(&cfs_b->period_timer);
hrtimer_cancel(&cfs_b->slack_timer);
/*
* It is possible that we still have some cfs_rq's pending on a CSD
* list, though this race is very rare. In order for this to occur, we
* must have raced with the last task leaving the group while there
* exist throttled cfs_rq(s), and the period_timer must have queued the
* CSD item but the remote cpu has not yet processed it. To handle this,
* we can simply flush all pending CSD work inline here. We're
* guaranteed at this point that no additional cfs_rq of this group can
* join a CSD list.
*/
#ifdef CONFIG_SMP
for_each_possible_cpu(i) {
struct rq *rq = cpu_rq(i);
unsigned long flags;
if (list_empty(&rq->cfsb_csd_list))
continue;
local_irq_save(flags);
__cfsb_csd_unthrottle(rq);
local_irq_restore(flags);
}
#endif
}
/*
* Both these CPU hotplug callbacks race against unregister_fair_sched_group()
*
* The race is harmless, since modifying bandwidth settings of unhooked group
* bits doesn't do much.
*/
/* cpu online callback */
static void __maybe_unused update_runtime_enabled(struct rq *rq)
{
struct task_group *tg;
lockdep_assert_rq_held(rq);
rcu_read_lock();
list_for_each_entry_rcu(tg, &task_groups, list) {
struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
raw_spin_lock(&cfs_b->lock);
cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
raw_spin_unlock(&cfs_b->lock);
}
rcu_read_unlock();
}
/* cpu offline callback */
static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
{
struct task_group *tg;
lockdep_assert_rq_held(rq);
/*
* The rq clock has already been updated in the
* set_rq_offline(), so we should skip updating
* the rq clock again in unthrottle_cfs_rq().
*/
rq_clock_start_loop_update(rq);
rcu_read_lock();
list_for_each_entry_rcu(tg, &task_groups, list) {
struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
if (!cfs_rq->runtime_enabled)
continue;
/*
* clock_task is not advancing so we just need to make sure
* there's some valid quota amount
*/
cfs_rq->runtime_remaining = 1;
/*
* Offline rq is schedulable till CPU is completely disabled
* in take_cpu_down(), so we prevent new cfs throttling here.
*/
cfs_rq->runtime_enabled = 0;
if (cfs_rq_throttled(cfs_rq))
unthrottle_cfs_rq(cfs_rq);
}
rcu_read_unlock();
rq_clock_stop_loop_update(rq);
}
bool cfs_task_bw_constrained(struct task_struct *p)
{
struct cfs_rq *cfs_rq = task_cfs_rq(p);
if (!cfs_bandwidth_used())
return false;
if (cfs_rq->runtime_enabled ||
tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF)
return true;
return false;
}
#ifdef CONFIG_NO_HZ_FULL
/* called from pick_next_task_fair() */
static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p)
{
int cpu = cpu_of(rq);
if (!sched_feat(HZ_BW) || !cfs_bandwidth_used())
return;
if (!tick_nohz_full_cpu(cpu))
return;
if (rq->nr_running != 1)
return;
/*
* We know there is only one task runnable and we've just picked it. The
* normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will
* be otherwise able to stop the tick. Just need to check if we are using
* bandwidth control.
*/
if (cfs_task_bw_constrained(p))
tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
}
#endif
#else /* CONFIG_CFS_BANDWIDTH */
static inline bool cfs_bandwidth_used(void)
{
return false;
}
static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
static inline void sync_throttle(struct task_group *tg, int cpu) {}
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
return 0;
}
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
return 0;
}
static inline int throttled_lb_pair(struct task_group *tg,
int src_cpu, int dest_cpu)
{
return 0;
}
#ifdef CONFIG_FAIR_GROUP_SCHED
void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {}
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
#endif
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
return NULL;
}
static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
static inline void update_runtime_enabled(struct rq *rq) {}
static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
#ifdef CONFIG_CGROUP_SCHED
bool cfs_task_bw_constrained(struct task_struct *p)
{
return false;
}
#endif
#endif /* CONFIG_CFS_BANDWIDTH */
#if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL)
static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {}
#endif
/**************************************************
* CFS operations on tasks:
*/
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
struct sched_entity *se = &p->se;
SCHED_WARN_ON(task_rq(p) != rq);
if (rq->cfs.h_nr_running > 1) {
u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
u64 slice = se->slice;
s64 delta = slice - ran;
if (delta < 0) {
if (task_current(rq, p))
resched_curr(rq);
return;
}
hrtick_start(rq, delta);
}
}
/*
* called from enqueue/dequeue and updates the hrtick when the
* current task is from our class and nr_running is low enough
* to matter.
*/
static void hrtick_update(struct rq *rq)
{
struct task_struct *curr = rq->curr;
if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
return;
hrtick_start_fair(rq, curr);
}
#else /* !CONFIG_SCHED_HRTICK */
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
static inline void hrtick_update(struct rq *rq)
{
}
#endif
#ifdef CONFIG_SMP
static inline bool cpu_overutilized(int cpu)
{
unsigned long rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
unsigned long rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
/* Return true only if the utilization doesn't fit CPU's capacity */
return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu);
}
static inline void update_overutilized_status(struct rq *rq)
{
if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
}
}
#else
static inline void update_overutilized_status(struct rq *rq) { }
#endif
/* Runqueue only has SCHED_IDLE tasks enqueued */
static int sched_idle_rq(struct rq *rq)
{
return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
rq->nr_running);
}
#ifdef CONFIG_SMP
static int sched_idle_cpu(int cpu)
{
return sched_idle_rq(cpu_rq(cpu));
}
#endif
/*
* The enqueue_task method is called before nr_running is
* increased. Here we update the fair scheduling stats and
* then put the task into the rbtree:
*/
static void
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
{
struct cfs_rq *cfs_rq;
struct sched_entity *se = &p->se;
int idle_h_nr_running = task_has_idle_policy(p);
int task_new = !(flags & ENQUEUE_WAKEUP);
/*
* The code below (indirectly) updates schedutil which looks at
* the cfs_rq utilization to select a frequency.
* Let's add the task's estimated utilization to the cfs_rq's
* estimated utilization, before we update schedutil.
*/
util_est_enqueue(&rq->cfs, p);
/*
* If in_iowait is set, the code below may not trigger any cpufreq
* utilization updates, so do it here explicitly with the IOWAIT flag
* passed.
*/
if (p->in_iowait)
cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
for_each_sched_entity(se) {
if (se->on_rq)
break;
cfs_rq = cfs_rq_of(se);
enqueue_entity(cfs_rq, se, flags);
cfs_rq->h_nr_running++;
cfs_rq->idle_h_nr_running += idle_h_nr_running;
if (cfs_rq_is_idle(cfs_rq))
idle_h_nr_running = 1;
/* end evaluation on encountering a throttled cfs_rq */
if (cfs_rq_throttled(cfs_rq))
goto enqueue_throttle;
flags = ENQUEUE_WAKEUP;
}
for_each_sched_entity(se) {
cfs_rq = cfs_rq_of(se);
update_load_avg(cfs_rq, se, UPDATE_TG);
se_update_runnable(se);
update_cfs_group(se);
cfs_rq->h_nr_running++;
cfs_rq->idle_h_nr_running += idle_h_nr_running;
if (cfs_rq_is_idle(cfs_rq))
idle_h_nr_running = 1;
/* end evaluation on encountering a throttled cfs_rq */
if (cfs_rq_throttled(cfs_rq))
goto enqueue_throttle;
}
/* At this point se is NULL and we are at root level*/
add_nr_running(rq, 1);
/*
* Since new tasks are assigned an initial util_avg equal to
* half of the spare capacity of their CPU, tiny tasks have the
* ability to cross the overutilized threshold, which will
* result in the load balancer ruining all the task placement
* done by EAS. As a way to mitigate that effect, do not account
* for the first enqueue operation of new tasks during the
* overutilized flag detection.
*
* A better way of solving this problem would be to wait for
* the PELT signals of tasks to converge before taking them
* into account, but that is not straightforward to implement,
* and the following generally works well enough in practice.
*/
if (!task_new)
update_overutilized_status(rq);
enqueue_throttle:
assert_list_leaf_cfs_rq(rq);
hrtick_update(rq);
}
static void set_next_buddy(struct sched_entity *se);
/*
* The dequeue_task method is called before nr_running is
* decreased. We remove the task from the rbtree and
* update the fair scheduling stats:
*/
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
{
struct cfs_rq *cfs_rq;
struct sched_entity *se = &p->se;
int task_sleep = flags & DEQUEUE_SLEEP;
int idle_h_nr_running = task_has_idle_policy(p);
bool was_sched_idle = sched_idle_rq(rq);
util_est_dequeue(&rq->cfs, p);
for_each_sched_entity(se) {
cfs_rq = cfs_rq_of(se);
dequeue_entity(cfs_rq, se, flags);
cfs_rq->h_nr_running--;
cfs_rq->idle_h_nr_running -= idle_h_nr_running;
if (cfs_rq_is_idle(cfs_rq))
idle_h_nr_running = 1;
/* end evaluation on encountering a throttled cfs_rq */
if (cfs_rq_throttled(cfs_rq))
goto dequeue_throttle;
/* Don't dequeue parent if it has other entities besides us */
if (cfs_rq->load.weight) {
/* Avoid re-evaluating load for this entity: */
se = parent_entity(se);
/*
* Bias pick_next to pick a task from this cfs_rq, as
* p is sleeping when it is within its sched_slice.
*/
if (task_sleep && se && !throttled_hierarchy(cfs_rq))
set_next_buddy(se);
break;
}
flags |= DEQUEUE_SLEEP;
}
for_each_sched_entity(se) {
cfs_rq = cfs_rq_of(se);
update_load_avg(cfs_rq, se, UPDATE_TG);
se_update_runnable(se);
update_cfs_group(se);
cfs_rq->h_nr_running--;
cfs_rq->idle_h_nr_running -= idle_h_nr_running;
if (cfs_rq_is_idle(cfs_rq))
idle_h_nr_running = 1;
/* end evaluation on encountering a throttled cfs_rq */
if (cfs_rq_throttled(cfs_rq))
goto dequeue_throttle;
}
/* At this point se is NULL and we are at root level*/
sub_nr_running(rq, 1);
/* balance early to pull high priority tasks */
if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
rq->next_balance = jiffies;
dequeue_throttle:
util_est_update(&rq->cfs, p, task_sleep);
hrtick_update(rq);
}
#ifdef CONFIG_SMP
/* Working cpumask for: load_balance, load_balance_newidle. */
static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask);
static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask);
#ifdef CONFIG_NO_HZ_COMMON
static struct {
cpumask_var_t idle_cpus_mask;
atomic_t nr_cpus;
int has_blocked; /* Idle CPUS has blocked load */
int needs_update; /* Newly idle CPUs need their next_balance collated */
unsigned long next_balance; /* in jiffy units */
unsigned long next_blocked; /* Next update of blocked load in jiffies */
} nohz ____cacheline_aligned;
#endif /* CONFIG_NO_HZ_COMMON */
static unsigned long cpu_load(struct rq *rq)
{
return cfs_rq_load_avg(&rq->cfs);
}
/*
* cpu_load_without - compute CPU load without any contributions from *p
* @cpu: the CPU which load is requested
* @p: the task which load should be discounted
*
* The load of a CPU is defined by the load of tasks currently enqueued on that
* CPU as well as tasks which are currently sleeping after an execution on that
* CPU.
*
* This method returns the load of the specified CPU by discounting the load of
* the specified task, whenever the task is currently contributing to the CPU
* load.
*/
static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
{
struct cfs_rq *cfs_rq;
unsigned int load;
/* Task has no contribution or is new */
if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
return cpu_load(rq);
cfs_rq = &rq->cfs;
load = READ_ONCE(cfs_rq->avg.load_avg);
/* Discount task's util from CPU's util */
lsub_positive(&load, task_h_load(p));
return load;
}
static unsigned long cpu_runnable(struct rq *rq)
{
return cfs_rq_runnable_avg(&rq->cfs);
}
static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
{
struct cfs_rq *cfs_rq;
unsigned int runnable;
/* Task has no contribution or is new */
if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
return cpu_runnable(rq);
cfs_rq = &rq->cfs;
runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
/* Discount task's runnable from CPU's runnable */
lsub_positive(&runnable, p->se.avg.runnable_avg);
return runnable;
}
static unsigned long capacity_of(int cpu)
{
return cpu_rq(cpu)->cpu_capacity;
}
static void record_wakee(struct task_struct *p)
{
/*
* Only decay a single time; tasks that have less then 1 wakeup per
* jiffy will not have built up many flips.
*/
if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
current->wakee_flips >>= 1;
current->wakee_flip_decay_ts = jiffies;
}
if (current->last_wakee != p) {
current->last_wakee = p;
current->wakee_flips++;
}
}
/*
* Detect M:N waker/wakee relationships via a switching-frequency heuristic.
*
* A waker of many should wake a different task than the one last awakened
* at a frequency roughly N times higher than one of its wakees.
*
* In order to determine whether we should let the load spread vs consolidating
* to shared cache, we look for a minimum 'flip' frequency of llc_size in one
* partner, and a factor of lls_size higher frequency in the other.
*
* With both conditions met, we can be relatively sure that the relationship is
* non-monogamous, with partner count exceeding socket size.
*
* Waker/wakee being client/server, worker/dispatcher, interrupt source or
* whatever is irrelevant, spread criteria is apparent partner count exceeds
* socket size.
*/
static int wake_wide(struct task_struct *p)
{
unsigned int master = current->wakee_flips;
unsigned int slave = p->wakee_flips;
int factor = __this_cpu_read(sd_llc_size);
if (master < slave)
swap(master, slave);
if (slave < factor || master < slave * factor)
return 0;
return 1;
}
/*
* The purpose of wake_affine() is to quickly determine on which CPU we can run
* soonest. For the purpose of speed we only consider the waking and previous
* CPU.
*
* wake_affine_idle() - only considers 'now', it check if the waking CPU is
* cache-affine and is (or will be) idle.
*
* wake_affine_weight() - considers the weight to reflect the average
* scheduling latency of the CPUs. This seems to work
* for the overloaded case.
*/
static int
wake_affine_idle(int this_cpu, int prev_cpu, int sync)
{
/*
* If this_cpu is idle, it implies the wakeup is from interrupt
* context. Only allow the move if cache is shared. Otherwise an
* interrupt intensive workload could force all tasks onto one
* node depending on the IO topology or IRQ affinity settings.
*
* If the prev_cpu is idle and cache affine then avoid a migration.
* There is no guarantee that the cache hot data from an interrupt
* is more important than cache hot data on the prev_cpu and from
* a cpufreq perspective, it's better to have higher utilisation
* on one CPU.
*/
if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
if (sync && cpu_rq(this_cpu)->nr_running == 1)
return this_cpu;
if (available_idle_cpu(prev_cpu))
return prev_cpu;
return nr_cpumask_bits;
}
static int
wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
int this_cpu, int prev_cpu, int sync)
{
s64 this_eff_load, prev_eff_load;
unsigned long task_load;
this_eff_load = cpu_load(cpu_rq(this_cpu));
if (sync) {
unsigned long current_load = task_h_load(current);
if (current_load > this_eff_load)
return this_cpu;
this_eff_load -= current_load;
}
task_load = task_h_load(p);
this_eff_load += task_load;
if (sched_feat(WA_BIAS))
this_eff_load *= 100;
this_eff_load *= capacity_of(prev_cpu);
prev_eff_load = cpu_load(cpu_rq(prev_cpu));
prev_eff_load -= task_load;
if (sched_feat(WA_BIAS))
prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
prev_eff_load *= capacity_of(this_cpu);
/*
* If sync, adjust the weight of prev_eff_load such that if
* prev_eff == this_eff that select_idle_sibling() will consider
* stacking the wakee on top of the waker if no other CPU is
* idle.
*/
if (sync)
prev_eff_load += 1;
return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
}
static int wake_affine(struct sched_domain *sd, struct task_struct *p,
int this_cpu, int prev_cpu, int sync)
{
int target = nr_cpumask_bits;
if (sched_feat(WA_IDLE))
target = wake_affine_idle(this_cpu, prev_cpu, sync);
if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
schedstat_inc(p->stats.nr_wakeups_affine_attempts);
if (target != this_cpu)
return prev_cpu;
schedstat_inc(sd->ttwu_move_affine);
schedstat_inc(p->stats.nr_wakeups_affine);
return target;
}
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
/*
* find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
*/
static int
find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
{
unsigned long load, min_load = ULONG_MAX;
unsigned int min_exit_latency = UINT_MAX;
u64 latest_idle_timestamp = 0;
int least_loaded_cpu = this_cpu;
int shallowest_idle_cpu = -1;
int i;
/* Check if we have any choice: */
if (group->group_weight == 1)
return cpumask_first(sched_group_span(group));
/* Traverse only the allowed CPUs */
for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
struct rq *rq = cpu_rq(i);
if (!sched_core_cookie_match(rq, p))
continue;
if (sched_idle_cpu(i))
return i;
if (available_idle_cpu(i)) {
struct cpuidle_state *idle = idle_get_state(rq);
if (idle && idle->exit_latency < min_exit_latency) {
/*
* We give priority to a CPU whose idle state
* has the smallest exit latency irrespective
* of any idle timestamp.
*/
min_exit_latency = idle->exit_latency;
latest_idle_timestamp = rq->idle_stamp;
shallowest_idle_cpu = i;
} else if ((!idle || idle->exit_latency == min_exit_latency) &&
rq->idle_stamp > latest_idle_timestamp) {
/*
* If equal or no active idle state, then
* the most recently idled CPU might have
* a warmer cache.
*/
latest_idle_timestamp = rq->idle_stamp;
shallowest_idle_cpu = i;
}
} else if (shallowest_idle_cpu == -1) {
load = cpu_load(cpu_rq(i));
if (load < min_load) {
min_load = load;
least_loaded_cpu = i;
}
}
}
return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
}
static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
int cpu, int prev_cpu, int sd_flag)
{
int new_cpu = cpu;
if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
return prev_cpu;
/*
* We need task's util for cpu_util_without, sync it up to
* prev_cpu's last_update_time.
*/
if (!(sd_flag & SD_BALANCE_FORK))
sync_entity_load_avg(&p->se);
while (sd) {
struct sched_group *group;
struct sched_domain *tmp;
int weight;
if (!(sd->flags & sd_flag)) {
sd = sd->child;
continue;
}
group = find_idlest_group(sd, p, cpu);
if (!group) {
sd = sd->child;
continue;
}
new_cpu = find_idlest_group_cpu(group, p, cpu);
if (new_cpu == cpu) {
/* Now try balancing at a lower domain level of 'cpu': */
sd = sd->child;
continue;
}
/* Now try balancing at a lower domain level of 'new_cpu': */
cpu = new_cpu;
weight = sd->span_weight;
sd = NULL;
for_each_domain(cpu, tmp) {
if (weight <= tmp->span_weight)
break;
if (tmp->flags & sd_flag)
sd = tmp;
}
}
return new_cpu;
}
static inline int __select_idle_cpu(int cpu, struct task_struct *p)
{
if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
sched_cpu_cookie_match(cpu_rq(cpu), p))
return cpu;
return -1;
}
#ifdef CONFIG_SCHED_SMT
DEFINE_STATIC_KEY_FALSE(sched_smt_present);
EXPORT_SYMBOL_GPL(sched_smt_present);
static inline void set_idle_cores(int cpu, int val)
{
struct sched_domain_shared *sds;
sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
if (sds)
WRITE_ONCE(sds->has_idle_cores, val);
}
static inline bool test_idle_cores(int cpu)
{
struct sched_domain_shared *sds;
sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
if (sds)
return READ_ONCE(sds->has_idle_cores);
return false;
}
/*
* Scans the local SMT mask to see if the entire core is idle, and records this
* information in sd_llc_shared->has_idle_cores.
*
* Since SMT siblings share all cache levels, inspecting this limited remote
* state should be fairly cheap.
*/
void __update_idle_core(struct rq *rq)
{
int core = cpu_of(rq);
int cpu;
rcu_read_lock();
if (test_idle_cores(core))
goto unlock;
for_each_cpu(cpu, cpu_smt_mask(core)) {
if (cpu == core)
continue;
if (!available_idle_cpu(cpu))
goto unlock;
}
set_idle_cores(core, 1);
unlock:
rcu_read_unlock();
}
/*
* Scan the entire LLC domain for idle cores; this dynamically switches off if
* there are no idle cores left in the system; tracked through
* sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
*/
static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
{
bool idle = true;
int cpu;
for_each_cpu(cpu, cpu_smt_mask(core)) {
if (!available_idle_cpu(cpu)) {
idle = false;
if (*idle_cpu == -1) {
if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) {
*idle_cpu = cpu;
break;
}
continue;
}
break;
}
if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr))
*idle_cpu = cpu;
}
if (idle)
return core;
cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
return -1;
}
/*
* Scan the local SMT mask for idle CPUs.
*/
static int select_idle_smt(struct task_struct *p, int target)
{
int cpu;
for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) {
if (cpu == target)
continue;
if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
return cpu;
}
return -1;
}
#else /* CONFIG_SCHED_SMT */
static inline void set_idle_cores(int cpu, int val)
{
}
static inline bool test_idle_cores(int cpu)
{
return false;
}
static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
{
return __select_idle_cpu(core, p);
}
static inline int select_idle_smt(struct task_struct *p, int target)
{
return -1;
}
#endif /* CONFIG_SCHED_SMT */
/*
* Scan the LLC domain for idle CPUs; this is dynamically regulated by
* comparing the average scan cost (tracked in sd->avg_scan_cost) against the
* average idle time for this rq (as found in rq->avg_idle).
*/
static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
{
struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
int i, cpu, idle_cpu = -1, nr = INT_MAX;
struct sched_domain_shared *sd_share;
cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
if (sched_feat(SIS_UTIL)) {
sd_share = rcu_dereference(per_cpu(sd_llc_shared, target));
if (sd_share) {
/* because !--nr is the condition to stop scan */
nr = READ_ONCE(sd_share->nr_idle_scan) + 1;
/* overloaded LLC is unlikely to have idle cpu/core */
if (nr == 1)
return -1;
}
}
if (static_branch_unlikely(&sched_cluster_active)) {
struct sched_group *sg = sd->groups;
if (sg->flags & SD_CLUSTER) {
for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) {
if (!cpumask_test_cpu(cpu, cpus))
continue;
if (has_idle_core) {
i = select_idle_core(p, cpu, cpus, &idle_cpu);
if ((unsigned int)i < nr_cpumask_bits)
return i;
} else {
if (--nr <= 0)
return -1;
idle_cpu = __select_idle_cpu(cpu, p);
if ((unsigned int)idle_cpu < nr_cpumask_bits)
return idle_cpu;
}
}
cpumask_andnot(cpus, cpus, sched_group_span(sg));
}
}
for_each_cpu_wrap(cpu, cpus, target + 1) {
if (has_idle_core) {
i = select_idle_core(p, cpu, cpus, &idle_cpu);
if ((unsigned int)i < nr_cpumask_bits)
return i;
} else {
if (--nr <= 0)
return -1;
idle_cpu = __select_idle_cpu(cpu, p);
if ((unsigned int)idle_cpu < nr_cpumask_bits)
break;
}
}
if (has_idle_core)
set_idle_cores(target, false);
return idle_cpu;
}
/*
* Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
* the task fits. If no CPU is big enough, but there are idle ones, try to
* maximize capacity.
*/
static int
select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
{
unsigned long task_util, util_min, util_max, best_cap = 0;
int fits, best_fits = 0;
int cpu, best_cpu = -1;
struct cpumask *cpus;
cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
task_util = task_util_est(p);
util_min = uclamp_eff_value(p, UCLAMP_MIN);
util_max = uclamp_eff_value(p, UCLAMP_MAX);
for_each_cpu_wrap(cpu, cpus, target) {
unsigned long cpu_cap = capacity_of(cpu);
if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
continue;
fits = util_fits_cpu(task_util, util_min, util_max, cpu);
/* This CPU fits with all requirements */
if (fits > 0)
return cpu;
/*
* Only the min performance hint (i.e. uclamp_min) doesn't fit.
* Look for the CPU with best capacity.
*/
else if (fits < 0)
cpu_cap = arch_scale_cpu_capacity(cpu) - thermal_load_avg(cpu_rq(cpu));
/*
* First, select CPU which fits better (-1 being better than 0).
* Then, select the one with best capacity at same level.
*/
if ((fits < best_fits) ||
((fits == best_fits) && (cpu_cap > best_cap))) {
best_cap = cpu_cap;
best_cpu = cpu;
best_fits = fits;
}
}
return best_cpu;
}
static inline bool asym_fits_cpu(unsigned long util,
unsigned long util_min,
unsigned long util_max,
int cpu)
{
if (sched_asym_cpucap_active())
/*
* Return true only if the cpu fully fits the task requirements
* which include the utilization and the performance hints.
*/
return (util_fits_cpu(util, util_min, util_max, cpu) > 0);
return true;
}
/*
* Try and locate an idle core/thread in the LLC cache domain.
*/
static int select_idle_sibling(struct task_struct *p, int prev, int target)
{
bool has_idle_core = false;
struct sched_domain *sd;
unsigned long task_util, util_min, util_max;
int i, recent_used_cpu, prev_aff = -1;
/*
* On asymmetric system, update task utilization because we will check
* that the task fits with cpu's capacity.
*/
if (sched_asym_cpucap_active()) {
sync_entity_load_avg(&p->se);
task_util = task_util_est(p);
util_min = uclamp_eff_value(p, UCLAMP_MIN);
util_max = uclamp_eff_value(p, UCLAMP_MAX);
}
/*
* per-cpu select_rq_mask usage
*/
lockdep_assert_irqs_disabled();
if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
asym_fits_cpu(task_util, util_min, util_max, target))
return target;
/*
* If the previous CPU is cache affine and idle, don't be stupid:
*/
if (prev != target && cpus_share_cache(prev, target) &&
(available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
asym_fits_cpu(task_util, util_min, util_max, prev)) {
if (!static_branch_unlikely(&sched_cluster_active) ||
cpus_share_resources(prev, target))
return prev;
prev_aff = prev;
}
/*
* Allow a per-cpu kthread to stack with the wakee if the
* kworker thread and the tasks previous CPUs are the same.
* The assumption is that the wakee queued work for the
* per-cpu kthread that is now complete and the wakeup is
* essentially a sync wakeup. An obvious example of this
* pattern is IO completions.
*/
if (is_per_cpu_kthread(current) &&
in_task() &&
prev == smp_processor_id() &&
this_rq()->nr_running <= 1 &&
asym_fits_cpu(task_util, util_min, util_max, prev)) {
return prev;
}
/* Check a recently used CPU as a potential idle candidate: */
recent_used_cpu = p->recent_used_cpu;
p->recent_used_cpu = prev;
if (recent_used_cpu != prev &&
recent_used_cpu != target &&
cpus_share_cache(recent_used_cpu, target) &&
(available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) &&
asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) {
if (!static_branch_unlikely(&sched_cluster_active) ||
cpus_share_resources(recent_used_cpu, target))
return recent_used_cpu;
} else {
recent_used_cpu = -1;
}
/*
* For asymmetric CPU capacity systems, our domain of interest is
* sd_asym_cpucapacity rather than sd_llc.
*/
if (sched_asym_cpucap_active()) {
sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
/*
* On an asymmetric CPU capacity system where an exclusive
* cpuset defines a symmetric island (i.e. one unique
* capacity_orig value through the cpuset), the key will be set
* but the CPUs within that cpuset will not have a domain with
* SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
* capacity path.
*/
if (sd) {
i = select_idle_capacity(p, sd, target);
return ((unsigned)i < nr_cpumask_bits) ? i : target;
}
}
sd = rcu_dereference(per_cpu(sd_llc, target));
if (!sd)
return target;
if (sched_smt_active()) {
has_idle_core = test_idle_cores(target);
if (!has_idle_core && cpus_share_cache(prev, target)) {
i = select_idle_smt(p, prev);
if ((unsigned int)i < nr_cpumask_bits)
return i;
}
}
i = select_idle_cpu(p, sd, has_idle_core, target);
if ((unsigned)i < nr_cpumask_bits)
return i;
/*
* For cluster machines which have lower sharing cache like L2 or
* LLC Tag, we tend to find an idle CPU in the target's cluster
* first. But prev_cpu or recent_used_cpu may also be a good candidate,
* use them if possible when no idle CPU found in select_idle_cpu().
*/
if ((unsigned int)prev_aff < nr_cpumask_bits)
return prev_aff;
if ((unsigned int)recent_used_cpu < nr_cpumask_bits)
return recent_used_cpu;
return target;
}
/**
* cpu_util() - Estimates the amount of CPU capacity used by CFS tasks.
* @cpu: the CPU to get the utilization for
* @p: task for which the CPU utilization should be predicted or NULL
* @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL
* @boost: 1 to enable boosting, otherwise 0
*
* The unit of the return value must be the same as the one of CPU capacity
* so that CPU utilization can be compared with CPU capacity.
*
* CPU utilization is the sum of running time of runnable tasks plus the
* recent utilization of currently non-runnable tasks on that CPU.
* It represents the amount of CPU capacity currently used by CFS tasks in
* the range [0..max CPU capacity] with max CPU capacity being the CPU
* capacity at f_max.
*
* The estimated CPU utilization is defined as the maximum between CPU
* utilization and sum of the estimated utilization of the currently
* runnable tasks on that CPU. It preserves a utilization "snapshot" of
* previously-executed tasks, which helps better deduce how busy a CPU will
* be when a long-sleeping task wakes up. The contribution to CPU utilization
* of such a task would be significantly decayed at this point of time.
*
* Boosted CPU utilization is defined as max(CPU runnable, CPU utilization).
* CPU contention for CFS tasks can be detected by CPU runnable > CPU
* utilization. Boosting is implemented in cpu_util() so that internal
* users (e.g. EAS) can use it next to external users (e.g. schedutil),
* latter via cpu_util_cfs_boost().
*
* CPU utilization can be higher than the current CPU capacity
* (f_curr/f_max * max CPU capacity) or even the max CPU capacity because
* of rounding errors as well as task migrations or wakeups of new tasks.
* CPU utilization has to be capped to fit into the [0..max CPU capacity]
* range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%)
* could be seen as over-utilized even though CPU1 has 20% of spare CPU
* capacity. CPU utilization is allowed to overshoot current CPU capacity
* though since this is useful for predicting the CPU capacity required
* after task migrations (scheduler-driven DVFS).
*
* Return: (Boosted) (estimated) utilization for the specified CPU.
*/
static unsigned long
cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost)
{
struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
unsigned long util = READ_ONCE(cfs_rq->avg.util_avg);
unsigned long runnable;
if (boost) {
runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
util = max(util, runnable);
}
/*
* If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its
* contribution. If @p migrates from another CPU to @cpu add its
* contribution. In all the other cases @cpu is not impacted by the
* migration so its util_avg is already correct.
*/
if (p && task_cpu(p) == cpu && dst_cpu != cpu)
lsub_positive(&util, task_util(p));
else if (p && task_cpu(p) != cpu && dst_cpu == cpu)
util += task_util(p);
if (sched_feat(UTIL_EST)) {
unsigned long util_est;
util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
/*
* During wake-up @p isn't enqueued yet and doesn't contribute
* to any cpu_rq(cpu)->cfs.avg.util_est.enqueued.
* If @dst_cpu == @cpu add it to "simulate" cpu_util after @p
* has been enqueued.
*
* During exec (@dst_cpu = -1) @p is enqueued and does
* contribute to cpu_rq(cpu)->cfs.util_est.enqueued.
* Remove it to "simulate" cpu_util without @p's contribution.
*
* Despite the task_on_rq_queued(@p) check there is still a
* small window for a possible race when an exec
* select_task_rq_fair() races with LB's detach_task().
*
* detach_task()
* deactivate_task()
* p->on_rq = TASK_ON_RQ_MIGRATING;
* -------------------------------- A
* dequeue_task() \
* dequeue_task_fair() + Race Time
* util_est_dequeue() /
* -------------------------------- B
*
* The additional check "current == p" is required to further
* reduce the race window.
*/
if (dst_cpu == cpu)
util_est += _task_util_est(p);
else if (p && unlikely(task_on_rq_queued(p) || current == p))
lsub_positive(&util_est, _task_util_est(p));
util = max(util, util_est);
}
return min(util, arch_scale_cpu_capacity(cpu));
}
unsigned long cpu_util_cfs(int cpu)
{
return cpu_util(cpu, NULL, -1, 0);
}
unsigned long cpu_util_cfs_boost(int cpu)
{
return cpu_util(cpu, NULL, -1, 1);
}
/*
* cpu_util_without: compute cpu utilization without any contributions from *p
* @cpu: the CPU which utilization is requested
* @p: the task which utilization should be discounted
*
* The utilization of a CPU is defined by the utilization of tasks currently
* enqueued on that CPU as well as tasks which are currently sleeping after an
* execution on that CPU.
*
* This method returns the utilization of the specified CPU by discounting the
* utilization of the specified task, whenever the task is currently
* contributing to the CPU utilization.
*/
static unsigned long cpu_util_without(int cpu, struct task_struct *p)
{
/* Task has no contribution or is new */
if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
p = NULL;
return cpu_util(cpu, p, -1, 0);
}
/*
* energy_env - Utilization landscape for energy estimation.
* @task_busy_time: Utilization contribution by the task for which we test the
* placement. Given by eenv_task_busy_time().
* @pd_busy_time: Utilization of the whole perf domain without the task
* contribution. Given by eenv_pd_busy_time().
* @cpu_cap: Maximum CPU capacity for the perf domain.
* @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap).
*/
struct energy_env {
unsigned long task_busy_time;
unsigned long pd_busy_time;
unsigned long cpu_cap;
unsigned long pd_cap;
};
/*
* Compute the task busy time for compute_energy(). This time cannot be
* injected directly into effective_cpu_util() because of the IRQ scaling.
* The latter only makes sense with the most recent CPUs where the task has
* run.
*/
static inline void eenv_task_busy_time(struct energy_env *eenv,
struct task_struct *p, int prev_cpu)
{
unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu);
unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu));
if (unlikely(irq >= max_cap))
busy_time = max_cap;
else
busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap);
eenv->task_busy_time = busy_time;
}
/*
* Compute the perf_domain (PD) busy time for compute_energy(). Based on the
* utilization for each @pd_cpus, it however doesn't take into account
* clamping since the ratio (utilization / cpu_capacity) is already enough to
* scale the EM reported power consumption at the (eventually clamped)
* cpu_capacity.
*
* The contribution of the task @p for which we want to estimate the
* energy cost is removed (by cpu_util()) and must be calculated
* separately (see eenv_task_busy_time). This ensures:
*
* - A stable PD utilization, no matter which CPU of that PD we want to place
* the task on.
*
* - A fair comparison between CPUs as the task contribution (task_util())
* will always be the same no matter which CPU utilization we rely on
* (util_avg or util_est).
*
* Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't
* exceed @eenv->pd_cap.
*/
static inline void eenv_pd_busy_time(struct energy_env *eenv,
struct cpumask *pd_cpus,
struct task_struct *p)
{
unsigned long busy_time = 0;
int cpu;
for_each_cpu(cpu, pd_cpus) {
unsigned long util = cpu_util(cpu, p, -1, 0);
busy_time += effective_cpu_util(cpu, util, ENERGY_UTIL, NULL);
}
eenv->pd_busy_time = min(eenv->pd_cap, busy_time);
}
/*
* Compute the maximum utilization for compute_energy() when the task @p
* is placed on the cpu @dst_cpu.
*
* Returns the maximum utilization among @eenv->cpus. This utilization can't
* exceed @eenv->cpu_cap.
*/
static inline unsigned long
eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus,
struct task_struct *p, int dst_cpu)
{
unsigned long max_util = 0;
int cpu;
for_each_cpu(cpu, pd_cpus) {
struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL;
unsigned long util = cpu_util(cpu, p, dst_cpu, 1);
unsigned long eff_util;
/*
* Performance domain frequency: utilization clamping
* must be considered since it affects the selection
* of the performance domain frequency.
* NOTE: in case RT tasks are running, by default the
* FREQUENCY_UTIL's utilization can be max OPP.
*/
eff_util = effective_cpu_util(cpu, util, FREQUENCY_UTIL, tsk);
max_util = max(max_util, eff_util);
}
return min(max_util, eenv->cpu_cap);
}
/*
* compute_energy(): Use the Energy Model to estimate the energy that @pd would
* consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task
* contribution is ignored.
*/
static inline unsigned long
compute_energy(struct energy_env *eenv, struct perf_domain *pd,
struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu)
{
unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu);
unsigned long busy_time = eenv->pd_busy_time;
unsigned long energy;
if (dst_cpu >= 0)
busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time);
energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap);
trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time);
return energy;
}
/*
* find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
* waking task. find_energy_efficient_cpu() looks for the CPU with maximum
* spare capacity in each performance domain and uses it as a potential
* candidate to execute the task. Then, it uses the Energy Model to figure
* out which of the CPU candidates is the most energy-efficient.
*
* The rationale for this heuristic is as follows. In a performance domain,
* all the most energy efficient CPU candidates (according to the Energy
* Model) are those for which we'll request a low frequency. When there are
* several CPUs for which the frequency request will be the same, we don't
* have enough data to break the tie between them, because the Energy Model
* only includes active power costs. With this model, if we assume that
* frequency requests follow utilization (e.g. using schedutil), the CPU with
* the maximum spare capacity in a performance domain is guaranteed to be among
* the best candidates of the performance domain.
*
* In practice, it could be preferable from an energy standpoint to pack
* small tasks on a CPU in order to let other CPUs go in deeper idle states,
* but that could also hurt our chances to go cluster idle, and we have no
* ways to tell with the current Energy Model if this is actually a good
* idea or not. So, find_energy_efficient_cpu() basically favors
* cluster-packing, and spreading inside a cluster. That should at least be
* a good thing for latency, and this is consistent with the idea that most
* of the energy savings of EAS come from the asymmetry of the system, and
* not so much from breaking the tie between identical CPUs. That's also the
* reason why EAS is enabled in the topology code only for systems where
* SD_ASYM_CPUCAPACITY is set.
*
* NOTE: Forkees are not accepted in the energy-aware wake-up path because
* they don't have any useful utilization data yet and it's not possible to
* forecast their impact on energy consumption. Consequently, they will be
* placed by find_idlest_cpu() on the least loaded CPU, which might turn out
* to be energy-inefficient in some use-cases. The alternative would be to
* bias new tasks towards specific types of CPUs first, or to try to infer
* their util_avg from the parent task, but those heuristics could hurt
* other use-cases too. So, until someone finds a better way to solve this,
* let's keep things simple by re-using the existing slow path.
*/
static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
{
struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0;
unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024;
struct root_domain *rd = this_rq()->rd;
int cpu, best_energy_cpu, target = -1;
int prev_fits = -1, best_fits = -1;
unsigned long best_thermal_cap = 0;
unsigned long prev_thermal_cap = 0;
struct sched_domain *sd;
struct perf_domain *pd;
struct energy_env eenv;
rcu_read_lock();
pd = rcu_dereference(rd->pd);
if (!pd || READ_ONCE(rd->overutilized))
goto unlock;
/*
* Energy-aware wake-up happens on the lowest sched_domain starting
* from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
*/
sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
sd = sd->parent;
if (!sd)
goto unlock;
target = prev_cpu;
sync_entity_load_avg(&p->se);
if (!task_util_est(p) && p_util_min == 0)
goto unlock;
eenv_task_busy_time(&eenv, p, prev_cpu);
for (; pd; pd = pd->next) {
unsigned long util_min = p_util_min, util_max = p_util_max;
unsigned long cpu_cap, cpu_thermal_cap, util;
long prev_spare_cap = -1, max_spare_cap = -1;
unsigned long rq_util_min, rq_util_max;
unsigned long cur_delta, base_energy;
int max_spare_cap_cpu = -1;
int fits, max_fits = -1;
cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask);
if (cpumask_empty(cpus))
continue;
/* Account thermal pressure for the energy estimation */
cpu = cpumask_first(cpus);
cpu_thermal_cap = arch_scale_cpu_capacity(cpu);
cpu_thermal_cap -= arch_scale_thermal_pressure(cpu);
eenv.cpu_cap = cpu_thermal_cap;
eenv.pd_cap = 0;
for_each_cpu(cpu, cpus) {
struct rq *rq = cpu_rq(cpu);
eenv.pd_cap += cpu_thermal_cap;
if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
continue;
if (!cpumask_test_cpu(cpu, p->cpus_ptr))
continue;
util = cpu_util(cpu, p, cpu, 0);
cpu_cap = capacity_of(cpu);
/*
* Skip CPUs that cannot satisfy the capacity request.
* IOW, placing the task there would make the CPU
* overutilized. Take uclamp into account to see how
* much capacity we can get out of the CPU; this is
* aligned with sched_cpu_util().
*/
if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) {
/*
* Open code uclamp_rq_util_with() except for
* the clamp() part. Ie: apply max aggregation
* only. util_fits_cpu() logic requires to
* operate on non clamped util but must use the
* max-aggregated uclamp_{min, max}.
*/
rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN);
rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX);
util_min = max(rq_util_min, p_util_min);
util_max = max(rq_util_max, p_util_max);
}
fits = util_fits_cpu(util, util_min, util_max, cpu);
if (!fits)
continue;
lsub_positive(&cpu_cap, util);
if (cpu == prev_cpu) {
/* Always use prev_cpu as a candidate. */
prev_spare_cap = cpu_cap;
prev_fits = fits;
} else if ((fits > max_fits) ||
((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) {
/*
* Find the CPU with the maximum spare capacity
* among the remaining CPUs in the performance
* domain.
*/
max_spare_cap = cpu_cap;
max_spare_cap_cpu = cpu;
max_fits = fits;
}
}
if (max_spare_cap_cpu < 0 && prev_spare_cap < 0)
continue;
eenv_pd_busy_time(&eenv, cpus, p);
/* Compute the 'base' energy of the pd, without @p */
base_energy = compute_energy(&eenv, pd, cpus, p, -1);
/* Evaluate the energy impact of using prev_cpu. */
if (prev_spare_cap > -1) {
prev_delta = compute_energy(&eenv, pd, cpus, p,
prev_cpu);
/* CPU utilization has changed */
if (prev_delta < base_energy)
goto unlock;
prev_delta -= base_energy;
prev_thermal_cap = cpu_thermal_cap;
best_delta = min(best_delta, prev_delta);
}
/* Evaluate the energy impact of using max_spare_cap_cpu. */
if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) {
/* Current best energy cpu fits better */
if (max_fits < best_fits)
continue;
/*
* Both don't fit performance hint (i.e. uclamp_min)
* but best energy cpu has better capacity.
*/
if ((max_fits < 0) &&
(cpu_thermal_cap <= best_thermal_cap))
continue;
cur_delta = compute_energy(&eenv, pd, cpus, p,
max_spare_cap_cpu);
/* CPU utilization has changed */
if (cur_delta < base_energy)
goto unlock;
cur_delta -= base_energy;
/*
* Both fit for the task but best energy cpu has lower
* energy impact.
*/
if ((max_fits > 0) && (best_fits > 0) &&
(cur_delta >= best_delta))
continue;
best_delta = cur_delta;
best_energy_cpu = max_spare_cap_cpu;
best_fits = max_fits;
best_thermal_cap = cpu_thermal_cap;
}
}
rcu_read_unlock();
if ((best_fits > prev_fits) ||
((best_fits > 0) && (best_delta < prev_delta)) ||
((best_fits < 0) && (best_thermal_cap > prev_thermal_cap)))
target = best_energy_cpu;
return target;
unlock:
rcu_read_unlock();
return target;
}
/*
* select_task_rq_fair: Select target runqueue for the waking task in domains
* that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
* SD_BALANCE_FORK, or SD_BALANCE_EXEC.
*
* Balances load by selecting the idlest CPU in the idlest group, or under
* certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
*
* Returns the target CPU number.
*/
static int
select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
{
int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
struct sched_domain *tmp, *sd = NULL;
int cpu = smp_processor_id();
int new_cpu = prev_cpu;
int want_affine = 0;
/* SD_flags and WF_flags share the first nibble */
int sd_flag = wake_flags & 0xF;
/*
* required for stable ->cpus_allowed
*/
lockdep_assert_held(&p->pi_lock);
if (wake_flags & WF_TTWU) {
record_wakee(p);
if ((wake_flags & WF_CURRENT_CPU) &&
cpumask_test_cpu(cpu, p->cpus_ptr))
return cpu;
if (sched_energy_enabled()) {
new_cpu = find_energy_efficient_cpu(p, prev_cpu);
if (new_cpu >= 0)
return new_cpu;
new_cpu = prev_cpu;
}
want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
}
rcu_read_lock();
for_each_domain(cpu, tmp) {
/*
* If both 'cpu' and 'prev_cpu' are part of this domain,
* cpu is a valid SD_WAKE_AFFINE target.
*/
if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
if (cpu != prev_cpu)
new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
sd = NULL; /* Prefer wake_affine over balance flags */
break;
}
/*
* Usually only true for WF_EXEC and WF_FORK, as sched_domains
* usually do not have SD_BALANCE_WAKE set. That means wakeup
* will usually go to the fast path.
*/
if (tmp->flags & sd_flag)
sd = tmp;
else if (!want_affine)
break;
}
if (unlikely(sd)) {
/* Slow path */
new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
} else if (wake_flags & WF_TTWU) { /* XXX always ? */
/* Fast path */
new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
}
rcu_read_unlock();
return new_cpu;
}
/*
* Called immediately before a task is migrated to a new CPU; task_cpu(p) and
* cfs_rq_of(p) references at time of call are still valid and identify the
* previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
*/
static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
{
struct sched_entity *se = &p->se;
if (!task_on_rq_migrating(p)) {
remove_entity_load_avg(se);
/*
* Here, the task's PELT values have been updated according to
* the current rq's clock. But if that clock hasn't been
* updated in a while, a substantial idle time will be missed,
* leading to an inflation after wake-up on the new rq.
*
* Estimate the missing time from the cfs_rq last_update_time
* and update sched_avg to improve the PELT continuity after
* migration.
*/
migrate_se_pelt_lag(se);
}
/* Tell new CPU we are migrated */
se->avg.last_update_time = 0;
update_scan_period(p, new_cpu);
}
static void task_dead_fair(struct task_struct *p)
{
remove_entity_load_avg(&p->se);
}
static int
balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
{
if (rq->nr_running)
return 1;
return newidle_balance(rq, rf) != 0;
}
#endif /* CONFIG_SMP */
static void set_next_buddy(struct sched_entity *se)
{
for_each_sched_entity(se) {
if (SCHED_WARN_ON(!se->on_rq))
return;
if (se_is_idle(se))
return;
cfs_rq_of(se)->next = se;
}
}
/*
* Preempt the current task with a newly woken task if needed:
*/
static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags)
{
struct task_struct *curr = rq->curr;
struct sched_entity *se = &curr->se, *pse = &p->se;
struct cfs_rq *cfs_rq = task_cfs_rq(curr);
int next_buddy_marked = 0;
int cse_is_idle, pse_is_idle;
if (unlikely(se == pse))
return;
/*
* This is possible from callers such as attach_tasks(), in which we
* unconditionally wakeup_preempt() after an enqueue (which may have
* lead to a throttle). This both saves work and prevents false
* next-buddy nomination below.
*/
if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
return;
if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK)) {
set_next_buddy(pse);
next_buddy_marked = 1;
}
/*
* We can come here with TIF_NEED_RESCHED already set from new task
* wake up path.
*
* Note: this also catches the edge-case of curr being in a throttled
* group (e.g. via set_curr_task), since update_curr() (in the
* enqueue of curr) will have resulted in resched being set. This
* prevents us from potentially nominating it as a false LAST_BUDDY
* below.
*/
if (test_tsk_need_resched(curr))
return;
/* Idle tasks are by definition preempted by non-idle tasks. */
if (unlikely(task_has_idle_policy(curr)) &&
likely(!task_has_idle_policy(p)))
goto preempt;
/*
* Batch and idle tasks do not preempt non-idle tasks (their preemption
* is driven by the tick):
*/
if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
return;
find_matching_se(&se, &pse);
WARN_ON_ONCE(!pse);
cse_is_idle = se_is_idle(se);
pse_is_idle = se_is_idle(pse);
/*
* Preempt an idle group in favor of a non-idle group (and don't preempt
* in the inverse case).
*/
if (cse_is_idle && !pse_is_idle)
goto preempt;
if (cse_is_idle != pse_is_idle)
return;
cfs_rq = cfs_rq_of(se);
update_curr(cfs_rq);
/*
* XXX pick_eevdf(cfs_rq) != se ?
*/
if (pick_eevdf(cfs_rq) == pse)
goto preempt;
return;
preempt:
resched_curr(rq);
}
#ifdef CONFIG_SMP
static struct task_struct *pick_task_fair(struct rq *rq)
{
struct sched_entity *se;
struct cfs_rq *cfs_rq;
again:
cfs_rq = &rq->cfs;
if (!cfs_rq->nr_running)
return NULL;
do {
struct sched_entity *curr = cfs_rq->curr;
/* When we pick for a remote RQ, we'll not have done put_prev_entity() */
if (curr) {
if (curr->on_rq)
update_curr(cfs_rq);
else
curr = NULL;
if (unlikely(check_cfs_rq_runtime(cfs_rq)))
goto again;
}
se = pick_next_entity(cfs_rq);
cfs_rq = group_cfs_rq(se);
} while (cfs_rq);
return task_of(se);
}
#endif
struct task_struct *
pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
{
struct cfs_rq *cfs_rq = &rq->cfs;
struct sched_entity *se;
struct task_struct *p;
int new_tasks;
again:
if (!sched_fair_runnable(rq))
goto idle;
#ifdef CONFIG_FAIR_GROUP_SCHED
if (!prev || prev->sched_class != &fair_sched_class)
goto simple;
/*
* Because of the set_next_buddy() in dequeue_task_fair() it is rather
* likely that a next task is from the same cgroup as the current.
*
* Therefore attempt to avoid putting and setting the entire cgroup
* hierarchy, only change the part that actually changes.
*/
do {
struct sched_entity *curr = cfs_rq->curr;
/*
* Since we got here without doing put_prev_entity() we also
* have to consider cfs_rq->curr. If it is still a runnable
* entity, update_curr() will update its vruntime, otherwise
* forget we've ever seen it.
*/
if (curr) {
if (curr->on_rq)
update_curr(cfs_rq);
else
curr = NULL;
/*
* This call to check_cfs_rq_runtime() will do the
* throttle and dequeue its entity in the parent(s).
* Therefore the nr_running test will indeed
* be correct.
*/
if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
cfs_rq = &rq->cfs;
if (!cfs_rq->nr_running)
goto idle;
goto simple;
}
}
se = pick_next_entity(cfs_rq);
cfs_rq = group_cfs_rq(se);
} while (cfs_rq);
p = task_of(se);
/*
* Since we haven't yet done put_prev_entity and if the selected task
* is a different task than we started out with, try and touch the
* least amount of cfs_rqs.
*/
if (prev != p) {
struct sched_entity *pse = &prev->se;
while (!(cfs_rq = is_same_group(se, pse))) {
int se_depth = se->depth;
int pse_depth = pse->depth;
if (se_depth <= pse_depth) {
put_prev_entity(cfs_rq_of(pse), pse);
pse = parent_entity(pse);
}
if (se_depth >= pse_depth) {
set_next_entity(cfs_rq_of(se), se);
se = parent_entity(se);
}
}
put_prev_entity(cfs_rq, pse);
set_next_entity(cfs_rq, se);
}
goto done;
simple:
#endif
if (prev)
put_prev_task(rq, prev);
do {
se = pick_next_entity(cfs_rq);
set_next_entity(cfs_rq, se);
cfs_rq = group_cfs_rq(se);
} while (cfs_rq);
p = task_of(se);
done: __maybe_unused;
#ifdef CONFIG_SMP
/*
* Move the next running task to the front of
* the list, so our cfs_tasks list becomes MRU
* one.
*/
list_move(&p->se.group_node, &rq->cfs_tasks);
#endif
if (hrtick_enabled_fair(rq))
hrtick_start_fair(rq, p);
update_misfit_status(p, rq);
sched_fair_update_stop_tick(rq, p);
return p;
idle:
if (!rf)
return NULL;
new_tasks = newidle_balance(rq, rf);
/*
* Because newidle_balance() releases (and re-acquires) rq->lock, it is
* possible for any higher priority task to appear. In that case we
* must re-start the pick_next_entity() loop.
*/
if (new_tasks < 0)
return RETRY_TASK;
if (new_tasks > 0)
goto again;
/*
* rq is about to be idle, check if we need to update the
* lost_idle_time of clock_pelt
*/
update_idle_rq_clock_pelt(rq);
return NULL;
}
static struct task_struct *__pick_next_task_fair(struct rq *rq)
{
return pick_next_task_fair(rq, NULL, NULL);
}
/*
* Account for a descheduled task:
*/
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
{
struct sched_entity *se = &prev->se;
struct cfs_rq *cfs_rq;
for_each_sched_entity(se) {
cfs_rq = cfs_rq_of(se);
put_prev_entity(cfs_rq, se);
}
}
/*
* sched_yield() is very simple
*/
static void yield_task_fair(struct rq *rq)
{
struct task_struct *curr = rq->curr;
struct cfs_rq *cfs_rq = task_cfs_rq(curr);
struct sched_entity *se = &curr->se;
/*
* Are we the only task in the tree?
*/
if (unlikely(rq->nr_running == 1))
return;
clear_buddies(cfs_rq, se);
update_rq_clock(rq);
/*
* Update run-time statistics of the 'current'.
*/
update_curr(cfs_rq);
/*
* Tell update_rq_clock() that we've just updated,
* so we don't do microscopic update in schedule()
* and double the fastpath cost.
*/
rq_clock_skip_update(rq);
se->deadline += calc_delta_fair(se->slice, se);
}
static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
{
struct sched_entity *se = &p->se;
/* throttled hierarchies are not runnable */
if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
return false;
/* Tell the scheduler that we'd really like pse to run next. */
set_next_buddy(se);
yield_task_fair(rq);
return true;
}
#ifdef CONFIG_SMP
/**************************************************
* Fair scheduling class load-balancing methods.
*
* BASICS
*
* The purpose of load-balancing is to achieve the same basic fairness the
* per-CPU scheduler provides, namely provide a proportional amount of compute
* time to each task. This is expressed in the following equation:
*
* W_i,n/P_i == W_j,n/P_j for all i,j (1)
*
* Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
* W_i,0 is defined as:
*
* W_i,0 = \Sum_j w_i,j (2)
*
* Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
* is derived from the nice value as per sched_prio_to_weight[].
*
* The weight average is an exponential decay average of the instantaneous
* weight:
*
* W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
*
* C_i is the compute capacity of CPU i, typically it is the
* fraction of 'recent' time available for SCHED_OTHER task execution. But it
* can also include other factors [XXX].
*
* To achieve this balance we define a measure of imbalance which follows
* directly from (1):
*
* imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
*
* We them move tasks around to minimize the imbalance. In the continuous
* function space it is obvious this converges, in the discrete case we get
* a few fun cases generally called infeasible weight scenarios.
*
* [XXX expand on:
* - infeasible weights;
* - local vs global optima in the discrete case. ]
*
*
* SCHED DOMAINS
*
* In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
* for all i,j solution, we create a tree of CPUs that follows the hardware
* topology where each level pairs two lower groups (or better). This results
* in O(log n) layers. Furthermore we reduce the number of CPUs going up the
* tree to only the first of the previous level and we decrease the frequency
* of load-balance at each level inv. proportional to the number of CPUs in
* the groups.
*
* This yields:
*
* log_2 n 1 n
* \Sum { --- * --- * 2^i } = O(n) (5)
* i = 0 2^i 2^i
* `- size of each group
* | | `- number of CPUs doing load-balance
* | `- freq
* `- sum over all levels
*
* Coupled with a limit on how many tasks we can migrate every balance pass,
* this makes (5) the runtime complexity of the balancer.
*
* An important property here is that each CPU is still (indirectly) connected
* to every other CPU in at most O(log n) steps:
*
* The adjacency matrix of the resulting graph is given by:
*
* log_2 n
* A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
* k = 0
*
* And you'll find that:
*
* A^(log_2 n)_i,j != 0 for all i,j (7)
*
* Showing there's indeed a path between every CPU in at most O(log n) steps.
* The task movement gives a factor of O(m), giving a convergence complexity
* of:
*
* O(nm log n), n := nr_cpus, m := nr_tasks (8)
*
*
* WORK CONSERVING
*
* In order to avoid CPUs going idle while there's still work to do, new idle
* balancing is more aggressive and has the newly idle CPU iterate up the domain
* tree itself instead of relying on other CPUs to bring it work.
*
* This adds some complexity to both (5) and (8) but it reduces the total idle
* time.
*
* [XXX more?]
*
*
* CGROUPS
*
* Cgroups make a horror show out of (2), instead of a simple sum we get:
*
* s_k,i
* W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
* S_k
*
* Where
*
* s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
*
* w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
*
* The big problem is S_k, its a global sum needed to compute a local (W_i)
* property.
*
* [XXX write more on how we solve this.. _after_ merging pjt's patches that
* rewrite all of this once again.]
*/
static unsigned long __read_mostly max_load_balance_interval = HZ/10;
enum fbq_type { regular, remote, all };
/*
* 'group_type' describes the group of CPUs at the moment of load balancing.
*
* The enum is ordered by pulling priority, with the group with lowest priority
* first so the group_type can simply be compared when selecting the busiest
* group. See update_sd_pick_busiest().
*/
enum group_type {
/* The group has spare capacity that can be used to run more tasks. */
group_has_spare = 0,
/*
* The group is fully used and the tasks don't compete for more CPU
* cycles. Nevertheless, some tasks might wait before running.
*/
group_fully_busy,
/*
* One task doesn't fit with CPU's capacity and must be migrated to a
* more powerful CPU.
*/
group_misfit_task,
/*
* Balance SMT group that's fully busy. Can benefit from migration
* a task on SMT with busy sibling to another CPU on idle core.
*/
group_smt_balance,
/*
* SD_ASYM_PACKING only: One local CPU with higher capacity is available,
* and the task should be migrated to it instead of running on the
* current CPU.
*/
group_asym_packing,
/*
* The tasks' affinity constraints previously prevented the scheduler
* from balancing the load across the system.
*/
group_imbalanced,
/*
* The CPU is overloaded and can't provide expected CPU cycles to all
* tasks.
*/
group_overloaded
};
enum migration_type {
migrate_load = 0,
migrate_util,
migrate_task,
migrate_misfit
};
#define LBF_ALL_PINNED 0x01
#define LBF_NEED_BREAK 0x02
#define LBF_DST_PINNED 0x04
#define LBF_SOME_PINNED 0x08
#define LBF_ACTIVE_LB 0x10
struct lb_env {
struct sched_domain *sd;
struct rq *src_rq;
int src_cpu;
int dst_cpu;
struct rq *dst_rq;
struct cpumask *dst_grpmask;
int new_dst_cpu;
enum cpu_idle_type idle;
long imbalance;
/* The set of CPUs under consideration for load-balancing */
struct cpumask *cpus;
unsigned int flags;
unsigned int loop;
unsigned int loop_break;
unsigned int loop_max;
enum fbq_type fbq_type;
enum migration_type migration_type;
struct list_head tasks;
};
/*
* Is this task likely cache-hot:
*/
static int task_hot(struct task_struct *p, struct lb_env *env)
{
s64 delta;
lockdep_assert_rq_held(env->src_rq);
if (p->sched_class != &fair_sched_class)
return 0;
if (unlikely(task_has_idle_policy(p)))
return 0;
/* SMT siblings share cache */
if (env->sd->flags & SD_SHARE_CPUCAPACITY)
return 0;
/*
* Buddy candidates are cache hot:
*/
if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
(&p->se == cfs_rq_of(&p->se)->next))
return 1;
if (sysctl_sched_migration_cost == -1)
return 1;
/*
* Don't migrate task if the task's cookie does not match
* with the destination CPU's core cookie.
*/
if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
return 1;
if (sysctl_sched_migration_cost == 0)
return 0;
delta = rq_clock_task(env->src_rq) - p->se.exec_start;
return delta < (s64)sysctl_sched_migration_cost;
}
#ifdef CONFIG_NUMA_BALANCING
/*
* Returns 1, if task migration degrades locality
* Returns 0, if task migration improves locality i.e migration preferred.
* Returns -1, if task migration is not affected by locality.
*/
static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
{
struct numa_group *numa_group = rcu_dereference(p->numa_group);
unsigned long src_weight, dst_weight;
int src_nid, dst_nid, dist;
if (!static_branch_likely(&sched_numa_balancing))
return -1;
if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
return -1;
src_nid = cpu_to_node(env->src_cpu);
dst_nid = cpu_to_node(env->dst_cpu);
if (src_nid == dst_nid)
return -1;
/* Migrating away from the preferred node is always bad. */
if (src_nid == p->numa_preferred_nid) {
if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
return 1;
else
return -1;
}
/* Encourage migration to the preferred node. */
if (dst_nid == p->numa_preferred_nid)
return 0;
/* Leaving a core idle is often worse than degrading locality. */
if (env->idle == CPU_IDLE)
return -1;
dist = node_distance(src_nid, dst_nid);
if (numa_group) {
src_weight = group_weight(p, src_nid, dist);
dst_weight = group_weight(p, dst_nid, dist);
} else {
src_weight = task_weight(p, src_nid, dist);
dst_weight = task_weight(p, dst_nid, dist);
}
return dst_weight < src_weight;
}
#else
static inline int migrate_degrades_locality(struct task_struct *p,
struct lb_env *env)
{
return -1;
}
#endif
/*
* can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
*/
static
int can_migrate_task(struct task_struct *p, struct lb_env *env)
{
int tsk_cache_hot;
lockdep_assert_rq_held(env->src_rq);
/*
* We do not migrate tasks that are:
* 1) throttled_lb_pair, or
* 2) cannot be migrated to this CPU due to cpus_ptr, or
* 3) running (obviously), or
* 4) are cache-hot on their current CPU.
*/
if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
return 0;
/* Disregard pcpu kthreads; they are where they need to be. */
if (kthread_is_per_cpu(p))
return 0;
if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
int cpu;
schedstat_inc(p->stats.nr_failed_migrations_affine);
env->flags |= LBF_SOME_PINNED;
/*
* Remember if this task can be migrated to any other CPU in
* our sched_group. We may want to revisit it if we couldn't
* meet load balance goals by pulling other tasks on src_cpu.
*
* Avoid computing new_dst_cpu
* - for NEWLY_IDLE
* - if we have already computed one in current iteration
* - if it's an active balance
*/
if (env->idle == CPU_NEWLY_IDLE ||
env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
return 0;
/* Prevent to re-select dst_cpu via env's CPUs: */
for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
env->flags |= LBF_DST_PINNED;
env->new_dst_cpu = cpu;
break;
}
}
return 0;
}
/* Record that we found at least one task that could run on dst_cpu */
env->flags &= ~LBF_ALL_PINNED;
if (task_on_cpu(env->src_rq, p)) {
schedstat_inc(p->stats.nr_failed_migrations_running);
return 0;
}
/*
* Aggressive migration if:
* 1) active balance
* 2) destination numa is preferred
* 3) task is cache cold, or
* 4) too many balance attempts have failed.
*/
if (env->flags & LBF_ACTIVE_LB)
return 1;
tsk_cache_hot = migrate_degrades_locality(p, env);
if (tsk_cache_hot == -1)
tsk_cache_hot = task_hot(p, env);
if (tsk_cache_hot <= 0 ||
env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
if (tsk_cache_hot == 1) {
schedstat_inc(env->sd->lb_hot_gained[env->idle]);
schedstat_inc(p->stats.nr_forced_migrations);
}
return 1;
}
schedstat_inc(p->stats.nr_failed_migrations_hot);
return 0;
}
/*
* detach_task() -- detach the task for the migration specified in env
*/
static void detach_task(struct task_struct *p, struct lb_env *env)
{
lockdep_assert_rq_held(env->src_rq);
deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
set_task_cpu(p, env->dst_cpu);
}
/*
* detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
* part of active balancing operations within "domain".
*
* Returns a task if successful and NULL otherwise.
*/
static struct task_struct *detach_one_task(struct lb_env *env)
{
struct task_struct *p;
lockdep_assert_rq_held(env->src_rq);
list_for_each_entry_reverse(p,
&env->src_rq->cfs_tasks, se.group_node) {
if (!can_migrate_task(p, env))
continue;
detach_task(p, env);
/*
* Right now, this is only the second place where
* lb_gained[env->idle] is updated (other is detach_tasks)
* so we can safely collect stats here rather than
* inside detach_tasks().
*/
schedstat_inc(env->sd->lb_gained[env->idle]);
return p;
}
return NULL;
}
/*
* detach_tasks() -- tries to detach up to imbalance load/util/tasks from
* busiest_rq, as part of a balancing operation within domain "sd".
*
* Returns number of detached tasks if successful and 0 otherwise.
*/
static int detach_tasks(struct lb_env *env)
{
struct list_head *tasks = &env->src_rq->cfs_tasks;
unsigned long util, load;
struct task_struct *p;
int detached = 0;
lockdep_assert_rq_held(env->src_rq);
/*
* Source run queue has been emptied by another CPU, clear
* LBF_ALL_PINNED flag as we will not test any task.
*/
if (env->src_rq->nr_running <= 1) {
env->flags &= ~LBF_ALL_PINNED;
return 0;
}
if (env->imbalance <= 0)
return 0;
while (!list_empty(tasks)) {
/*
* We don't want to steal all, otherwise we may be treated likewise,
* which could at worst lead to a livelock crash.
*/
if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
break;
env->loop++;
/*
* We've more or less seen every task there is, call it quits
* unless we haven't found any movable task yet.
*/
if (env->loop > env->loop_max &&
!(env->flags & LBF_ALL_PINNED))
break;
/* take a breather every nr_migrate tasks */
if (env->loop > env->loop_break) {
env->loop_break += SCHED_NR_MIGRATE_BREAK;
env->flags |= LBF_NEED_BREAK;
break;
}
p = list_last_entry(tasks, struct task_struct, se.group_node);
if (!can_migrate_task(p, env))
goto next;
switch (env->migration_type) {
case migrate_load:
/*
* Depending of the number of CPUs and tasks and the
* cgroup hierarchy, task_h_load() can return a null
* value. Make sure that env->imbalance decreases
* otherwise detach_tasks() will stop only after
* detaching up to loop_max tasks.
*/
load = max_t(unsigned long, task_h_load(p), 1);
if (sched_feat(LB_MIN) &&
load < 16 && !env->sd->nr_balance_failed)
goto next;
/*
* Make sure that we don't migrate too much load.
* Nevertheless, let relax the constraint if
* scheduler fails to find a good waiting task to
* migrate.
*/
if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
goto next;
env->imbalance -= load;
break;
case migrate_util:
util = task_util_est(p);
if (util > env->imbalance)
goto next;
env->imbalance -= util;
break;
case migrate_task:
env->imbalance--;
break;
case migrate_misfit:
/* This is not a misfit task */
if (task_fits_cpu(p, env->src_cpu))
goto next;
env->imbalance = 0;
break;
}
detach_task(p, env);
list_add(&p->se.group_node, &env->tasks);
detached++;
#ifdef CONFIG_PREEMPTION
/*
* NEWIDLE balancing is a source of latency, so preemptible
* kernels will stop after the first task is detached to minimize
* the critical section.
*/
if (env->idle == CPU_NEWLY_IDLE)
break;
#endif
/*
* We only want to steal up to the prescribed amount of
* load/util/tasks.
*/
if (env->imbalance <= 0)
break;
continue;
next:
list_move(&p->se.group_node, tasks);
}
/*
* Right now, this is one of only two places we collect this stat
* so we can safely collect detach_one_task() stats here rather
* than inside detach_one_task().
*/
schedstat_add(env->sd->lb_gained[env->idle], detached);
return detached;
}
/*
* attach_task() -- attach the task detached by detach_task() to its new rq.
*/
static void attach_task(struct rq *rq, struct task_struct *p)
{
lockdep_assert_rq_held(rq);
WARN_ON_ONCE(task_rq(p) != rq);
activate_task(rq, p, ENQUEUE_NOCLOCK);
wakeup_preempt(rq, p, 0);
}
/*
* attach_one_task() -- attaches the task returned from detach_one_task() to
* its new rq.
*/
static void attach_one_task(struct rq *rq, struct task_struct *p)
{
struct rq_flags rf;
rq_lock(rq, &rf);
update_rq_clock(rq);
attach_task(rq, p);
rq_unlock(rq, &rf);
}
/*
* attach_tasks() -- attaches all tasks detached by detach_tasks() to their
* new rq.
*/
static void attach_tasks(struct lb_env *env)
{
struct list_head *tasks = &env->tasks;
struct task_struct *p;
struct rq_flags rf;
rq_lock(env->dst_rq, &rf);
update_rq_clock(env->dst_rq);
while (!list_empty(tasks)) {
p = list_first_entry(tasks, struct task_struct, se.group_node);
list_del_init(&p->se.group_node);
attach_task(env->dst_rq, p);
}
rq_unlock(env->dst_rq, &rf);
}
#ifdef CONFIG_NO_HZ_COMMON
static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
{
if (cfs_rq->avg.load_avg)
return true;
if (cfs_rq->avg.util_avg)
return true;
return false;
}
static inline bool others_have_blocked(struct rq *rq)
{
if (READ_ONCE(rq->avg_rt.util_avg))
return true;
if (READ_ONCE(rq->avg_dl.util_avg))
return true;
if (thermal_load_avg(rq))
return true;
#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
if (READ_ONCE(rq->avg_irq.util_avg))
return true;
#endif
return false;
}
static inline void update_blocked_load_tick(struct rq *rq)
{
WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
}
static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
{
if (!has_blocked)
rq->has_blocked_load = 0;
}
#else
static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
static inline bool others_have_blocked(struct rq *rq) { return false; }
static inline void update_blocked_load_tick(struct rq *rq) {}
static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
#endif
static bool __update_blocked_others(struct rq *rq, bool *done)
{
const struct sched_class *curr_class;
u64 now = rq_clock_pelt(rq);
unsigned long thermal_pressure;
bool decayed;
/*
* update_load_avg() can call cpufreq_update_util(). Make sure that RT,
* DL and IRQ signals have been updated before updating CFS.
*/
curr_class = rq->curr->sched_class;
thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
update_irq_load_avg(rq, 0);
if (others_have_blocked(rq))
*done = false;
return decayed;
}
#ifdef CONFIG_FAIR_GROUP_SCHED
static bool __update_blocked_fair(struct rq *rq, bool *done)
{
struct cfs_rq *cfs_rq, *pos;
bool decayed = false;
int cpu = cpu_of(rq);
/*
* Iterates the task_group tree in a bottom up fashion, see
* list_add_leaf_cfs_rq() for details.
*/
for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
struct sched_entity *se;
if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
update_tg_load_avg(cfs_rq);
if (cfs_rq->nr_running == 0)
update_idle_cfs_rq_clock_pelt(cfs_rq);
if (cfs_rq == &rq->cfs)
decayed = true;
}
/* Propagate pending load changes to the parent, if any: */
se = cfs_rq->tg->se[cpu];
if (se && !skip_blocked_update(se))
update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
/*
* There can be a lot of idle CPU cgroups. Don't let fully
* decayed cfs_rqs linger on the list.
*/
if (cfs_rq_is_decayed(cfs_rq))
list_del_leaf_cfs_rq(cfs_rq);
/* Don't need periodic decay once load/util_avg are null */
if (cfs_rq_has_blocked(cfs_rq))
*done = false;
}
return decayed;
}
/*
* Compute the hierarchical load factor for cfs_rq and all its ascendants.
* This needs to be done in a top-down fashion because the load of a child
* group is a fraction of its parents load.
*/
static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
{
struct rq *rq = rq_of(cfs_rq);
struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
unsigned long now = jiffies;
unsigned long load;
if (cfs_rq->last_h_load_update == now)
return;
WRITE_ONCE(cfs_rq->h_load_next, NULL);
for_each_sched_entity(se) {
cfs_rq = cfs_rq_of(se);
WRITE_ONCE(cfs_rq->h_load_next, se);
if (cfs_rq->last_h_load_update == now)
break;
}
if (!se) {
cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
cfs_rq->last_h_load_update = now;
}
while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
load = cfs_rq->h_load;
load = div64_ul(load * se->avg.load_avg,
cfs_rq_load_avg(cfs_rq) + 1);
cfs_rq = group_cfs_rq(se);
cfs_rq->h_load = load;
cfs_rq->last_h_load_update = now;
}
}
static unsigned long task_h_load(struct task_struct *p)
{
struct cfs_rq *cfs_rq = task_cfs_rq(p);
update_cfs_rq_h_load(cfs_rq);
return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
cfs_rq_load_avg(cfs_rq) + 1);
}
#else
static bool __update_blocked_fair(struct rq *rq, bool *done)
{
struct cfs_rq *cfs_rq = &rq->cfs;
bool decayed;
decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
if (cfs_rq_has_blocked(cfs_rq))
*done = false;
return decayed;
}
static unsigned long task_h_load(struct task_struct *p)
{
return p->se.avg.load_avg;
}
#endif
static void update_blocked_averages(int cpu)
{
bool decayed = false, done = true;
struct rq *rq = cpu_rq(cpu);
struct rq_flags rf;
rq_lock_irqsave(rq, &rf);
update_blocked_load_tick(rq);
update_rq_clock(rq);
decayed |= __update_blocked_others(rq, &done);
decayed |= __update_blocked_fair(rq, &done);
update_blocked_load_status(rq, !done);
if (decayed)
cpufreq_update_util(rq, 0);
rq_unlock_irqrestore(rq, &rf);
}
/********** Helpers for find_busiest_group ************************/
/*
* sg_lb_stats - stats of a sched_group required for load_balancing
*/
struct sg_lb_stats {
unsigned long avg_load; /*Avg load across the CPUs of the group */
unsigned long group_load; /* Total load over the CPUs of the group */
unsigned long group_capacity;
unsigned long group_util; /* Total utilization over the CPUs of the group */
unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
unsigned int sum_nr_running; /* Nr of tasks running in the group */
unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
unsigned int idle_cpus;
unsigned int group_weight;
enum group_type group_type;
unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
unsigned int group_smt_balance; /* Task on busy SMT be moved */
unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
#ifdef CONFIG_NUMA_BALANCING
unsigned int nr_numa_running;
unsigned int nr_preferred_running;
#endif
};
/*
* sd_lb_stats - Structure to store the statistics of a sched_domain
* during load balancing.
*/
struct sd_lb_stats {
struct sched_group *busiest; /* Busiest group in this sd */
struct sched_group *local; /* Local group in this sd */
unsigned long total_load; /* Total load of all groups in sd */
unsigned long total_capacity; /* Total capacity of all groups in sd */
unsigned long avg_load; /* Average load across all groups in sd */
unsigned int prefer_sibling; /* tasks should go to sibling first */
struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
struct sg_lb_stats local_stat; /* Statistics of the local group */
};
static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
{
/*
* Skimp on the clearing to avoid duplicate work. We can avoid clearing
* local_stat because update_sg_lb_stats() does a full clear/assignment.
* We must however set busiest_stat::group_type and
* busiest_stat::idle_cpus to the worst busiest group because
* update_sd_pick_busiest() reads these before assignment.
*/
*sds = (struct sd_lb_stats){
.busiest = NULL,
.local = NULL,
.total_load = 0UL,
.total_capacity = 0UL,
.busiest_stat = {
.idle_cpus = UINT_MAX,
.group_type = group_has_spare,
},
};
}
static unsigned long scale_rt_capacity(int cpu)
{
struct rq *rq = cpu_rq(cpu);
unsigned long max = arch_scale_cpu_capacity(cpu);
unsigned long used, free;
unsigned long irq;
irq = cpu_util_irq(rq);
if (unlikely(irq >= max))
return 1;
/*
* avg_rt.util_avg and avg_dl.util_avg track binary signals
* (running and not running) with weights 0 and 1024 respectively.
* avg_thermal.load_avg tracks thermal pressure and the weighted
* average uses the actual delta max capacity(load).
*/
used = READ_ONCE(rq->avg_rt.util_avg);
used += READ_ONCE(rq->avg_dl.util_avg);
used += thermal_load_avg(rq);
if (unlikely(used >= max))
return 1;
free = max - used;
return scale_irq_capacity(free, irq, max);
}
static void update_cpu_capacity(struct sched_domain *sd, int cpu)
{
unsigned long capacity = scale_rt_capacity(cpu);
struct sched_group *sdg = sd->groups;
if (!capacity)
capacity = 1;
cpu_rq(cpu)->cpu_capacity = capacity;
trace_sched_cpu_capacity_tp(cpu_rq(cpu));
sdg->sgc->capacity = capacity;
sdg->sgc->min_capacity = capacity;
sdg->sgc->max_capacity = capacity;
}
void update_group_capacity(struct sched_domain *sd, int cpu)
{
struct sched_domain *child = sd->child;
struct sched_group *group, *sdg = sd->groups;
unsigned long capacity, min_capacity, max_capacity;
unsigned long interval;
interval = msecs_to_jiffies(sd->balance_interval);
interval = clamp(interval, 1UL, max_load_balance_interval);
sdg->sgc->next_update = jiffies + interval;
if (!child) {
update_cpu_capacity(sd, cpu);
return;
}
capacity = 0;
min_capacity = ULONG_MAX;
max_capacity = 0;
if (child->flags & SD_OVERLAP) {
/*
* SD_OVERLAP domains cannot assume that child groups
* span the current group.
*/
for_each_cpu(cpu, sched_group_span(sdg)) {
unsigned long cpu_cap = capacity_of(cpu);
capacity += cpu_cap;
min_capacity = min(cpu_cap, min_capacity);
max_capacity = max(cpu_cap, max_capacity);
}
} else {
/*
* !SD_OVERLAP domains can assume that child groups
* span the current group.
*/
group = child->groups;
do {
struct sched_group_capacity *sgc = group->sgc;
capacity += sgc->capacity;
min_capacity = min(sgc->min_capacity, min_capacity);
max_capacity = max(sgc->max_capacity, max_capacity);
group = group->next;
} while (group != child->groups);
}
sdg->sgc->capacity = capacity;
sdg->sgc->min_capacity = min_capacity;
sdg->sgc->max_capacity = max_capacity;
}
/*
* Check whether the capacity of the rq has been noticeably reduced by side
* activity. The imbalance_pct is used for the threshold.
* Return true is the capacity is reduced
*/
static inline int
check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
{
return ((rq->cpu_capacity * sd->imbalance_pct) <
(arch_scale_cpu_capacity(cpu_of(rq)) * 100));
}
/*
* Check whether a rq has a misfit task and if it looks like we can actually
* help that task: we can migrate the task to a CPU of higher capacity, or
* the task's current CPU is heavily pressured.
*/
static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
{
return rq->misfit_task_load &&
(arch_scale_cpu_capacity(rq->cpu) < rq->rd->max_cpu_capacity ||
check_cpu_capacity(rq, sd));
}
/*
* Group imbalance indicates (and tries to solve) the problem where balancing
* groups is inadequate due to ->cpus_ptr constraints.
*
* Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
* cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
* Something like:
*
* { 0 1 2 3 } { 4 5 6 7 }
* * * * *
*
* If we were to balance group-wise we'd place two tasks in the first group and
* two tasks in the second group. Clearly this is undesired as it will overload
* cpu 3 and leave one of the CPUs in the second group unused.
*
* The current solution to this issue is detecting the skew in the first group
* by noticing the lower domain failed to reach balance and had difficulty
* moving tasks due to affinity constraints.
*
* When this is so detected; this group becomes a candidate for busiest; see
* update_sd_pick_busiest(). And calculate_imbalance() and
* find_busiest_group() avoid some of the usual balance conditions to allow it
* to create an effective group imbalance.
*
* This is a somewhat tricky proposition since the next run might not find the
* group imbalance and decide the groups need to be balanced again. A most
* subtle and fragile situation.
*/
static inline int sg_imbalanced(struct sched_group *group)
{
return group->sgc->imbalance;
}
/*
* group_has_capacity returns true if the group has spare capacity that could
* be used by some tasks.
* We consider that a group has spare capacity if the number of task is
* smaller than the number of CPUs or if the utilization is lower than the
* available capacity for CFS tasks.
* For the latter, we use a threshold to stabilize the state, to take into
* account the variance of the tasks' load and to return true if the available
* capacity in meaningful for the load balancer.
* As an example, an available capacity of 1% can appear but it doesn't make
* any benefit for the load balance.
*/
static inline bool
group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
{
if (sgs->sum_nr_running < sgs->group_weight)
return true;
if ((sgs->group_capacity * imbalance_pct) <
(sgs->group_runnable * 100))
return false;
if ((sgs->group_capacity * 100) >
(sgs->group_util * imbalance_pct))
return true;
return false;
}
/*
* group_is_overloaded returns true if the group has more tasks than it can
* handle.
* group_is_overloaded is not equals to !group_has_capacity because a group
* with the exact right number of tasks, has no more spare capacity but is not
* overloaded so both group_has_capacity and group_is_overloaded return
* false.
*/
static inline bool
group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
{
if (sgs->sum_nr_running <= sgs->group_weight)
return false;
if ((sgs->group_capacity * 100) <
(sgs->group_util * imbalance_pct))
return true;
if ((sgs->group_capacity * imbalance_pct) <
(sgs->group_runnable * 100))
return true;
return false;
}
static inline enum
group_type group_classify(unsigned int imbalance_pct,
struct sched_group *group,
struct sg_lb_stats *sgs)
{
if (group_is_overloaded(imbalance_pct, sgs))
return group_overloaded;
if (sg_imbalanced(group))
return group_imbalanced;
if (sgs->group_asym_packing)
return group_asym_packing;
if (sgs->group_smt_balance)
return group_smt_balance;
if (sgs->group_misfit_task_load)
return group_misfit_task;
if (!group_has_capacity(imbalance_pct, sgs))
return group_fully_busy;
return group_has_spare;
}
/**
* sched_use_asym_prio - Check whether asym_packing priority must be used
* @sd: The scheduling domain of the load balancing
* @cpu: A CPU
*
* Always use CPU priority when balancing load between SMT siblings. When
* balancing load between cores, it is not sufficient that @cpu is idle. Only
* use CPU priority if the whole core is idle.
*
* Returns: True if the priority of @cpu must be followed. False otherwise.
*/
static bool sched_use_asym_prio(struct sched_domain *sd, int cpu)
{
if (!sched_smt_active())
return true;
return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu);
}
/**
* sched_asym - Check if the destination CPU can do asym_packing load balance
* @env: The load balancing environment
* @sds: Load-balancing data with statistics of the local group
* @sgs: Load-balancing statistics of the candidate busiest group
* @group: The candidate busiest group
*
* @env::dst_cpu can do asym_packing if it has higher priority than the
* preferred CPU of @group.
*
* SMT is a special case. If we are balancing load between cores, @env::dst_cpu
* can do asym_packing balance only if all its SMT siblings are idle. Also, it
* can only do it if @group is an SMT group and has exactly on busy CPU. Larger
* imbalances in the number of CPUS are dealt with in find_busiest_group().
*
* If we are balancing load within an SMT core, or at PKG domain level, always
* proceed.
*
* Return: true if @env::dst_cpu can do with asym_packing load balance. False
* otherwise.
*/
static inline bool
sched_asym(struct lb_env *env, struct sd_lb_stats *sds, struct sg_lb_stats *sgs,
struct sched_group *group)
{
/* Ensure that the whole local core is idle, if applicable. */
if (!sched_use_asym_prio(env->sd, env->dst_cpu))
return false;
/*
* CPU priorities does not make sense for SMT cores with more than one
* busy sibling.
*/
if (group->flags & SD_SHARE_CPUCAPACITY) {
if (sgs->group_weight - sgs->idle_cpus != 1)
return false;
}
return sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu);
}
/* One group has more than one SMT CPU while the other group does not */
static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1,
struct sched_group *sg2)
{
if (!sg1 || !sg2)
return false;
return (sg1->flags & SD_SHARE_CPUCAPACITY) !=
(sg2->flags & SD_SHARE_CPUCAPACITY);
}
static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs,
struct sched_group *group)
{
if (env->idle == CPU_NOT_IDLE)
return false;
/*
* For SMT source group, it is better to move a task
* to a CPU that doesn't have multiple tasks sharing its CPU capacity.
* Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY
* will not be on.
*/
if (group->flags & SD_SHARE_CPUCAPACITY &&
sgs->sum_h_nr_running > 1)
return true;
return false;
}
static inline long sibling_imbalance(struct lb_env *env,
struct sd_lb_stats *sds,
struct sg_lb_stats *busiest,
struct sg_lb_stats *local)
{
int ncores_busiest, ncores_local;
long imbalance;
if (env->idle == CPU_NOT_IDLE || !busiest->sum_nr_running)
return 0;
ncores_busiest = sds->busiest->cores;
ncores_local = sds->local->cores;
if (ncores_busiest == ncores_local) {
imbalance = busiest->sum_nr_running;
lsub_positive(&imbalance, local->sum_nr_running);
return imbalance;
}
/* Balance such that nr_running/ncores ratio are same on both groups */
imbalance = ncores_local * busiest->sum_nr_running;
lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running);
/* Normalize imbalance and do rounding on normalization */
imbalance = 2 * imbalance + ncores_local + ncores_busiest;
imbalance /= ncores_local + ncores_busiest;
/* Take advantage of resource in an empty sched group */
if (imbalance <= 1 && local->sum_nr_running == 0 &&
busiest->sum_nr_running > 1)
imbalance = 2;
return imbalance;
}
static inline bool
sched_reduced_capacity(struct rq *rq, struct sched_domain *sd)
{
/*
* When there is more than 1 task, the group_overloaded case already
* takes care of cpu with reduced capacity
*/
if (rq->cfs.h_nr_running != 1)
return false;
return check_cpu_capacity(rq, sd);
}
/**
* update_sg_lb_stats - Update sched_group's statistics for load balancing.
* @env: The load balancing environment.
* @sds: Load-balancing data with statistics of the local group.
* @group: sched_group whose statistics are to be updated.
* @sgs: variable to hold the statistics for this group.
* @sg_status: Holds flag indicating the status of the sched_group
*/
static inline void update_sg_lb_stats(struct lb_env *env,
struct sd_lb_stats *sds,
struct sched_group *group,
struct sg_lb_stats *sgs,
int *sg_status)
{
int i, nr_running, local_group;
memset(sgs, 0, sizeof(*sgs));
local_group = group == sds->local;
for_each_cpu_and(i, sched_group_span(group), env->cpus) {
struct rq *rq = cpu_rq(i);
unsigned long load = cpu_load(rq);
sgs->group_load += load;
sgs->group_util += cpu_util_cfs(i);
sgs->group_runnable += cpu_runnable(rq);
sgs->sum_h_nr_running += rq->cfs.h_nr_running;
nr_running = rq->nr_running;
sgs->sum_nr_running += nr_running;
if (nr_running > 1)
*sg_status |= SG_OVERLOAD;
if (cpu_overutilized(i))
*sg_status |= SG_OVERUTILIZED;
#ifdef CONFIG_NUMA_BALANCING
sgs->nr_numa_running += rq->nr_numa_running;
sgs->nr_preferred_running += rq->nr_preferred_running;
#endif
/*
* No need to call idle_cpu() if nr_running is not 0
*/
if (!nr_running && idle_cpu(i)) {
sgs->idle_cpus++;
/* Idle cpu can't have misfit task */
continue;
}
if (local_group)
continue;
if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
/* Check for a misfit task on the cpu */
if (sgs->group_misfit_task_load < rq->misfit_task_load) {
sgs->group_misfit_task_load = rq->misfit_task_load;
*sg_status |= SG_OVERLOAD;
}
} else if ((env->idle != CPU_NOT_IDLE) &&
sched_reduced_capacity(rq, env->sd)) {
/* Check for a task running on a CPU with reduced capacity */
if (sgs->group_misfit_task_load < load)
sgs->group_misfit_task_load = load;
}
}
sgs->group_capacity = group->sgc->capacity;
sgs->group_weight = group->group_weight;
/* Check if dst CPU is idle and preferred to this group */
if (!local_group && env->sd->flags & SD_ASYM_PACKING &&
env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running &&
sched_asym(env, sds, sgs, group)) {
sgs->group_asym_packing = 1;
}
/* Check for loaded SMT group to be balanced to dst CPU */
if (!local_group && smt_balance(env, sgs, group))
sgs->group_smt_balance = 1;
sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
/* Computing avg_load makes sense only when group is overloaded */
if (sgs->group_type == group_overloaded)
sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
sgs->group_capacity;
}
/**
* update_sd_pick_busiest - return 1 on busiest group
* @env: The load balancing environment.
* @sds: sched_domain statistics
* @sg: sched_group candidate to be checked for being the busiest
* @sgs: sched_group statistics
*
* Determine if @sg is a busier group than the previously selected
* busiest group.
*
* Return: %true if @sg is a busier group than the previously selected
* busiest group. %false otherwise.
*/
static bool update_sd_pick_busiest(struct lb_env *env,
struct sd_lb_stats *sds,
struct sched_group *sg,
struct sg_lb_stats *sgs)
{
struct sg_lb_stats *busiest = &sds->busiest_stat;
/* Make sure that there is at least one task to pull */
if (!sgs->sum_h_nr_running)
return false;
/*
* Don't try to pull misfit tasks we can't help.
* We can use max_capacity here as reduction in capacity on some
* CPUs in the group should either be possible to resolve
* internally or be covered by avg_load imbalance (eventually).
*/
if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
(sgs->group_type == group_misfit_task) &&
(!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
sds->local_stat.group_type != group_has_spare))
return false;
if (sgs->group_type > busiest->group_type)
return true;
if (sgs->group_type < busiest->group_type)
return false;
/*
* The candidate and the current busiest group are the same type of
* group. Let check which one is the busiest according to the type.
*/
switch (sgs->group_type) {
case group_overloaded:
/* Select the overloaded group with highest avg_load. */
if (sgs->avg_load <= busiest->avg_load)
return false;
break;
case group_imbalanced:
/*
* Select the 1st imbalanced group as we don't have any way to
* choose one more than another.
*/
return false;
case group_asym_packing:
/* Prefer to move from lowest priority CPU's work */
if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
return false;
break;
case group_misfit_task:
/*
* If we have more than one misfit sg go with the biggest
* misfit.
*/
if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
return false;
break;
case group_smt_balance:
/*
* Check if we have spare CPUs on either SMT group to
* choose has spare or fully busy handling.
*/
if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0)
goto has_spare;
fallthrough;
case group_fully_busy:
/*
* Select the fully busy group with highest avg_load. In
* theory, there is no need to pull task from such kind of
* group because tasks have all compute capacity that they need
* but we can still improve the overall throughput by reducing
* contention when accessing shared HW resources.
*
* XXX for now avg_load is not computed and always 0 so we
* select the 1st one, except if @sg is composed of SMT
* siblings.
*/
if (sgs->avg_load < busiest->avg_load)
return false;
if (sgs->avg_load == busiest->avg_load) {
/*
* SMT sched groups need more help than non-SMT groups.
* If @sg happens to also be SMT, either choice is good.
*/
if (sds->busiest->flags & SD_SHARE_CPUCAPACITY)
return false;
}
break;
case group_has_spare:
/*
* Do not pick sg with SMT CPUs over sg with pure CPUs,
* as we do not want to pull task off SMT core with one task
* and make the core idle.
*/
if (smt_vs_nonsmt_groups(sds->busiest, sg)) {
if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1)
return false;
else
return true;
}
has_spare:
/*
* Select not overloaded group with lowest number of idle cpus
* and highest number of running tasks. We could also compare
* the spare capacity which is more stable but it can end up
* that the group has less spare capacity but finally more idle
* CPUs which means less opportunity to pull tasks.
*/
if (sgs->idle_cpus > busiest->idle_cpus)
return false;
else if ((sgs->idle_cpus == busiest->idle_cpus) &&
(sgs->sum_nr_running <= busiest->sum_nr_running))
return false;
break;
}
/*
* Candidate sg has no more than one task per CPU and has higher
* per-CPU capacity. Migrating tasks to less capable CPUs may harm
* throughput. Maximize throughput, power/energy consequences are not
* considered.
*/
if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
(sgs->group_type <= group_fully_busy) &&
(capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
return false;
return true;
}
#ifdef CONFIG_NUMA_BALANCING
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
if (sgs->sum_h_nr_running > sgs->nr_numa_running)
return regular;
if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
return remote;
return all;
}
static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
if (rq->nr_running > rq->nr_numa_running)
return regular;
if (rq->nr_running > rq->nr_preferred_running)
return remote;
return all;
}
#else
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
return all;
}
static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
return regular;
}
#endif /* CONFIG_NUMA_BALANCING */
struct sg_lb_stats;
/*
* task_running_on_cpu - return 1 if @p is running on @cpu.
*/
static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
{
/* Task has no contribution or is new */
if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
return 0;
if (task_on_rq_queued(p))
return 1;
return 0;
}
/**
* idle_cpu_without - would a given CPU be idle without p ?
* @cpu: the processor on which idleness is tested.
* @p: task which should be ignored.
*
* Return: 1 if the CPU would be idle. 0 otherwise.
*/
static int idle_cpu_without(int cpu, struct task_struct *p)
{
struct rq *rq = cpu_rq(cpu);
if (rq->curr != rq->idle && rq->curr != p)
return 0;
/*
* rq->nr_running can't be used but an updated version without the
* impact of p on cpu must be used instead. The updated nr_running
* be computed and tested before calling idle_cpu_without().
*/
#ifdef CONFIG_SMP
if (rq->ttwu_pending)
return 0;
#endif
return 1;
}
/*
* update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
* @sd: The sched_domain level to look for idlest group.
* @group: sched_group whose statistics are to be updated.
* @sgs: variable to hold the statistics for this group.
* @p: The task for which we look for the idlest group/CPU.
*/
static inline void update_sg_wakeup_stats(struct sched_domain *sd,
struct sched_group *group,
struct sg_lb_stats *sgs,
struct task_struct *p)
{
int i, nr_running;
memset(sgs, 0, sizeof(*sgs));
/* Assume that task can't fit any CPU of the group */
if (sd->flags & SD_ASYM_CPUCAPACITY)
sgs->group_misfit_task_load = 1;
for_each_cpu(i, sched_group_span(group)) {
struct rq *rq = cpu_rq(i);
unsigned int local;
sgs->group_load += cpu_load_without(rq, p);
sgs->group_util += cpu_util_without(i, p);
sgs->group_runnable += cpu_runnable_without(rq, p);
local = task_running_on_cpu(i, p);
sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
nr_running = rq->nr_running - local;
sgs->sum_nr_running += nr_running;
/*
* No need to call idle_cpu_without() if nr_running is not 0
*/
if (!nr_running && idle_cpu_without(i, p))
sgs->idle_cpus++;
/* Check if task fits in the CPU */
if (sd->flags & SD_ASYM_CPUCAPACITY &&
sgs->group_misfit_task_load &&
task_fits_cpu(p, i))
sgs->group_misfit_task_load = 0;
}
sgs->group_capacity = group->sgc->capacity;
sgs->group_weight = group->group_weight;
sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
/*
* Computing avg_load makes sense only when group is fully busy or
* overloaded
*/
if (sgs->group_type == group_fully_busy ||
sgs->group_type == group_overloaded)
sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
sgs->group_capacity;
}
static bool update_pick_idlest(struct sched_group *idlest,
struct sg_lb_stats *idlest_sgs,
struct sched_group *group,
struct sg_lb_stats *sgs)
{
if (sgs->group_type < idlest_sgs->group_type)
return true;
if (sgs->group_type > idlest_sgs->group_type)
return false;
/*
* The candidate and the current idlest group are the same type of
* group. Let check which one is the idlest according to the type.
*/
switch (sgs->group_type) {
case group_overloaded:
case group_fully_busy:
/* Select the group with lowest avg_load. */
if (idlest_sgs->avg_load <= sgs->avg_load)
return false;
break;
case group_imbalanced:
case group_asym_packing:
case group_smt_balance:
/* Those types are not used in the slow wakeup path */
return false;
case group_misfit_task:
/* Select group with the highest max capacity */
if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
return false;
break;
case group_has_spare:
/* Select group with most idle CPUs */
if (idlest_sgs->idle_cpus > sgs->idle_cpus)
return false;
/* Select group with lowest group_util */
if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
idlest_sgs->group_util <= sgs->group_util)
return false;
break;
}
return true;
}
/*
* find_idlest_group() finds and returns the least busy CPU group within the
* domain.
*
* Assumes p is allowed on at least one CPU in sd.
*/
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
struct sg_lb_stats local_sgs, tmp_sgs;
struct sg_lb_stats *sgs;
unsigned long imbalance;
struct sg_lb_stats idlest_sgs = {
.avg_load = UINT_MAX,
.group_type = group_overloaded,
};
do {
int local_group;
/* Skip over this group if it has no CPUs allowed */
if (!cpumask_intersects(sched_group_span(group),
p->cpus_ptr))
continue;
/* Skip over this group if no cookie matched */
if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
continue;
local_group = cpumask_test_cpu(this_cpu,
sched_group_span(group));
if (local_group) {
sgs = &local_sgs;
local = group;
} else {
sgs = &tmp_sgs;
}
update_sg_wakeup_stats(sd, group, sgs, p);
if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
idlest = group;
idlest_sgs = *sgs;
}
} while (group = group->next, group != sd->groups);
/* There is no idlest group to push tasks to */
if (!idlest)
return NULL;
/* The local group has been skipped because of CPU affinity */
if (!local)
return idlest;
/*
* If the local group is idler than the selected idlest group
* don't try and push the task.
*/
if (local_sgs.group_type < idlest_sgs.group_type)
return NULL;
/*
* If the local group is busier than the selected idlest group
* try and push the task.
*/
if (local_sgs.group_type > idlest_sgs.group_type)
return idlest;
switch (local_sgs.group_type) {
case group_overloaded:
case group_fully_busy:
/* Calculate allowed imbalance based on load */
imbalance = scale_load_down(NICE_0_LOAD) *
(sd->imbalance_pct-100) / 100;
/*
* When comparing groups across NUMA domains, it's possible for
* the local domain to be very lightly loaded relative to the
* remote domains but "imbalance" skews the comparison making
* remote CPUs look much more favourable. When considering
* cross-domain, add imbalance to the load on the remote node
* and consider staying local.
*/
if ((sd->flags & SD_NUMA) &&
((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
return NULL;
/*
* If the local group is less loaded than the selected
* idlest group don't try and push any tasks.
*/
if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
return NULL;
if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
return NULL;
break;
case group_imbalanced:
case group_asym_packing:
case group_smt_balance:
/* Those type are not used in the slow wakeup path */
return NULL;
case group_misfit_task:
/* Select group with the highest max capacity */
if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
return NULL;
break;
case group_has_spare:
#ifdef CONFIG_NUMA
if (sd->flags & SD_NUMA) {
int imb_numa_nr = sd->imb_numa_nr;
#ifdef CONFIG_NUMA_BALANCING
int idlest_cpu;
/*
* If there is spare capacity at NUMA, try to select
* the preferred node
*/
if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
return NULL;
idlest_cpu = cpumask_first(sched_group_span(idlest));
if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
return idlest;
#endif /* CONFIG_NUMA_BALANCING */
/*
* Otherwise, keep the task close to the wakeup source
* and improve locality if the number of running tasks
* would remain below threshold where an imbalance is
* allowed while accounting for the possibility the
* task is pinned to a subset of CPUs. If there is a
* real need of migration, periodic load balance will
* take care of it.
*/
if (p->nr_cpus_allowed != NR_CPUS) {
struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
cpumask_and(cpus, sched_group_span(local), p->cpus_ptr);
imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr);
}
imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus);
if (!adjust_numa_imbalance(imbalance,
local_sgs.sum_nr_running + 1,
imb_numa_nr)) {
return NULL;
}
}
#endif /* CONFIG_NUMA */
/*
* Select group with highest number of idle CPUs. We could also
* compare the utilization which is more stable but it can end
* up that the group has less spare capacity but finally more
* idle CPUs which means more opportunity to run task.
*/
if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
return NULL;
break;
}
return idlest;
}
static void update_idle_cpu_scan(struct lb_env *env,
unsigned long sum_util)
{
struct sched_domain_shared *sd_share;
int llc_weight, pct;
u64 x, y, tmp;
/*
* Update the number of CPUs to scan in LLC domain, which could
* be used as a hint in select_idle_cpu(). The update of sd_share
* could be expensive because it is within a shared cache line.
* So the write of this hint only occurs during periodic load
* balancing, rather than CPU_NEWLY_IDLE, because the latter
* can fire way more frequently than the former.
*/
if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE)
return;
llc_weight = per_cpu(sd_llc_size, env->dst_cpu);
if (env->sd->span_weight != llc_weight)
return;
sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu));
if (!sd_share)
return;
/*
* The number of CPUs to search drops as sum_util increases, when
* sum_util hits 85% or above, the scan stops.
* The reason to choose 85% as the threshold is because this is the
* imbalance_pct(117) when a LLC sched group is overloaded.
*
* let y = SCHED_CAPACITY_SCALE - p * x^2 [1]
* and y'= y / SCHED_CAPACITY_SCALE
*
* x is the ratio of sum_util compared to the CPU capacity:
* x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
* y' is the ratio of CPUs to be scanned in the LLC domain,
* and the number of CPUs to scan is calculated by:
*
* nr_scan = llc_weight * y' [2]
*
* When x hits the threshold of overloaded, AKA, when
* x = 100 / pct, y drops to 0. According to [1],
* p should be SCHED_CAPACITY_SCALE * pct^2 / 10000
*
* Scale x by SCHED_CAPACITY_SCALE:
* x' = sum_util / llc_weight; [3]
*
* and finally [1] becomes:
* y = SCHED_CAPACITY_SCALE -
* x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4]
*
*/
/* equation [3] */
x = sum_util;
do_div(x, llc_weight);
/* equation [4] */
pct = env->sd->imbalance_pct;
tmp = x * x * pct * pct;
do_div(tmp, 10000 * SCHED_CAPACITY_SCALE);
tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE);
y = SCHED_CAPACITY_SCALE - tmp;
/* equation [2] */
y *= llc_weight;
do_div(y, SCHED_CAPACITY_SCALE);
if ((int)y != sd_share->nr_idle_scan)
WRITE_ONCE(sd_share->nr_idle_scan, (int)y);
}
/**
* update_sd_lb_stats - Update sched_domain's statistics for load balancing.
* @env: The load balancing environment.
* @sds: variable to hold the statistics for this sched_domain.
*/
static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
{
struct sched_group *sg = env->sd->groups;
struct sg_lb_stats *local = &sds->local_stat;
struct sg_lb_stats tmp_sgs;
unsigned long sum_util = 0;
int sg_status = 0;
do {
struct sg_lb_stats *sgs = &tmp_sgs;
int local_group;
local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
if (local_group) {
sds->local = sg;
sgs = local;
if (env->idle != CPU_NEWLY_IDLE ||
time_after_eq(jiffies, sg->sgc->next_update))
update_group_capacity(env->sd, env->dst_cpu);
}
update_sg_lb_stats(env, sds, sg, sgs, &sg_status);
if (local_group)
goto next_group;
if (update_sd_pick_busiest(env, sds, sg, sgs)) {
sds->busiest = sg;
sds->busiest_stat = *sgs;
}
next_group:
/* Now, start updating sd_lb_stats */
sds->total_load += sgs->group_load;
sds->total_capacity += sgs->group_capacity;
sum_util += sgs->group_util;
sg = sg->next;
} while (sg != env->sd->groups);
/*
* Indicate that the child domain of the busiest group prefers tasks
* go to a child's sibling domains first. NB the flags of a sched group
* are those of the child domain.
*/
if (sds->busiest)
sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING);
if (env->sd->flags & SD_NUMA)
env->fbq_type = fbq_classify_group(&sds->busiest_stat);
if (!env->sd->parent) {
struct root_domain *rd = env->dst_rq->rd;
/* update overload indicator if we are at root domain */
WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
/* Update over-utilization (tipping point, U >= 0) indicator */
WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
} else if (sg_status & SG_OVERUTILIZED) {
struct root_domain *rd = env->dst_rq->rd;
WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
}
update_idle_cpu_scan(env, sum_util);
}
/**
* calculate_imbalance - Calculate the amount of imbalance present within the
* groups of a given sched_domain during load balance.
* @env: load balance environment
* @sds: statistics of the sched_domain whose imbalance is to be calculated.
*/
static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
{
struct sg_lb_stats *local, *busiest;
local = &sds->local_stat;
busiest = &sds->busiest_stat;
if (busiest->group_type == group_misfit_task) {
if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
/* Set imbalance to allow misfit tasks to be balanced. */
env->migration_type = migrate_misfit;
env->imbalance = 1;
} else {
/*
* Set load imbalance to allow moving task from cpu
* with reduced capacity.
*/
env->migration_type = migrate_load;
env->imbalance = busiest->group_misfit_task_load;
}
return;
}
if (busiest->group_type == group_asym_packing) {
/*
* In case of asym capacity, we will try to migrate all load to
* the preferred CPU.
*/
env->migration_type = migrate_task;
env->imbalance = busiest->sum_h_nr_running;
return;
}
if (busiest->group_type == group_smt_balance) {
/* Reduce number of tasks sharing CPU capacity */
env->migration_type = migrate_task;
env->imbalance = 1;
return;
}
if (busiest->group_type == group_imbalanced) {
/*
* In the group_imb case we cannot rely on group-wide averages
* to ensure CPU-load equilibrium, try to move any task to fix
* the imbalance. The next load balance will take care of
* balancing back the system.
*/
env->migration_type = migrate_task;
env->imbalance = 1;
return;
}
/*
* Try to use spare capacity of local group without overloading it or
* emptying busiest.
*/
if (local->group_type == group_has_spare) {
if ((busiest->group_type > group_fully_busy) &&
!(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
/*
* If busiest is overloaded, try to fill spare
* capacity. This might end up creating spare capacity
* in busiest or busiest still being overloaded but
* there is no simple way to directly compute the
* amount of load to migrate in order to balance the
* system.
*/
env->migration_type = migrate_util;
env->imbalance = max(local->group_capacity, local->group_util) -
local->group_util;
/*
* In some cases, the group's utilization is max or even
* higher than capacity because of migrations but the
* local CPU is (newly) idle. There is at least one
* waiting task in this overloaded busiest group. Let's
* try to pull it.
*/
if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
env->migration_type = migrate_task;
env->imbalance = 1;
}
return;
}
if (busiest->group_weight == 1 || sds->prefer_sibling) {
/*
* When prefer sibling, evenly spread running tasks on
* groups.
*/
env->migration_type = migrate_task;
env->imbalance = sibling_imbalance(env, sds, busiest, local);
} else {
/*
* If there is no overload, we just want to even the number of
* idle cpus.
*/
env->migration_type = migrate_task;
env->imbalance = max_t(long, 0,
(local->idle_cpus - busiest->idle_cpus));
}
#ifdef CONFIG_NUMA
/* Consider allowing a small imbalance between NUMA groups */
if (env->sd->flags & SD_NUMA) {
env->imbalance = adjust_numa_imbalance(env->imbalance,
local->sum_nr_running + 1,
env->sd->imb_numa_nr);
}
#endif
/* Number of tasks to move to restore balance */
env->imbalance >>= 1;
return;
}
/*
* Local is fully busy but has to take more load to relieve the
* busiest group
*/
if (local->group_type < group_overloaded) {
/*
* Local will become overloaded so the avg_load metrics are
* finally needed.
*/
local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
local->group_capacity;
/*
* If the local group is more loaded than the selected
* busiest group don't try to pull any tasks.
*/
if (local->avg_load >= busiest->avg_load) {
env->imbalance = 0;
return;
}
sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
sds->total_capacity;
/*
* If the local group is more loaded than the average system
* load, don't try to pull any tasks.
*/
if (local->avg_load >= sds->avg_load) {
env->imbalance = 0;
return;
}
}
/*
* Both group are or will become overloaded and we're trying to get all
* the CPUs to the average_load, so we don't want to push ourselves
* above the average load, nor do we wish to reduce the max loaded CPU
* below the average load. At the same time, we also don't want to
* reduce the group load below the group capacity. Thus we look for
* the minimum possible imbalance.
*/
env->migration_type = migrate_load;
env->imbalance = min(
(busiest->avg_load - sds->avg_load) * busiest->group_capacity,
(sds->avg_load - local->avg_load) * local->group_capacity
) / SCHED_CAPACITY_SCALE;
}
/******* find_busiest_group() helpers end here *********************/
/*
* Decision matrix according to the local and busiest group type:
*
* busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
* has_spare nr_idle balanced N/A N/A balanced balanced
* fully_busy nr_idle nr_idle N/A N/A balanced balanced
* misfit_task force N/A N/A N/A N/A N/A
* asym_packing force force N/A N/A force force
* imbalanced force force N/A N/A force force
* overloaded force force N/A N/A force avg_load
*
* N/A : Not Applicable because already filtered while updating
* statistics.
* balanced : The system is balanced for these 2 groups.
* force : Calculate the imbalance as load migration is probably needed.
* avg_load : Only if imbalance is significant enough.
* nr_idle : dst_cpu is not busy and the number of idle CPUs is quite
* different in groups.
*/
/**
* find_busiest_group - Returns the busiest group within the sched_domain
* if there is an imbalance.
* @env: The load balancing environment.
*
* Also calculates the amount of runnable load which should be moved
* to restore balance.
*
* Return: - The busiest group if imbalance exists.
*/
static struct sched_group *find_busiest_group(struct lb_env *env)
{
struct sg_lb_stats *local, *busiest;
struct sd_lb_stats sds;
init_sd_lb_stats(&sds);
/*
* Compute the various statistics relevant for load balancing at
* this level.
*/
update_sd_lb_stats(env, &sds);
/* There is no busy sibling group to pull tasks from */
if (!sds.busiest)
goto out_balanced;
busiest = &sds.busiest_stat;
/* Misfit tasks should be dealt with regardless of the avg load */
if (busiest->group_type == group_misfit_task)
goto force_balance;
if (sched_energy_enabled()) {
struct root_domain *rd = env->dst_rq->rd;
if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
goto out_balanced;
}
/* ASYM feature bypasses nice load balance check */
if (busiest->group_type == group_asym_packing)
goto force_balance;
/*
* If the busiest group is imbalanced the below checks don't
* work because they assume all things are equal, which typically
* isn't true due to cpus_ptr constraints and the like.
*/
if (busiest->group_type == group_imbalanced)
goto force_balance;
local = &sds.local_stat;
/*
* If the local group is busier than the selected busiest group
* don't try and pull any tasks.
*/
if (local->group_type > busiest->group_type)
goto out_balanced;
/*
* When groups are overloaded, use the avg_load to ensure fairness
* between tasks.
*/
if (local->group_type == group_overloaded) {
/*
* If the local group is more loaded than the selected
* busiest group don't try to pull any tasks.
*/
if (local->avg_load >= busiest->avg_load)
goto out_balanced;
/* XXX broken for overlapping NUMA groups */
sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
sds.total_capacity;
/*
* Don't pull any tasks if this group is already above the
* domain average load.
*/
if (local->avg_load >= sds.avg_load)
goto out_balanced;
/*
* If the busiest group is more loaded, use imbalance_pct to be
* conservative.
*/
if (100 * busiest->avg_load <=
env->sd->imbalance_pct * local->avg_load)
goto out_balanced;
}
/*
* Try to move all excess tasks to a sibling domain of the busiest
* group's child domain.
*/
if (sds.prefer_sibling && local->group_type == group_has_spare &&
sibling_imbalance(env, &sds, busiest, local) > 1)
goto force_balance;
if (busiest->group_type != group_overloaded) {
if (env->idle == CPU_NOT_IDLE) {
/*
* If the busiest group is not overloaded (and as a
* result the local one too) but this CPU is already
* busy, let another idle CPU try to pull task.
*/
goto out_balanced;
}
if (busiest->group_type == group_smt_balance &&
smt_vs_nonsmt_groups(sds.local, sds.busiest)) {
/* Let non SMT CPU pull from SMT CPU sharing with sibling */
goto force_balance;
}
if (busiest->group_weight > 1 &&
local->idle_cpus <= (busiest->idle_cpus + 1)) {
/*
* If the busiest group is not overloaded
* and there is no imbalance between this and busiest
* group wrt idle CPUs, it is balanced. The imbalance
* becomes significant if the diff is greater than 1
* otherwise we might end up to just move the imbalance
* on another group. Of course this applies only if
* there is more than 1 CPU per group.
*/
goto out_balanced;
}
if (busiest->sum_h_nr_running == 1) {
/*
* busiest doesn't have any tasks waiting to run
*/
goto out_balanced;
}
}
force_balance:
/* Looks like there is an imbalance. Compute it */
calculate_imbalance(env, &sds);
return env->imbalance ? sds.busiest : NULL;
out_balanced:
env->imbalance = 0;
return NULL;
}
/*
* find_busiest_queue - find the busiest runqueue among the CPUs in the group.
*/
static struct rq *find_busiest_queue(struct lb_env *env,
struct sched_group *group)
{
struct rq *busiest = NULL, *rq;
unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
unsigned int busiest_nr = 0;
int i;
for_each_cpu_and(i, sched_group_span(group), env->cpus) {
unsigned long capacity, load, util;
unsigned int nr_running;
enum fbq_type rt;
rq = cpu_rq(i);
rt = fbq_classify_rq(rq);
/*
* We classify groups/runqueues into three groups:
* - regular: there are !numa tasks
* - remote: there are numa tasks that run on the 'wrong' node
* - all: there is no distinction
*
* In order to avoid migrating ideally placed numa tasks,
* ignore those when there's better options.
*
* If we ignore the actual busiest queue to migrate another
* task, the next balance pass can still reduce the busiest
* queue by moving tasks around inside the node.
*
* If we cannot move enough load due to this classification
* the next pass will adjust the group classification and
* allow migration of more tasks.
*
* Both cases only affect the total convergence complexity.
*/
if (rt > env->fbq_type)
continue;
nr_running = rq->cfs.h_nr_running;
if (!nr_running)
continue;
capacity = capacity_of(i);
/*
* For ASYM_CPUCAPACITY domains, don't pick a CPU that could
* eventually lead to active_balancing high->low capacity.
* Higher per-CPU capacity is considered better than balancing
* average load.
*/
if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
!capacity_greater(capacity_of(env->dst_cpu), capacity) &&
nr_running == 1)
continue;
/*
* Make sure we only pull tasks from a CPU of lower priority
* when balancing between SMT siblings.
*
* If balancing between cores, let lower priority CPUs help
* SMT cores with more than one busy sibling.
*/
if ((env->sd->flags & SD_ASYM_PACKING) &&
sched_use_asym_prio(env->sd, i) &&
sched_asym_prefer(i, env->dst_cpu) &&
nr_running == 1)
continue;
switch (env->migration_type) {
case migrate_load:
/*
* When comparing with load imbalance, use cpu_load()
* which is not scaled with the CPU capacity.
*/
load = cpu_load(rq);
if (nr_running == 1 && load > env->imbalance &&
!check_cpu_capacity(rq, env->sd))
break;
/*
* For the load comparisons with the other CPUs,
* consider the cpu_load() scaled with the CPU
* capacity, so that the load can be moved away
* from the CPU that is potentially running at a
* lower capacity.
*
* Thus we're looking for max(load_i / capacity_i),
* crosswise multiplication to rid ourselves of the
* division works out to:
* load_i * capacity_j > load_j * capacity_i;
* where j is our previous maximum.
*/
if (load * busiest_capacity > busiest_load * capacity) {
busiest_load = load;
busiest_capacity = capacity;
busiest = rq;
}
break;
case migrate_util:
util = cpu_util_cfs_boost(i);
/*
* Don't try to pull utilization from a CPU with one
* running task. Whatever its utilization, we will fail
* detach the task.
*/
if (nr_running <= 1)
continue;
if (busiest_util < util) {
busiest_util = util;
busiest = rq;
}
break;
case migrate_task:
if (busiest_nr < nr_running) {
busiest_nr = nr_running;
busiest = rq;
}
break;
case migrate_misfit:
/*
* For ASYM_CPUCAPACITY domains with misfit tasks we
* simply seek the "biggest" misfit task.
*/
if (rq->misfit_task_load > busiest_load) {
busiest_load = rq->misfit_task_load;
busiest = rq;
}
break;
}
}
return busiest;
}
/*
* Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
* so long as it is large enough.
*/
#define MAX_PINNED_INTERVAL 512
static inline bool
asym_active_balance(struct lb_env *env)
{
/*
* ASYM_PACKING needs to force migrate tasks from busy but lower
* priority CPUs in order to pack all tasks in the highest priority
* CPUs. When done between cores, do it only if the whole core if the
* whole core is idle.
*
* If @env::src_cpu is an SMT core with busy siblings, let
* the lower priority @env::dst_cpu help it. Do not follow
* CPU priority.
*/
return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
sched_use_asym_prio(env->sd, env->dst_cpu) &&
(sched_asym_prefer(env->dst_cpu, env->src_cpu) ||
!sched_use_asym_prio(env->sd, env->src_cpu));
}
static inline bool
imbalanced_active_balance(struct lb_env *env)
{
struct sched_domain *sd = env->sd;
/*
* The imbalanced case includes the case of pinned tasks preventing a fair
* distribution of the load on the system but also the even distribution of the
* threads on a system with spare capacity
*/
if ((env->migration_type == migrate_task) &&
(sd->nr_balance_failed > sd->cache_nice_tries+2))
return 1;
return 0;
}
static int need_active_balance(struct lb_env *env)
{
struct sched_domain *sd = env->sd;
if (asym_active_balance(env))
return 1;
if (imbalanced_active_balance(env))
return 1;
/*
* The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
* It's worth migrating the task if the src_cpu's capacity is reduced
* because of other sched_class or IRQs if more capacity stays
* available on dst_cpu.
*/
if ((env->idle != CPU_NOT_IDLE) &&
(env->src_rq->cfs.h_nr_running == 1)) {
if ((check_cpu_capacity(env->src_rq, sd)) &&
(capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
return 1;
}
if (env->migration_type == migrate_misfit)
return 1;
return 0;
}
static int active_load_balance_cpu_stop(void *data);
static int should_we_balance(struct lb_env *env)
{
struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask);
struct sched_group *sg = env->sd->groups;
int cpu, idle_smt = -1;
/*
* Ensure the balancing environment is consistent; can happen
* when the softirq triggers 'during' hotplug.
*/
if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
return 0;
/*
* In the newly idle case, we will allow all the CPUs
* to do the newly idle load balance.
*
* However, we bail out if we already have tasks or a wakeup pending,
* to optimize wakeup latency.
*/
if (env->idle == CPU_NEWLY_IDLE) {
if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending)
return 0;
return 1;
}
cpumask_copy(swb_cpus, group_balance_mask(sg));
/* Try to find first idle CPU */
for_each_cpu_and(cpu, swb_cpus, env->cpus) {
if (!idle_cpu(cpu))
continue;
/*
* Don't balance to idle SMT in busy core right away when
* balancing cores, but remember the first idle SMT CPU for
* later consideration. Find CPU on an idle core first.
*/
if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) {
if (idle_smt == -1)
idle_smt = cpu;
/*
* If the core is not idle, and first SMT sibling which is
* idle has been found, then its not needed to check other
* SMT siblings for idleness:
*/
#ifdef CONFIG_SCHED_SMT
cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu));
#endif
continue;
}
/* Are we the first idle CPU? */
return cpu == env->dst_cpu;
}
if (idle_smt == env->dst_cpu)
return true;
/* Are we the first CPU of this group ? */
return group_balance_cpu(sg) == env->dst_cpu;
}
/*
* Check this_cpu to ensure it is balanced within domain. Attempt to move
* tasks if there is an imbalance.
*/
static int load_balance(int this_cpu, struct rq *this_rq,
struct sched_domain *sd, enum cpu_idle_type idle,
int *continue_balancing)
{
int ld_moved, cur_ld_moved, active_balance = 0;
struct sched_domain *sd_parent = sd->parent;
struct sched_group *group;
struct rq *busiest;
struct rq_flags rf;
struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
struct lb_env env = {
.sd = sd,
.dst_cpu = this_cpu,
.dst_rq = this_rq,
.dst_grpmask = group_balance_mask(sd->groups),
.idle = idle,
.loop_break = SCHED_NR_MIGRATE_BREAK,
.cpus = cpus,
.fbq_type = all,
.tasks = LIST_HEAD_INIT(env.tasks),
};
cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
schedstat_inc(sd->lb_count[idle]);
redo:
if (!should_we_balance(&env)) {
*continue_balancing = 0;
goto out_balanced;
}
group = find_busiest_group(&env);
if (!group) {
schedstat_inc(sd->lb_nobusyg[idle]);
goto out_balanced;
}
busiest = find_busiest_queue(&env, group);
if (!busiest) {
schedstat_inc(sd->lb_nobusyq[idle]);
goto out_balanced;
}
WARN_ON_ONCE(busiest == env.dst_rq);
schedstat_add(sd->lb_imbalance[idle], env.imbalance);
env.src_cpu = busiest->cpu;
env.src_rq = busiest;
ld_moved = 0;
/* Clear this flag as soon as we find a pullable task */
env.flags |= LBF_ALL_PINNED;
if (busiest->nr_running > 1) {
/*
* Attempt to move tasks. If find_busiest_group has found
* an imbalance but busiest->nr_running <= 1, the group is
* still unbalanced. ld_moved simply stays zero, so it is
* correctly treated as an imbalance.
*/
env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
more_balance:
rq_lock_irqsave(busiest, &rf);
update_rq_clock(busiest);
/*
* cur_ld_moved - load moved in current iteration
* ld_moved - cumulative load moved across iterations
*/
cur_ld_moved = detach_tasks(&env);
/*
* We've detached some tasks from busiest_rq. Every
* task is masked "TASK_ON_RQ_MIGRATING", so we can safely
* unlock busiest->lock, and we are able to be sure
* that nobody can manipulate the tasks in parallel.
* See task_rq_lock() family for the details.
*/
rq_unlock(busiest, &rf);
if (cur_ld_moved) {
attach_tasks(&env);
ld_moved += cur_ld_moved;
}
local_irq_restore(rf.flags);
if (env.flags & LBF_NEED_BREAK) {
env.flags &= ~LBF_NEED_BREAK;
/* Stop if we tried all running tasks */
if (env.loop < busiest->nr_running)
goto more_balance;
}
/*
* Revisit (affine) tasks on src_cpu that couldn't be moved to
* us and move them to an alternate dst_cpu in our sched_group
* where they can run. The upper limit on how many times we
* iterate on same src_cpu is dependent on number of CPUs in our
* sched_group.
*
* This changes load balance semantics a bit on who can move
* load to a given_cpu. In addition to the given_cpu itself
* (or a ilb_cpu acting on its behalf where given_cpu is
* nohz-idle), we now have balance_cpu in a position to move
* load to given_cpu. In rare situations, this may cause
* conflicts (balance_cpu and given_cpu/ilb_cpu deciding
* _independently_ and at _same_ time to move some load to
* given_cpu) causing excess load to be moved to given_cpu.
* This however should not happen so much in practice and
* moreover subsequent load balance cycles should correct the
* excess load moved.
*/
if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
/* Prevent to re-select dst_cpu via env's CPUs */
__cpumask_clear_cpu(env.dst_cpu, env.cpus);
env.dst_rq = cpu_rq(env.new_dst_cpu);
env.dst_cpu = env.new_dst_cpu;
env.flags &= ~LBF_DST_PINNED;
env.loop = 0;
env.loop_break = SCHED_NR_MIGRATE_BREAK;
/*
* Go back to "more_balance" rather than "redo" since we
* need to continue with same src_cpu.
*/
goto more_balance;
}
/*
* We failed to reach balance because of affinity.
*/
if (sd_parent) {
int *group_imbalance = &sd_parent->groups->sgc->imbalance;
if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
*group_imbalance = 1;
}
/* All tasks on this runqueue were pinned by CPU affinity */
if (unlikely(env.flags & LBF_ALL_PINNED)) {
__cpumask_clear_cpu(cpu_of(busiest), cpus);
/*
* Attempting to continue load balancing at the current
* sched_domain level only makes sense if there are
* active CPUs remaining as possible busiest CPUs to
* pull load from which are not contained within the
* destination group that is receiving any migrated
* load.
*/
if (!cpumask_subset(cpus, env.dst_grpmask)) {
env.loop = 0;
env.loop_break = SCHED_NR_MIGRATE_BREAK;
goto redo;
}
goto out_all_pinned;
}
}
if (!ld_moved) {
schedstat_inc(sd->lb_failed[idle]);
/*
* Increment the failure counter only on periodic balance.
* We do not want newidle balance, which can be very
* frequent, pollute the failure counter causing
* excessive cache_hot migrations and active balances.
*/
if (idle != CPU_NEWLY_IDLE)
sd->nr_balance_failed++;
if (need_active_balance(&env)) {
unsigned long flags;
raw_spin_rq_lock_irqsave(busiest, flags);
/*
* Don't kick the active_load_balance_cpu_stop,
* if the curr task on busiest CPU can't be
* moved to this_cpu:
*/
if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
raw_spin_rq_unlock_irqrestore(busiest, flags);
goto out_one_pinned;
}
/* Record that we found at least one task that could run on this_cpu */
env.flags &= ~LBF_ALL_PINNED;
/*
* ->active_balance synchronizes accesses to
* ->active_balance_work. Once set, it's cleared
* only after active load balance is finished.
*/
if (!busiest->active_balance) {
busiest->active_balance = 1;
busiest->push_cpu = this_cpu;
active_balance = 1;
}
preempt_disable();
raw_spin_rq_unlock_irqrestore(busiest, flags);
if (active_balance) {
stop_one_cpu_nowait(cpu_of(busiest),
active_load_balance_cpu_stop, busiest,
&busiest->active_balance_work);
}
preempt_enable();
}
} else {
sd->nr_balance_failed = 0;
}
if (likely(!active_balance) || need_active_balance(&env)) {
/* We were unbalanced, so reset the balancing interval */
sd->balance_interval = sd->min_interval;
}
goto out;
out_balanced:
/*
* We reach balance although we may have faced some affinity
* constraints. Clear the imbalance flag only if other tasks got
* a chance to move and fix the imbalance.
*/
if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
int *group_imbalance = &sd_parent->groups->sgc->imbalance;
if (*group_imbalance)
*group_imbalance = 0;
}
out_all_pinned:
/*
* We reach balance because all tasks are pinned at this level so
* we can't migrate them. Let the imbalance flag set so parent level
* can try to migrate them.
*/
schedstat_inc(sd->lb_balanced[idle]);
sd->nr_balance_failed = 0;
out_one_pinned:
ld_moved = 0;
/*
* newidle_balance() disregards balance intervals, so we could
* repeatedly reach this code, which would lead to balance_interval
* skyrocketing in a short amount of time. Skip the balance_interval
* increase logic to avoid that.
*/
if (env.idle == CPU_NEWLY_IDLE)
goto out;
/* tune up the balancing interval */
if ((env.flags & LBF_ALL_PINNED &&
sd->balance_interval < MAX_PINNED_INTERVAL) ||
sd->balance_interval < sd->max_interval)
sd->balance_interval *= 2;
out:
return ld_moved;
}
static inline unsigned long
get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
{
unsigned long interval = sd->balance_interval;
if (cpu_busy)
interval *= sd->busy_factor;
/* scale ms to jiffies */
interval = msecs_to_jiffies(interval);
/*
* Reduce likelihood of busy balancing at higher domains racing with
* balancing at lower domains by preventing their balancing periods
* from being multiples of each other.
*/
if (cpu_busy)
interval -= 1;
interval = clamp(interval, 1UL, max_load_balance_interval);
return interval;
}
static inline void
update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
{
unsigned long interval, next;
/* used by idle balance, so cpu_busy = 0 */
interval = get_sd_balance_interval(sd, 0);
next = sd->last_balance + interval;
if (time_after(*next_balance, next))
*next_balance = next;
}
/*
* active_load_balance_cpu_stop is run by the CPU stopper. It pushes
* running tasks off the busiest CPU onto idle CPUs. It requires at
* least 1 task to be running on each physical CPU where possible, and
* avoids physical / logical imbalances.
*/
static int active_load_balance_cpu_stop(void *data)
{
struct rq *busiest_rq = data;
int busiest_cpu = cpu_of(busiest_rq);
int target_cpu = busiest_rq->push_cpu;
struct rq *target_rq = cpu_rq(target_cpu);
struct sched_domain *sd;
struct task_struct *p = NULL;
struct rq_flags rf;
rq_lock_irq(busiest_rq, &rf);
/*
* Between queueing the stop-work and running it is a hole in which
* CPUs can become inactive. We should not move tasks from or to
* inactive CPUs.
*/
if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
goto out_unlock;
/* Make sure the requested CPU hasn't gone down in the meantime: */
if (unlikely(busiest_cpu != smp_processor_id() ||
!busiest_rq->active_balance))
goto out_unlock;
/* Is there any task to move? */
if (busiest_rq->nr_running <= 1)
goto out_unlock;
/*
* This condition is "impossible", if it occurs
* we need to fix it. Originally reported by
* Bjorn Helgaas on a 128-CPU setup.
*/
WARN_ON_ONCE(busiest_rq == target_rq);
/* Search for an sd spanning us and the target CPU. */
rcu_read_lock();
for_each_domain(target_cpu, sd) {
if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
break;
}
if (likely(sd)) {
struct lb_env env = {
.sd = sd,
.dst_cpu = target_cpu,
.dst_rq = target_rq,
.src_cpu = busiest_rq->cpu,
.src_rq = busiest_rq,
.idle = CPU_IDLE,
.flags = LBF_ACTIVE_LB,
};
schedstat_inc(sd->alb_count);
update_rq_clock(busiest_rq);
p = detach_one_task(&env);
if (p) {
schedstat_inc(sd->alb_pushed);
/* Active balancing done, reset the failure counter. */
sd->nr_balance_failed = 0;
} else {
schedstat_inc(sd->alb_failed);
}
}
rcu_read_unlock();
out_unlock:
busiest_rq->active_balance = 0;
rq_unlock(busiest_rq, &rf);
if (p)
attach_one_task(target_rq, p);
local_irq_enable();
return 0;
}
static DEFINE_SPINLOCK(balancing);
/*
* Scale the max load_balance interval with the number of CPUs in the system.
* This trades load-balance latency on larger machines for less cross talk.
*/
void update_max_interval(void)
{
max_load_balance_interval = HZ*num_online_cpus()/10;
}
static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
{
if (cost > sd->max_newidle_lb_cost) {
/*
* Track max cost of a domain to make sure to not delay the
* next wakeup on the CPU.
*/
sd->max_newidle_lb_cost = cost;
sd->last_decay_max_lb_cost = jiffies;
} else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
/*
* Decay the newidle max times by ~1% per second to ensure that
* it is not outdated and the current max cost is actually
* shorter.
*/
sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
sd->last_decay_max_lb_cost = jiffies;
return true;
}
return false;
}
/*
* It checks each scheduling domain to see if it is due to be balanced,
* and initiates a balancing operation if so.
*
* Balancing parameters are set up in init_sched_domains.
*/
static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
{
int continue_balancing = 1;
int cpu = rq->cpu;
int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
unsigned long interval;
struct sched_domain *sd;
/* Earliest time when we have to do rebalance again */
unsigned long next_balance = jiffies + 60*HZ;
int update_next_balance = 0;
int need_serialize, need_decay = 0;
u64 max_cost = 0;
rcu_read_lock();
for_each_domain(cpu, sd) {
/*
* Decay the newidle max times here because this is a regular
* visit to all the domains.
*/
need_decay = update_newidle_cost(sd, 0);
max_cost += sd->max_newidle_lb_cost;
/*
* Stop the load balance at this level. There is another
* CPU in our sched group which is doing load balancing more
* actively.
*/
if (!continue_balancing) {
if (need_decay)
continue;
break;
}
interval = get_sd_balance_interval(sd, busy);
need_serialize = sd->flags & SD_SERIALIZE;
if (need_serialize) {
if (!spin_trylock(&balancing))
goto out;
}
if (time_after_eq(jiffies, sd->last_balance + interval)) {
if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
/*
* The LBF_DST_PINNED logic could have changed
* env->dst_cpu, so we can't know our idle
* state even if we migrated tasks. Update it.
*/
idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
}
sd->last_balance = jiffies;
interval = get_sd_balance_interval(sd, busy);
}
if (need_serialize)
spin_unlock(&balancing);
out:
if (time_after(next_balance, sd->last_balance + interval)) {
next_balance = sd->last_balance + interval;
update_next_balance = 1;
}
}
if (need_decay) {
/*
* Ensure the rq-wide value also decays but keep it at a
* reasonable floor to avoid funnies with rq->avg_idle.
*/
rq->max_idle_balance_cost =
max((u64)sysctl_sched_migration_cost, max_cost);
}
rcu_read_unlock();
/*
* next_balance will be updated only when there is a need.
* When the cpu is attached to null domain for ex, it will not be
* updated.
*/
if (likely(update_next_balance))
rq->next_balance = next_balance;
}
static inline int on_null_domain(struct rq *rq)
{
return unlikely(!rcu_dereference_sched(rq->sd));
}
#ifdef CONFIG_NO_HZ_COMMON
/*
* NOHZ idle load balancing (ILB) details:
*
* - When one of the busy CPUs notices that there may be an idle rebalancing
* needed, they will kick the idle load balancer, which then does idle
* load balancing for all the idle CPUs.
*
* - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED is not set
* anywhere yet.
*/
static inline int find_new_ilb(void)
{
const struct cpumask *hk_mask;
int ilb_cpu;
hk_mask = housekeeping_cpumask(HK_TYPE_MISC);
for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) {
if (ilb_cpu == smp_processor_id())
continue;
if (idle_cpu(ilb_cpu))
return ilb_cpu;
}
return -1;
}
/*
* Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU
* SMP function call (IPI).
*
* We pick the first idle CPU in the HK_TYPE_MISC housekeeping set (if there is one).
*/
static void kick_ilb(unsigned int flags)
{
int ilb_cpu;
/*
* Increase nohz.next_balance only when if full ilb is triggered but
* not if we only update stats.
*/
if (flags & NOHZ_BALANCE_KICK)
nohz.next_balance = jiffies+1;
ilb_cpu = find_new_ilb();
if (ilb_cpu < 0)
return;
/*
* Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
* the first flag owns it; cleared by nohz_csd_func().
*/
flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
if (flags & NOHZ_KICK_MASK)
return;
/*
* This way we generate an IPI on the target CPU which
* is idle, and the softirq performing NOHZ idle load balancing
* will be run before returning from the IPI.
*/
smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
}
/*
* Current decision point for kicking the idle load balancer in the presence
* of idle CPUs in the system.
*/
static void nohz_balancer_kick(struct rq *rq)
{
unsigned long now = jiffies;
struct sched_domain_shared *sds;
struct sched_domain *sd;
int nr_busy, i, cpu = rq->cpu;
unsigned int flags = 0;
if (unlikely(rq->idle_balance))
return;
/*
* We may be recently in ticked or tickless idle mode. At the first
* busy tick after returning from idle, we will update the busy stats.
*/
nohz_balance_exit_idle(rq);
/*
* None are in tickless mode and hence no need for NOHZ idle load
* balancing:
*/
if (likely(!atomic_read(&nohz.nr_cpus)))
return;
if (READ_ONCE(nohz.has_blocked) &&
time_after(now, READ_ONCE(nohz.next_blocked)))
flags = NOHZ_STATS_KICK;
if (time_before(now, nohz.next_balance))
goto out;
if (rq->nr_running >= 2) {
flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
goto out;
}
rcu_read_lock();
sd = rcu_dereference(rq->sd);
if (sd) {
/*
* If there's a runnable CFS task and the current CPU has reduced
* capacity, kick the ILB to see if there's a better CPU to run on:
*/
if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
goto unlock;
}
}
sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
if (sd) {
/*
* When ASYM_PACKING; see if there's a more preferred CPU
* currently idle; in which case, kick the ILB to move tasks
* around.
*
* When balancing betwen cores, all the SMT siblings of the
* preferred CPU must be idle.
*/
for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
if (sched_use_asym_prio(sd, i) &&
sched_asym_prefer(i, cpu)) {
flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
goto unlock;
}
}
}
sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
if (sd) {
/*
* When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
* to run the misfit task on.
*/
if (check_misfit_status(rq, sd)) {
flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
goto unlock;
}
/*
* For asymmetric systems, we do not want to nicely balance
* cache use, instead we want to embrace asymmetry and only
* ensure tasks have enough CPU capacity.
*
* Skip the LLC logic because it's not relevant in that case.
*/
goto unlock;
}
sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
if (sds) {
/*
* If there is an imbalance between LLC domains (IOW we could
* increase the overall cache utilization), we need a less-loaded LLC
* domain to pull some load from. Likewise, we may need to spread
* load within the current LLC domain (e.g. packed SMT cores but
* other CPUs are idle). We can't really know from here how busy
* the others are - so just get a NOHZ balance going if it looks
* like this LLC domain has tasks we could move.
*/
nr_busy = atomic_read(&sds->nr_busy_cpus);
if (nr_busy > 1) {
flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
goto unlock;
}
}
unlock:
rcu_read_unlock();
out:
if (READ_ONCE(nohz.needs_update))
flags |= NOHZ_NEXT_KICK;
if (flags)
kick_ilb(flags);
}
static void set_cpu_sd_state_busy(int cpu)
{
struct sched_domain *sd;
rcu_read_lock();
sd = rcu_dereference(per_cpu(sd_llc, cpu));
if (!sd || !sd->nohz_idle)
goto unlock;
sd->nohz_idle = 0;
atomic_inc(&sd->shared->nr_busy_cpus);
unlock:
rcu_read_unlock();
}
void nohz_balance_exit_idle(struct rq *rq)
{
SCHED_WARN_ON(rq != this_rq());
if (likely(!rq->nohz_tick_stopped))
return;
rq->nohz_tick_stopped = 0;
cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
atomic_dec(&nohz.nr_cpus);
set_cpu_sd_state_busy(rq->cpu);
}
static void set_cpu_sd_state_idle(int cpu)
{
struct sched_domain *sd;
rcu_read_lock();
sd = rcu_dereference(per_cpu(sd_llc, cpu));
if (!sd || sd->nohz_idle)
goto unlock;
sd->nohz_idle = 1;
atomic_dec(&sd->shared->nr_busy_cpus);
unlock:
rcu_read_unlock();
}
/*
* This routine will record that the CPU is going idle with tick stopped.
* This info will be used in performing idle load balancing in the future.
*/
void nohz_balance_enter_idle(int cpu)
{
struct rq *rq = cpu_rq(cpu);
SCHED_WARN_ON(cpu != smp_processor_id());
/* If this CPU is going down, then nothing needs to be done: */
if (!cpu_active(cpu))
return;
/* Spare idle load balancing on CPUs that don't want to be disturbed: */
if (!housekeeping_cpu(cpu, HK_TYPE_SCHED))
return;
/*
* Can be set safely without rq->lock held
* If a clear happens, it will have evaluated last additions because
* rq->lock is held during the check and the clear
*/
rq->has_blocked_load = 1;
/*
* The tick is still stopped but load could have been added in the
* meantime. We set the nohz.has_blocked flag to trig a check of the
* *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
* of nohz.has_blocked can only happen after checking the new load
*/
if (rq->nohz_tick_stopped)
goto out;
/* If we're a completely isolated CPU, we don't play: */
if (on_null_domain(rq))
return;
rq->nohz_tick_stopped = 1;
cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
atomic_inc(&nohz.nr_cpus);
/*
* Ensures that if nohz_idle_balance() fails to observe our
* @idle_cpus_mask store, it must observe the @has_blocked
* and @needs_update stores.
*/
smp_mb__after_atomic();
set_cpu_sd_state_idle(cpu);
WRITE_ONCE(nohz.needs_update, 1);
out:
/*
* Each time a cpu enter idle, we assume that it has blocked load and
* enable the periodic update of the load of idle cpus
*/
WRITE_ONCE(nohz.has_blocked, 1);
}
static bool update_nohz_stats(struct rq *rq)
{
unsigned int cpu = rq->cpu;
if (!rq->has_blocked_load)
return false;
if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
return false;
if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
return true;
update_blocked_averages(cpu);
return rq->has_blocked_load;
}
/*
* Internal function that runs load balance for all idle cpus. The load balance
* can be a simple update of blocked load or a complete load balance with
* tasks movement depending of flags.
*/
static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags)
{
/* Earliest time when we have to do rebalance again */
unsigned long now = jiffies;
unsigned long next_balance = now + 60*HZ;
bool has_blocked_load = false;
int update_next_balance = 0;
int this_cpu = this_rq->cpu;
int balance_cpu;
struct rq *rq;
SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
/*
* We assume there will be no idle load after this update and clear
* the has_blocked flag. If a cpu enters idle in the mean time, it will
* set the has_blocked flag and trigger another update of idle load.
* Because a cpu that becomes idle, is added to idle_cpus_mask before
* setting the flag, we are sure to not clear the state and not
* check the load of an idle cpu.
*
* Same applies to idle_cpus_mask vs needs_update.
*/
if (flags & NOHZ_STATS_KICK)
WRITE_ONCE(nohz.has_blocked, 0);
if (flags & NOHZ_NEXT_KICK)
WRITE_ONCE(nohz.needs_update, 0);
/*
* Ensures that if we miss the CPU, we must see the has_blocked
* store from nohz_balance_enter_idle().
*/
smp_mb();
/*
* Start with the next CPU after this_cpu so we will end with this_cpu and let a
* chance for other idle cpu to pull load.
*/
for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) {
if (!idle_cpu(balance_cpu))
continue;
/*
* If this CPU gets work to do, stop the load balancing
* work being done for other CPUs. Next load
* balancing owner will pick it up.
*/
if (need_resched()) {
if (flags & NOHZ_STATS_KICK)
has_blocked_load = true;
if (flags & NOHZ_NEXT_KICK)
WRITE_ONCE(nohz.needs_update, 1);
goto abort;
}
rq = cpu_rq(balance_cpu);
if (flags & NOHZ_STATS_KICK)
has_blocked_load |= update_nohz_stats(rq);
/*
* If time for next balance is due,
* do the balance.
*/
if (time_after_eq(jiffies, rq->next_balance)) {
struct rq_flags rf;
rq_lock_irqsave(rq, &rf);
update_rq_clock(rq);
rq_unlock_irqrestore(rq, &rf);
if (flags & NOHZ_BALANCE_KICK)
rebalance_domains(rq, CPU_IDLE);
}
if (time_after(next_balance, rq->next_balance)) {
next_balance = rq->next_balance;
update_next_balance = 1;
}
}
/*
* next_balance will be updated only when there is a need.
* When the CPU is attached to null domain for ex, it will not be
* updated.
*/
if (likely(update_next_balance))
nohz.next_balance = next_balance;
if (flags & NOHZ_STATS_KICK)
WRITE_ONCE(nohz.next_blocked,
now + msecs_to_jiffies(LOAD_AVG_PERIOD));
abort:
/* There is still blocked load, enable periodic update */
if (has_blocked_load)
WRITE_ONCE(nohz.has_blocked, 1);
}
/*
* In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
* rebalancing for all the cpus for whom scheduler ticks are stopped.
*/
static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
{
unsigned int flags = this_rq->nohz_idle_balance;
if (!flags)
return false;
this_rq->nohz_idle_balance = 0;
if (idle != CPU_IDLE)
return false;
_nohz_idle_balance(this_rq, flags);
return true;
}
/*
* Check if we need to directly run the ILB for updating blocked load before
* entering idle state. Here we run ILB directly without issuing IPIs.
*
* Note that when this function is called, the tick may not yet be stopped on
* this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and
* cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates
* don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle
* entry/exit rate (usec). So it is possible that _nohz_idle_balance() is
* called from this function on (this) CPU that's not yet in the mask. That's
* OK because the goal of nohz_run_idle_balance() is to run ILB only for
* updating the blocked load of already idle CPUs without waking up one of
* those idle CPUs and outside the preempt disable / irq off phase of the local
* cpu about to enter idle, because it can take a long time.
*/
void nohz_run_idle_balance(int cpu)
{
unsigned int flags;
flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
/*
* Update the blocked load only if no SCHED_SOFTIRQ is about to happen
* (ie NOHZ_STATS_KICK set) and will do the same.
*/
if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
_nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK);
}
static void nohz_newidle_balance(struct rq *this_rq)
{
int this_cpu = this_rq->cpu;
/*
* This CPU doesn't want to be disturbed by scheduler
* housekeeping
*/
if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED))
return;
/* Will wake up very soon. No time for doing anything else*/
if (this_rq->avg_idle < sysctl_sched_migration_cost)
return;
/* Don't need to update blocked load of idle CPUs*/
if (!READ_ONCE(nohz.has_blocked) ||
time_before(jiffies, READ_ONCE(nohz.next_blocked)))
return;
/*
* Set the need to trigger ILB in order to update blocked load
* before entering idle state.
*/
atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
}
#else /* !CONFIG_NO_HZ_COMMON */
static inline void nohz_balancer_kick(struct rq *rq) { }
static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
{
return false;
}
static inline void nohz_newidle_balance(struct rq *this_rq) { }
#endif /* CONFIG_NO_HZ_COMMON */
/*
* newidle_balance is called by schedule() if this_cpu is about to become
* idle. Attempts to pull tasks from other CPUs.
*
* Returns:
* < 0 - we released the lock and there are !fair tasks present
* 0 - failed, no new tasks
* > 0 - success, new (fair) tasks present
*/
static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
{
unsigned long next_balance = jiffies + HZ;
int this_cpu = this_rq->cpu;
u64 t0, t1, curr_cost = 0;
struct sched_domain *sd;
int pulled_task = 0;
update_misfit_status(NULL, this_rq);
/*
* There is a task waiting to run. No need to search for one.
* Return 0; the task will be enqueued when switching to idle.
*/
if (this_rq->ttwu_pending)
return 0;
/*
* We must set idle_stamp _before_ calling idle_balance(), such that we
* measure the duration of idle_balance() as idle time.
*/
this_rq->idle_stamp = rq_clock(this_rq);
/*
* Do not pull tasks towards !active CPUs...
*/
if (!cpu_active(this_cpu))
return 0;
/*
* This is OK, because current is on_cpu, which avoids it being picked
* for load-balance and preemption/IRQs are still disabled avoiding
* further scheduler activity on it and we're being very careful to
* re-start the picking loop.
*/
rq_unpin_lock(this_rq, rf);
rcu_read_lock();
sd = rcu_dereference_check_sched_domain(this_rq->sd);
if (!READ_ONCE(this_rq->rd->overload) ||
(sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
if (sd)
update_next_balance(sd, &next_balance);
rcu_read_unlock();
goto out;
}
rcu_read_unlock();
raw_spin_rq_unlock(this_rq);
t0 = sched_clock_cpu(this_cpu);
update_blocked_averages(this_cpu);
rcu_read_lock();
for_each_domain(this_cpu, sd) {
int continue_balancing = 1;
u64 domain_cost;
update_next_balance(sd, &next_balance);
if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
break;
if (sd->flags & SD_BALANCE_NEWIDLE) {
pulled_task = load_balance(this_cpu, this_rq,
sd, CPU_NEWLY_IDLE,
&continue_balancing);
t1 = sched_clock_cpu(this_cpu);
domain_cost = t1 - t0;
update_newidle_cost(sd, domain_cost);
curr_cost += domain_cost;
t0 = t1;
}
/*
* Stop searching for tasks to pull if there are
* now runnable tasks on this rq.
*/
if (pulled_task || this_rq->nr_running > 0 ||
this_rq->ttwu_pending)
break;
}
rcu_read_unlock();
raw_spin_rq_lock(this_rq);
if (curr_cost > this_rq->max_idle_balance_cost)
this_rq->max_idle_balance_cost = curr_cost;
/*
* While browsing the domains, we released the rq lock, a task could
* have been enqueued in the meantime. Since we're not going idle,
* pretend we pulled a task.
*/
if (this_rq->cfs.h_nr_running && !pulled_task)
pulled_task = 1;
/* Is there a task of a high priority class? */
if (this_rq->nr_running != this_rq->cfs.h_nr_running)
pulled_task = -1;
out:
/* Move the next balance forward */
if (time_after(this_rq->next_balance, next_balance))
this_rq->next_balance = next_balance;
if (pulled_task)
this_rq->idle_stamp = 0;
else
nohz_newidle_balance(this_rq);
rq_repin_lock(this_rq, rf);
return pulled_task;
}
/*
* run_rebalance_domains is triggered when needed from the scheduler tick.
* Also triggered for nohz idle balancing (with nohz_balancing_kick set).
*/
static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
{
struct rq *this_rq = this_rq();
enum cpu_idle_type idle = this_rq->idle_balance ?
CPU_IDLE : CPU_NOT_IDLE;
/*
* If this CPU has a pending nohz_balance_kick, then do the
* balancing on behalf of the other idle CPUs whose ticks are
* stopped. Do nohz_idle_balance *before* rebalance_domains to
* give the idle CPUs a chance to load balance. Else we may
* load balance only within the local sched_domain hierarchy
* and abort nohz_idle_balance altogether if we pull some load.
*/
if (nohz_idle_balance(this_rq, idle))
return;
/* normal load balance */
update_blocked_averages(this_rq->cpu);
rebalance_domains(this_rq, idle);
}
/*
* Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
*/
void trigger_load_balance(struct rq *rq)
{
/*
* Don't need to rebalance while attached to NULL domain or
* runqueue CPU is not active
*/
if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
return;
if (time_after_eq(jiffies, rq->next_balance))
raise_softirq(SCHED_SOFTIRQ);
nohz_balancer_kick(rq);
}
static void rq_online_fair(struct rq *rq)
{
update_sysctl();
update_runtime_enabled(rq);
}
static void rq_offline_fair(struct rq *rq)
{
update_sysctl();
/* Ensure any throttled groups are reachable by pick_next_task */
unthrottle_offline_cfs_rqs(rq);
}
#endif /* CONFIG_SMP */
#ifdef CONFIG_SCHED_CORE
static inline bool
__entity_slice_used(struct sched_entity *se, int min_nr_tasks)
{
u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
u64 slice = se->slice;
return (rtime * min_nr_tasks > slice);
}
#define MIN_NR_TASKS_DURING_FORCEIDLE 2
static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
{
if (!sched_core_enabled(rq))
return;
/*
* If runqueue has only one task which used up its slice and
* if the sibling is forced idle, then trigger schedule to
* give forced idle task a chance.
*
* sched_slice() considers only this active rq and it gets the
* whole slice. But during force idle, we have siblings acting
* like a single runqueue and hence we need to consider runnable
* tasks on this CPU and the forced idle CPU. Ideally, we should
* go through the forced idle rq, but that would be a perf hit.
* We can assume that the forced idle CPU has at least
* MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
* if we need to give up the CPU.
*/
if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 &&
__entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
resched_curr(rq);
}
/*
* se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
*/
static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq,
bool forceidle)
{
for_each_sched_entity(se) {
struct cfs_rq *cfs_rq = cfs_rq_of(se);
if (forceidle) {
if (cfs_rq->forceidle_seq == fi_seq)
break;
cfs_rq->forceidle_seq = fi_seq;
}
cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
}
}
void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
{
struct sched_entity *se = &p->se;
if (p->sched_class != &fair_sched_class)
return;
se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
}
bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
bool in_fi)
{
struct rq *rq = task_rq(a);
const struct sched_entity *sea = &a->se;
const struct sched_entity *seb = &b->se;
struct cfs_rq *cfs_rqa;
struct cfs_rq *cfs_rqb;
s64 delta;
SCHED_WARN_ON(task_rq(b)->core != rq->core);
#ifdef CONFIG_FAIR_GROUP_SCHED
/*
* Find an se in the hierarchy for tasks a and b, such that the se's
* are immediate siblings.
*/
while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
int sea_depth = sea->depth;
int seb_depth = seb->depth;
if (sea_depth >= seb_depth)
sea = parent_entity(sea);
if (sea_depth <= seb_depth)
seb = parent_entity(seb);
}
se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
cfs_rqa = sea->cfs_rq;
cfs_rqb = seb->cfs_rq;
#else
cfs_rqa = &task_rq(a)->cfs;
cfs_rqb = &task_rq(b)->cfs;
#endif
/*
* Find delta after normalizing se's vruntime with its cfs_rq's
* min_vruntime_fi, which would have been updated in prior calls
* to se_fi_update().
*/
delta = (s64)(sea->vruntime - seb->vruntime) +
(s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
return delta > 0;
}
static int task_is_throttled_fair(struct task_struct *p, int cpu)
{
struct cfs_rq *cfs_rq;
#ifdef CONFIG_FAIR_GROUP_SCHED
cfs_rq = task_group(p)->cfs_rq[cpu];
#else
cfs_rq = &cpu_rq(cpu)->cfs;
#endif
return throttled_hierarchy(cfs_rq);
}
#else
static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
#endif
/*
* scheduler tick hitting a task of our scheduling class.
*
* NOTE: This function can be called remotely by the tick offload that
* goes along full dynticks. Therefore no local assumption can be made
* and everything must be accessed through the @rq and @curr passed in
* parameters.
*/
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
{
struct cfs_rq *cfs_rq;
struct sched_entity *se = &curr->se;
for_each_sched_entity(se) {
cfs_rq = cfs_rq_of(se);
entity_tick(cfs_rq, se, queued);
}
if (static_branch_unlikely(&sched_numa_balancing))
task_tick_numa(rq, curr);
update_misfit_status(curr, rq);
update_overutilized_status(task_rq(curr));
task_tick_core(rq, curr);
}
/*
* called on fork with the child task as argument from the parent's context
* - child not yet on the tasklist
* - preemption disabled
*/
static void task_fork_fair(struct task_struct *p)
{
struct sched_entity *se = &p->se, *curr;
struct cfs_rq *cfs_rq;
struct rq *rq = this_rq();
struct rq_flags rf;
rq_lock(rq, &rf);
update_rq_clock(rq);
cfs_rq = task_cfs_rq(current);
curr = cfs_rq->curr;
if (curr)
update_curr(cfs_rq);
place_entity(cfs_rq, se, ENQUEUE_INITIAL);
rq_unlock(rq, &rf);
}
/*
* Priority of the task has changed. Check to see if we preempt
* the current task.
*/
static void
prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
{
if (!task_on_rq_queued(p))
return;
if (rq->cfs.nr_running == 1)
return;
/*
* Reschedule if we are currently running on this runqueue and
* our priority decreased, or if we are not currently running on
* this runqueue and our priority is higher than the current's
*/
if (task_current(rq, p)) {
if (p->prio > oldprio)
resched_curr(rq);
} else
wakeup_preempt(rq, p, 0);
}
#ifdef CONFIG_FAIR_GROUP_SCHED
/*
* Propagate the changes of the sched_entity across the tg tree to make it
* visible to the root
*/
static void propagate_entity_cfs_rq(struct sched_entity *se)
{
struct cfs_rq *cfs_rq = cfs_rq_of(se);
if (cfs_rq_throttled(cfs_rq))
return;
if (!throttled_hierarchy(cfs_rq))
list_add_leaf_cfs_rq(cfs_rq);
/* Start to propagate at parent */
se = se->parent;
for_each_sched_entity(se) {
cfs_rq = cfs_rq_of(se);
update_load_avg(cfs_rq, se, UPDATE_TG);
if (cfs_rq_throttled(cfs_rq))
break;
if (!throttled_hierarchy(cfs_rq))
list_add_leaf_cfs_rq(cfs_rq);
}
}
#else
static void propagate_entity_cfs_rq(struct sched_entity *se) { }
#endif
static void detach_entity_cfs_rq(struct sched_entity *se)
{
struct cfs_rq *cfs_rq = cfs_rq_of(se);
#ifdef CONFIG_SMP
/*
* In case the task sched_avg hasn't been attached:
* - A forked task which hasn't been woken up by wake_up_new_task().
* - A task which has been woken up by try_to_wake_up() but is
* waiting for actually being woken up by sched_ttwu_pending().
*/
if (!se->avg.last_update_time)
return;
#endif
/* Catch up with the cfs_rq and remove our load when we leave */
update_load_avg(cfs_rq, se, 0);
detach_entity_load_avg(cfs_rq, se);
update_tg_load_avg(cfs_rq);
propagate_entity_cfs_rq(se);
}
static void attach_entity_cfs_rq(struct sched_entity *se)
{
struct cfs_rq *cfs_rq = cfs_rq_of(se);
/* Synchronize entity with its cfs_rq */
update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
attach_entity_load_avg(cfs_rq, se);
update_tg_load_avg(cfs_rq);
propagate_entity_cfs_rq(se);
}
static void detach_task_cfs_rq(struct task_struct *p)
{
struct sched_entity *se = &p->se;
detach_entity_cfs_rq(se);
}
static void attach_task_cfs_rq(struct task_struct *p)
{
struct sched_entity *se = &p->se;
attach_entity_cfs_rq(se);
}
static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
detach_task_cfs_rq(p);
}
static void switched_to_fair(struct rq *rq, struct task_struct *p)
{
attach_task_cfs_rq(p);
if (task_on_rq_queued(p)) {
/*
* We were most likely switched from sched_rt, so
* kick off the schedule if running, otherwise just see
* if we can still preempt the current task.
*/
if (task_current(rq, p))
resched_curr(rq);
else
wakeup_preempt(rq, p, 0);
}
}
/* Account for a task changing its policy or group.
*
* This routine is mostly called to set cfs_rq->curr field when a task
* migrates between groups/classes.
*/
static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
{
struct sched_entity *se = &p->se;
#ifdef CONFIG_SMP
if (task_on_rq_queued(p)) {
/*
* Move the next running task to the front of the list, so our
* cfs_tasks list becomes MRU one.
*/
list_move(&se->group_node, &rq->cfs_tasks);
}
#endif
for_each_sched_entity(se) {
struct cfs_rq *cfs_rq = cfs_rq_of(se);
set_next_entity(cfs_rq, se);
/* ensure bandwidth has been allocated on our new cfs_rq */
account_cfs_rq_runtime(cfs_rq, 0);
}
}
void init_cfs_rq(struct cfs_rq *cfs_rq)
{
cfs_rq->tasks_timeline = RB_ROOT_CACHED;
u64_u32_store(cfs_rq->min_vruntime, (u64)(-(1LL << 20)));
#ifdef CONFIG_SMP
raw_spin_lock_init(&cfs_rq->removed.lock);
#endif
}
#ifdef CONFIG_FAIR_GROUP_SCHED
static void task_change_group_fair(struct task_struct *p)
{
/*
* We couldn't detach or attach a forked task which
* hasn't been woken up by wake_up_new_task().
*/
if (READ_ONCE(p->__state) == TASK_NEW)
return;
detach_task_cfs_rq(p);
#ifdef CONFIG_SMP
/* Tell se's cfs_rq has been changed -- migrated */
p->se.avg.last_update_time = 0;
#endif
set_task_rq(p, task_cpu(p));
attach_task_cfs_rq(p);
}
void free_fair_sched_group(struct task_group *tg)
{
int i;
for_each_possible_cpu(i) {
if (tg->cfs_rq)
kfree(tg->cfs_rq[i]);
if (tg->se)
kfree(tg->se[i]);
}
kfree(tg->cfs_rq);
kfree(tg->se);
}
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
struct sched_entity *se;
struct cfs_rq *cfs_rq;
int i;
tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
if (!tg->cfs_rq)
goto err;
tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
if (!tg->se)
goto err;
tg->shares = NICE_0_LOAD;
init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent));
for_each_possible_cpu(i) {
cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
GFP_KERNEL, cpu_to_node(i));
if (!cfs_rq)
goto err;
se = kzalloc_node(sizeof(struct sched_entity_stats),
GFP_KERNEL, cpu_to_node(i));
if (!se)
goto err_free_rq;
init_cfs_rq(cfs_rq);
init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
init_entity_runnable_average(se);
}
return 1;
err_free_rq:
kfree(cfs_rq);
err:
return 0;
}
void online_fair_sched_group(struct task_group *tg)
{
struct sched_entity *se;
struct rq_flags rf;
struct rq *rq;
int i;
for_each_possible_cpu(i) {
rq = cpu_rq(i);
se = tg->se[i];
rq_lock_irq(rq, &rf);
update_rq_clock(rq);
attach_entity_cfs_rq(se);
sync_throttle(tg, i);
rq_unlock_irq(rq, &rf);
}
}
void unregister_fair_sched_group(struct task_group *tg)
{
unsigned long flags;
struct rq *rq;
int cpu;
destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
for_each_possible_cpu(cpu) {
if (tg->se[cpu])
remove_entity_load_avg(tg->se[cpu]);
/*
* Only empty task groups can be destroyed; so we can speculatively
* check on_list without danger of it being re-added.
*/
if (!tg->cfs_rq[cpu]->on_list)
continue;
rq = cpu_rq(cpu);
raw_spin_rq_lock_irqsave(rq, flags);
list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
raw_spin_rq_unlock_irqrestore(rq, flags);
}
}
void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
struct sched_entity *se, int cpu,
struct sched_entity *parent)
{
struct rq *rq = cpu_rq(cpu);
cfs_rq->tg = tg;
cfs_rq->rq = rq;
init_cfs_rq_runtime(cfs_rq);
tg->cfs_rq[cpu] = cfs_rq;
tg->se[cpu] = se;
/* se could be NULL for root_task_group */
if (!se)
return;
if (!parent) {
se->cfs_rq = &rq->cfs;
se->depth = 0;
} else {
se->cfs_rq = parent->my_q;
se->depth = parent->depth + 1;
}
se->my_q = cfs_rq;
/* guarantee group entities always have weight */
update_load_set(&se->load, NICE_0_LOAD);
se->parent = parent;
}
static DEFINE_MUTEX(shares_mutex);
static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
{
int i;
lockdep_assert_held(&shares_mutex);
/*
* We can't change the weight of the root cgroup.
*/
if (!tg->se[0])
return -EINVAL;
shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
if (tg->shares == shares)
return 0;
tg->shares = shares;
for_each_possible_cpu(i) {
struct rq *rq = cpu_rq(i);
struct sched_entity *se = tg->se[i];
struct rq_flags rf;
/* Propagate contribution to hierarchy */
rq_lock_irqsave(rq, &rf);
update_rq_clock(rq);
for_each_sched_entity(se) {
update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
update_cfs_group(se);
}
rq_unlock_irqrestore(rq, &rf);
}
return 0;
}
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
{
int ret;
mutex_lock(&shares_mutex);
if (tg_is_idle(tg))
ret = -EINVAL;
else
ret = __sched_group_set_shares(tg, shares);
mutex_unlock(&shares_mutex);
return ret;
}
int sched_group_set_idle(struct task_group *tg, long idle)
{
int i;
if (tg == &root_task_group)
return -EINVAL;
if (idle < 0 || idle > 1)
return -EINVAL;
mutex_lock(&shares_mutex);
if (tg->idle == idle) {
mutex_unlock(&shares_mutex);
return 0;
}
tg->idle = idle;
for_each_possible_cpu(i) {
struct rq *rq = cpu_rq(i);
struct sched_entity *se = tg->se[i];
struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i];
bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
long idle_task_delta;
struct rq_flags rf;
rq_lock_irqsave(rq, &rf);
grp_cfs_rq->idle = idle;
if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
goto next_cpu;
if (se->on_rq) {
parent_cfs_rq = cfs_rq_of(se);
if (cfs_rq_is_idle(grp_cfs_rq))
parent_cfs_rq->idle_nr_running++;
else
parent_cfs_rq->idle_nr_running--;
}
idle_task_delta = grp_cfs_rq->h_nr_running -
grp_cfs_rq->idle_h_nr_running;
if (!cfs_rq_is_idle(grp_cfs_rq))
idle_task_delta *= -1;
for_each_sched_entity(se) {
struct cfs_rq *cfs_rq = cfs_rq_of(se);
if (!se->on_rq)
break;
cfs_rq->idle_h_nr_running += idle_task_delta;
/* Already accounted at parent level and above. */
if (cfs_rq_is_idle(cfs_rq))
break;
}
next_cpu:
rq_unlock_irqrestore(rq, &rf);
}
/* Idle groups have minimum weight. */
if (tg_is_idle(tg))
__sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
else
__sched_group_set_shares(tg, NICE_0_LOAD);
mutex_unlock(&shares_mutex);
return 0;
}
#else /* CONFIG_FAIR_GROUP_SCHED */
void free_fair_sched_group(struct task_group *tg) { }
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
return 1;
}
void online_fair_sched_group(struct task_group *tg) { }
void unregister_fair_sched_group(struct task_group *tg) { }
#endif /* CONFIG_FAIR_GROUP_SCHED */
static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
{
struct sched_entity *se = &task->se;
unsigned int rr_interval = 0;
/*
* Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
* idle runqueue:
*/
if (rq->cfs.load.weight)
rr_interval = NS_TO_JIFFIES(se->slice);
return rr_interval;
}
/*
* All the scheduling class methods:
*/
DEFINE_SCHED_CLASS(fair) = {
.enqueue_task = enqueue_task_fair,
.dequeue_task = dequeue_task_fair,
.yield_task = yield_task_fair,
.yield_to_task = yield_to_task_fair,
.wakeup_preempt = check_preempt_wakeup_fair,
.pick_next_task = __pick_next_task_fair,
.put_prev_task = put_prev_task_fair,
.set_next_task = set_next_task_fair,
#ifdef CONFIG_SMP
.balance = balance_fair,
.pick_task = pick_task_fair,
.select_task_rq = select_task_rq_fair,
.migrate_task_rq = migrate_task_rq_fair,
.rq_online = rq_online_fair,
.rq_offline = rq_offline_fair,
.task_dead = task_dead_fair,
.set_cpus_allowed = set_cpus_allowed_common,
#endif
.task_tick = task_tick_fair,
.task_fork = task_fork_fair,
.prio_changed = prio_changed_fair,
.switched_from = switched_from_fair,
.switched_to = switched_to_fair,
.get_rr_interval = get_rr_interval_fair,
.update_curr = update_curr_fair,
#ifdef CONFIG_FAIR_GROUP_SCHED
.task_change_group = task_change_group_fair,
#endif
#ifdef CONFIG_SCHED_CORE
.task_is_throttled = task_is_throttled_fair,
#endif
#ifdef CONFIG_UCLAMP_TASK
.uclamp_enabled = 1,
#endif
};
#ifdef CONFIG_SCHED_DEBUG
void print_cfs_stats(struct seq_file *m, int cpu)
{
struct cfs_rq *cfs_rq, *pos;
rcu_read_lock();
for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
print_cfs_rq(m, cpu, cfs_rq);
rcu_read_unlock();
}
#ifdef CONFIG_NUMA_BALANCING
void show_numa_stats(struct task_struct *p, struct seq_file *m)
{
int node;
unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
struct numa_group *ng;
rcu_read_lock();
ng = rcu_dereference(p->numa_group);
for_each_online_node(node) {
if (p->numa_faults) {
tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
}
if (ng) {
gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
}
print_numa_stats(m, node, tsf, tpf, gsf, gpf);
}
rcu_read_unlock();
}
#endif /* CONFIG_NUMA_BALANCING */
#endif /* CONFIG_SCHED_DEBUG */
__init void init_sched_fair_class(void)
{
#ifdef CONFIG_SMP
int i;
for_each_possible_cpu(i) {
zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i));
zalloc_cpumask_var_node(&per_cpu(select_rq_mask, i), GFP_KERNEL, cpu_to_node(i));
zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i),
GFP_KERNEL, cpu_to_node(i));
#ifdef CONFIG_CFS_BANDWIDTH
INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i));
INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list);
#endif
}
open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
#ifdef CONFIG_NO_HZ_COMMON
nohz.next_balance = jiffies;
nohz.next_blocked = jiffies;
zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
#endif
#endif /* SMP */
}