linux/mm/kasan/generic.c
Andrey Konovalov 05c56e7b43 kasan: fix type cast in memory_is_poisoned_n
Commit bb6e04a173f0 ("kasan: use internal prototypes matching gcc-13
builtins") introduced a bug into the memory_is_poisoned_n implementation:
it effectively removed the cast to a signed integer type after applying
KASAN_GRANULE_MASK.

As a result, KASAN started failing to properly check memset, memcpy, and
other similar functions.

Fix the bug by adding the cast back (through an additional signed integer
variable to make the code more readable).

Link: https://lkml.kernel.org/r/8c9e0251c2b8b81016255709d4ec42942dcaf018.1688431866.git.andreyknvl@google.com
Fixes: bb6e04a173f0 ("kasan: use internal prototypes matching gcc-13 builtins")
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Marco Elver <elver@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-07-08 09:29:32 -07:00

526 lines
14 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* This file contains core generic KASAN code.
*
* Copyright (c) 2014 Samsung Electronics Co., Ltd.
* Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
*
* Some code borrowed from https://github.com/xairy/kasan-prototype by
* Andrey Konovalov <andreyknvl@gmail.com>
*/
#include <linux/export.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/kasan.h>
#include <linux/kernel.h>
#include <linux/kfence.h>
#include <linux/kmemleak.h>
#include <linux/linkage.h>
#include <linux/memblock.h>
#include <linux/memory.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/printk.h>
#include <linux/sched.h>
#include <linux/sched/task_stack.h>
#include <linux/slab.h>
#include <linux/stacktrace.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/vmalloc.h>
#include <linux/bug.h>
#include "kasan.h"
#include "../slab.h"
/*
* All functions below always inlined so compiler could
* perform better optimizations in each of __asan_loadX/__assn_storeX
* depending on memory access size X.
*/
static __always_inline bool memory_is_poisoned_1(const void *addr)
{
s8 shadow_value = *(s8 *)kasan_mem_to_shadow(addr);
if (unlikely(shadow_value)) {
s8 last_accessible_byte = (unsigned long)addr & KASAN_GRANULE_MASK;
return unlikely(last_accessible_byte >= shadow_value);
}
return false;
}
static __always_inline bool memory_is_poisoned_2_4_8(const void *addr,
unsigned long size)
{
u8 *shadow_addr = (u8 *)kasan_mem_to_shadow(addr);
/*
* Access crosses 8(shadow size)-byte boundary. Such access maps
* into 2 shadow bytes, so we need to check them both.
*/
if (unlikely((((unsigned long)addr + size - 1) & KASAN_GRANULE_MASK) < size - 1))
return *shadow_addr || memory_is_poisoned_1(addr + size - 1);
return memory_is_poisoned_1(addr + size - 1);
}
static __always_inline bool memory_is_poisoned_16(const void *addr)
{
u16 *shadow_addr = (u16 *)kasan_mem_to_shadow(addr);
/* Unaligned 16-bytes access maps into 3 shadow bytes. */
if (unlikely(!IS_ALIGNED((unsigned long)addr, KASAN_GRANULE_SIZE)))
return *shadow_addr || memory_is_poisoned_1(addr + 15);
return *shadow_addr;
}
static __always_inline unsigned long bytes_is_nonzero(const u8 *start,
size_t size)
{
while (size) {
if (unlikely(*start))
return (unsigned long)start;
start++;
size--;
}
return 0;
}
static __always_inline unsigned long memory_is_nonzero(const void *start,
const void *end)
{
unsigned int words;
unsigned long ret;
unsigned int prefix = (unsigned long)start % 8;
if (end - start <= 16)
return bytes_is_nonzero(start, end - start);
if (prefix) {
prefix = 8 - prefix;
ret = bytes_is_nonzero(start, prefix);
if (unlikely(ret))
return ret;
start += prefix;
}
words = (end - start) / 8;
while (words) {
if (unlikely(*(u64 *)start))
return bytes_is_nonzero(start, 8);
start += 8;
words--;
}
return bytes_is_nonzero(start, (end - start) % 8);
}
static __always_inline bool memory_is_poisoned_n(const void *addr, size_t size)
{
unsigned long ret;
ret = memory_is_nonzero(kasan_mem_to_shadow(addr),
kasan_mem_to_shadow(addr + size - 1) + 1);
if (unlikely(ret)) {
const void *last_byte = addr + size - 1;
s8 *last_shadow = (s8 *)kasan_mem_to_shadow(last_byte);
s8 last_accessible_byte = (unsigned long)last_byte & KASAN_GRANULE_MASK;
if (unlikely(ret != (unsigned long)last_shadow ||
last_accessible_byte >= *last_shadow))
return true;
}
return false;
}
static __always_inline bool memory_is_poisoned(const void *addr, size_t size)
{
if (__builtin_constant_p(size)) {
switch (size) {
case 1:
return memory_is_poisoned_1(addr);
case 2:
case 4:
case 8:
return memory_is_poisoned_2_4_8(addr, size);
case 16:
return memory_is_poisoned_16(addr);
default:
BUILD_BUG();
}
}
return memory_is_poisoned_n(addr, size);
}
static __always_inline bool check_region_inline(const void *addr,
size_t size, bool write,
unsigned long ret_ip)
{
if (!kasan_arch_is_ready())
return true;
if (unlikely(size == 0))
return true;
if (unlikely(addr + size < addr))
return !kasan_report(addr, size, write, ret_ip);
if (unlikely(!addr_has_metadata(addr)))
return !kasan_report(addr, size, write, ret_ip);
if (likely(!memory_is_poisoned(addr, size)))
return true;
return !kasan_report(addr, size, write, ret_ip);
}
bool kasan_check_range(const void *addr, size_t size, bool write,
unsigned long ret_ip)
{
return check_region_inline(addr, size, write, ret_ip);
}
bool kasan_byte_accessible(const void *addr)
{
s8 shadow_byte;
if (!kasan_arch_is_ready())
return true;
shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(addr));
return shadow_byte >= 0 && shadow_byte < KASAN_GRANULE_SIZE;
}
void kasan_cache_shrink(struct kmem_cache *cache)
{
kasan_quarantine_remove_cache(cache);
}
void kasan_cache_shutdown(struct kmem_cache *cache)
{
if (!__kmem_cache_empty(cache))
kasan_quarantine_remove_cache(cache);
}
static void register_global(struct kasan_global *global)
{
size_t aligned_size = round_up(global->size, KASAN_GRANULE_SIZE);
kasan_unpoison(global->beg, global->size, false);
kasan_poison(global->beg + aligned_size,
global->size_with_redzone - aligned_size,
KASAN_GLOBAL_REDZONE, false);
}
void __asan_register_globals(void *ptr, ssize_t size)
{
int i;
struct kasan_global *globals = ptr;
for (i = 0; i < size; i++)
register_global(&globals[i]);
}
EXPORT_SYMBOL(__asan_register_globals);
void __asan_unregister_globals(void *ptr, ssize_t size)
{
}
EXPORT_SYMBOL(__asan_unregister_globals);
#define DEFINE_ASAN_LOAD_STORE(size) \
void __asan_load##size(void *addr) \
{ \
check_region_inline(addr, size, false, _RET_IP_); \
} \
EXPORT_SYMBOL(__asan_load##size); \
__alias(__asan_load##size) \
void __asan_load##size##_noabort(void *); \
EXPORT_SYMBOL(__asan_load##size##_noabort); \
void __asan_store##size(void *addr) \
{ \
check_region_inline(addr, size, true, _RET_IP_); \
} \
EXPORT_SYMBOL(__asan_store##size); \
__alias(__asan_store##size) \
void __asan_store##size##_noabort(void *); \
EXPORT_SYMBOL(__asan_store##size##_noabort)
DEFINE_ASAN_LOAD_STORE(1);
DEFINE_ASAN_LOAD_STORE(2);
DEFINE_ASAN_LOAD_STORE(4);
DEFINE_ASAN_LOAD_STORE(8);
DEFINE_ASAN_LOAD_STORE(16);
void __asan_loadN(void *addr, ssize_t size)
{
kasan_check_range(addr, size, false, _RET_IP_);
}
EXPORT_SYMBOL(__asan_loadN);
__alias(__asan_loadN)
void __asan_loadN_noabort(void *, ssize_t);
EXPORT_SYMBOL(__asan_loadN_noabort);
void __asan_storeN(void *addr, ssize_t size)
{
kasan_check_range(addr, size, true, _RET_IP_);
}
EXPORT_SYMBOL(__asan_storeN);
__alias(__asan_storeN)
void __asan_storeN_noabort(void *, ssize_t);
EXPORT_SYMBOL(__asan_storeN_noabort);
/* to shut up compiler complaints */
void __asan_handle_no_return(void) {}
EXPORT_SYMBOL(__asan_handle_no_return);
/* Emitted by compiler to poison alloca()ed objects. */
void __asan_alloca_poison(void *addr, ssize_t size)
{
size_t rounded_up_size = round_up(size, KASAN_GRANULE_SIZE);
size_t padding_size = round_up(size, KASAN_ALLOCA_REDZONE_SIZE) -
rounded_up_size;
size_t rounded_down_size = round_down(size, KASAN_GRANULE_SIZE);
const void *left_redzone = (const void *)(addr -
KASAN_ALLOCA_REDZONE_SIZE);
const void *right_redzone = (const void *)(addr + rounded_up_size);
WARN_ON(!IS_ALIGNED((unsigned long)addr, KASAN_ALLOCA_REDZONE_SIZE));
kasan_unpoison((const void *)(addr + rounded_down_size),
size - rounded_down_size, false);
kasan_poison(left_redzone, KASAN_ALLOCA_REDZONE_SIZE,
KASAN_ALLOCA_LEFT, false);
kasan_poison(right_redzone, padding_size + KASAN_ALLOCA_REDZONE_SIZE,
KASAN_ALLOCA_RIGHT, false);
}
EXPORT_SYMBOL(__asan_alloca_poison);
/* Emitted by compiler to unpoison alloca()ed areas when the stack unwinds. */
void __asan_allocas_unpoison(void *stack_top, ssize_t stack_bottom)
{
if (unlikely(!stack_top || stack_top > (void *)stack_bottom))
return;
kasan_unpoison(stack_top, (void *)stack_bottom - stack_top, false);
}
EXPORT_SYMBOL(__asan_allocas_unpoison);
/* Emitted by the compiler to [un]poison local variables. */
#define DEFINE_ASAN_SET_SHADOW(byte) \
void __asan_set_shadow_##byte(const void *addr, ssize_t size) \
{ \
__memset((void *)addr, 0x##byte, size); \
} \
EXPORT_SYMBOL(__asan_set_shadow_##byte)
DEFINE_ASAN_SET_SHADOW(00);
DEFINE_ASAN_SET_SHADOW(f1);
DEFINE_ASAN_SET_SHADOW(f2);
DEFINE_ASAN_SET_SHADOW(f3);
DEFINE_ASAN_SET_SHADOW(f5);
DEFINE_ASAN_SET_SHADOW(f8);
/* Only allow cache merging when no per-object metadata is present. */
slab_flags_t kasan_never_merge(void)
{
if (!kasan_requires_meta())
return 0;
return SLAB_KASAN;
}
/*
* Adaptive redzone policy taken from the userspace AddressSanitizer runtime.
* For larger allocations larger redzones are used.
*/
static inline unsigned int optimal_redzone(unsigned int object_size)
{
return
object_size <= 64 - 16 ? 16 :
object_size <= 128 - 32 ? 32 :
object_size <= 512 - 64 ? 64 :
object_size <= 4096 - 128 ? 128 :
object_size <= (1 << 14) - 256 ? 256 :
object_size <= (1 << 15) - 512 ? 512 :
object_size <= (1 << 16) - 1024 ? 1024 : 2048;
}
void kasan_cache_create(struct kmem_cache *cache, unsigned int *size,
slab_flags_t *flags)
{
unsigned int ok_size;
unsigned int optimal_size;
if (!kasan_requires_meta())
return;
/*
* SLAB_KASAN is used to mark caches that are sanitized by KASAN
* and that thus have per-object metadata.
* Currently this flag is used in two places:
* 1. In slab_ksize() to account for per-object metadata when
* calculating the size of the accessible memory within the object.
* 2. In slab_common.c via kasan_never_merge() to prevent merging of
* caches with per-object metadata.
*/
*flags |= SLAB_KASAN;
ok_size = *size;
/* Add alloc meta into redzone. */
cache->kasan_info.alloc_meta_offset = *size;
*size += sizeof(struct kasan_alloc_meta);
/*
* If alloc meta doesn't fit, don't add it.
* This can only happen with SLAB, as it has KMALLOC_MAX_SIZE equal
* to KMALLOC_MAX_CACHE_SIZE and doesn't fall back to page_alloc for
* larger sizes.
*/
if (*size > KMALLOC_MAX_SIZE) {
cache->kasan_info.alloc_meta_offset = 0;
*size = ok_size;
/* Continue, since free meta might still fit. */
}
/*
* Add free meta into redzone when it's not possible to store
* it in the object. This is the case when:
* 1. Object is SLAB_TYPESAFE_BY_RCU, which means that it can
* be touched after it was freed, or
* 2. Object has a constructor, which means it's expected to
* retain its content until the next allocation, or
* 3. Object is too small.
* Otherwise cache->kasan_info.free_meta_offset = 0 is implied.
*/
if ((cache->flags & SLAB_TYPESAFE_BY_RCU) || cache->ctor ||
cache->object_size < sizeof(struct kasan_free_meta)) {
ok_size = *size;
cache->kasan_info.free_meta_offset = *size;
*size += sizeof(struct kasan_free_meta);
/* If free meta doesn't fit, don't add it. */
if (*size > KMALLOC_MAX_SIZE) {
cache->kasan_info.free_meta_offset = KASAN_NO_FREE_META;
*size = ok_size;
}
}
/* Calculate size with optimal redzone. */
optimal_size = cache->object_size + optimal_redzone(cache->object_size);
/* Limit it with KMALLOC_MAX_SIZE (relevant for SLAB only). */
if (optimal_size > KMALLOC_MAX_SIZE)
optimal_size = KMALLOC_MAX_SIZE;
/* Use optimal size if the size with added metas is not large enough. */
if (*size < optimal_size)
*size = optimal_size;
}
struct kasan_alloc_meta *kasan_get_alloc_meta(struct kmem_cache *cache,
const void *object)
{
if (!cache->kasan_info.alloc_meta_offset)
return NULL;
return (void *)object + cache->kasan_info.alloc_meta_offset;
}
struct kasan_free_meta *kasan_get_free_meta(struct kmem_cache *cache,
const void *object)
{
BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32);
if (cache->kasan_info.free_meta_offset == KASAN_NO_FREE_META)
return NULL;
return (void *)object + cache->kasan_info.free_meta_offset;
}
void kasan_init_object_meta(struct kmem_cache *cache, const void *object)
{
struct kasan_alloc_meta *alloc_meta;
alloc_meta = kasan_get_alloc_meta(cache, object);
if (alloc_meta)
__memset(alloc_meta, 0, sizeof(*alloc_meta));
}
size_t kasan_metadata_size(struct kmem_cache *cache, bool in_object)
{
struct kasan_cache *info = &cache->kasan_info;
if (!kasan_requires_meta())
return 0;
if (in_object)
return (info->free_meta_offset ?
0 : sizeof(struct kasan_free_meta));
else
return (info->alloc_meta_offset ?
sizeof(struct kasan_alloc_meta) : 0) +
((info->free_meta_offset &&
info->free_meta_offset != KASAN_NO_FREE_META) ?
sizeof(struct kasan_free_meta) : 0);
}
static void __kasan_record_aux_stack(void *addr, bool can_alloc)
{
struct slab *slab = kasan_addr_to_slab(addr);
struct kmem_cache *cache;
struct kasan_alloc_meta *alloc_meta;
void *object;
if (is_kfence_address(addr) || !slab)
return;
cache = slab->slab_cache;
object = nearest_obj(cache, slab, addr);
alloc_meta = kasan_get_alloc_meta(cache, object);
if (!alloc_meta)
return;
alloc_meta->aux_stack[1] = alloc_meta->aux_stack[0];
alloc_meta->aux_stack[0] = kasan_save_stack(0, can_alloc);
}
void kasan_record_aux_stack(void *addr)
{
return __kasan_record_aux_stack(addr, true);
}
void kasan_record_aux_stack_noalloc(void *addr)
{
return __kasan_record_aux_stack(addr, false);
}
void kasan_save_alloc_info(struct kmem_cache *cache, void *object, gfp_t flags)
{
struct kasan_alloc_meta *alloc_meta;
alloc_meta = kasan_get_alloc_meta(cache, object);
if (alloc_meta)
kasan_set_track(&alloc_meta->alloc_track, flags);
}
void kasan_save_free_info(struct kmem_cache *cache, void *object)
{
struct kasan_free_meta *free_meta;
free_meta = kasan_get_free_meta(cache, object);
if (!free_meta)
return;
kasan_set_track(&free_meta->free_track, 0);
/* The object was freed and has free track set. */
*(u8 *)kasan_mem_to_shadow(object) = KASAN_SLAB_FREETRACK;
}