linux/drivers/gpu/drm/rcar-du/rcar_mipi_dsi.c
Tomi Valkeinen 3f3b9861fa drm: rcar-du: dsi: Add r8A779g0 support
Add DSI support for r8a779g0. The main differences to r8a779a0 are in
the PLL and PHTW setups.

Signed-off-by: Tomi Valkeinen <tomi.valkeinen+renesas@ideasonboard.com>
Reviewed-by: Laurent Pinchart <laurent.pinchart+renesas@ideasonboard.com>
Reviewed-by: Kieran Bingham <kieran.bingham+renesas@ideasonboard.com>
Signed-off-by: Laurent Pinchart <laurent.pinchart+renesas@ideasonboard.com>
2023-01-21 01:18:04 +02:00

1107 lines
29 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* R-Car MIPI DSI Encoder
*
* Copyright (C) 2020 Renesas Electronics Corporation
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/math64.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_graph.h>
#include <linux/platform_device.h>
#include <linux/reset.h>
#include <linux/slab.h>
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_bridge.h>
#include <drm/drm_mipi_dsi.h>
#include <drm/drm_of.h>
#include <drm/drm_panel.h>
#include <drm/drm_probe_helper.h>
#include "rcar_mipi_dsi.h"
#include "rcar_mipi_dsi_regs.h"
#define MHZ(v) ((u32)((v) * 1000000U))
enum rcar_mipi_dsi_hw_model {
RCAR_DSI_V3U,
RCAR_DSI_V4H,
};
struct rcar_mipi_dsi_device_info {
enum rcar_mipi_dsi_hw_model model;
const struct dsi_clk_config *clk_cfg;
u8 clockset2_m_offset;
u8 n_min;
u8 n_max;
u8 n_mul;
unsigned long fpfd_min;
unsigned long fpfd_max;
u16 m_min;
u16 m_max;
unsigned long fout_min;
unsigned long fout_max;
};
struct rcar_mipi_dsi {
struct device *dev;
const struct rcar_mipi_dsi_device_info *info;
struct reset_control *rstc;
struct mipi_dsi_host host;
struct drm_bridge bridge;
struct drm_bridge *next_bridge;
struct drm_connector connector;
void __iomem *mmio;
struct {
struct clk *mod;
struct clk *pll;
struct clk *dsi;
} clocks;
enum mipi_dsi_pixel_format format;
unsigned int num_data_lanes;
unsigned int lanes;
};
struct dsi_setup_info {
unsigned long hsfreq;
u16 hsfreqrange;
unsigned long fout;
u16 m;
u16 n;
u16 vclk_divider;
const struct dsi_clk_config *clkset;
};
static inline struct rcar_mipi_dsi *
bridge_to_rcar_mipi_dsi(struct drm_bridge *bridge)
{
return container_of(bridge, struct rcar_mipi_dsi, bridge);
}
static inline struct rcar_mipi_dsi *
host_to_rcar_mipi_dsi(struct mipi_dsi_host *host)
{
return container_of(host, struct rcar_mipi_dsi, host);
}
static const u32 hsfreqrange_table[][2] = {
{ MHZ(80), 0x00 }, { MHZ(90), 0x10 }, { MHZ(100), 0x20 },
{ MHZ(110), 0x30 }, { MHZ(120), 0x01 }, { MHZ(130), 0x11 },
{ MHZ(140), 0x21 }, { MHZ(150), 0x31 }, { MHZ(160), 0x02 },
{ MHZ(170), 0x12 }, { MHZ(180), 0x22 }, { MHZ(190), 0x32 },
{ MHZ(205), 0x03 }, { MHZ(220), 0x13 }, { MHZ(235), 0x23 },
{ MHZ(250), 0x33 }, { MHZ(275), 0x04 }, { MHZ(300), 0x14 },
{ MHZ(325), 0x25 }, { MHZ(350), 0x35 }, { MHZ(400), 0x05 },
{ MHZ(450), 0x16 }, { MHZ(500), 0x26 }, { MHZ(550), 0x37 },
{ MHZ(600), 0x07 }, { MHZ(650), 0x18 }, { MHZ(700), 0x28 },
{ MHZ(750), 0x39 }, { MHZ(800), 0x09 }, { MHZ(850), 0x19 },
{ MHZ(900), 0x29 }, { MHZ(950), 0x3a }, { MHZ(1000), 0x0a },
{ MHZ(1050), 0x1a }, { MHZ(1100), 0x2a }, { MHZ(1150), 0x3b },
{ MHZ(1200), 0x0b }, { MHZ(1250), 0x1b }, { MHZ(1300), 0x2b },
{ MHZ(1350), 0x3c }, { MHZ(1400), 0x0c }, { MHZ(1450), 0x1c },
{ MHZ(1500), 0x2c }, { MHZ(1550), 0x3d }, { MHZ(1600), 0x0d },
{ MHZ(1650), 0x1d }, { MHZ(1700), 0x2e }, { MHZ(1750), 0x3e },
{ MHZ(1800), 0x0e }, { MHZ(1850), 0x1e }, { MHZ(1900), 0x2f },
{ MHZ(1950), 0x3f }, { MHZ(2000), 0x0f }, { MHZ(2050), 0x40 },
{ MHZ(2100), 0x41 }, { MHZ(2150), 0x42 }, { MHZ(2200), 0x43 },
{ MHZ(2250), 0x44 }, { MHZ(2300), 0x45 }, { MHZ(2350), 0x46 },
{ MHZ(2400), 0x47 }, { MHZ(2450), 0x48 }, { MHZ(2500), 0x49 },
{ /* sentinel */ },
};
struct dsi_clk_config {
u32 min_freq;
u32 max_freq;
u8 vco_cntrl;
u8 cpbias_cntrl;
u8 gmp_cntrl;
u8 int_cntrl;
u8 prop_cntrl;
};
static const struct dsi_clk_config dsi_clk_cfg_v3u[] = {
{ MHZ(40), MHZ(55), 0x3f, 0x10, 0x01, 0x00, 0x0b },
{ MHZ(52.5), MHZ(80), 0x39, 0x10, 0x01, 0x00, 0x0b },
{ MHZ(80), MHZ(110), 0x2f, 0x10, 0x01, 0x00, 0x0b },
{ MHZ(105), MHZ(160), 0x29, 0x10, 0x01, 0x00, 0x0b },
{ MHZ(160), MHZ(220), 0x1f, 0x10, 0x01, 0x00, 0x0b },
{ MHZ(210), MHZ(320), 0x19, 0x10, 0x01, 0x00, 0x0b },
{ MHZ(320), MHZ(440), 0x0f, 0x10, 0x01, 0x00, 0x0b },
{ MHZ(420), MHZ(660), 0x09, 0x10, 0x01, 0x00, 0x0b },
{ MHZ(630), MHZ(1149), 0x03, 0x10, 0x01, 0x00, 0x0b },
{ MHZ(1100), MHZ(1152), 0x01, 0x10, 0x01, 0x00, 0x0b },
{ MHZ(1150), MHZ(1250), 0x01, 0x10, 0x01, 0x00, 0x0c },
{ /* sentinel */ },
};
static const struct dsi_clk_config dsi_clk_cfg_v4h[] = {
{ MHZ(40), MHZ(45.31), 0x2b, 0x00, 0x00, 0x08, 0x0a },
{ MHZ(45.31), MHZ(54.66), 0x28, 0x00, 0x00, 0x08, 0x0a },
{ MHZ(54.66), MHZ(62.5), 0x28, 0x00, 0x00, 0x08, 0x0a },
{ MHZ(62.5), MHZ(75), 0x27, 0x00, 0x00, 0x08, 0x0a },
{ MHZ(75), MHZ(90.63), 0x23, 0x00, 0x00, 0x08, 0x0a },
{ MHZ(90.63), MHZ(109.37), 0x20, 0x00, 0x00, 0x08, 0x0a },
{ MHZ(109.37), MHZ(125), 0x20, 0x00, 0x00, 0x08, 0x0a },
{ MHZ(125), MHZ(150), 0x1f, 0x00, 0x00, 0x08, 0x0a },
{ MHZ(150), MHZ(181.25), 0x1b, 0x00, 0x00, 0x08, 0x0a },
{ MHZ(181.25), MHZ(218.75), 0x18, 0x00, 0x00, 0x08, 0x0a },
{ MHZ(218.75), MHZ(250), 0x18, 0x00, 0x00, 0x08, 0x0a },
{ MHZ(250), MHZ(300), 0x17, 0x00, 0x00, 0x08, 0x0a },
{ MHZ(300), MHZ(362.5), 0x13, 0x00, 0x00, 0x08, 0x0a },
{ MHZ(362.5), MHZ(455.48), 0x10, 0x00, 0x00, 0x08, 0x0a },
{ MHZ(455.48), MHZ(500), 0x10, 0x00, 0x00, 0x08, 0x0a },
{ MHZ(500), MHZ(600), 0x0f, 0x00, 0x00, 0x08, 0x0a },
{ MHZ(600), MHZ(725), 0x0b, 0x00, 0x00, 0x08, 0x0a },
{ MHZ(725), MHZ(875), 0x08, 0x00, 0x00, 0x08, 0x0a },
{ MHZ(875), MHZ(1000), 0x08, 0x00, 0x00, 0x08, 0x0a },
{ MHZ(1000), MHZ(1200), 0x07, 0x00, 0x00, 0x08, 0x0a },
{ MHZ(1200), MHZ(1250), 0x03, 0x00, 0x00, 0x08, 0x0a },
{ /* sentinel */ },
};
static void rcar_mipi_dsi_write(struct rcar_mipi_dsi *dsi, u32 reg, u32 data)
{
iowrite32(data, dsi->mmio + reg);
}
static u32 rcar_mipi_dsi_read(struct rcar_mipi_dsi *dsi, u32 reg)
{
return ioread32(dsi->mmio + reg);
}
static void rcar_mipi_dsi_clr(struct rcar_mipi_dsi *dsi, u32 reg, u32 clr)
{
rcar_mipi_dsi_write(dsi, reg, rcar_mipi_dsi_read(dsi, reg) & ~clr);
}
static void rcar_mipi_dsi_set(struct rcar_mipi_dsi *dsi, u32 reg, u32 set)
{
rcar_mipi_dsi_write(dsi, reg, rcar_mipi_dsi_read(dsi, reg) | set);
}
static int rcar_mipi_dsi_write_phtw(struct rcar_mipi_dsi *dsi, u32 phtw)
{
u32 status;
int ret;
rcar_mipi_dsi_write(dsi, PHTW, phtw);
ret = read_poll_timeout(rcar_mipi_dsi_read, status,
!(status & (PHTW_DWEN | PHTW_CWEN)),
2000, 10000, false, dsi, PHTW);
if (ret < 0) {
dev_err(dsi->dev, "PHY test interface write timeout (0x%08x)\n",
phtw);
return ret;
}
return ret;
}
static int rcar_mipi_dsi_write_phtw_arr(struct rcar_mipi_dsi *dsi,
const u32 *phtw, unsigned int size)
{
for (unsigned int i = 0; i < size; i++) {
int ret = rcar_mipi_dsi_write_phtw(dsi, phtw[i]);
if (ret < 0)
return ret;
}
return 0;
}
#define WRITE_PHTW(...) \
({ \
static const u32 phtw[] = { __VA_ARGS__ }; \
int ret; \
ret = rcar_mipi_dsi_write_phtw_arr(dsi, phtw, \
ARRAY_SIZE(phtw)); \
ret; \
})
static int rcar_mipi_dsi_init_phtw_v3u(struct rcar_mipi_dsi *dsi)
{
return WRITE_PHTW(0x01020114, 0x01600115, 0x01030116, 0x0102011d,
0x011101a4, 0x018601a4, 0x014201a0, 0x010001a3,
0x0101011f);
}
static int rcar_mipi_dsi_post_init_phtw_v3u(struct rcar_mipi_dsi *dsi)
{
return WRITE_PHTW(0x010c0130, 0x010c0140, 0x010c0150, 0x010c0180,
0x010c0190, 0x010a0160, 0x010a0170, 0x01800164,
0x01800174);
}
static int rcar_mipi_dsi_init_phtw_v4h(struct rcar_mipi_dsi *dsi,
const struct dsi_setup_info *setup_info)
{
int ret;
if (setup_info->hsfreq < MHZ(450)) {
ret = WRITE_PHTW(0x01010100, 0x011b01ac);
if (ret)
return ret;
}
ret = WRITE_PHTW(0x01010100, 0x01030173, 0x01000174, 0x01500175,
0x01030176, 0x01040166, 0x010201ad);
if (ret)
return ret;
if (setup_info->hsfreq <= MHZ(1000))
ret = WRITE_PHTW(0x01020100, 0x01910170, 0x01020171,
0x01110172);
else if (setup_info->hsfreq <= MHZ(1500))
ret = WRITE_PHTW(0x01020100, 0x01980170, 0x01030171,
0x01100172);
else if (setup_info->hsfreq <= MHZ(2500))
ret = WRITE_PHTW(0x01020100, 0x0144016b, 0x01000172);
else
return -EINVAL;
if (ret)
return ret;
if (dsi->lanes <= 1) {
ret = WRITE_PHTW(0x01070100, 0x010e010b);
if (ret)
return ret;
}
if (dsi->lanes <= 2) {
ret = WRITE_PHTW(0x01090100, 0x010e010b);
if (ret)
return ret;
}
if (dsi->lanes <= 3) {
ret = WRITE_PHTW(0x010b0100, 0x010e010b);
if (ret)
return ret;
}
if (setup_info->hsfreq <= MHZ(1500)) {
ret = WRITE_PHTW(0x01010100, 0x01c0016e);
if (ret)
return ret;
}
return 0;
}
static int
rcar_mipi_dsi_post_init_phtw_v4h(struct rcar_mipi_dsi *dsi,
const struct dsi_setup_info *setup_info)
{
u32 status;
int ret;
if (setup_info->hsfreq <= MHZ(1500)) {
WRITE_PHTW(0x01020100, 0x00000180);
ret = read_poll_timeout(rcar_mipi_dsi_read, status,
status & PHTR_TEST, 2000, 10000, false,
dsi, PHTR);
if (ret < 0) {
dev_err(dsi->dev, "failed to test PHTR\n");
return ret;
}
WRITE_PHTW(0x01010100, 0x0100016e);
}
return 0;
}
/* -----------------------------------------------------------------------------
* Hardware Setup
*/
static void rcar_mipi_dsi_pll_calc(struct rcar_mipi_dsi *dsi,
unsigned long fin_rate,
unsigned long fout_target,
struct dsi_setup_info *setup_info)
{
unsigned int best_err = -1;
const struct rcar_mipi_dsi_device_info *info = dsi->info;
for (unsigned int n = info->n_min; n <= info->n_max; n++) {
unsigned long fpfd;
fpfd = fin_rate / n;
if (fpfd < info->fpfd_min || fpfd > info->fpfd_max)
continue;
for (unsigned int m = info->m_min; m <= info->m_max; m++) {
unsigned int err;
u64 fout;
fout = div64_u64((u64)fpfd * m, dsi->info->n_mul);
if (fout < info->fout_min || fout > info->fout_max)
continue;
fout = div64_u64(fout, setup_info->vclk_divider);
if (fout < setup_info->clkset->min_freq ||
fout > setup_info->clkset->max_freq)
continue;
err = abs((long)(fout - fout_target) * 10000 /
(long)fout_target);
if (err < best_err) {
setup_info->m = m;
setup_info->n = n;
setup_info->fout = (unsigned long)fout;
best_err = err;
if (err == 0)
return;
}
}
}
}
static void rcar_mipi_dsi_parameters_calc(struct rcar_mipi_dsi *dsi,
struct clk *clk, unsigned long target,
struct dsi_setup_info *setup_info)
{
const struct dsi_clk_config *clk_cfg;
unsigned long fout_target;
unsigned long fin_rate;
unsigned int i;
unsigned int err;
/*
* Calculate Fout = dot clock * ColorDepth / (2 * Lane Count)
* The range out Fout is [40 - 1250] Mhz
*/
fout_target = target * mipi_dsi_pixel_format_to_bpp(dsi->format)
/ (2 * dsi->lanes);
if (fout_target < MHZ(40) || fout_target > MHZ(1250))
return;
/* Find PLL settings */
for (clk_cfg = dsi->info->clk_cfg; clk_cfg->min_freq != 0; clk_cfg++) {
if (fout_target > clk_cfg->min_freq &&
fout_target <= clk_cfg->max_freq) {
setup_info->clkset = clk_cfg;
break;
}
}
fin_rate = clk_get_rate(clk);
switch (dsi->info->model) {
case RCAR_DSI_V3U:
default:
setup_info->vclk_divider = 1 << ((clk_cfg->vco_cntrl >> 4) & 0x3);
break;
case RCAR_DSI_V4H:
setup_info->vclk_divider = 1 << (((clk_cfg->vco_cntrl >> 3) & 0x7) + 1);
break;
}
rcar_mipi_dsi_pll_calc(dsi, fin_rate, fout_target, setup_info);
/* Find hsfreqrange */
setup_info->hsfreq = setup_info->fout * 2;
for (i = 0; i < ARRAY_SIZE(hsfreqrange_table); i++) {
if (hsfreqrange_table[i][0] >= setup_info->hsfreq) {
setup_info->hsfreqrange = hsfreqrange_table[i][1];
break;
}
}
err = abs((long)(setup_info->fout - fout_target) * 10000 / (long)fout_target);
dev_dbg(dsi->dev,
"Fout = %u * %lu / (%u * %u * %u) = %lu (target %lu Hz, error %d.%02u%%)\n",
setup_info->m, fin_rate, dsi->info->n_mul, setup_info->n,
setup_info->vclk_divider, setup_info->fout, fout_target,
err / 100, err % 100);
dev_dbg(dsi->dev,
"vco_cntrl = 0x%x\tprop_cntrl = 0x%x\thsfreqrange = 0x%x\n",
clk_cfg->vco_cntrl, clk_cfg->prop_cntrl,
setup_info->hsfreqrange);
}
static void rcar_mipi_dsi_set_display_timing(struct rcar_mipi_dsi *dsi,
const struct drm_display_mode *mode)
{
u32 setr;
u32 vprmset0r;
u32 vprmset1r;
u32 vprmset2r;
u32 vprmset3r;
u32 vprmset4r;
/* Configuration for Pixel Stream and Packet Header */
if (mipi_dsi_pixel_format_to_bpp(dsi->format) == 24)
rcar_mipi_dsi_write(dsi, TXVMPSPHSETR, TXVMPSPHSETR_DT_RGB24);
else if (mipi_dsi_pixel_format_to_bpp(dsi->format) == 18)
rcar_mipi_dsi_write(dsi, TXVMPSPHSETR, TXVMPSPHSETR_DT_RGB18);
else if (mipi_dsi_pixel_format_to_bpp(dsi->format) == 16)
rcar_mipi_dsi_write(dsi, TXVMPSPHSETR, TXVMPSPHSETR_DT_RGB16);
else {
dev_warn(dsi->dev, "unsupported format");
return;
}
/* Configuration for Blanking sequence and Input Pixel */
setr = TXVMSETR_HSABPEN_EN | TXVMSETR_HBPBPEN_EN
| TXVMSETR_HFPBPEN_EN | TXVMSETR_SYNSEQ_PULSES
| TXVMSETR_PIXWDTH | TXVMSETR_VSTPM;
rcar_mipi_dsi_write(dsi, TXVMSETR, setr);
/* Configuration for Video Parameters */
vprmset0r = (mode->flags & DRM_MODE_FLAG_PVSYNC ?
TXVMVPRMSET0R_VSPOL_HIG : TXVMVPRMSET0R_VSPOL_LOW)
| (mode->flags & DRM_MODE_FLAG_PHSYNC ?
TXVMVPRMSET0R_HSPOL_HIG : TXVMVPRMSET0R_HSPOL_LOW)
| TXVMVPRMSET0R_CSPC_RGB | TXVMVPRMSET0R_BPP_24;
vprmset1r = TXVMVPRMSET1R_VACTIVE(mode->vdisplay)
| TXVMVPRMSET1R_VSA(mode->vsync_end - mode->vsync_start);
vprmset2r = TXVMVPRMSET2R_VFP(mode->vsync_start - mode->vdisplay)
| TXVMVPRMSET2R_VBP(mode->vtotal - mode->vsync_end);
vprmset3r = TXVMVPRMSET3R_HACTIVE(mode->hdisplay)
| TXVMVPRMSET3R_HSA(mode->hsync_end - mode->hsync_start);
vprmset4r = TXVMVPRMSET4R_HFP(mode->hsync_start - mode->hdisplay)
| TXVMVPRMSET4R_HBP(mode->htotal - mode->hsync_end);
rcar_mipi_dsi_write(dsi, TXVMVPRMSET0R, vprmset0r);
rcar_mipi_dsi_write(dsi, TXVMVPRMSET1R, vprmset1r);
rcar_mipi_dsi_write(dsi, TXVMVPRMSET2R, vprmset2r);
rcar_mipi_dsi_write(dsi, TXVMVPRMSET3R, vprmset3r);
rcar_mipi_dsi_write(dsi, TXVMVPRMSET4R, vprmset4r);
}
static int rcar_mipi_dsi_startup(struct rcar_mipi_dsi *dsi,
const struct drm_display_mode *mode)
{
struct dsi_setup_info setup_info = {};
unsigned int timeout;
int ret;
int dsi_format;
u32 phy_setup;
u32 clockset2, clockset3;
u32 ppisetr;
u32 vclkset;
/* Checking valid format */
dsi_format = mipi_dsi_pixel_format_to_bpp(dsi->format);
if (dsi_format < 0) {
dev_warn(dsi->dev, "invalid format");
return -EINVAL;
}
/* Parameters Calculation */
rcar_mipi_dsi_parameters_calc(dsi, dsi->clocks.pll,
mode->clock * 1000, &setup_info);
/* LPCLK enable */
rcar_mipi_dsi_set(dsi, LPCLKSET, LPCLKSET_CKEN);
/* CFGCLK enabled */
rcar_mipi_dsi_set(dsi, CFGCLKSET, CFGCLKSET_CKEN);
rcar_mipi_dsi_clr(dsi, PHYSETUP, PHYSETUP_RSTZ);
rcar_mipi_dsi_clr(dsi, PHYSETUP, PHYSETUP_SHUTDOWNZ);
rcar_mipi_dsi_set(dsi, PHTC, PHTC_TESTCLR);
rcar_mipi_dsi_clr(dsi, PHTC, PHTC_TESTCLR);
/* PHY setting */
phy_setup = rcar_mipi_dsi_read(dsi, PHYSETUP);
phy_setup &= ~PHYSETUP_HSFREQRANGE_MASK;
phy_setup |= PHYSETUP_HSFREQRANGE(setup_info.hsfreqrange);
rcar_mipi_dsi_write(dsi, PHYSETUP, phy_setup);
switch (dsi->info->model) {
case RCAR_DSI_V3U:
default:
ret = rcar_mipi_dsi_init_phtw_v3u(dsi);
if (ret < 0)
return ret;
break;
case RCAR_DSI_V4H:
ret = rcar_mipi_dsi_init_phtw_v4h(dsi, &setup_info);
if (ret < 0)
return ret;
break;
}
/* PLL Clock Setting */
rcar_mipi_dsi_clr(dsi, CLOCKSET1, CLOCKSET1_SHADOW_CLEAR);
rcar_mipi_dsi_set(dsi, CLOCKSET1, CLOCKSET1_SHADOW_CLEAR);
rcar_mipi_dsi_clr(dsi, CLOCKSET1, CLOCKSET1_SHADOW_CLEAR);
clockset2 = CLOCKSET2_M(setup_info.m - dsi->info->clockset2_m_offset)
| CLOCKSET2_N(setup_info.n - 1)
| CLOCKSET2_VCO_CNTRL(setup_info.clkset->vco_cntrl);
clockset3 = CLOCKSET3_PROP_CNTRL(setup_info.clkset->prop_cntrl)
| CLOCKSET3_INT_CNTRL(setup_info.clkset->int_cntrl)
| CLOCKSET3_CPBIAS_CNTRL(setup_info.clkset->cpbias_cntrl)
| CLOCKSET3_GMP_CNTRL(setup_info.clkset->gmp_cntrl);
rcar_mipi_dsi_write(dsi, CLOCKSET2, clockset2);
rcar_mipi_dsi_write(dsi, CLOCKSET3, clockset3);
rcar_mipi_dsi_clr(dsi, CLOCKSET1, CLOCKSET1_UPDATEPLL);
rcar_mipi_dsi_set(dsi, CLOCKSET1, CLOCKSET1_UPDATEPLL);
udelay(10);
rcar_mipi_dsi_clr(dsi, CLOCKSET1, CLOCKSET1_UPDATEPLL);
ppisetr = PPISETR_DLEN_3 | PPISETR_CLEN;
rcar_mipi_dsi_write(dsi, PPISETR, ppisetr);
rcar_mipi_dsi_set(dsi, PHYSETUP, PHYSETUP_SHUTDOWNZ);
rcar_mipi_dsi_set(dsi, PHYSETUP, PHYSETUP_RSTZ);
usleep_range(400, 500);
/* Checking PPI clock status register */
for (timeout = 10; timeout > 0; --timeout) {
if ((rcar_mipi_dsi_read(dsi, PPICLSR) & PPICLSR_STPST) &&
(rcar_mipi_dsi_read(dsi, PPIDLSR) & PPIDLSR_STPST) &&
(rcar_mipi_dsi_read(dsi, CLOCKSET1) & CLOCKSET1_LOCK))
break;
usleep_range(1000, 2000);
}
if (!timeout) {
dev_err(dsi->dev, "failed to enable PPI clock\n");
return -ETIMEDOUT;
}
switch (dsi->info->model) {
case RCAR_DSI_V3U:
default:
ret = rcar_mipi_dsi_post_init_phtw_v3u(dsi);
if (ret < 0)
return ret;
break;
case RCAR_DSI_V4H:
ret = rcar_mipi_dsi_post_init_phtw_v4h(dsi, &setup_info);
if (ret < 0)
return ret;
break;
}
/* Enable DOT clock */
vclkset = VCLKSET_CKEN;
rcar_mipi_dsi_write(dsi, VCLKSET, vclkset);
if (dsi_format == 24)
vclkset |= VCLKSET_BPP_24;
else if (dsi_format == 18)
vclkset |= VCLKSET_BPP_18;
else if (dsi_format == 16)
vclkset |= VCLKSET_BPP_16;
else {
dev_warn(dsi->dev, "unsupported format");
return -EINVAL;
}
vclkset |= VCLKSET_COLOR_RGB | VCLKSET_LANE(dsi->lanes - 1);
switch (dsi->info->model) {
case RCAR_DSI_V3U:
default:
vclkset |= VCLKSET_DIV_V3U(__ffs(setup_info.vclk_divider));
break;
case RCAR_DSI_V4H:
vclkset |= VCLKSET_DIV_V4H(__ffs(setup_info.vclk_divider) - 1);
break;
}
rcar_mipi_dsi_write(dsi, VCLKSET, vclkset);
/* After setting VCLKSET register, enable VCLKEN */
rcar_mipi_dsi_set(dsi, VCLKEN, VCLKEN_CKEN);
dev_dbg(dsi->dev, "DSI device is started\n");
return 0;
}
static void rcar_mipi_dsi_shutdown(struct rcar_mipi_dsi *dsi)
{
/* Disable VCLKEN */
rcar_mipi_dsi_write(dsi, VCLKSET, 0);
/* Disable DOT clock */
rcar_mipi_dsi_write(dsi, VCLKSET, 0);
rcar_mipi_dsi_clr(dsi, PHYSETUP, PHYSETUP_RSTZ);
rcar_mipi_dsi_clr(dsi, PHYSETUP, PHYSETUP_SHUTDOWNZ);
/* CFGCLK disable */
rcar_mipi_dsi_clr(dsi, CFGCLKSET, CFGCLKSET_CKEN);
/* LPCLK disable */
rcar_mipi_dsi_clr(dsi, LPCLKSET, LPCLKSET_CKEN);
dev_dbg(dsi->dev, "DSI device is shutdown\n");
}
static int rcar_mipi_dsi_clk_enable(struct rcar_mipi_dsi *dsi)
{
int ret;
reset_control_deassert(dsi->rstc);
ret = clk_prepare_enable(dsi->clocks.mod);
if (ret < 0)
goto err_reset;
ret = clk_prepare_enable(dsi->clocks.dsi);
if (ret < 0)
goto err_clock;
return 0;
err_clock:
clk_disable_unprepare(dsi->clocks.mod);
err_reset:
reset_control_assert(dsi->rstc);
return ret;
}
static void rcar_mipi_dsi_clk_disable(struct rcar_mipi_dsi *dsi)
{
clk_disable_unprepare(dsi->clocks.dsi);
clk_disable_unprepare(dsi->clocks.mod);
reset_control_assert(dsi->rstc);
}
static int rcar_mipi_dsi_start_hs_clock(struct rcar_mipi_dsi *dsi)
{
/*
* In HW manual, we need to check TxDDRClkHS-Q Stable? but it dont
* write how to check. So we skip this check in this patch
*/
u32 status;
int ret;
/* Start HS clock. */
rcar_mipi_dsi_set(dsi, PPICLCR, PPICLCR_TXREQHS);
ret = read_poll_timeout(rcar_mipi_dsi_read, status,
status & PPICLSR_TOHS,
2000, 10000, false, dsi, PPICLSR);
if (ret < 0) {
dev_err(dsi->dev, "failed to enable HS clock\n");
return ret;
}
rcar_mipi_dsi_set(dsi, PPICLSCR, PPICLSCR_TOHS);
return 0;
}
static int rcar_mipi_dsi_start_video(struct rcar_mipi_dsi *dsi)
{
u32 status;
int ret;
/* Wait for the link to be ready. */
ret = read_poll_timeout(rcar_mipi_dsi_read, status,
!(status & (LINKSR_LPBUSY | LINKSR_HSBUSY)),
2000, 10000, false, dsi, LINKSR);
if (ret < 0) {
dev_err(dsi->dev, "Link failed to become ready\n");
return ret;
}
/* De-assert video FIFO clear. */
rcar_mipi_dsi_clr(dsi, TXVMCR, TXVMCR_VFCLR);
ret = read_poll_timeout(rcar_mipi_dsi_read, status,
status & TXVMSR_VFRDY,
2000, 10000, false, dsi, TXVMSR);
if (ret < 0) {
dev_err(dsi->dev, "Failed to de-assert video FIFO clear\n");
return ret;
}
/* Enable transmission in video mode. */
rcar_mipi_dsi_set(dsi, TXVMCR, TXVMCR_EN_VIDEO);
ret = read_poll_timeout(rcar_mipi_dsi_read, status,
status & TXVMSR_RDY,
2000, 10000, false, dsi, TXVMSR);
if (ret < 0) {
dev_err(dsi->dev, "Failed to enable video transmission\n");
return ret;
}
return 0;
}
static void rcar_mipi_dsi_stop_video(struct rcar_mipi_dsi *dsi)
{
u32 status;
int ret;
/* Disable transmission in video mode. */
rcar_mipi_dsi_clr(dsi, TXVMCR, TXVMCR_EN_VIDEO);
ret = read_poll_timeout(rcar_mipi_dsi_read, status,
!(status & TXVMSR_ACT),
2000, 100000, false, dsi, TXVMSR);
if (ret < 0) {
dev_err(dsi->dev, "Failed to disable video transmission\n");
return;
}
/* Assert video FIFO clear. */
rcar_mipi_dsi_set(dsi, TXVMCR, TXVMCR_VFCLR);
ret = read_poll_timeout(rcar_mipi_dsi_read, status,
!(status & TXVMSR_VFRDY),
2000, 100000, false, dsi, TXVMSR);
if (ret < 0) {
dev_err(dsi->dev, "Failed to assert video FIFO clear\n");
return;
}
}
/* -----------------------------------------------------------------------------
* Bridge
*/
static int rcar_mipi_dsi_attach(struct drm_bridge *bridge,
enum drm_bridge_attach_flags flags)
{
struct rcar_mipi_dsi *dsi = bridge_to_rcar_mipi_dsi(bridge);
return drm_bridge_attach(bridge->encoder, dsi->next_bridge, bridge,
flags);
}
static void rcar_mipi_dsi_atomic_enable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct rcar_mipi_dsi *dsi = bridge_to_rcar_mipi_dsi(bridge);
rcar_mipi_dsi_start_video(dsi);
}
static void rcar_mipi_dsi_atomic_disable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct rcar_mipi_dsi *dsi = bridge_to_rcar_mipi_dsi(bridge);
rcar_mipi_dsi_stop_video(dsi);
}
void rcar_mipi_dsi_pclk_enable(struct drm_bridge *bridge,
struct drm_atomic_state *state)
{
struct rcar_mipi_dsi *dsi = bridge_to_rcar_mipi_dsi(bridge);
const struct drm_display_mode *mode;
struct drm_connector *connector;
struct drm_crtc *crtc;
int ret;
connector = drm_atomic_get_new_connector_for_encoder(state,
bridge->encoder);
crtc = drm_atomic_get_new_connector_state(state, connector)->crtc;
mode = &drm_atomic_get_new_crtc_state(state, crtc)->adjusted_mode;
ret = rcar_mipi_dsi_clk_enable(dsi);
if (ret < 0) {
dev_err(dsi->dev, "failed to enable DSI clocks\n");
return;
}
ret = rcar_mipi_dsi_startup(dsi, mode);
if (ret < 0)
goto err_dsi_startup;
rcar_mipi_dsi_set_display_timing(dsi, mode);
ret = rcar_mipi_dsi_start_hs_clock(dsi);
if (ret < 0)
goto err_dsi_start_hs;
return;
err_dsi_start_hs:
rcar_mipi_dsi_shutdown(dsi);
err_dsi_startup:
rcar_mipi_dsi_clk_disable(dsi);
}
EXPORT_SYMBOL_GPL(rcar_mipi_dsi_pclk_enable);
void rcar_mipi_dsi_pclk_disable(struct drm_bridge *bridge)
{
struct rcar_mipi_dsi *dsi = bridge_to_rcar_mipi_dsi(bridge);
rcar_mipi_dsi_shutdown(dsi);
rcar_mipi_dsi_clk_disable(dsi);
}
EXPORT_SYMBOL_GPL(rcar_mipi_dsi_pclk_disable);
static enum drm_mode_status
rcar_mipi_dsi_bridge_mode_valid(struct drm_bridge *bridge,
const struct drm_display_info *info,
const struct drm_display_mode *mode)
{
if (mode->clock > 297000)
return MODE_CLOCK_HIGH;
return MODE_OK;
}
static const struct drm_bridge_funcs rcar_mipi_dsi_bridge_ops = {
.attach = rcar_mipi_dsi_attach,
.atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_bridge_destroy_state,
.atomic_reset = drm_atomic_helper_bridge_reset,
.atomic_enable = rcar_mipi_dsi_atomic_enable,
.atomic_disable = rcar_mipi_dsi_atomic_disable,
.mode_valid = rcar_mipi_dsi_bridge_mode_valid,
};
/* -----------------------------------------------------------------------------
* Host setting
*/
static int rcar_mipi_dsi_host_attach(struct mipi_dsi_host *host,
struct mipi_dsi_device *device)
{
struct rcar_mipi_dsi *dsi = host_to_rcar_mipi_dsi(host);
int ret;
if (device->lanes > dsi->num_data_lanes)
return -EINVAL;
dsi->lanes = device->lanes;
dsi->format = device->format;
dsi->next_bridge = devm_drm_of_get_bridge(dsi->dev, dsi->dev->of_node,
1, 0);
if (IS_ERR(dsi->next_bridge)) {
ret = PTR_ERR(dsi->next_bridge);
dev_err(dsi->dev, "failed to get next bridge: %d\n", ret);
return ret;
}
/* Initialize the DRM bridge. */
dsi->bridge.funcs = &rcar_mipi_dsi_bridge_ops;
dsi->bridge.of_node = dsi->dev->of_node;
drm_bridge_add(&dsi->bridge);
return 0;
}
static int rcar_mipi_dsi_host_detach(struct mipi_dsi_host *host,
struct mipi_dsi_device *device)
{
struct rcar_mipi_dsi *dsi = host_to_rcar_mipi_dsi(host);
drm_bridge_remove(&dsi->bridge);
return 0;
}
static const struct mipi_dsi_host_ops rcar_mipi_dsi_host_ops = {
.attach = rcar_mipi_dsi_host_attach,
.detach = rcar_mipi_dsi_host_detach,
};
/* -----------------------------------------------------------------------------
* Probe & Remove
*/
static int rcar_mipi_dsi_parse_dt(struct rcar_mipi_dsi *dsi)
{
int ret;
ret = drm_of_get_data_lanes_count_ep(dsi->dev->of_node, 1, 0, 1, 4);
if (ret < 0) {
dev_err(dsi->dev, "missing or invalid data-lanes property\n");
return ret;
}
dsi->num_data_lanes = ret;
return 0;
}
static struct clk *rcar_mipi_dsi_get_clock(struct rcar_mipi_dsi *dsi,
const char *name,
bool optional)
{
struct clk *clk;
clk = devm_clk_get(dsi->dev, name);
if (!IS_ERR(clk))
return clk;
if (PTR_ERR(clk) == -ENOENT && optional)
return NULL;
dev_err_probe(dsi->dev, PTR_ERR(clk), "failed to get %s clock\n",
name ? name : "module");
return clk;
}
static int rcar_mipi_dsi_get_clocks(struct rcar_mipi_dsi *dsi)
{
dsi->clocks.mod = rcar_mipi_dsi_get_clock(dsi, NULL, false);
if (IS_ERR(dsi->clocks.mod))
return PTR_ERR(dsi->clocks.mod);
dsi->clocks.pll = rcar_mipi_dsi_get_clock(dsi, "pll", true);
if (IS_ERR(dsi->clocks.pll))
return PTR_ERR(dsi->clocks.pll);
dsi->clocks.dsi = rcar_mipi_dsi_get_clock(dsi, "dsi", true);
if (IS_ERR(dsi->clocks.dsi))
return PTR_ERR(dsi->clocks.dsi);
if (!dsi->clocks.pll && !dsi->clocks.dsi) {
dev_err(dsi->dev, "no input clock (pll, dsi)\n");
return -EINVAL;
}
return 0;
}
static int rcar_mipi_dsi_probe(struct platform_device *pdev)
{
struct rcar_mipi_dsi *dsi;
struct resource *mem;
int ret;
dsi = devm_kzalloc(&pdev->dev, sizeof(*dsi), GFP_KERNEL);
if (dsi == NULL)
return -ENOMEM;
platform_set_drvdata(pdev, dsi);
dsi->dev = &pdev->dev;
dsi->info = of_device_get_match_data(&pdev->dev);
ret = rcar_mipi_dsi_parse_dt(dsi);
if (ret < 0)
return ret;
/* Acquire resources. */
mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
dsi->mmio = devm_ioremap_resource(dsi->dev, mem);
if (IS_ERR(dsi->mmio))
return PTR_ERR(dsi->mmio);
ret = rcar_mipi_dsi_get_clocks(dsi);
if (ret < 0)
return ret;
dsi->rstc = devm_reset_control_get(dsi->dev, NULL);
if (IS_ERR(dsi->rstc)) {
dev_err(dsi->dev, "failed to get cpg reset\n");
return PTR_ERR(dsi->rstc);
}
/* Initialize the DSI host. */
dsi->host.dev = dsi->dev;
dsi->host.ops = &rcar_mipi_dsi_host_ops;
ret = mipi_dsi_host_register(&dsi->host);
if (ret < 0)
return ret;
return 0;
}
static int rcar_mipi_dsi_remove(struct platform_device *pdev)
{
struct rcar_mipi_dsi *dsi = platform_get_drvdata(pdev);
mipi_dsi_host_unregister(&dsi->host);
return 0;
}
static const struct rcar_mipi_dsi_device_info v3u_data = {
.model = RCAR_DSI_V3U,
.clk_cfg = dsi_clk_cfg_v3u,
.clockset2_m_offset = 2,
.n_min = 3,
.n_max = 8,
.n_mul = 1,
.fpfd_min = MHZ(2),
.fpfd_max = MHZ(8),
.m_min = 64,
.m_max = 625,
.fout_min = MHZ(320),
.fout_max = MHZ(1250),
};
static const struct rcar_mipi_dsi_device_info v4h_data = {
.model = RCAR_DSI_V4H,
.clk_cfg = dsi_clk_cfg_v4h,
.clockset2_m_offset = 0,
.n_min = 1,
.n_max = 8,
.n_mul = 2,
.fpfd_min = MHZ(8),
.fpfd_max = MHZ(24),
.m_min = 167,
.m_max = 1000,
.fout_min = MHZ(2000),
.fout_max = MHZ(4000),
};
static const struct of_device_id rcar_mipi_dsi_of_table[] = {
{ .compatible = "renesas,r8a779a0-dsi-csi2-tx", .data = &v3u_data },
{ .compatible = "renesas,r8a779g0-dsi-csi2-tx", .data = &v4h_data },
{ }
};
MODULE_DEVICE_TABLE(of, rcar_mipi_dsi_of_table);
static struct platform_driver rcar_mipi_dsi_platform_driver = {
.probe = rcar_mipi_dsi_probe,
.remove = rcar_mipi_dsi_remove,
.driver = {
.name = "rcar-mipi-dsi",
.of_match_table = rcar_mipi_dsi_of_table,
},
};
module_platform_driver(rcar_mipi_dsi_platform_driver);
MODULE_DESCRIPTION("Renesas R-Car MIPI DSI Encoder Driver");
MODULE_LICENSE("GPL");