linux/arch/m68k/mvme16x/config.c
Finn Thain 43262178c0 m68k: mvme147,mvme16x: Don't wipe PCC timer config bits
Don't clear the timer 1 configuration bits when clearing the interrupt flag
and counter overflow. As Michael reported, "This results in no timer
interrupts being delivered after the first. Initialization then hangs
in calibrate_delay as the jiffies counter is not updated."

On mvme16x, enable the timer after requesting the irq, consistent with
mvme147.

Cc: Michael Pavone <pavone@retrodev.com>
Fixes: 7529b90d051e ("m68k: mvme147: Handle timer counter overflow")
Fixes: 19999a8b8782 ("m68k: mvme16x: Handle timer counter overflow")
Reported-and-tested-by: Michael Pavone <pavone@retrodev.com>
Signed-off-by: Finn Thain <fthain@telegraphics.com.au>
Link: https://lore.kernel.org/r/4fdaa113db089b8fb607f7dd818479f8cdcc4547.1617089871.git.fthain@telegraphics.com.au
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
2021-04-06 09:33:20 +02:00

454 lines
11 KiB
C

/*
* arch/m68k/mvme16x/config.c
*
* Copyright (C) 1995 Richard Hirst [richard@sleepie.demon.co.uk]
*
* Based on:
*
* linux/amiga/config.c
*
* Copyright (C) 1993 Hamish Macdonald
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file README.legal in the main directory of this archive
* for more details.
*/
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/seq_file.h>
#include <linux/tty.h>
#include <linux/clocksource.h>
#include <linux/console.h>
#include <linux/linkage.h>
#include <linux/init.h>
#include <linux/major.h>
#include <linux/genhd.h>
#include <linux/rtc.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <asm/bootinfo.h>
#include <asm/bootinfo-vme.h>
#include <asm/byteorder.h>
#include <asm/setup.h>
#include <asm/irq.h>
#include <asm/traps.h>
#include <asm/machdep.h>
#include <asm/mvme16xhw.h>
extern t_bdid mvme_bdid;
static MK48T08ptr_t volatile rtc = (MK48T08ptr_t)MVME_RTC_BASE;
static void mvme16x_get_model(char *model);
extern void mvme16x_sched_init(void);
extern int mvme16x_hwclk (int, struct rtc_time *);
extern void mvme16x_reset (void);
int bcd2int (unsigned char b);
unsigned short mvme16x_config;
EXPORT_SYMBOL(mvme16x_config);
int __init mvme16x_parse_bootinfo(const struct bi_record *bi)
{
uint16_t tag = be16_to_cpu(bi->tag);
if (tag == BI_VME_TYPE || tag == BI_VME_BRDINFO)
return 0;
else
return 1;
}
void mvme16x_reset(void)
{
pr_info("\r\n\nCalled mvme16x_reset\r\n"
"\r\r\r\r\r\r\r\r\r\r\r\r\r\r\r\r\r\r");
/* The string of returns is to delay the reset until the whole
* message is output. Assert reset bit in GCSR */
*(volatile char *)0xfff40107 = 0x80;
}
static void mvme16x_get_model(char *model)
{
p_bdid p = &mvme_bdid;
char suf[4];
suf[1] = p->brdsuffix[0];
suf[2] = p->brdsuffix[1];
suf[3] = '\0';
suf[0] = suf[1] ? '-' : '\0';
sprintf(model, "Motorola MVME%x%s", be16_to_cpu(p->brdno), suf);
}
static void mvme16x_get_hardware_list(struct seq_file *m)
{
uint16_t brdno = be16_to_cpu(mvme_bdid.brdno);
if (brdno == 0x0162 || brdno == 0x0172)
{
unsigned char rev = *(unsigned char *)MVME162_VERSION_REG;
seq_printf (m, "VMEchip2 %spresent\n",
rev & MVME16x_CONFIG_NO_VMECHIP2 ? "NOT " : "");
seq_printf (m, "SCSI interface %spresent\n",
rev & MVME16x_CONFIG_NO_SCSICHIP ? "NOT " : "");
seq_printf (m, "Ethernet i/f %spresent\n",
rev & MVME16x_CONFIG_NO_ETHERNET ? "NOT " : "");
}
}
/*
* This function is called during kernel startup to initialize
* the mvme16x IRQ handling routines. Should probably ensure
* that the base vectors for the VMEChip2 and PCCChip2 are valid.
*/
static void __init mvme16x_init_IRQ (void)
{
m68k_setup_user_interrupt(VEC_USER, 192);
}
#define PCC2CHIP (0xfff42000)
#define PCCSCCMICR (PCC2CHIP + 0x1d)
#define PCCSCCTICR (PCC2CHIP + 0x1e)
#define PCCSCCRICR (PCC2CHIP + 0x1f)
#define PCCTPIACKR (PCC2CHIP + 0x25)
#ifdef CONFIG_EARLY_PRINTK
/**** cd2401 registers ****/
#define CD2401_ADDR (0xfff45000)
#define CyGFRCR (0x81)
#define CyCCR (0x13)
#define CyCLR_CHAN (0x40)
#define CyINIT_CHAN (0x20)
#define CyCHIP_RESET (0x10)
#define CyENB_XMTR (0x08)
#define CyDIS_XMTR (0x04)
#define CyENB_RCVR (0x02)
#define CyDIS_RCVR (0x01)
#define CyCAR (0xee)
#define CyIER (0x11)
#define CyMdmCh (0x80)
#define CyRxExc (0x20)
#define CyRxData (0x08)
#define CyTxMpty (0x02)
#define CyTxRdy (0x01)
#define CyLICR (0x26)
#define CyRISR (0x89)
#define CyTIMEOUT (0x80)
#define CySPECHAR (0x70)
#define CyOVERRUN (0x08)
#define CyPARITY (0x04)
#define CyFRAME (0x02)
#define CyBREAK (0x01)
#define CyREOIR (0x84)
#define CyTEOIR (0x85)
#define CyMEOIR (0x86)
#define CyNOTRANS (0x08)
#define CyRFOC (0x30)
#define CyRDR (0xf8)
#define CyTDR (0xf8)
#define CyMISR (0x8b)
#define CyRISR (0x89)
#define CyTISR (0x8a)
#define CyMSVR1 (0xde)
#define CyMSVR2 (0xdf)
#define CyDSR (0x80)
#define CyDCD (0x40)
#define CyCTS (0x20)
#define CyDTR (0x02)
#define CyRTS (0x01)
#define CyRTPRL (0x25)
#define CyRTPRH (0x24)
#define CyCOR1 (0x10)
#define CyPARITY_NONE (0x00)
#define CyPARITY_E (0x40)
#define CyPARITY_O (0xC0)
#define Cy_5_BITS (0x04)
#define Cy_6_BITS (0x05)
#define Cy_7_BITS (0x06)
#define Cy_8_BITS (0x07)
#define CyCOR2 (0x17)
#define CyETC (0x20)
#define CyCtsAE (0x02)
#define CyCOR3 (0x16)
#define Cy_1_STOP (0x02)
#define Cy_2_STOP (0x04)
#define CyCOR4 (0x15)
#define CyREC_FIFO (0x0F) /* Receive FIFO threshold */
#define CyCOR5 (0x14)
#define CyCOR6 (0x18)
#define CyCOR7 (0x07)
#define CyRBPR (0xcb)
#define CyRCOR (0xc8)
#define CyTBPR (0xc3)
#define CyTCOR (0xc0)
#define CySCHR1 (0x1f)
#define CySCHR2 (0x1e)
#define CyTPR (0xda)
#define CyPILR1 (0xe3)
#define CyPILR2 (0xe0)
#define CyPILR3 (0xe1)
#define CyCMR (0x1b)
#define CyASYNC (0x02)
#define CyLICR (0x26)
#define CyLIVR (0x09)
#define CySCRL (0x23)
#define CySCRH (0x22)
#define CyTFTC (0x80)
void mvme16x_cons_write(struct console *co, const char *str, unsigned count)
{
volatile unsigned char *base_addr = (u_char *)CD2401_ADDR;
volatile u_char sink;
u_char ier;
int port;
u_char do_lf = 0;
int i = 0;
/* Ensure transmitter is enabled! */
port = 0;
base_addr[CyCAR] = (u_char)port;
while (base_addr[CyCCR])
;
base_addr[CyCCR] = CyENB_XMTR;
ier = base_addr[CyIER];
base_addr[CyIER] = CyTxMpty;
while (1) {
if (in_8(PCCSCCTICR) & 0x20)
{
/* We have a Tx int. Acknowledge it */
sink = in_8(PCCTPIACKR);
if ((base_addr[CyLICR] >> 2) == port) {
if (i == count) {
/* Last char of string is now output */
base_addr[CyTEOIR] = CyNOTRANS;
break;
}
if (do_lf) {
base_addr[CyTDR] = '\n';
str++;
i++;
do_lf = 0;
}
else if (*str == '\n') {
base_addr[CyTDR] = '\r';
do_lf = 1;
}
else {
base_addr[CyTDR] = *str++;
i++;
}
base_addr[CyTEOIR] = 0;
}
else
base_addr[CyTEOIR] = CyNOTRANS;
}
}
base_addr[CyIER] = ier;
}
#endif
void __init config_mvme16x(void)
{
p_bdid p = &mvme_bdid;
char id[40];
uint16_t brdno = be16_to_cpu(p->brdno);
mach_sched_init = mvme16x_sched_init;
mach_init_IRQ = mvme16x_init_IRQ;
mach_hwclk = mvme16x_hwclk;
mach_reset = mvme16x_reset;
mach_get_model = mvme16x_get_model;
mach_get_hardware_list = mvme16x_get_hardware_list;
/* Report board revision */
if (strncmp("BDID", p->bdid, 4))
{
pr_crit("Bug call .BRD_ID returned garbage - giving up\n");
while (1)
;
}
/* Board type is only set by newer versions of vmelilo/tftplilo */
if (vme_brdtype == 0)
vme_brdtype = brdno;
mvme16x_get_model(id);
pr_info("BRD_ID: %s BUG %x.%x %02x/%02x/%02x\n", id, p->rev >> 4,
p->rev & 0xf, p->yr, p->mth, p->day);
if (brdno == 0x0162 || brdno == 0x172)
{
unsigned char rev = *(unsigned char *)MVME162_VERSION_REG;
mvme16x_config = rev | MVME16x_CONFIG_GOT_SCCA;
pr_info("MVME%x Hardware status:\n", brdno);
pr_info(" CPU Type 68%s040\n",
rev & MVME16x_CONFIG_GOT_FPU ? "" : "LC");
pr_info(" CPU clock %dMHz\n",
rev & MVME16x_CONFIG_SPEED_32 ? 32 : 25);
pr_info(" VMEchip2 %spresent\n",
rev & MVME16x_CONFIG_NO_VMECHIP2 ? "NOT " : "");
pr_info(" SCSI interface %spresent\n",
rev & MVME16x_CONFIG_NO_SCSICHIP ? "NOT " : "");
pr_info(" Ethernet interface %spresent\n",
rev & MVME16x_CONFIG_NO_ETHERNET ? "NOT " : "");
}
else
{
mvme16x_config = MVME16x_CONFIG_GOT_LP | MVME16x_CONFIG_GOT_CD2401;
}
}
static irqreturn_t mvme16x_abort_int (int irq, void *dev_id)
{
unsigned long *new = (unsigned long *)vectors;
unsigned long *old = (unsigned long *)0xffe00000;
volatile unsigned char uc, *ucp;
uint16_t brdno = be16_to_cpu(mvme_bdid.brdno);
if (brdno == 0x0162 || brdno == 0x172)
{
ucp = (volatile unsigned char *)0xfff42043;
uc = *ucp | 8;
*ucp = uc;
}
else
{
*(volatile unsigned long *)0xfff40074 = 0x40000000;
}
*(new+4) = *(old+4); /* Illegal instruction */
*(new+9) = *(old+9); /* Trace */
*(new+47) = *(old+47); /* Trap #15 */
if (brdno == 0x0162 || brdno == 0x172)
*(new+0x5e) = *(old+0x5e); /* ABORT switch */
else
*(new+0x6e) = *(old+0x6e); /* ABORT switch */
return IRQ_HANDLED;
}
static u64 mvme16x_read_clk(struct clocksource *cs);
static struct clocksource mvme16x_clk = {
.name = "pcc",
.rating = 250,
.read = mvme16x_read_clk,
.mask = CLOCKSOURCE_MASK(32),
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
};
static u32 clk_total;
#define PCC_TIMER_CLOCK_FREQ 1000000
#define PCC_TIMER_CYCLES (PCC_TIMER_CLOCK_FREQ / HZ)
#define PCCTCMP1 (PCC2CHIP + 0x04)
#define PCCTCNT1 (PCC2CHIP + 0x08)
#define PCCTOVR1 (PCC2CHIP + 0x17)
#define PCCTIC1 (PCC2CHIP + 0x1b)
#define PCCTOVR1_TIC_EN 0x01
#define PCCTOVR1_COC_EN 0x02
#define PCCTOVR1_OVR_CLR 0x04
#define PCCTIC1_INT_LEVEL 6
#define PCCTIC1_INT_CLR 0x08
#define PCCTIC1_INT_EN 0x10
static irqreturn_t mvme16x_timer_int (int irq, void *dev_id)
{
unsigned long flags;
local_irq_save(flags);
out_8(PCCTOVR1, PCCTOVR1_OVR_CLR | PCCTOVR1_TIC_EN | PCCTOVR1_COC_EN);
out_8(PCCTIC1, PCCTIC1_INT_EN | PCCTIC1_INT_CLR | PCCTIC1_INT_LEVEL);
clk_total += PCC_TIMER_CYCLES;
legacy_timer_tick(1);
local_irq_restore(flags);
return IRQ_HANDLED;
}
void mvme16x_sched_init(void)
{
uint16_t brdno = be16_to_cpu(mvme_bdid.brdno);
int irq;
/* Using PCCchip2 or MC2 chip tick timer 1 */
if (request_irq(MVME16x_IRQ_TIMER, mvme16x_timer_int, IRQF_TIMER, "timer",
NULL))
panic ("Couldn't register timer int");
out_be32(PCCTCNT1, 0);
out_be32(PCCTCMP1, PCC_TIMER_CYCLES);
out_8(PCCTOVR1, PCCTOVR1_OVR_CLR | PCCTOVR1_TIC_EN | PCCTOVR1_COC_EN);
out_8(PCCTIC1, PCCTIC1_INT_EN | PCCTIC1_INT_CLR | PCCTIC1_INT_LEVEL);
clocksource_register_hz(&mvme16x_clk, PCC_TIMER_CLOCK_FREQ);
if (brdno == 0x0162 || brdno == 0x172)
irq = MVME162_IRQ_ABORT;
else
irq = MVME167_IRQ_ABORT;
if (request_irq(irq, mvme16x_abort_int, 0,
"abort", mvme16x_abort_int))
panic ("Couldn't register abort int");
}
static u64 mvme16x_read_clk(struct clocksource *cs)
{
unsigned long flags;
u8 overflow, tmp;
u32 ticks;
local_irq_save(flags);
tmp = in_8(PCCTOVR1) >> 4;
ticks = in_be32(PCCTCNT1);
overflow = in_8(PCCTOVR1) >> 4;
if (overflow != tmp)
ticks = in_be32(PCCTCNT1);
ticks += overflow * PCC_TIMER_CYCLES;
ticks += clk_total;
local_irq_restore(flags);
return ticks;
}
int bcd2int (unsigned char b)
{
return ((b>>4)*10 + (b&15));
}
int mvme16x_hwclk(int op, struct rtc_time *t)
{
#warning check me!
if (!op) {
rtc->ctrl = RTC_READ;
t->tm_year = bcd2int (rtc->bcd_year);
t->tm_mon = bcd2int(rtc->bcd_mth) - 1;
t->tm_mday = bcd2int (rtc->bcd_dom);
t->tm_hour = bcd2int (rtc->bcd_hr);
t->tm_min = bcd2int (rtc->bcd_min);
t->tm_sec = bcd2int (rtc->bcd_sec);
rtc->ctrl = 0;
if (t->tm_year < 70)
t->tm_year += 100;
}
return 0;
}