9141d30a48
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
523 lines
14 KiB
C
523 lines
14 KiB
C
/*
|
|
* arch/sh/kernel/time_64.c
|
|
*
|
|
* Copyright (C) 2000, 2001 Paolo Alberelli
|
|
* Copyright (C) 2003 - 2007 Paul Mundt
|
|
* Copyright (C) 2003 Richard Curnow
|
|
*
|
|
* Original TMU/RTC code taken from sh version.
|
|
* Copyright (C) 1999 Tetsuya Okada & Niibe Yutaka
|
|
* Some code taken from i386 version.
|
|
* Copyright (C) 1991, 1992, 1995 Linus Torvalds
|
|
*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file "COPYING" in the main directory of this archive
|
|
* for more details.
|
|
*/
|
|
#include <linux/errno.h>
|
|
#include <linux/rwsem.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/param.h>
|
|
#include <linux/string.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/time.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/init.h>
|
|
#include <linux/profile.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/module.h>
|
|
#include <linux/bcd.h>
|
|
#include <linux/timex.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/io.h>
|
|
#include <linux/platform_device.h>
|
|
#include <asm/cpu/registers.h> /* required by inline __asm__ stmt. */
|
|
#include <asm/cpu/irq.h>
|
|
#include <asm/addrspace.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/delay.h>
|
|
|
|
#define TMU_TOCR_INIT 0x00
|
|
#define TMU0_TCR_INIT 0x0020
|
|
#define TMU_TSTR_INIT 1
|
|
#define TMU_TSTR_OFF 0
|
|
|
|
/* Real Time Clock */
|
|
#define RTC_BLOCK_OFF 0x01040000
|
|
#define RTC_BASE PHYS_PERIPHERAL_BLOCK + RTC_BLOCK_OFF
|
|
#define RTC_RCR1_CIE 0x10 /* Carry Interrupt Enable */
|
|
#define RTC_RCR1 (rtc_base + 0x38)
|
|
|
|
/* Clock, Power and Reset Controller */
|
|
#define CPRC_BLOCK_OFF 0x01010000
|
|
#define CPRC_BASE PHYS_PERIPHERAL_BLOCK + CPRC_BLOCK_OFF
|
|
|
|
#define FRQCR (cprc_base+0x0)
|
|
#define WTCSR (cprc_base+0x0018)
|
|
#define STBCR (cprc_base+0x0030)
|
|
|
|
/* Time Management Unit */
|
|
#define TMU_BLOCK_OFF 0x01020000
|
|
#define TMU_BASE PHYS_PERIPHERAL_BLOCK + TMU_BLOCK_OFF
|
|
#define TMU0_BASE tmu_base + 0x8 + (0xc * 0x0)
|
|
#define TMU1_BASE tmu_base + 0x8 + (0xc * 0x1)
|
|
#define TMU2_BASE tmu_base + 0x8 + (0xc * 0x2)
|
|
|
|
#define TMU_TOCR tmu_base+0x0 /* Byte access */
|
|
#define TMU_TSTR tmu_base+0x4 /* Byte access */
|
|
|
|
#define TMU0_TCOR TMU0_BASE+0x0 /* Long access */
|
|
#define TMU0_TCNT TMU0_BASE+0x4 /* Long access */
|
|
#define TMU0_TCR TMU0_BASE+0x8 /* Word access */
|
|
|
|
#define TICK_SIZE (tick_nsec / 1000)
|
|
|
|
static unsigned long tmu_base, rtc_base;
|
|
unsigned long cprc_base;
|
|
|
|
/* Variables to allow interpolation of time of day to resolution better than a
|
|
* jiffy. */
|
|
|
|
/* This is effectively protected by xtime_lock */
|
|
static unsigned long ctc_last_interrupt;
|
|
static unsigned long long usecs_per_jiffy = 1000000/HZ; /* Approximation */
|
|
|
|
#define CTC_JIFFY_SCALE_SHIFT 40
|
|
|
|
/* 2**CTC_JIFFY_SCALE_SHIFT / ctc_ticks_per_jiffy */
|
|
static unsigned long long scaled_recip_ctc_ticks_per_jiffy;
|
|
|
|
/* Estimate number of microseconds that have elapsed since the last timer tick,
|
|
by scaling the delta that has occurred in the CTC register.
|
|
|
|
WARNING WARNING WARNING : This algorithm relies on the CTC decrementing at
|
|
the CPU clock rate. If the CPU sleeps, the CTC stops counting. Bear this
|
|
in mind if enabling SLEEP_WORKS in process.c. In that case, this algorithm
|
|
probably needs to use TMU.TCNT0 instead. This will work even if the CPU is
|
|
sleeping, though will be coarser.
|
|
|
|
FIXME : What if usecs_per_tick is moving around too much, e.g. if an adjtime
|
|
is running or if the freq or tick arguments of adjtimex are modified after
|
|
we have calibrated the scaling factor? This will result in either a jump at
|
|
the end of a tick period, or a wrap backwards at the start of the next one,
|
|
if the application is reading the time of day often enough. I think we
|
|
ought to do better than this. For this reason, usecs_per_jiffy is left
|
|
separated out in the calculation below. This allows some future hook into
|
|
the adjtime-related stuff in kernel/timer.c to remove this hazard.
|
|
|
|
*/
|
|
|
|
static unsigned long usecs_since_tick(void)
|
|
{
|
|
unsigned long long current_ctc;
|
|
long ctc_ticks_since_interrupt;
|
|
unsigned long long ull_ctc_ticks_since_interrupt;
|
|
unsigned long result;
|
|
|
|
unsigned long long mul1_out;
|
|
unsigned long long mul1_out_high;
|
|
unsigned long long mul2_out_low, mul2_out_high;
|
|
|
|
/* Read CTC register */
|
|
asm ("getcon cr62, %0" : "=r" (current_ctc));
|
|
/* Note, the CTC counts down on each CPU clock, not up.
|
|
Note(2), use long type to get correct wraparound arithmetic when
|
|
the counter crosses zero. */
|
|
ctc_ticks_since_interrupt = (long) ctc_last_interrupt - (long) current_ctc;
|
|
ull_ctc_ticks_since_interrupt = (unsigned long long) ctc_ticks_since_interrupt;
|
|
|
|
/* Inline assembly to do 32x32x32->64 multiplier */
|
|
asm volatile ("mulu.l %1, %2, %0" :
|
|
"=r" (mul1_out) :
|
|
"r" (ull_ctc_ticks_since_interrupt), "r" (usecs_per_jiffy));
|
|
|
|
mul1_out_high = mul1_out >> 32;
|
|
|
|
asm volatile ("mulu.l %1, %2, %0" :
|
|
"=r" (mul2_out_low) :
|
|
"r" (mul1_out), "r" (scaled_recip_ctc_ticks_per_jiffy));
|
|
|
|
#if 1
|
|
asm volatile ("mulu.l %1, %2, %0" :
|
|
"=r" (mul2_out_high) :
|
|
"r" (mul1_out_high), "r" (scaled_recip_ctc_ticks_per_jiffy));
|
|
#endif
|
|
|
|
result = (unsigned long) (((mul2_out_high << 32) + mul2_out_low) >> CTC_JIFFY_SCALE_SHIFT);
|
|
|
|
return result;
|
|
}
|
|
|
|
void do_gettimeofday(struct timeval *tv)
|
|
{
|
|
unsigned long flags;
|
|
unsigned long seq;
|
|
unsigned long usec, sec;
|
|
|
|
do {
|
|
seq = read_seqbegin_irqsave(&xtime_lock, flags);
|
|
usec = usecs_since_tick();
|
|
sec = xtime.tv_sec;
|
|
usec += xtime.tv_nsec / 1000;
|
|
} while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
|
|
|
|
while (usec >= 1000000) {
|
|
usec -= 1000000;
|
|
sec++;
|
|
}
|
|
|
|
tv->tv_sec = sec;
|
|
tv->tv_usec = usec;
|
|
}
|
|
|
|
int do_settimeofday(struct timespec *tv)
|
|
{
|
|
time_t wtm_sec, sec = tv->tv_sec;
|
|
long wtm_nsec, nsec = tv->tv_nsec;
|
|
|
|
if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
|
|
return -EINVAL;
|
|
|
|
write_seqlock_irq(&xtime_lock);
|
|
/*
|
|
* This is revolting. We need to set "xtime" correctly. However, the
|
|
* value in this location is the value at the most recent update of
|
|
* wall time. Discover what correction gettimeofday() would have
|
|
* made, and then undo it!
|
|
*/
|
|
nsec -= 1000 * usecs_since_tick();
|
|
|
|
wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
|
|
wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
|
|
|
|
set_normalized_timespec(&xtime, sec, nsec);
|
|
set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
|
|
|
|
ntp_clear();
|
|
write_sequnlock_irq(&xtime_lock);
|
|
clock_was_set();
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(do_settimeofday);
|
|
|
|
/* Dummy RTC ops */
|
|
static void null_rtc_get_time(struct timespec *tv)
|
|
{
|
|
tv->tv_sec = mktime(2000, 1, 1, 0, 0, 0);
|
|
tv->tv_nsec = 0;
|
|
}
|
|
|
|
static int null_rtc_set_time(const time_t secs)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
void (*rtc_sh_get_time)(struct timespec *) = null_rtc_get_time;
|
|
int (*rtc_sh_set_time)(const time_t) = null_rtc_set_time;
|
|
|
|
/* last time the RTC clock got updated */
|
|
static long last_rtc_update;
|
|
|
|
/*
|
|
* timer_interrupt() needs to keep up the real-time clock,
|
|
* as well as call the "do_timer()" routine every clocktick
|
|
*/
|
|
static inline void do_timer_interrupt(void)
|
|
{
|
|
unsigned long long current_ctc;
|
|
|
|
if (current->pid)
|
|
profile_tick(CPU_PROFILING);
|
|
|
|
/*
|
|
* Here we are in the timer irq handler. We just have irqs locally
|
|
* disabled but we don't know if the timer_bh is running on the other
|
|
* CPU. We need to avoid to SMP race with it. NOTE: we don' t need
|
|
* the irq version of write_lock because as just said we have irq
|
|
* locally disabled. -arca
|
|
*/
|
|
write_seqlock(&xtime_lock);
|
|
asm ("getcon cr62, %0" : "=r" (current_ctc));
|
|
ctc_last_interrupt = (unsigned long) current_ctc;
|
|
|
|
do_timer(1);
|
|
|
|
#ifdef CONFIG_HEARTBEAT
|
|
if (sh_mv.mv_heartbeat != NULL)
|
|
sh_mv.mv_heartbeat();
|
|
#endif
|
|
|
|
/*
|
|
* If we have an externally synchronized Linux clock, then update
|
|
* RTC clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
|
|
* called as close as possible to 500 ms before the new second starts.
|
|
*/
|
|
if (ntp_synced() &&
|
|
xtime.tv_sec > last_rtc_update + 660 &&
|
|
(xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 &&
|
|
(xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) {
|
|
if (rtc_sh_set_time(xtime.tv_sec) == 0)
|
|
last_rtc_update = xtime.tv_sec;
|
|
else
|
|
/* do it again in 60 s */
|
|
last_rtc_update = xtime.tv_sec - 600;
|
|
}
|
|
write_sequnlock(&xtime_lock);
|
|
|
|
#ifndef CONFIG_SMP
|
|
update_process_times(user_mode(get_irq_regs()));
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* This is the same as the above, except we _also_ save the current
|
|
* Time Stamp Counter value at the time of the timer interrupt, so that
|
|
* we later on can estimate the time of day more exactly.
|
|
*/
|
|
static irqreturn_t timer_interrupt(int irq, void *dev_id)
|
|
{
|
|
unsigned long timer_status;
|
|
|
|
/* Clear UNF bit */
|
|
timer_status = ctrl_inw(TMU0_TCR);
|
|
timer_status &= ~0x100;
|
|
ctrl_outw(timer_status, TMU0_TCR);
|
|
|
|
do_timer_interrupt();
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
|
|
static __init unsigned int get_cpu_hz(void)
|
|
{
|
|
unsigned int count;
|
|
unsigned long __dummy;
|
|
unsigned long ctc_val_init, ctc_val;
|
|
|
|
/*
|
|
** Regardless the toolchain, force the compiler to use the
|
|
** arbitrary register r3 as a clock tick counter.
|
|
** NOTE: r3 must be in accordance with sh64_rtc_interrupt()
|
|
*/
|
|
register unsigned long long __rtc_irq_flag __asm__ ("r3");
|
|
|
|
local_irq_enable();
|
|
do {} while (ctrl_inb(rtc_base) != 0);
|
|
ctrl_outb(RTC_RCR1_CIE, RTC_RCR1); /* Enable carry interrupt */
|
|
|
|
/*
|
|
* r3 is arbitrary. CDC does not support "=z".
|
|
*/
|
|
ctc_val_init = 0xffffffff;
|
|
ctc_val = ctc_val_init;
|
|
|
|
asm volatile("gettr tr0, %1\n\t"
|
|
"putcon %0, " __CTC "\n\t"
|
|
"and %2, r63, %2\n\t"
|
|
"pta $+4, tr0\n\t"
|
|
"beq/l %2, r63, tr0\n\t"
|
|
"ptabs %1, tr0\n\t"
|
|
"getcon " __CTC ", %0\n\t"
|
|
: "=r"(ctc_val), "=r" (__dummy), "=r" (__rtc_irq_flag)
|
|
: "0" (0));
|
|
local_irq_disable();
|
|
/*
|
|
* SH-3:
|
|
* CPU clock = 4 stages * loop
|
|
* tst rm,rm if id ex
|
|
* bt/s 1b if id ex
|
|
* add #1,rd if id ex
|
|
* (if) pipe line stole
|
|
* tst rm,rm if id ex
|
|
* ....
|
|
*
|
|
*
|
|
* SH-4:
|
|
* CPU clock = 6 stages * loop
|
|
* I don't know why.
|
|
* ....
|
|
*
|
|
* SH-5:
|
|
* Use CTC register to count. This approach returns the right value
|
|
* even if the I-cache is disabled (e.g. whilst debugging.)
|
|
*
|
|
*/
|
|
|
|
count = ctc_val_init - ctc_val; /* CTC counts down */
|
|
|
|
/*
|
|
* This really is count by the number of clock cycles
|
|
* by the ratio between a complete R64CNT
|
|
* wrap-around (128) and CUI interrupt being raised (64).
|
|
*/
|
|
return count*2;
|
|
}
|
|
|
|
static irqreturn_t sh64_rtc_interrupt(int irq, void *dev_id)
|
|
{
|
|
struct pt_regs *regs = get_irq_regs();
|
|
|
|
ctrl_outb(0, RTC_RCR1); /* Disable Carry Interrupts */
|
|
regs->regs[3] = 1; /* Using r3 */
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static struct irqaction irq0 = {
|
|
.handler = timer_interrupt,
|
|
.flags = IRQF_DISABLED,
|
|
.mask = CPU_MASK_NONE,
|
|
.name = "timer",
|
|
};
|
|
static struct irqaction irq1 = {
|
|
.handler = sh64_rtc_interrupt,
|
|
.flags = IRQF_DISABLED,
|
|
.mask = CPU_MASK_NONE,
|
|
.name = "rtc",
|
|
};
|
|
|
|
void __init time_init(void)
|
|
{
|
|
unsigned int cpu_clock, master_clock, bus_clock, module_clock;
|
|
unsigned long interval;
|
|
unsigned long frqcr, ifc, pfc;
|
|
static int ifc_table[] = { 2, 4, 6, 8, 10, 12, 16, 24 };
|
|
#define bfc_table ifc_table /* Same */
|
|
#define pfc_table ifc_table /* Same */
|
|
|
|
tmu_base = onchip_remap(TMU_BASE, 1024, "TMU");
|
|
if (!tmu_base) {
|
|
panic("Unable to remap TMU\n");
|
|
}
|
|
|
|
rtc_base = onchip_remap(RTC_BASE, 1024, "RTC");
|
|
if (!rtc_base) {
|
|
panic("Unable to remap RTC\n");
|
|
}
|
|
|
|
cprc_base = onchip_remap(CPRC_BASE, 1024, "CPRC");
|
|
if (!cprc_base) {
|
|
panic("Unable to remap CPRC\n");
|
|
}
|
|
|
|
rtc_sh_get_time(&xtime);
|
|
|
|
setup_irq(TIMER_IRQ, &irq0);
|
|
setup_irq(RTC_IRQ, &irq1);
|
|
|
|
/* Check how fast it is.. */
|
|
cpu_clock = get_cpu_hz();
|
|
|
|
/* Note careful order of operations to maintain reasonable precision and avoid overflow. */
|
|
scaled_recip_ctc_ticks_per_jiffy = ((1ULL << CTC_JIFFY_SCALE_SHIFT) / (unsigned long long)(cpu_clock / HZ));
|
|
|
|
free_irq(RTC_IRQ, NULL);
|
|
|
|
printk("CPU clock: %d.%02dMHz\n",
|
|
(cpu_clock / 1000000), (cpu_clock % 1000000)/10000);
|
|
{
|
|
unsigned short bfc;
|
|
frqcr = ctrl_inl(FRQCR);
|
|
ifc = ifc_table[(frqcr>> 6) & 0x0007];
|
|
bfc = bfc_table[(frqcr>> 3) & 0x0007];
|
|
pfc = pfc_table[(frqcr>> 12) & 0x0007];
|
|
master_clock = cpu_clock * ifc;
|
|
bus_clock = master_clock/bfc;
|
|
}
|
|
|
|
printk("Bus clock: %d.%02dMHz\n",
|
|
(bus_clock/1000000), (bus_clock % 1000000)/10000);
|
|
module_clock = master_clock/pfc;
|
|
printk("Module clock: %d.%02dMHz\n",
|
|
(module_clock/1000000), (module_clock % 1000000)/10000);
|
|
interval = (module_clock/(HZ*4));
|
|
|
|
printk("Interval = %ld\n", interval);
|
|
|
|
current_cpu_data.cpu_clock = cpu_clock;
|
|
current_cpu_data.master_clock = master_clock;
|
|
current_cpu_data.bus_clock = bus_clock;
|
|
current_cpu_data.module_clock = module_clock;
|
|
|
|
/* Start TMU0 */
|
|
ctrl_outb(TMU_TSTR_OFF, TMU_TSTR);
|
|
ctrl_outb(TMU_TOCR_INIT, TMU_TOCR);
|
|
ctrl_outw(TMU0_TCR_INIT, TMU0_TCR);
|
|
ctrl_outl(interval, TMU0_TCOR);
|
|
ctrl_outl(interval, TMU0_TCNT);
|
|
ctrl_outb(TMU_TSTR_INIT, TMU_TSTR);
|
|
}
|
|
|
|
void enter_deep_standby(void)
|
|
{
|
|
/* Disable watchdog timer */
|
|
ctrl_outl(0xa5000000, WTCSR);
|
|
/* Configure deep standby on sleep */
|
|
ctrl_outl(0x03, STBCR);
|
|
|
|
#ifdef CONFIG_SH_ALPHANUMERIC
|
|
{
|
|
extern void mach_alphanum(int position, unsigned char value);
|
|
extern void mach_alphanum_brightness(int setting);
|
|
char halted[] = "Halted. ";
|
|
int i;
|
|
mach_alphanum_brightness(6); /* dimmest setting above off */
|
|
for (i=0; i<8; i++) {
|
|
mach_alphanum(i, halted[i]);
|
|
}
|
|
asm __volatile__ ("synco");
|
|
}
|
|
#endif
|
|
|
|
asm __volatile__ ("sleep");
|
|
asm __volatile__ ("synci");
|
|
asm __volatile__ ("nop");
|
|
asm __volatile__ ("nop");
|
|
asm __volatile__ ("nop");
|
|
asm __volatile__ ("nop");
|
|
panic("Unexpected wakeup!\n");
|
|
}
|
|
|
|
static struct resource rtc_resources[] = {
|
|
[0] = {
|
|
/* RTC base, filled in by rtc_init */
|
|
.flags = IORESOURCE_IO,
|
|
},
|
|
[1] = {
|
|
/* Period IRQ */
|
|
.start = IRQ_PRI,
|
|
.flags = IORESOURCE_IRQ,
|
|
},
|
|
[2] = {
|
|
/* Carry IRQ */
|
|
.start = IRQ_CUI,
|
|
.flags = IORESOURCE_IRQ,
|
|
},
|
|
[3] = {
|
|
/* Alarm IRQ */
|
|
.start = IRQ_ATI,
|
|
.flags = IORESOURCE_IRQ,
|
|
},
|
|
};
|
|
|
|
static struct platform_device rtc_device = {
|
|
.name = "sh-rtc",
|
|
.id = -1,
|
|
.num_resources = ARRAY_SIZE(rtc_resources),
|
|
.resource = rtc_resources,
|
|
};
|
|
|
|
static int __init rtc_init(void)
|
|
{
|
|
rtc_resources[0].start = rtc_base;
|
|
rtc_resources[0].end = rtc_resources[0].start + 0x58 - 1;
|
|
|
|
return platform_device_register(&rtc_device);
|
|
}
|
|
device_initcall(rtc_init);
|