9166b41db1
better describes what it's for, and we're going to call a new lock usage_lock Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
1480 lines
34 KiB
C
1480 lines
34 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
#include "bcachefs.h"
|
|
#include "alloc_background.h"
|
|
#include "alloc_foreground.h"
|
|
#include "btree_cache.h"
|
|
#include "btree_io.h"
|
|
#include "btree_update.h"
|
|
#include "btree_update_interior.h"
|
|
#include "btree_gc.h"
|
|
#include "buckets.h"
|
|
#include "clock.h"
|
|
#include "debug.h"
|
|
#include "ec.h"
|
|
#include "error.h"
|
|
#include "journal_io.h"
|
|
#include "trace.h"
|
|
|
|
#include <linux/kthread.h>
|
|
#include <linux/math64.h>
|
|
#include <linux/random.h>
|
|
#include <linux/rculist.h>
|
|
#include <linux/rcupdate.h>
|
|
#include <linux/sched/task.h>
|
|
#include <linux/sort.h>
|
|
|
|
static const char * const bch2_alloc_field_names[] = {
|
|
#define x(name, bytes) #name,
|
|
BCH_ALLOC_FIELDS()
|
|
#undef x
|
|
NULL
|
|
};
|
|
|
|
static void bch2_recalc_oldest_io(struct bch_fs *, struct bch_dev *, int);
|
|
|
|
/* Ratelimiting/PD controllers */
|
|
|
|
static void pd_controllers_update(struct work_struct *work)
|
|
{
|
|
struct bch_fs *c = container_of(to_delayed_work(work),
|
|
struct bch_fs,
|
|
pd_controllers_update);
|
|
struct bch_dev *ca;
|
|
unsigned i;
|
|
|
|
for_each_member_device(ca, c, i) {
|
|
struct bch_dev_usage stats = bch2_dev_usage_read(c, ca);
|
|
|
|
u64 free = bucket_to_sector(ca,
|
|
__dev_buckets_free(ca, stats)) << 9;
|
|
/*
|
|
* Bytes of internal fragmentation, which can be
|
|
* reclaimed by copy GC
|
|
*/
|
|
s64 fragmented = (bucket_to_sector(ca,
|
|
stats.buckets[BCH_DATA_USER] +
|
|
stats.buckets[BCH_DATA_CACHED]) -
|
|
(stats.sectors[BCH_DATA_USER] +
|
|
stats.sectors[BCH_DATA_CACHED])) << 9;
|
|
|
|
fragmented = max(0LL, fragmented);
|
|
|
|
bch2_pd_controller_update(&ca->copygc_pd,
|
|
free, fragmented, -1);
|
|
}
|
|
|
|
schedule_delayed_work(&c->pd_controllers_update,
|
|
c->pd_controllers_update_seconds * HZ);
|
|
}
|
|
|
|
/* Persistent alloc info: */
|
|
|
|
static inline u64 get_alloc_field(const struct bch_alloc *a,
|
|
const void **p, unsigned field)
|
|
{
|
|
unsigned bytes = BCH_ALLOC_FIELD_BYTES[field];
|
|
u64 v;
|
|
|
|
if (!(a->fields & (1 << field)))
|
|
return 0;
|
|
|
|
switch (bytes) {
|
|
case 1:
|
|
v = *((const u8 *) *p);
|
|
break;
|
|
case 2:
|
|
v = le16_to_cpup(*p);
|
|
break;
|
|
case 4:
|
|
v = le32_to_cpup(*p);
|
|
break;
|
|
case 8:
|
|
v = le64_to_cpup(*p);
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
*p += bytes;
|
|
return v;
|
|
}
|
|
|
|
static inline void put_alloc_field(struct bkey_i_alloc *a, void **p,
|
|
unsigned field, u64 v)
|
|
{
|
|
unsigned bytes = BCH_ALLOC_FIELD_BYTES[field];
|
|
|
|
if (!v)
|
|
return;
|
|
|
|
a->v.fields |= 1 << field;
|
|
|
|
switch (bytes) {
|
|
case 1:
|
|
*((u8 *) *p) = v;
|
|
break;
|
|
case 2:
|
|
*((__le16 *) *p) = cpu_to_le16(v);
|
|
break;
|
|
case 4:
|
|
*((__le32 *) *p) = cpu_to_le32(v);
|
|
break;
|
|
case 8:
|
|
*((__le64 *) *p) = cpu_to_le64(v);
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
*p += bytes;
|
|
}
|
|
|
|
static unsigned bch_alloc_val_u64s(const struct bch_alloc *a)
|
|
{
|
|
unsigned i, bytes = offsetof(struct bch_alloc, data);
|
|
|
|
for (i = 0; i < ARRAY_SIZE(BCH_ALLOC_FIELD_BYTES); i++)
|
|
if (a->fields & (1 << i))
|
|
bytes += BCH_ALLOC_FIELD_BYTES[i];
|
|
|
|
return DIV_ROUND_UP(bytes, sizeof(u64));
|
|
}
|
|
|
|
const char *bch2_alloc_invalid(const struct bch_fs *c, struct bkey_s_c k)
|
|
{
|
|
struct bkey_s_c_alloc a = bkey_s_c_to_alloc(k);
|
|
|
|
if (k.k->p.inode >= c->sb.nr_devices ||
|
|
!c->devs[k.k->p.inode])
|
|
return "invalid device";
|
|
|
|
/* allow for unknown fields */
|
|
if (bkey_val_u64s(a.k) < bch_alloc_val_u64s(a.v))
|
|
return "incorrect value size";
|
|
|
|
return NULL;
|
|
}
|
|
|
|
void bch2_alloc_to_text(struct printbuf *out, struct bch_fs *c,
|
|
struct bkey_s_c k)
|
|
{
|
|
struct bkey_s_c_alloc a = bkey_s_c_to_alloc(k);
|
|
const void *d = a.v->data;
|
|
unsigned i;
|
|
|
|
pr_buf(out, "gen %u", a.v->gen);
|
|
|
|
for (i = 0; i < BCH_ALLOC_FIELD_NR; i++)
|
|
if (a.v->fields & (1 << i))
|
|
pr_buf(out, " %s %llu",
|
|
bch2_alloc_field_names[i],
|
|
get_alloc_field(a.v, &d, i));
|
|
}
|
|
|
|
static void __alloc_read_key(struct bucket *g, const struct bch_alloc *a)
|
|
{
|
|
const void *d = a->data;
|
|
unsigned idx = 0;
|
|
|
|
g->_mark.gen = a->gen;
|
|
g->gen_valid = 1;
|
|
g->io_time[READ] = get_alloc_field(a, &d, idx++);
|
|
g->io_time[WRITE] = get_alloc_field(a, &d, idx++);
|
|
g->_mark.data_type = get_alloc_field(a, &d, idx++);
|
|
g->_mark.dirty_sectors = get_alloc_field(a, &d, idx++);
|
|
g->_mark.cached_sectors = get_alloc_field(a, &d, idx++);
|
|
}
|
|
|
|
static void __alloc_write_key(struct bkey_i_alloc *a, struct bucket *g,
|
|
struct bucket_mark m)
|
|
{
|
|
unsigned idx = 0;
|
|
void *d = a->v.data;
|
|
|
|
a->v.fields = 0;
|
|
a->v.gen = m.gen;
|
|
|
|
d = a->v.data;
|
|
put_alloc_field(a, &d, idx++, g->io_time[READ]);
|
|
put_alloc_field(a, &d, idx++, g->io_time[WRITE]);
|
|
put_alloc_field(a, &d, idx++, m.data_type);
|
|
put_alloc_field(a, &d, idx++, m.dirty_sectors);
|
|
put_alloc_field(a, &d, idx++, m.cached_sectors);
|
|
|
|
set_bkey_val_bytes(&a->k, (void *) d - (void *) &a->v);
|
|
}
|
|
|
|
static void bch2_alloc_read_key(struct bch_fs *c, struct bkey_s_c k)
|
|
{
|
|
struct bch_dev *ca;
|
|
struct bkey_s_c_alloc a;
|
|
|
|
if (k.k->type != KEY_TYPE_alloc)
|
|
return;
|
|
|
|
a = bkey_s_c_to_alloc(k);
|
|
ca = bch_dev_bkey_exists(c, a.k->p.inode);
|
|
|
|
if (a.k->p.offset >= ca->mi.nbuckets)
|
|
return;
|
|
|
|
percpu_down_read(&c->mark_lock);
|
|
__alloc_read_key(bucket(ca, a.k->p.offset), a.v);
|
|
percpu_up_read(&c->mark_lock);
|
|
}
|
|
|
|
int bch2_alloc_read(struct bch_fs *c, struct list_head *journal_replay_list)
|
|
{
|
|
struct journal_replay *r;
|
|
struct btree_iter iter;
|
|
struct bkey_s_c k;
|
|
struct bch_dev *ca;
|
|
unsigned i;
|
|
int ret;
|
|
|
|
for_each_btree_key(&iter, c, BTREE_ID_ALLOC, POS_MIN, 0, k) {
|
|
bch2_alloc_read_key(c, k);
|
|
bch2_btree_iter_cond_resched(&iter);
|
|
}
|
|
|
|
ret = bch2_btree_iter_unlock(&iter);
|
|
if (ret)
|
|
return ret;
|
|
|
|
list_for_each_entry(r, journal_replay_list, list) {
|
|
struct bkey_i *k, *n;
|
|
struct jset_entry *entry;
|
|
|
|
for_each_jset_key(k, n, entry, &r->j)
|
|
if (entry->btree_id == BTREE_ID_ALLOC)
|
|
bch2_alloc_read_key(c, bkey_i_to_s_c(k));
|
|
}
|
|
|
|
mutex_lock(&c->bucket_clock[READ].lock);
|
|
for_each_member_device(ca, c, i) {
|
|
down_read(&ca->bucket_lock);
|
|
bch2_recalc_oldest_io(c, ca, READ);
|
|
up_read(&ca->bucket_lock);
|
|
}
|
|
mutex_unlock(&c->bucket_clock[READ].lock);
|
|
|
|
mutex_lock(&c->bucket_clock[WRITE].lock);
|
|
for_each_member_device(ca, c, i) {
|
|
down_read(&ca->bucket_lock);
|
|
bch2_recalc_oldest_io(c, ca, WRITE);
|
|
up_read(&ca->bucket_lock);
|
|
}
|
|
mutex_unlock(&c->bucket_clock[WRITE].lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __bch2_alloc_write_key(struct bch_fs *c, struct bch_dev *ca,
|
|
size_t b, struct btree_iter *iter,
|
|
u64 *journal_seq, unsigned flags)
|
|
{
|
|
#if 0
|
|
__BKEY_PADDED(k, BKEY_ALLOC_VAL_U64s_MAX) alloc_key;
|
|
#else
|
|
/* hack: */
|
|
__BKEY_PADDED(k, 8) alloc_key;
|
|
#endif
|
|
struct bkey_i_alloc *a = bkey_alloc_init(&alloc_key.k);
|
|
struct bucket *g;
|
|
struct bucket_mark m;
|
|
int ret;
|
|
|
|
BUG_ON(BKEY_ALLOC_VAL_U64s_MAX > 8);
|
|
|
|
a->k.p = POS(ca->dev_idx, b);
|
|
|
|
percpu_down_read(&c->mark_lock);
|
|
g = bucket(ca, b);
|
|
m = bucket_cmpxchg(g, m, m.dirty = false);
|
|
|
|
__alloc_write_key(a, g, m);
|
|
percpu_up_read(&c->mark_lock);
|
|
|
|
bch2_btree_iter_cond_resched(iter);
|
|
|
|
bch2_btree_iter_set_pos(iter, a->k.p);
|
|
|
|
ret = bch2_btree_insert_at(c, NULL, journal_seq,
|
|
BTREE_INSERT_NOFAIL|
|
|
BTREE_INSERT_USE_RESERVE|
|
|
BTREE_INSERT_USE_ALLOC_RESERVE|
|
|
flags,
|
|
BTREE_INSERT_ENTRY(iter, &a->k_i));
|
|
|
|
if (!ret && ca->buckets_written)
|
|
set_bit(b, ca->buckets_written);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int bch2_alloc_replay_key(struct bch_fs *c, struct bkey_i *k)
|
|
{
|
|
struct bch_dev *ca;
|
|
struct btree_iter iter;
|
|
int ret;
|
|
|
|
if (k->k.p.inode >= c->sb.nr_devices ||
|
|
!c->devs[k->k.p.inode])
|
|
return 0;
|
|
|
|
ca = bch_dev_bkey_exists(c, k->k.p.inode);
|
|
|
|
if (k->k.p.offset >= ca->mi.nbuckets)
|
|
return 0;
|
|
|
|
bch2_btree_iter_init(&iter, c, BTREE_ID_ALLOC, k->k.p,
|
|
BTREE_ITER_INTENT);
|
|
|
|
ret = bch2_btree_iter_traverse(&iter);
|
|
if (ret)
|
|
goto err;
|
|
|
|
/* check buckets_written with btree node locked: */
|
|
|
|
ret = test_bit(k->k.p.offset, ca->buckets_written)
|
|
? 0
|
|
: bch2_btree_insert_at(c, NULL, NULL,
|
|
BTREE_INSERT_NOFAIL|
|
|
BTREE_INSERT_JOURNAL_REPLAY,
|
|
BTREE_INSERT_ENTRY(&iter, k));
|
|
err:
|
|
bch2_btree_iter_unlock(&iter);
|
|
return ret;
|
|
}
|
|
|
|
int bch2_alloc_write(struct bch_fs *c)
|
|
{
|
|
struct bch_dev *ca;
|
|
unsigned i;
|
|
int ret = 0;
|
|
|
|
for_each_rw_member(ca, c, i) {
|
|
struct btree_iter iter;
|
|
struct bucket_array *buckets;
|
|
size_t b;
|
|
|
|
bch2_btree_iter_init(&iter, c, BTREE_ID_ALLOC, POS_MIN,
|
|
BTREE_ITER_SLOTS|BTREE_ITER_INTENT);
|
|
|
|
down_read(&ca->bucket_lock);
|
|
buckets = bucket_array(ca);
|
|
|
|
for (b = buckets->first_bucket;
|
|
b < buckets->nbuckets;
|
|
b++) {
|
|
if (!buckets->b[b].mark.dirty)
|
|
continue;
|
|
|
|
ret = __bch2_alloc_write_key(c, ca, b, &iter, NULL, 0);
|
|
if (ret)
|
|
break;
|
|
}
|
|
up_read(&ca->bucket_lock);
|
|
bch2_btree_iter_unlock(&iter);
|
|
|
|
if (ret) {
|
|
percpu_ref_put(&ca->io_ref);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Bucket IO clocks: */
|
|
|
|
static void bch2_recalc_oldest_io(struct bch_fs *c, struct bch_dev *ca, int rw)
|
|
{
|
|
struct bucket_clock *clock = &c->bucket_clock[rw];
|
|
struct bucket_array *buckets = bucket_array(ca);
|
|
struct bucket *g;
|
|
u16 max_last_io = 0;
|
|
unsigned i;
|
|
|
|
lockdep_assert_held(&c->bucket_clock[rw].lock);
|
|
|
|
/* Recalculate max_last_io for this device: */
|
|
for_each_bucket(g, buckets)
|
|
max_last_io = max(max_last_io, bucket_last_io(c, g, rw));
|
|
|
|
ca->max_last_bucket_io[rw] = max_last_io;
|
|
|
|
/* Recalculate global max_last_io: */
|
|
max_last_io = 0;
|
|
|
|
for_each_member_device(ca, c, i)
|
|
max_last_io = max(max_last_io, ca->max_last_bucket_io[rw]);
|
|
|
|
clock->max_last_io = max_last_io;
|
|
}
|
|
|
|
static void bch2_rescale_bucket_io_times(struct bch_fs *c, int rw)
|
|
{
|
|
struct bucket_clock *clock = &c->bucket_clock[rw];
|
|
struct bucket_array *buckets;
|
|
struct bch_dev *ca;
|
|
struct bucket *g;
|
|
unsigned i;
|
|
|
|
trace_rescale_prios(c);
|
|
|
|
for_each_member_device(ca, c, i) {
|
|
down_read(&ca->bucket_lock);
|
|
buckets = bucket_array(ca);
|
|
|
|
for_each_bucket(g, buckets)
|
|
g->io_time[rw] = clock->hand -
|
|
bucket_last_io(c, g, rw) / 2;
|
|
|
|
bch2_recalc_oldest_io(c, ca, rw);
|
|
|
|
up_read(&ca->bucket_lock);
|
|
}
|
|
}
|
|
|
|
static inline u64 bucket_clock_freq(u64 capacity)
|
|
{
|
|
return max(capacity >> 10, 2028ULL);
|
|
}
|
|
|
|
static void bch2_inc_clock_hand(struct io_timer *timer)
|
|
{
|
|
struct bucket_clock *clock = container_of(timer,
|
|
struct bucket_clock, rescale);
|
|
struct bch_fs *c = container_of(clock,
|
|
struct bch_fs, bucket_clock[clock->rw]);
|
|
struct bch_dev *ca;
|
|
u64 capacity;
|
|
unsigned i;
|
|
|
|
mutex_lock(&clock->lock);
|
|
|
|
/* if clock cannot be advanced more, rescale prio */
|
|
if (clock->max_last_io >= U16_MAX - 2)
|
|
bch2_rescale_bucket_io_times(c, clock->rw);
|
|
|
|
BUG_ON(clock->max_last_io >= U16_MAX - 2);
|
|
|
|
for_each_member_device(ca, c, i)
|
|
ca->max_last_bucket_io[clock->rw]++;
|
|
clock->max_last_io++;
|
|
clock->hand++;
|
|
|
|
mutex_unlock(&clock->lock);
|
|
|
|
capacity = READ_ONCE(c->capacity);
|
|
|
|
if (!capacity)
|
|
return;
|
|
|
|
/*
|
|
* we only increment when 0.1% of the filesystem capacity has been read
|
|
* or written too, this determines if it's time
|
|
*
|
|
* XXX: we shouldn't really be going off of the capacity of devices in
|
|
* RW mode (that will be 0 when we're RO, yet we can still service
|
|
* reads)
|
|
*/
|
|
timer->expire += bucket_clock_freq(capacity);
|
|
|
|
bch2_io_timer_add(&c->io_clock[clock->rw], timer);
|
|
}
|
|
|
|
static void bch2_bucket_clock_init(struct bch_fs *c, int rw)
|
|
{
|
|
struct bucket_clock *clock = &c->bucket_clock[rw];
|
|
|
|
clock->hand = 1;
|
|
clock->rw = rw;
|
|
clock->rescale.fn = bch2_inc_clock_hand;
|
|
clock->rescale.expire = bucket_clock_freq(c->capacity);
|
|
mutex_init(&clock->lock);
|
|
}
|
|
|
|
/* Background allocator thread: */
|
|
|
|
/*
|
|
* Scans for buckets to be invalidated, invalidates them, rewrites prios/gens
|
|
* (marking them as invalidated on disk), then optionally issues discard
|
|
* commands to the newly free buckets, then puts them on the various freelists.
|
|
*/
|
|
|
|
#define BUCKET_GC_GEN_MAX 96U
|
|
|
|
/**
|
|
* wait_buckets_available - wait on reclaimable buckets
|
|
*
|
|
* If there aren't enough available buckets to fill up free_inc, wait until
|
|
* there are.
|
|
*/
|
|
static int wait_buckets_available(struct bch_fs *c, struct bch_dev *ca)
|
|
{
|
|
unsigned long gc_count = c->gc_count;
|
|
int ret = 0;
|
|
|
|
while (1) {
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
if (kthread_should_stop()) {
|
|
ret = 1;
|
|
break;
|
|
}
|
|
|
|
if (gc_count != c->gc_count)
|
|
ca->inc_gen_really_needs_gc = 0;
|
|
|
|
if ((ssize_t) (dev_buckets_available(c, ca) -
|
|
ca->inc_gen_really_needs_gc) >=
|
|
(ssize_t) fifo_free(&ca->free_inc))
|
|
break;
|
|
|
|
up_read(&c->gc_lock);
|
|
schedule();
|
|
try_to_freeze();
|
|
down_read(&c->gc_lock);
|
|
}
|
|
|
|
__set_current_state(TASK_RUNNING);
|
|
return ret;
|
|
}
|
|
|
|
static bool bch2_can_invalidate_bucket(struct bch_dev *ca,
|
|
size_t bucket,
|
|
struct bucket_mark mark)
|
|
{
|
|
u8 gc_gen;
|
|
|
|
if (!is_available_bucket(mark))
|
|
return false;
|
|
|
|
if (ca->buckets_nouse &&
|
|
test_bit(bucket, ca->buckets_nouse))
|
|
return false;
|
|
|
|
gc_gen = bucket_gc_gen(ca, bucket);
|
|
|
|
if (gc_gen >= BUCKET_GC_GEN_MAX / 2)
|
|
ca->inc_gen_needs_gc++;
|
|
|
|
if (gc_gen >= BUCKET_GC_GEN_MAX)
|
|
ca->inc_gen_really_needs_gc++;
|
|
|
|
return gc_gen < BUCKET_GC_GEN_MAX;
|
|
}
|
|
|
|
/*
|
|
* Determines what order we're going to reuse buckets, smallest bucket_key()
|
|
* first.
|
|
*
|
|
*
|
|
* - We take into account the read prio of the bucket, which gives us an
|
|
* indication of how hot the data is -- we scale the prio so that the prio
|
|
* farthest from the clock is worth 1/8th of the closest.
|
|
*
|
|
* - The number of sectors of cached data in the bucket, which gives us an
|
|
* indication of the cost in cache misses this eviction will cause.
|
|
*
|
|
* - If hotness * sectors used compares equal, we pick the bucket with the
|
|
* smallest bucket_gc_gen() - since incrementing the same bucket's generation
|
|
* number repeatedly forces us to run mark and sweep gc to avoid generation
|
|
* number wraparound.
|
|
*/
|
|
|
|
static unsigned long bucket_sort_key(struct bch_fs *c, struct bch_dev *ca,
|
|
size_t b, struct bucket_mark m)
|
|
{
|
|
unsigned last_io = bucket_last_io(c, bucket(ca, b), READ);
|
|
unsigned max_last_io = ca->max_last_bucket_io[READ];
|
|
|
|
/*
|
|
* Time since last read, scaled to [0, 8) where larger value indicates
|
|
* more recently read data:
|
|
*/
|
|
unsigned long hotness = (max_last_io - last_io) * 7 / max_last_io;
|
|
|
|
/* How much we want to keep the data in this bucket: */
|
|
unsigned long data_wantness =
|
|
(hotness + 1) * bucket_sectors_used(m);
|
|
|
|
unsigned long needs_journal_commit =
|
|
bucket_needs_journal_commit(m, c->journal.last_seq_ondisk);
|
|
|
|
return (data_wantness << 9) |
|
|
(needs_journal_commit << 8) |
|
|
(bucket_gc_gen(ca, b) / 16);
|
|
}
|
|
|
|
static inline int bucket_alloc_cmp(alloc_heap *h,
|
|
struct alloc_heap_entry l,
|
|
struct alloc_heap_entry r)
|
|
{
|
|
return (l.key > r.key) - (l.key < r.key) ?:
|
|
(l.nr < r.nr) - (l.nr > r.nr) ?:
|
|
(l.bucket > r.bucket) - (l.bucket < r.bucket);
|
|
}
|
|
|
|
static inline int bucket_idx_cmp(const void *_l, const void *_r)
|
|
{
|
|
const struct alloc_heap_entry *l = _l, *r = _r;
|
|
|
|
return (l->bucket > r->bucket) - (l->bucket < r->bucket);
|
|
}
|
|
|
|
static void find_reclaimable_buckets_lru(struct bch_fs *c, struct bch_dev *ca)
|
|
{
|
|
struct bucket_array *buckets;
|
|
struct alloc_heap_entry e = { 0 };
|
|
size_t b, i, nr = 0;
|
|
|
|
ca->alloc_heap.used = 0;
|
|
|
|
mutex_lock(&c->bucket_clock[READ].lock);
|
|
down_read(&ca->bucket_lock);
|
|
|
|
buckets = bucket_array(ca);
|
|
|
|
bch2_recalc_oldest_io(c, ca, READ);
|
|
|
|
/*
|
|
* Find buckets with lowest read priority, by building a maxheap sorted
|
|
* by read priority and repeatedly replacing the maximum element until
|
|
* all buckets have been visited.
|
|
*/
|
|
for (b = ca->mi.first_bucket; b < ca->mi.nbuckets; b++) {
|
|
struct bucket_mark m = READ_ONCE(buckets->b[b].mark);
|
|
unsigned long key = bucket_sort_key(c, ca, b, m);
|
|
|
|
if (!bch2_can_invalidate_bucket(ca, b, m))
|
|
continue;
|
|
|
|
if (e.nr && e.bucket + e.nr == b && e.key == key) {
|
|
e.nr++;
|
|
} else {
|
|
if (e.nr)
|
|
heap_add_or_replace(&ca->alloc_heap, e,
|
|
-bucket_alloc_cmp, NULL);
|
|
|
|
e = (struct alloc_heap_entry) {
|
|
.bucket = b,
|
|
.nr = 1,
|
|
.key = key,
|
|
};
|
|
}
|
|
|
|
cond_resched();
|
|
}
|
|
|
|
if (e.nr)
|
|
heap_add_or_replace(&ca->alloc_heap, e,
|
|
-bucket_alloc_cmp, NULL);
|
|
|
|
for (i = 0; i < ca->alloc_heap.used; i++)
|
|
nr += ca->alloc_heap.data[i].nr;
|
|
|
|
while (nr - ca->alloc_heap.data[0].nr >= ALLOC_SCAN_BATCH(ca)) {
|
|
nr -= ca->alloc_heap.data[0].nr;
|
|
heap_pop(&ca->alloc_heap, e, -bucket_alloc_cmp, NULL);
|
|
}
|
|
|
|
up_read(&ca->bucket_lock);
|
|
mutex_unlock(&c->bucket_clock[READ].lock);
|
|
}
|
|
|
|
static void find_reclaimable_buckets_fifo(struct bch_fs *c, struct bch_dev *ca)
|
|
{
|
|
struct bucket_array *buckets = bucket_array(ca);
|
|
struct bucket_mark m;
|
|
size_t b, start;
|
|
|
|
if (ca->fifo_last_bucket < ca->mi.first_bucket ||
|
|
ca->fifo_last_bucket >= ca->mi.nbuckets)
|
|
ca->fifo_last_bucket = ca->mi.first_bucket;
|
|
|
|
start = ca->fifo_last_bucket;
|
|
|
|
do {
|
|
ca->fifo_last_bucket++;
|
|
if (ca->fifo_last_bucket == ca->mi.nbuckets)
|
|
ca->fifo_last_bucket = ca->mi.first_bucket;
|
|
|
|
b = ca->fifo_last_bucket;
|
|
m = READ_ONCE(buckets->b[b].mark);
|
|
|
|
if (bch2_can_invalidate_bucket(ca, b, m)) {
|
|
struct alloc_heap_entry e = { .bucket = b, .nr = 1, };
|
|
|
|
heap_add(&ca->alloc_heap, e, bucket_alloc_cmp, NULL);
|
|
if (heap_full(&ca->alloc_heap))
|
|
break;
|
|
}
|
|
|
|
cond_resched();
|
|
} while (ca->fifo_last_bucket != start);
|
|
}
|
|
|
|
static void find_reclaimable_buckets_random(struct bch_fs *c, struct bch_dev *ca)
|
|
{
|
|
struct bucket_array *buckets = bucket_array(ca);
|
|
struct bucket_mark m;
|
|
size_t checked, i;
|
|
|
|
for (checked = 0;
|
|
checked < ca->mi.nbuckets / 2;
|
|
checked++) {
|
|
size_t b = bch2_rand_range(ca->mi.nbuckets -
|
|
ca->mi.first_bucket) +
|
|
ca->mi.first_bucket;
|
|
|
|
m = READ_ONCE(buckets->b[b].mark);
|
|
|
|
if (bch2_can_invalidate_bucket(ca, b, m)) {
|
|
struct alloc_heap_entry e = { .bucket = b, .nr = 1, };
|
|
|
|
heap_add(&ca->alloc_heap, e, bucket_alloc_cmp, NULL);
|
|
if (heap_full(&ca->alloc_heap))
|
|
break;
|
|
}
|
|
|
|
cond_resched();
|
|
}
|
|
|
|
sort(ca->alloc_heap.data,
|
|
ca->alloc_heap.used,
|
|
sizeof(ca->alloc_heap.data[0]),
|
|
bucket_idx_cmp, NULL);
|
|
|
|
/* remove duplicates: */
|
|
for (i = 0; i + 1 < ca->alloc_heap.used; i++)
|
|
if (ca->alloc_heap.data[i].bucket ==
|
|
ca->alloc_heap.data[i + 1].bucket)
|
|
ca->alloc_heap.data[i].nr = 0;
|
|
}
|
|
|
|
static size_t find_reclaimable_buckets(struct bch_fs *c, struct bch_dev *ca)
|
|
{
|
|
size_t i, nr = 0;
|
|
|
|
ca->inc_gen_needs_gc = 0;
|
|
|
|
switch (ca->mi.replacement) {
|
|
case CACHE_REPLACEMENT_LRU:
|
|
find_reclaimable_buckets_lru(c, ca);
|
|
break;
|
|
case CACHE_REPLACEMENT_FIFO:
|
|
find_reclaimable_buckets_fifo(c, ca);
|
|
break;
|
|
case CACHE_REPLACEMENT_RANDOM:
|
|
find_reclaimable_buckets_random(c, ca);
|
|
break;
|
|
}
|
|
|
|
heap_resort(&ca->alloc_heap, bucket_alloc_cmp, NULL);
|
|
|
|
for (i = 0; i < ca->alloc_heap.used; i++)
|
|
nr += ca->alloc_heap.data[i].nr;
|
|
|
|
return nr;
|
|
}
|
|
|
|
static inline long next_alloc_bucket(struct bch_dev *ca)
|
|
{
|
|
struct alloc_heap_entry e, *top = ca->alloc_heap.data;
|
|
|
|
while (ca->alloc_heap.used) {
|
|
if (top->nr) {
|
|
size_t b = top->bucket;
|
|
|
|
top->bucket++;
|
|
top->nr--;
|
|
return b;
|
|
}
|
|
|
|
heap_pop(&ca->alloc_heap, e, bucket_alloc_cmp, NULL);
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
static bool bch2_invalidate_one_bucket(struct bch_fs *c, struct bch_dev *ca,
|
|
size_t bucket, u64 *flush_seq)
|
|
{
|
|
struct bucket_mark m;
|
|
|
|
percpu_down_read(&c->mark_lock);
|
|
spin_lock(&c->freelist_lock);
|
|
|
|
bch2_invalidate_bucket(c, ca, bucket, &m);
|
|
|
|
verify_not_on_freelist(c, ca, bucket);
|
|
BUG_ON(!fifo_push(&ca->free_inc, bucket));
|
|
|
|
spin_unlock(&c->freelist_lock);
|
|
|
|
bucket_io_clock_reset(c, ca, bucket, READ);
|
|
bucket_io_clock_reset(c, ca, bucket, WRITE);
|
|
|
|
percpu_up_read(&c->mark_lock);
|
|
|
|
if (m.journal_seq_valid) {
|
|
u64 journal_seq = atomic64_read(&c->journal.seq);
|
|
u64 bucket_seq = journal_seq;
|
|
|
|
bucket_seq &= ~((u64) U16_MAX);
|
|
bucket_seq |= m.journal_seq;
|
|
|
|
if (bucket_seq > journal_seq)
|
|
bucket_seq -= 1 << 16;
|
|
|
|
*flush_seq = max(*flush_seq, bucket_seq);
|
|
}
|
|
|
|
return m.cached_sectors != 0;
|
|
}
|
|
|
|
/*
|
|
* Pull buckets off ca->alloc_heap, invalidate them, move them to ca->free_inc:
|
|
*/
|
|
static int bch2_invalidate_buckets(struct bch_fs *c, struct bch_dev *ca)
|
|
{
|
|
struct btree_iter iter;
|
|
u64 journal_seq = 0;
|
|
int ret = 0;
|
|
long b;
|
|
|
|
bch2_btree_iter_init(&iter, c, BTREE_ID_ALLOC, POS(ca->dev_idx, 0),
|
|
BTREE_ITER_SLOTS|BTREE_ITER_INTENT);
|
|
|
|
/* Only use nowait if we've already invalidated at least one bucket: */
|
|
while (!ret &&
|
|
!fifo_full(&ca->free_inc) &&
|
|
(b = next_alloc_bucket(ca)) >= 0) {
|
|
bool must_flush =
|
|
bch2_invalidate_one_bucket(c, ca, b, &journal_seq);
|
|
|
|
ret = __bch2_alloc_write_key(c, ca, b, &iter,
|
|
must_flush ? &journal_seq : NULL,
|
|
!fifo_empty(&ca->free_inc) ? BTREE_INSERT_NOWAIT : 0);
|
|
}
|
|
|
|
bch2_btree_iter_unlock(&iter);
|
|
|
|
/* If we used NOWAIT, don't return the error: */
|
|
if (!fifo_empty(&ca->free_inc))
|
|
ret = 0;
|
|
if (ret) {
|
|
bch_err(ca, "error invalidating buckets: %i", ret);
|
|
return ret;
|
|
}
|
|
|
|
if (journal_seq)
|
|
ret = bch2_journal_flush_seq(&c->journal, journal_seq);
|
|
if (ret) {
|
|
bch_err(ca, "journal error: %i", ret);
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int push_invalidated_bucket(struct bch_fs *c, struct bch_dev *ca, size_t bucket)
|
|
{
|
|
unsigned i;
|
|
int ret = 0;
|
|
|
|
while (1) {
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
|
|
spin_lock(&c->freelist_lock);
|
|
for (i = 0; i < RESERVE_NR; i++)
|
|
if (fifo_push(&ca->free[i], bucket)) {
|
|
fifo_pop(&ca->free_inc, bucket);
|
|
closure_wake_up(&c->freelist_wait);
|
|
spin_unlock(&c->freelist_lock);
|
|
goto out;
|
|
}
|
|
spin_unlock(&c->freelist_lock);
|
|
|
|
if ((current->flags & PF_KTHREAD) &&
|
|
kthread_should_stop()) {
|
|
ret = 1;
|
|
break;
|
|
}
|
|
|
|
schedule();
|
|
try_to_freeze();
|
|
}
|
|
out:
|
|
__set_current_state(TASK_RUNNING);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Pulls buckets off free_inc, discards them (if enabled), then adds them to
|
|
* freelists, waiting until there's room if necessary:
|
|
*/
|
|
static int discard_invalidated_buckets(struct bch_fs *c, struct bch_dev *ca)
|
|
{
|
|
while (!fifo_empty(&ca->free_inc)) {
|
|
size_t bucket = fifo_peek(&ca->free_inc);
|
|
|
|
if (ca->mi.discard &&
|
|
bdev_max_discard_sectors(ca->disk_sb.bdev))
|
|
blkdev_issue_discard(ca->disk_sb.bdev,
|
|
bucket_to_sector(ca, bucket),
|
|
ca->mi.bucket_size, GFP_NOIO);
|
|
|
|
if (push_invalidated_bucket(c, ca, bucket))
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* bch_allocator_thread - move buckets from free_inc to reserves
|
|
*
|
|
* The free_inc FIFO is populated by find_reclaimable_buckets(), and
|
|
* the reserves are depleted by bucket allocation. When we run out
|
|
* of free_inc, try to invalidate some buckets and write out
|
|
* prios and gens.
|
|
*/
|
|
static int bch2_allocator_thread(void *arg)
|
|
{
|
|
struct bch_dev *ca = arg;
|
|
struct bch_fs *c = ca->fs;
|
|
size_t nr;
|
|
int ret;
|
|
|
|
set_freezable();
|
|
|
|
while (1) {
|
|
cond_resched();
|
|
|
|
pr_debug("discarding %zu invalidated buckets",
|
|
fifo_used(&ca->free_inc));
|
|
|
|
ret = discard_invalidated_buckets(c, ca);
|
|
if (ret)
|
|
goto stop;
|
|
|
|
down_read(&c->gc_lock);
|
|
|
|
ret = bch2_invalidate_buckets(c, ca);
|
|
if (ret) {
|
|
up_read(&c->gc_lock);
|
|
goto stop;
|
|
}
|
|
|
|
if (!fifo_empty(&ca->free_inc)) {
|
|
up_read(&c->gc_lock);
|
|
continue;
|
|
}
|
|
|
|
pr_debug("free_inc now empty");
|
|
|
|
do {
|
|
/*
|
|
* Find some buckets that we can invalidate, either
|
|
* they're completely unused, or only contain clean data
|
|
* that's been written back to the backing device or
|
|
* another cache tier
|
|
*/
|
|
|
|
pr_debug("scanning for reclaimable buckets");
|
|
|
|
nr = find_reclaimable_buckets(c, ca);
|
|
|
|
pr_debug("found %zu buckets", nr);
|
|
|
|
trace_alloc_batch(ca, nr, ca->alloc_heap.size);
|
|
|
|
if ((ca->inc_gen_needs_gc >= ALLOC_SCAN_BATCH(ca) ||
|
|
ca->inc_gen_really_needs_gc) &&
|
|
c->gc_thread) {
|
|
atomic_inc(&c->kick_gc);
|
|
wake_up_process(c->gc_thread);
|
|
}
|
|
|
|
/*
|
|
* If we found any buckets, we have to invalidate them
|
|
* before we scan for more - but if we didn't find very
|
|
* many we may want to wait on more buckets being
|
|
* available so we don't spin:
|
|
*/
|
|
if (!nr ||
|
|
(nr < ALLOC_SCAN_BATCH(ca) &&
|
|
!fifo_full(&ca->free[RESERVE_MOVINGGC]))) {
|
|
ca->allocator_blocked = true;
|
|
closure_wake_up(&c->freelist_wait);
|
|
|
|
ret = wait_buckets_available(c, ca);
|
|
if (ret) {
|
|
up_read(&c->gc_lock);
|
|
goto stop;
|
|
}
|
|
}
|
|
} while (!nr);
|
|
|
|
ca->allocator_blocked = false;
|
|
up_read(&c->gc_lock);
|
|
|
|
pr_debug("%zu buckets to invalidate", nr);
|
|
|
|
/*
|
|
* alloc_heap is now full of newly-invalidated buckets: next,
|
|
* write out the new bucket gens:
|
|
*/
|
|
}
|
|
|
|
stop:
|
|
pr_debug("alloc thread stopping (ret %i)", ret);
|
|
return 0;
|
|
}
|
|
|
|
/* Startup/shutdown (ro/rw): */
|
|
|
|
void bch2_recalc_capacity(struct bch_fs *c)
|
|
{
|
|
struct bch_dev *ca;
|
|
u64 capacity = 0, reserved_sectors = 0, gc_reserve;
|
|
unsigned bucket_size_max = 0;
|
|
unsigned long ra_pages = 0;
|
|
unsigned i, j;
|
|
|
|
lockdep_assert_held(&c->state_lock);
|
|
|
|
for_each_online_member(ca, c, i) {
|
|
struct backing_dev_info *bdi = ca->disk_sb.bdev->bd_disk->bdi;
|
|
|
|
ra_pages += bdi->ra_pages;
|
|
}
|
|
|
|
bch2_set_ra_pages(c, ra_pages);
|
|
|
|
for_each_rw_member(ca, c, i) {
|
|
u64 dev_reserve = 0;
|
|
|
|
/*
|
|
* We need to reserve buckets (from the number
|
|
* of currently available buckets) against
|
|
* foreground writes so that mainly copygc can
|
|
* make forward progress.
|
|
*
|
|
* We need enough to refill the various reserves
|
|
* from scratch - copygc will use its entire
|
|
* reserve all at once, then run against when
|
|
* its reserve is refilled (from the formerly
|
|
* available buckets).
|
|
*
|
|
* This reserve is just used when considering if
|
|
* allocations for foreground writes must wait -
|
|
* not -ENOSPC calculations.
|
|
*/
|
|
for (j = 0; j < RESERVE_NONE; j++)
|
|
dev_reserve += ca->free[j].size;
|
|
|
|
dev_reserve += 1; /* btree write point */
|
|
dev_reserve += 1; /* copygc write point */
|
|
dev_reserve += 1; /* rebalance write point */
|
|
|
|
dev_reserve *= ca->mi.bucket_size;
|
|
|
|
ca->copygc_threshold = dev_reserve;
|
|
|
|
capacity += bucket_to_sector(ca, ca->mi.nbuckets -
|
|
ca->mi.first_bucket);
|
|
|
|
reserved_sectors += dev_reserve * 2;
|
|
|
|
bucket_size_max = max_t(unsigned, bucket_size_max,
|
|
ca->mi.bucket_size);
|
|
}
|
|
|
|
gc_reserve = c->opts.gc_reserve_bytes
|
|
? c->opts.gc_reserve_bytes >> 9
|
|
: div64_u64(capacity * c->opts.gc_reserve_percent, 100);
|
|
|
|
reserved_sectors = max(gc_reserve, reserved_sectors);
|
|
|
|
reserved_sectors = min(reserved_sectors, capacity);
|
|
|
|
c->capacity = capacity - reserved_sectors;
|
|
|
|
c->bucket_size_max = bucket_size_max;
|
|
|
|
if (c->capacity) {
|
|
bch2_io_timer_add(&c->io_clock[READ],
|
|
&c->bucket_clock[READ].rescale);
|
|
bch2_io_timer_add(&c->io_clock[WRITE],
|
|
&c->bucket_clock[WRITE].rescale);
|
|
} else {
|
|
bch2_io_timer_del(&c->io_clock[READ],
|
|
&c->bucket_clock[READ].rescale);
|
|
bch2_io_timer_del(&c->io_clock[WRITE],
|
|
&c->bucket_clock[WRITE].rescale);
|
|
}
|
|
|
|
/* Wake up case someone was waiting for buckets */
|
|
closure_wake_up(&c->freelist_wait);
|
|
}
|
|
|
|
static bool bch2_dev_has_open_write_point(struct bch_fs *c, struct bch_dev *ca)
|
|
{
|
|
struct open_bucket *ob;
|
|
bool ret = false;
|
|
|
|
for (ob = c->open_buckets;
|
|
ob < c->open_buckets + ARRAY_SIZE(c->open_buckets);
|
|
ob++) {
|
|
spin_lock(&ob->lock);
|
|
if (ob->valid && !ob->on_partial_list &&
|
|
ob->ptr.dev == ca->dev_idx)
|
|
ret = true;
|
|
spin_unlock(&ob->lock);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* device goes ro: */
|
|
void bch2_dev_allocator_remove(struct bch_fs *c, struct bch_dev *ca)
|
|
{
|
|
unsigned i;
|
|
|
|
BUG_ON(ca->alloc_thread);
|
|
|
|
/* First, remove device from allocation groups: */
|
|
|
|
for (i = 0; i < ARRAY_SIZE(c->rw_devs); i++)
|
|
clear_bit(ca->dev_idx, c->rw_devs[i].d);
|
|
|
|
/*
|
|
* Capacity is calculated based off of devices in allocation groups:
|
|
*/
|
|
bch2_recalc_capacity(c);
|
|
|
|
/* Next, close write points that point to this device... */
|
|
for (i = 0; i < ARRAY_SIZE(c->write_points); i++)
|
|
bch2_writepoint_stop(c, ca, &c->write_points[i]);
|
|
|
|
bch2_writepoint_stop(c, ca, &ca->copygc_write_point);
|
|
bch2_writepoint_stop(c, ca, &c->rebalance_write_point);
|
|
bch2_writepoint_stop(c, ca, &c->btree_write_point);
|
|
|
|
mutex_lock(&c->btree_reserve_cache_lock);
|
|
while (c->btree_reserve_cache_nr) {
|
|
struct btree_alloc *a =
|
|
&c->btree_reserve_cache[--c->btree_reserve_cache_nr];
|
|
|
|
bch2_open_buckets_put(c, &a->ob);
|
|
}
|
|
mutex_unlock(&c->btree_reserve_cache_lock);
|
|
|
|
while (1) {
|
|
struct open_bucket *ob;
|
|
|
|
spin_lock(&c->freelist_lock);
|
|
if (!ca->open_buckets_partial_nr) {
|
|
spin_unlock(&c->freelist_lock);
|
|
break;
|
|
}
|
|
ob = c->open_buckets +
|
|
ca->open_buckets_partial[--ca->open_buckets_partial_nr];
|
|
ob->on_partial_list = false;
|
|
spin_unlock(&c->freelist_lock);
|
|
|
|
bch2_open_bucket_put(c, ob);
|
|
}
|
|
|
|
bch2_ec_stop_dev(c, ca);
|
|
|
|
/*
|
|
* Wake up threads that were blocked on allocation, so they can notice
|
|
* the device can no longer be removed and the capacity has changed:
|
|
*/
|
|
closure_wake_up(&c->freelist_wait);
|
|
|
|
/*
|
|
* journal_res_get() can block waiting for free space in the journal -
|
|
* it needs to notice there may not be devices to allocate from anymore:
|
|
*/
|
|
wake_up(&c->journal.wait);
|
|
|
|
/* Now wait for any in flight writes: */
|
|
|
|
closure_wait_event(&c->open_buckets_wait,
|
|
!bch2_dev_has_open_write_point(c, ca));
|
|
}
|
|
|
|
/* device goes rw: */
|
|
void bch2_dev_allocator_add(struct bch_fs *c, struct bch_dev *ca)
|
|
{
|
|
unsigned i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(c->rw_devs); i++)
|
|
if (ca->mi.data_allowed & (1 << i))
|
|
set_bit(ca->dev_idx, c->rw_devs[i].d);
|
|
}
|
|
|
|
/* stop allocator thread: */
|
|
void bch2_dev_allocator_stop(struct bch_dev *ca)
|
|
{
|
|
struct task_struct *p;
|
|
|
|
p = rcu_dereference_protected(ca->alloc_thread, 1);
|
|
ca->alloc_thread = NULL;
|
|
|
|
/*
|
|
* We need an rcu barrier between setting ca->alloc_thread = NULL and
|
|
* the thread shutting down to avoid bch2_wake_allocator() racing:
|
|
*
|
|
* XXX: it would be better to have the rcu barrier be asynchronous
|
|
* instead of blocking us here
|
|
*/
|
|
synchronize_rcu();
|
|
|
|
if (p) {
|
|
kthread_stop(p);
|
|
put_task_struct(p);
|
|
}
|
|
}
|
|
|
|
/* start allocator thread: */
|
|
int bch2_dev_allocator_start(struct bch_dev *ca)
|
|
{
|
|
struct task_struct *p;
|
|
|
|
/*
|
|
* allocator thread already started?
|
|
*/
|
|
if (ca->alloc_thread)
|
|
return 0;
|
|
|
|
p = kthread_create(bch2_allocator_thread, ca,
|
|
"bch_alloc[%s]", ca->name);
|
|
if (IS_ERR(p))
|
|
return PTR_ERR(p);
|
|
|
|
get_task_struct(p);
|
|
rcu_assign_pointer(ca->alloc_thread, p);
|
|
wake_up_process(p);
|
|
return 0;
|
|
}
|
|
|
|
static void flush_held_btree_writes(struct bch_fs *c)
|
|
{
|
|
struct bucket_table *tbl;
|
|
struct rhash_head *pos;
|
|
struct btree *b;
|
|
bool flush_updates;
|
|
size_t i, nr_pending_updates;
|
|
|
|
clear_bit(BCH_FS_HOLD_BTREE_WRITES, &c->flags);
|
|
again:
|
|
pr_debug("flushing dirty btree nodes");
|
|
cond_resched();
|
|
|
|
flush_updates = false;
|
|
nr_pending_updates = bch2_btree_interior_updates_nr_pending(c);
|
|
|
|
rcu_read_lock();
|
|
for_each_cached_btree(b, c, tbl, i, pos)
|
|
if (btree_node_dirty(b) && (!b->written || b->level)) {
|
|
if (btree_node_may_write(b)) {
|
|
rcu_read_unlock();
|
|
btree_node_lock_type(c, b, SIX_LOCK_read);
|
|
bch2_btree_node_write(c, b, SIX_LOCK_read);
|
|
six_unlock_read(&b->lock);
|
|
goto again;
|
|
} else {
|
|
flush_updates = true;
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
if (c->btree_roots_dirty)
|
|
bch2_journal_meta(&c->journal);
|
|
|
|
/*
|
|
* This is ugly, but it's needed to flush btree node writes
|
|
* without spinning...
|
|
*/
|
|
if (flush_updates) {
|
|
closure_wait_event(&c->btree_interior_update_wait,
|
|
bch2_btree_interior_updates_nr_pending(c) <
|
|
nr_pending_updates);
|
|
goto again;
|
|
}
|
|
|
|
}
|
|
|
|
static void allocator_start_issue_discards(struct bch_fs *c)
|
|
{
|
|
struct bch_dev *ca;
|
|
unsigned dev_iter;
|
|
size_t bu;
|
|
|
|
for_each_rw_member(ca, c, dev_iter)
|
|
while (fifo_pop(&ca->free_inc, bu))
|
|
blkdev_issue_discard(ca->disk_sb.bdev,
|
|
bucket_to_sector(ca, bu),
|
|
ca->mi.bucket_size, GFP_NOIO);
|
|
}
|
|
|
|
static int __bch2_fs_allocator_start(struct bch_fs *c)
|
|
{
|
|
struct bch_dev *ca;
|
|
unsigned dev_iter;
|
|
u64 journal_seq = 0;
|
|
long bu;
|
|
bool invalidating_data = false;
|
|
int ret = 0;
|
|
|
|
if (test_alloc_startup(c)) {
|
|
invalidating_data = true;
|
|
goto not_enough;
|
|
}
|
|
|
|
/* Scan for buckets that are already invalidated: */
|
|
for_each_rw_member(ca, c, dev_iter) {
|
|
struct bucket_array *buckets;
|
|
struct bucket_mark m;
|
|
|
|
down_read(&ca->bucket_lock);
|
|
percpu_down_read(&c->mark_lock);
|
|
|
|
buckets = bucket_array(ca);
|
|
|
|
for (bu = buckets->first_bucket;
|
|
bu < buckets->nbuckets; bu++) {
|
|
m = READ_ONCE(buckets->b[bu].mark);
|
|
|
|
if (!buckets->b[bu].gen_valid ||
|
|
!test_bit(bu, ca->buckets_nouse) ||
|
|
!is_available_bucket(m) ||
|
|
m.cached_sectors)
|
|
continue;
|
|
|
|
bch2_mark_alloc_bucket(c, ca, bu, true,
|
|
gc_pos_alloc(c, NULL), 0);
|
|
|
|
fifo_push(&ca->free_inc, bu);
|
|
|
|
discard_invalidated_buckets(c, ca);
|
|
|
|
if (fifo_full(&ca->free[RESERVE_BTREE]))
|
|
break;
|
|
}
|
|
percpu_up_read(&c->mark_lock);
|
|
up_read(&ca->bucket_lock);
|
|
}
|
|
|
|
/* did we find enough buckets? */
|
|
for_each_rw_member(ca, c, dev_iter)
|
|
if (!fifo_full(&ca->free[RESERVE_BTREE])) {
|
|
percpu_ref_put(&ca->io_ref);
|
|
goto not_enough;
|
|
}
|
|
|
|
return 0;
|
|
not_enough:
|
|
pr_debug("not enough empty buckets; scanning for reclaimable buckets");
|
|
|
|
for_each_rw_member(ca, c, dev_iter) {
|
|
find_reclaimable_buckets(c, ca);
|
|
|
|
while (!fifo_full(&ca->free[RESERVE_BTREE]) &&
|
|
(bu = next_alloc_bucket(ca)) >= 0) {
|
|
invalidating_data |=
|
|
bch2_invalidate_one_bucket(c, ca, bu, &journal_seq);
|
|
|
|
fifo_push(&ca->free[RESERVE_BTREE], bu);
|
|
bucket_set_dirty(ca, bu);
|
|
}
|
|
}
|
|
|
|
pr_debug("done scanning for reclaimable buckets");
|
|
|
|
/*
|
|
* We're moving buckets to freelists _before_ they've been marked as
|
|
* invalidated on disk - we have to so that we can allocate new btree
|
|
* nodes to mark them as invalidated on disk.
|
|
*
|
|
* However, we can't _write_ to any of these buckets yet - they might
|
|
* have cached data in them, which is live until they're marked as
|
|
* invalidated on disk:
|
|
*/
|
|
if (invalidating_data) {
|
|
pr_debug("invalidating existing data");
|
|
set_bit(BCH_FS_HOLD_BTREE_WRITES, &c->flags);
|
|
} else {
|
|
pr_debug("issuing discards");
|
|
allocator_start_issue_discards(c);
|
|
}
|
|
|
|
/*
|
|
* XXX: it's possible for this to deadlock waiting on journal reclaim,
|
|
* since we're holding btree writes. What then?
|
|
*/
|
|
ret = bch2_alloc_write(c);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (invalidating_data) {
|
|
pr_debug("flushing journal");
|
|
|
|
ret = bch2_journal_flush_seq(&c->journal, journal_seq);
|
|
if (ret)
|
|
return ret;
|
|
|
|
pr_debug("issuing discards");
|
|
allocator_start_issue_discards(c);
|
|
}
|
|
|
|
set_bit(BCH_FS_ALLOCATOR_STARTED, &c->flags);
|
|
|
|
/* now flush dirty btree nodes: */
|
|
if (invalidating_data)
|
|
flush_held_btree_writes(c);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int bch2_fs_allocator_start(struct bch_fs *c)
|
|
{
|
|
struct bch_dev *ca;
|
|
unsigned i;
|
|
int ret;
|
|
|
|
down_read(&c->gc_lock);
|
|
ret = __bch2_fs_allocator_start(c);
|
|
up_read(&c->gc_lock);
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
for_each_rw_member(ca, c, i) {
|
|
ret = bch2_dev_allocator_start(ca);
|
|
if (ret) {
|
|
percpu_ref_put(&ca->io_ref);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return bch2_alloc_write(c);
|
|
}
|
|
|
|
void bch2_fs_allocator_background_init(struct bch_fs *c)
|
|
{
|
|
spin_lock_init(&c->freelist_lock);
|
|
bch2_bucket_clock_init(c, READ);
|
|
bch2_bucket_clock_init(c, WRITE);
|
|
|
|
c->pd_controllers_update_seconds = 5;
|
|
INIT_DELAYED_WORK(&c->pd_controllers_update, pd_controllers_update);
|
|
}
|