9177514ce3
The change corrects registration and deregistration on error path
of a regulator, the problem was manifested by a reported memory
leak on deferred probe:
as3722-regulator as3722-regulator: regulator 13 register failed -517
# cat /sys/kernel/debug/kmemleak
unreferenced object 0xecc43740 (size 64):
comm "swapper/0", pid 1, jiffies 4294937640 (age 712.880s)
hex dump (first 32 bytes):
72 65 67 75 6c 61 74 6f 72 2e 32 34 00 5a 5a 5a regulator.24.ZZZ
5a 5a 5a 5a 5a 5a 5a 5a 5a 5a 5a 5a 5a 5a 5a 5a ZZZZZZZZZZZZZZZZ
backtrace:
[<0c4c3d1c>] __kmalloc_track_caller+0x15c/0x2c0
[<40c0ad48>] kvasprintf+0x64/0xd4
[<109abd29>] kvasprintf_const+0x70/0x84
[<c4215946>] kobject_set_name_vargs+0x34/0xa8
[<62282ea2>] dev_set_name+0x40/0x64
[<a39b6757>] regulator_register+0x3a4/0x1344
[<16a9543f>] devm_regulator_register+0x4c/0x84
[<51a4c6a1>] as3722_regulator_probe+0x294/0x754
...
The memory leak problem was introduced as a side ef another fix in
regulator_register() error path, I believe that the proper fix is
to decouple device_register() function into its two compounds and
initialize a struct device before assigning any values to its fields
and then using it before actual registration of a device happens.
This lets to call put_device() safely after initialization, and, since
now a release callback is called, kfree(rdev->constraints) shall be
removed to exclude a double free condition.
Fixes: a3cde9534e
("regulator: core: fix regulator_register() error paths to properly release rdev")
Signed-off-by: Vladimir Zapolskiy <vz@mleia.com>
Cc: Wen Yang <wenyang@linux.alibaba.com>
Link: https://lore.kernel.org/r/20200724005013.23278-1-vz@mleia.com
Signed-off-by: Mark Brown <broonie@kernel.org>
5867 lines
150 KiB
C
5867 lines
150 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
//
|
|
// core.c -- Voltage/Current Regulator framework.
|
|
//
|
|
// Copyright 2007, 2008 Wolfson Microelectronics PLC.
|
|
// Copyright 2008 SlimLogic Ltd.
|
|
//
|
|
// Author: Liam Girdwood <lrg@slimlogic.co.uk>
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/init.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/device.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/async.h>
|
|
#include <linux/err.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/suspend.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/gpio/consumer.h>
|
|
#include <linux/of.h>
|
|
#include <linux/regmap.h>
|
|
#include <linux/regulator/of_regulator.h>
|
|
#include <linux/regulator/consumer.h>
|
|
#include <linux/regulator/coupler.h>
|
|
#include <linux/regulator/driver.h>
|
|
#include <linux/regulator/machine.h>
|
|
#include <linux/module.h>
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include <trace/events/regulator.h>
|
|
|
|
#include "dummy.h"
|
|
#include "internal.h"
|
|
|
|
#define rdev_crit(rdev, fmt, ...) \
|
|
pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
|
|
#define rdev_err(rdev, fmt, ...) \
|
|
pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
|
|
#define rdev_warn(rdev, fmt, ...) \
|
|
pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
|
|
#define rdev_info(rdev, fmt, ...) \
|
|
pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
|
|
#define rdev_dbg(rdev, fmt, ...) \
|
|
pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
|
|
|
|
static DEFINE_WW_CLASS(regulator_ww_class);
|
|
static DEFINE_MUTEX(regulator_nesting_mutex);
|
|
static DEFINE_MUTEX(regulator_list_mutex);
|
|
static LIST_HEAD(regulator_map_list);
|
|
static LIST_HEAD(regulator_ena_gpio_list);
|
|
static LIST_HEAD(regulator_supply_alias_list);
|
|
static LIST_HEAD(regulator_coupler_list);
|
|
static bool has_full_constraints;
|
|
|
|
static struct dentry *debugfs_root;
|
|
|
|
/*
|
|
* struct regulator_map
|
|
*
|
|
* Used to provide symbolic supply names to devices.
|
|
*/
|
|
struct regulator_map {
|
|
struct list_head list;
|
|
const char *dev_name; /* The dev_name() for the consumer */
|
|
const char *supply;
|
|
struct regulator_dev *regulator;
|
|
};
|
|
|
|
/*
|
|
* struct regulator_enable_gpio
|
|
*
|
|
* Management for shared enable GPIO pin
|
|
*/
|
|
struct regulator_enable_gpio {
|
|
struct list_head list;
|
|
struct gpio_desc *gpiod;
|
|
u32 enable_count; /* a number of enabled shared GPIO */
|
|
u32 request_count; /* a number of requested shared GPIO */
|
|
};
|
|
|
|
/*
|
|
* struct regulator_supply_alias
|
|
*
|
|
* Used to map lookups for a supply onto an alternative device.
|
|
*/
|
|
struct regulator_supply_alias {
|
|
struct list_head list;
|
|
struct device *src_dev;
|
|
const char *src_supply;
|
|
struct device *alias_dev;
|
|
const char *alias_supply;
|
|
};
|
|
|
|
static int _regulator_is_enabled(struct regulator_dev *rdev);
|
|
static int _regulator_disable(struct regulator *regulator);
|
|
static int _regulator_get_current_limit(struct regulator_dev *rdev);
|
|
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
|
|
static int _notifier_call_chain(struct regulator_dev *rdev,
|
|
unsigned long event, void *data);
|
|
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
|
|
int min_uV, int max_uV);
|
|
static int regulator_balance_voltage(struct regulator_dev *rdev,
|
|
suspend_state_t state);
|
|
static struct regulator *create_regulator(struct regulator_dev *rdev,
|
|
struct device *dev,
|
|
const char *supply_name);
|
|
static void destroy_regulator(struct regulator *regulator);
|
|
static void _regulator_put(struct regulator *regulator);
|
|
|
|
const char *rdev_get_name(struct regulator_dev *rdev)
|
|
{
|
|
if (rdev->constraints && rdev->constraints->name)
|
|
return rdev->constraints->name;
|
|
else if (rdev->desc->name)
|
|
return rdev->desc->name;
|
|
else
|
|
return "";
|
|
}
|
|
|
|
static bool have_full_constraints(void)
|
|
{
|
|
return has_full_constraints || of_have_populated_dt();
|
|
}
|
|
|
|
static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
|
|
{
|
|
if (!rdev->constraints) {
|
|
rdev_err(rdev, "no constraints\n");
|
|
return false;
|
|
}
|
|
|
|
if (rdev->constraints->valid_ops_mask & ops)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* regulator_lock_nested - lock a single regulator
|
|
* @rdev: regulator source
|
|
* @ww_ctx: w/w mutex acquire context
|
|
*
|
|
* This function can be called many times by one task on
|
|
* a single regulator and its mutex will be locked only
|
|
* once. If a task, which is calling this function is other
|
|
* than the one, which initially locked the mutex, it will
|
|
* wait on mutex.
|
|
*/
|
|
static inline int regulator_lock_nested(struct regulator_dev *rdev,
|
|
struct ww_acquire_ctx *ww_ctx)
|
|
{
|
|
bool lock = false;
|
|
int ret = 0;
|
|
|
|
mutex_lock(®ulator_nesting_mutex);
|
|
|
|
if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
|
|
if (rdev->mutex_owner == current)
|
|
rdev->ref_cnt++;
|
|
else
|
|
lock = true;
|
|
|
|
if (lock) {
|
|
mutex_unlock(®ulator_nesting_mutex);
|
|
ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
|
|
mutex_lock(®ulator_nesting_mutex);
|
|
}
|
|
} else {
|
|
lock = true;
|
|
}
|
|
|
|
if (lock && ret != -EDEADLK) {
|
|
rdev->ref_cnt++;
|
|
rdev->mutex_owner = current;
|
|
}
|
|
|
|
mutex_unlock(®ulator_nesting_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* regulator_lock - lock a single regulator
|
|
* @rdev: regulator source
|
|
*
|
|
* This function can be called many times by one task on
|
|
* a single regulator and its mutex will be locked only
|
|
* once. If a task, which is calling this function is other
|
|
* than the one, which initially locked the mutex, it will
|
|
* wait on mutex.
|
|
*/
|
|
void regulator_lock(struct regulator_dev *rdev)
|
|
{
|
|
regulator_lock_nested(rdev, NULL);
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_lock);
|
|
|
|
/**
|
|
* regulator_unlock - unlock a single regulator
|
|
* @rdev: regulator_source
|
|
*
|
|
* This function unlocks the mutex when the
|
|
* reference counter reaches 0.
|
|
*/
|
|
void regulator_unlock(struct regulator_dev *rdev)
|
|
{
|
|
mutex_lock(®ulator_nesting_mutex);
|
|
|
|
if (--rdev->ref_cnt == 0) {
|
|
rdev->mutex_owner = NULL;
|
|
ww_mutex_unlock(&rdev->mutex);
|
|
}
|
|
|
|
WARN_ON_ONCE(rdev->ref_cnt < 0);
|
|
|
|
mutex_unlock(®ulator_nesting_mutex);
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_unlock);
|
|
|
|
static bool regulator_supply_is_couple(struct regulator_dev *rdev)
|
|
{
|
|
struct regulator_dev *c_rdev;
|
|
int i;
|
|
|
|
for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
|
|
c_rdev = rdev->coupling_desc.coupled_rdevs[i];
|
|
|
|
if (rdev->supply->rdev == c_rdev)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void regulator_unlock_recursive(struct regulator_dev *rdev,
|
|
unsigned int n_coupled)
|
|
{
|
|
struct regulator_dev *c_rdev;
|
|
int i;
|
|
|
|
for (i = n_coupled; i > 0; i--) {
|
|
c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
|
|
|
|
if (!c_rdev)
|
|
continue;
|
|
|
|
if (c_rdev->supply && !regulator_supply_is_couple(c_rdev))
|
|
regulator_unlock_recursive(
|
|
c_rdev->supply->rdev,
|
|
c_rdev->coupling_desc.n_coupled);
|
|
|
|
regulator_unlock(c_rdev);
|
|
}
|
|
}
|
|
|
|
static int regulator_lock_recursive(struct regulator_dev *rdev,
|
|
struct regulator_dev **new_contended_rdev,
|
|
struct regulator_dev **old_contended_rdev,
|
|
struct ww_acquire_ctx *ww_ctx)
|
|
{
|
|
struct regulator_dev *c_rdev;
|
|
int i, err;
|
|
|
|
for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
|
|
c_rdev = rdev->coupling_desc.coupled_rdevs[i];
|
|
|
|
if (!c_rdev)
|
|
continue;
|
|
|
|
if (c_rdev != *old_contended_rdev) {
|
|
err = regulator_lock_nested(c_rdev, ww_ctx);
|
|
if (err) {
|
|
if (err == -EDEADLK) {
|
|
*new_contended_rdev = c_rdev;
|
|
goto err_unlock;
|
|
}
|
|
|
|
/* shouldn't happen */
|
|
WARN_ON_ONCE(err != -EALREADY);
|
|
}
|
|
} else {
|
|
*old_contended_rdev = NULL;
|
|
}
|
|
|
|
if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
|
|
err = regulator_lock_recursive(c_rdev->supply->rdev,
|
|
new_contended_rdev,
|
|
old_contended_rdev,
|
|
ww_ctx);
|
|
if (err) {
|
|
regulator_unlock(c_rdev);
|
|
goto err_unlock;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_unlock:
|
|
regulator_unlock_recursive(rdev, i);
|
|
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* regulator_unlock_dependent - unlock regulator's suppliers and coupled
|
|
* regulators
|
|
* @rdev: regulator source
|
|
* @ww_ctx: w/w mutex acquire context
|
|
*
|
|
* Unlock all regulators related with rdev by coupling or supplying.
|
|
*/
|
|
static void regulator_unlock_dependent(struct regulator_dev *rdev,
|
|
struct ww_acquire_ctx *ww_ctx)
|
|
{
|
|
regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
|
|
ww_acquire_fini(ww_ctx);
|
|
}
|
|
|
|
/**
|
|
* regulator_lock_dependent - lock regulator's suppliers and coupled regulators
|
|
* @rdev: regulator source
|
|
* @ww_ctx: w/w mutex acquire context
|
|
*
|
|
* This function as a wrapper on regulator_lock_recursive(), which locks
|
|
* all regulators related with rdev by coupling or supplying.
|
|
*/
|
|
static void regulator_lock_dependent(struct regulator_dev *rdev,
|
|
struct ww_acquire_ctx *ww_ctx)
|
|
{
|
|
struct regulator_dev *new_contended_rdev = NULL;
|
|
struct regulator_dev *old_contended_rdev = NULL;
|
|
int err;
|
|
|
|
mutex_lock(®ulator_list_mutex);
|
|
|
|
ww_acquire_init(ww_ctx, ®ulator_ww_class);
|
|
|
|
do {
|
|
if (new_contended_rdev) {
|
|
ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
|
|
old_contended_rdev = new_contended_rdev;
|
|
old_contended_rdev->ref_cnt++;
|
|
}
|
|
|
|
err = regulator_lock_recursive(rdev,
|
|
&new_contended_rdev,
|
|
&old_contended_rdev,
|
|
ww_ctx);
|
|
|
|
if (old_contended_rdev)
|
|
regulator_unlock(old_contended_rdev);
|
|
|
|
} while (err == -EDEADLK);
|
|
|
|
ww_acquire_done(ww_ctx);
|
|
|
|
mutex_unlock(®ulator_list_mutex);
|
|
}
|
|
|
|
/**
|
|
* of_get_child_regulator - get a child regulator device node
|
|
* based on supply name
|
|
* @parent: Parent device node
|
|
* @prop_name: Combination regulator supply name and "-supply"
|
|
*
|
|
* Traverse all child nodes.
|
|
* Extract the child regulator device node corresponding to the supply name.
|
|
* returns the device node corresponding to the regulator if found, else
|
|
* returns NULL.
|
|
*/
|
|
static struct device_node *of_get_child_regulator(struct device_node *parent,
|
|
const char *prop_name)
|
|
{
|
|
struct device_node *regnode = NULL;
|
|
struct device_node *child = NULL;
|
|
|
|
for_each_child_of_node(parent, child) {
|
|
regnode = of_parse_phandle(child, prop_name, 0);
|
|
|
|
if (!regnode) {
|
|
regnode = of_get_child_regulator(child, prop_name);
|
|
if (regnode)
|
|
goto err_node_put;
|
|
} else {
|
|
goto err_node_put;
|
|
}
|
|
}
|
|
return NULL;
|
|
|
|
err_node_put:
|
|
of_node_put(child);
|
|
return regnode;
|
|
}
|
|
|
|
/**
|
|
* of_get_regulator - get a regulator device node based on supply name
|
|
* @dev: Device pointer for the consumer (of regulator) device
|
|
* @supply: regulator supply name
|
|
*
|
|
* Extract the regulator device node corresponding to the supply name.
|
|
* returns the device node corresponding to the regulator if found, else
|
|
* returns NULL.
|
|
*/
|
|
static struct device_node *of_get_regulator(struct device *dev, const char *supply)
|
|
{
|
|
struct device_node *regnode = NULL;
|
|
char prop_name[32]; /* 32 is max size of property name */
|
|
|
|
dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
|
|
|
|
snprintf(prop_name, 32, "%s-supply", supply);
|
|
regnode = of_parse_phandle(dev->of_node, prop_name, 0);
|
|
|
|
if (!regnode) {
|
|
regnode = of_get_child_regulator(dev->of_node, prop_name);
|
|
if (regnode)
|
|
return regnode;
|
|
|
|
dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
|
|
prop_name, dev->of_node);
|
|
return NULL;
|
|
}
|
|
return regnode;
|
|
}
|
|
|
|
/* Platform voltage constraint check */
|
|
int regulator_check_voltage(struct regulator_dev *rdev,
|
|
int *min_uV, int *max_uV)
|
|
{
|
|
BUG_ON(*min_uV > *max_uV);
|
|
|
|
if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
|
|
rdev_err(rdev, "voltage operation not allowed\n");
|
|
return -EPERM;
|
|
}
|
|
|
|
if (*max_uV > rdev->constraints->max_uV)
|
|
*max_uV = rdev->constraints->max_uV;
|
|
if (*min_uV < rdev->constraints->min_uV)
|
|
*min_uV = rdev->constraints->min_uV;
|
|
|
|
if (*min_uV > *max_uV) {
|
|
rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
|
|
*min_uV, *max_uV);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* return 0 if the state is valid */
|
|
static int regulator_check_states(suspend_state_t state)
|
|
{
|
|
return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
|
|
}
|
|
|
|
/* Make sure we select a voltage that suits the needs of all
|
|
* regulator consumers
|
|
*/
|
|
int regulator_check_consumers(struct regulator_dev *rdev,
|
|
int *min_uV, int *max_uV,
|
|
suspend_state_t state)
|
|
{
|
|
struct regulator *regulator;
|
|
struct regulator_voltage *voltage;
|
|
|
|
list_for_each_entry(regulator, &rdev->consumer_list, list) {
|
|
voltage = ®ulator->voltage[state];
|
|
/*
|
|
* Assume consumers that didn't say anything are OK
|
|
* with anything in the constraint range.
|
|
*/
|
|
if (!voltage->min_uV && !voltage->max_uV)
|
|
continue;
|
|
|
|
if (*max_uV > voltage->max_uV)
|
|
*max_uV = voltage->max_uV;
|
|
if (*min_uV < voltage->min_uV)
|
|
*min_uV = voltage->min_uV;
|
|
}
|
|
|
|
if (*min_uV > *max_uV) {
|
|
rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
|
|
*min_uV, *max_uV);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* current constraint check */
|
|
static int regulator_check_current_limit(struct regulator_dev *rdev,
|
|
int *min_uA, int *max_uA)
|
|
{
|
|
BUG_ON(*min_uA > *max_uA);
|
|
|
|
if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
|
|
rdev_err(rdev, "current operation not allowed\n");
|
|
return -EPERM;
|
|
}
|
|
|
|
if (*max_uA > rdev->constraints->max_uA)
|
|
*max_uA = rdev->constraints->max_uA;
|
|
if (*min_uA < rdev->constraints->min_uA)
|
|
*min_uA = rdev->constraints->min_uA;
|
|
|
|
if (*min_uA > *max_uA) {
|
|
rdev_err(rdev, "unsupportable current range: %d-%duA\n",
|
|
*min_uA, *max_uA);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* operating mode constraint check */
|
|
static int regulator_mode_constrain(struct regulator_dev *rdev,
|
|
unsigned int *mode)
|
|
{
|
|
switch (*mode) {
|
|
case REGULATOR_MODE_FAST:
|
|
case REGULATOR_MODE_NORMAL:
|
|
case REGULATOR_MODE_IDLE:
|
|
case REGULATOR_MODE_STANDBY:
|
|
break;
|
|
default:
|
|
rdev_err(rdev, "invalid mode %x specified\n", *mode);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
|
|
rdev_err(rdev, "mode operation not allowed\n");
|
|
return -EPERM;
|
|
}
|
|
|
|
/* The modes are bitmasks, the most power hungry modes having
|
|
* the lowest values. If the requested mode isn't supported
|
|
* try higher modes. */
|
|
while (*mode) {
|
|
if (rdev->constraints->valid_modes_mask & *mode)
|
|
return 0;
|
|
*mode /= 2;
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
static inline struct regulator_state *
|
|
regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
|
|
{
|
|
if (rdev->constraints == NULL)
|
|
return NULL;
|
|
|
|
switch (state) {
|
|
case PM_SUSPEND_STANDBY:
|
|
return &rdev->constraints->state_standby;
|
|
case PM_SUSPEND_MEM:
|
|
return &rdev->constraints->state_mem;
|
|
case PM_SUSPEND_MAX:
|
|
return &rdev->constraints->state_disk;
|
|
default:
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
static ssize_t regulator_uV_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
int uV;
|
|
|
|
regulator_lock(rdev);
|
|
uV = regulator_get_voltage_rdev(rdev);
|
|
regulator_unlock(rdev);
|
|
|
|
if (uV < 0)
|
|
return uV;
|
|
return sprintf(buf, "%d\n", uV);
|
|
}
|
|
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
|
|
|
|
static ssize_t regulator_uA_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
|
|
return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
|
|
}
|
|
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
|
|
|
|
static ssize_t name_show(struct device *dev, struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
|
|
return sprintf(buf, "%s\n", rdev_get_name(rdev));
|
|
}
|
|
static DEVICE_ATTR_RO(name);
|
|
|
|
static const char *regulator_opmode_to_str(int mode)
|
|
{
|
|
switch (mode) {
|
|
case REGULATOR_MODE_FAST:
|
|
return "fast";
|
|
case REGULATOR_MODE_NORMAL:
|
|
return "normal";
|
|
case REGULATOR_MODE_IDLE:
|
|
return "idle";
|
|
case REGULATOR_MODE_STANDBY:
|
|
return "standby";
|
|
}
|
|
return "unknown";
|
|
}
|
|
|
|
static ssize_t regulator_print_opmode(char *buf, int mode)
|
|
{
|
|
return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
|
|
}
|
|
|
|
static ssize_t regulator_opmode_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
|
|
return regulator_print_opmode(buf, _regulator_get_mode(rdev));
|
|
}
|
|
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
|
|
|
|
static ssize_t regulator_print_state(char *buf, int state)
|
|
{
|
|
if (state > 0)
|
|
return sprintf(buf, "enabled\n");
|
|
else if (state == 0)
|
|
return sprintf(buf, "disabled\n");
|
|
else
|
|
return sprintf(buf, "unknown\n");
|
|
}
|
|
|
|
static ssize_t regulator_state_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
ssize_t ret;
|
|
|
|
regulator_lock(rdev);
|
|
ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
|
|
regulator_unlock(rdev);
|
|
|
|
return ret;
|
|
}
|
|
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
|
|
|
|
static ssize_t regulator_status_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
int status;
|
|
char *label;
|
|
|
|
status = rdev->desc->ops->get_status(rdev);
|
|
if (status < 0)
|
|
return status;
|
|
|
|
switch (status) {
|
|
case REGULATOR_STATUS_OFF:
|
|
label = "off";
|
|
break;
|
|
case REGULATOR_STATUS_ON:
|
|
label = "on";
|
|
break;
|
|
case REGULATOR_STATUS_ERROR:
|
|
label = "error";
|
|
break;
|
|
case REGULATOR_STATUS_FAST:
|
|
label = "fast";
|
|
break;
|
|
case REGULATOR_STATUS_NORMAL:
|
|
label = "normal";
|
|
break;
|
|
case REGULATOR_STATUS_IDLE:
|
|
label = "idle";
|
|
break;
|
|
case REGULATOR_STATUS_STANDBY:
|
|
label = "standby";
|
|
break;
|
|
case REGULATOR_STATUS_BYPASS:
|
|
label = "bypass";
|
|
break;
|
|
case REGULATOR_STATUS_UNDEFINED:
|
|
label = "undefined";
|
|
break;
|
|
default:
|
|
return -ERANGE;
|
|
}
|
|
|
|
return sprintf(buf, "%s\n", label);
|
|
}
|
|
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
|
|
|
|
static ssize_t regulator_min_uA_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
|
|
if (!rdev->constraints)
|
|
return sprintf(buf, "constraint not defined\n");
|
|
|
|
return sprintf(buf, "%d\n", rdev->constraints->min_uA);
|
|
}
|
|
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
|
|
|
|
static ssize_t regulator_max_uA_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
|
|
if (!rdev->constraints)
|
|
return sprintf(buf, "constraint not defined\n");
|
|
|
|
return sprintf(buf, "%d\n", rdev->constraints->max_uA);
|
|
}
|
|
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
|
|
|
|
static ssize_t regulator_min_uV_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
|
|
if (!rdev->constraints)
|
|
return sprintf(buf, "constraint not defined\n");
|
|
|
|
return sprintf(buf, "%d\n", rdev->constraints->min_uV);
|
|
}
|
|
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
|
|
|
|
static ssize_t regulator_max_uV_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
|
|
if (!rdev->constraints)
|
|
return sprintf(buf, "constraint not defined\n");
|
|
|
|
return sprintf(buf, "%d\n", rdev->constraints->max_uV);
|
|
}
|
|
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
|
|
|
|
static ssize_t regulator_total_uA_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
struct regulator *regulator;
|
|
int uA = 0;
|
|
|
|
regulator_lock(rdev);
|
|
list_for_each_entry(regulator, &rdev->consumer_list, list) {
|
|
if (regulator->enable_count)
|
|
uA += regulator->uA_load;
|
|
}
|
|
regulator_unlock(rdev);
|
|
return sprintf(buf, "%d\n", uA);
|
|
}
|
|
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
|
|
|
|
static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
return sprintf(buf, "%d\n", rdev->use_count);
|
|
}
|
|
static DEVICE_ATTR_RO(num_users);
|
|
|
|
static ssize_t type_show(struct device *dev, struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
|
|
switch (rdev->desc->type) {
|
|
case REGULATOR_VOLTAGE:
|
|
return sprintf(buf, "voltage\n");
|
|
case REGULATOR_CURRENT:
|
|
return sprintf(buf, "current\n");
|
|
}
|
|
return sprintf(buf, "unknown\n");
|
|
}
|
|
static DEVICE_ATTR_RO(type);
|
|
|
|
static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
|
|
return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
|
|
}
|
|
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
|
|
regulator_suspend_mem_uV_show, NULL);
|
|
|
|
static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
|
|
return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
|
|
}
|
|
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
|
|
regulator_suspend_disk_uV_show, NULL);
|
|
|
|
static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
|
|
return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
|
|
}
|
|
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
|
|
regulator_suspend_standby_uV_show, NULL);
|
|
|
|
static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
|
|
return regulator_print_opmode(buf,
|
|
rdev->constraints->state_mem.mode);
|
|
}
|
|
static DEVICE_ATTR(suspend_mem_mode, 0444,
|
|
regulator_suspend_mem_mode_show, NULL);
|
|
|
|
static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
|
|
return regulator_print_opmode(buf,
|
|
rdev->constraints->state_disk.mode);
|
|
}
|
|
static DEVICE_ATTR(suspend_disk_mode, 0444,
|
|
regulator_suspend_disk_mode_show, NULL);
|
|
|
|
static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
|
|
return regulator_print_opmode(buf,
|
|
rdev->constraints->state_standby.mode);
|
|
}
|
|
static DEVICE_ATTR(suspend_standby_mode, 0444,
|
|
regulator_suspend_standby_mode_show, NULL);
|
|
|
|
static ssize_t regulator_suspend_mem_state_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
|
|
return regulator_print_state(buf,
|
|
rdev->constraints->state_mem.enabled);
|
|
}
|
|
static DEVICE_ATTR(suspend_mem_state, 0444,
|
|
regulator_suspend_mem_state_show, NULL);
|
|
|
|
static ssize_t regulator_suspend_disk_state_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
|
|
return regulator_print_state(buf,
|
|
rdev->constraints->state_disk.enabled);
|
|
}
|
|
static DEVICE_ATTR(suspend_disk_state, 0444,
|
|
regulator_suspend_disk_state_show, NULL);
|
|
|
|
static ssize_t regulator_suspend_standby_state_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
|
|
return regulator_print_state(buf,
|
|
rdev->constraints->state_standby.enabled);
|
|
}
|
|
static DEVICE_ATTR(suspend_standby_state, 0444,
|
|
regulator_suspend_standby_state_show, NULL);
|
|
|
|
static ssize_t regulator_bypass_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
const char *report;
|
|
bool bypass;
|
|
int ret;
|
|
|
|
ret = rdev->desc->ops->get_bypass(rdev, &bypass);
|
|
|
|
if (ret != 0)
|
|
report = "unknown";
|
|
else if (bypass)
|
|
report = "enabled";
|
|
else
|
|
report = "disabled";
|
|
|
|
return sprintf(buf, "%s\n", report);
|
|
}
|
|
static DEVICE_ATTR(bypass, 0444,
|
|
regulator_bypass_show, NULL);
|
|
|
|
/* Calculate the new optimum regulator operating mode based on the new total
|
|
* consumer load. All locks held by caller */
|
|
static int drms_uA_update(struct regulator_dev *rdev)
|
|
{
|
|
struct regulator *sibling;
|
|
int current_uA = 0, output_uV, input_uV, err;
|
|
unsigned int mode;
|
|
|
|
/*
|
|
* first check to see if we can set modes at all, otherwise just
|
|
* tell the consumer everything is OK.
|
|
*/
|
|
if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
|
|
rdev_dbg(rdev, "DRMS operation not allowed\n");
|
|
return 0;
|
|
}
|
|
|
|
if (!rdev->desc->ops->get_optimum_mode &&
|
|
!rdev->desc->ops->set_load)
|
|
return 0;
|
|
|
|
if (!rdev->desc->ops->set_mode &&
|
|
!rdev->desc->ops->set_load)
|
|
return -EINVAL;
|
|
|
|
/* calc total requested load */
|
|
list_for_each_entry(sibling, &rdev->consumer_list, list) {
|
|
if (sibling->enable_count)
|
|
current_uA += sibling->uA_load;
|
|
}
|
|
|
|
current_uA += rdev->constraints->system_load;
|
|
|
|
if (rdev->desc->ops->set_load) {
|
|
/* set the optimum mode for our new total regulator load */
|
|
err = rdev->desc->ops->set_load(rdev, current_uA);
|
|
if (err < 0)
|
|
rdev_err(rdev, "failed to set load %d\n", current_uA);
|
|
} else {
|
|
/* get output voltage */
|
|
output_uV = regulator_get_voltage_rdev(rdev);
|
|
if (output_uV <= 0) {
|
|
rdev_err(rdev, "invalid output voltage found\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* get input voltage */
|
|
input_uV = 0;
|
|
if (rdev->supply)
|
|
input_uV = regulator_get_voltage(rdev->supply);
|
|
if (input_uV <= 0)
|
|
input_uV = rdev->constraints->input_uV;
|
|
if (input_uV <= 0) {
|
|
rdev_err(rdev, "invalid input voltage found\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* now get the optimum mode for our new total regulator load */
|
|
mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
|
|
output_uV, current_uA);
|
|
|
|
/* check the new mode is allowed */
|
|
err = regulator_mode_constrain(rdev, &mode);
|
|
if (err < 0) {
|
|
rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
|
|
current_uA, input_uV, output_uV);
|
|
return err;
|
|
}
|
|
|
|
err = rdev->desc->ops->set_mode(rdev, mode);
|
|
if (err < 0)
|
|
rdev_err(rdev, "failed to set optimum mode %x\n", mode);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static int suspend_set_state(struct regulator_dev *rdev,
|
|
suspend_state_t state)
|
|
{
|
|
int ret = 0;
|
|
struct regulator_state *rstate;
|
|
|
|
rstate = regulator_get_suspend_state(rdev, state);
|
|
if (rstate == NULL)
|
|
return 0;
|
|
|
|
/* If we have no suspend mode configuration don't set anything;
|
|
* only warn if the driver implements set_suspend_voltage or
|
|
* set_suspend_mode callback.
|
|
*/
|
|
if (rstate->enabled != ENABLE_IN_SUSPEND &&
|
|
rstate->enabled != DISABLE_IN_SUSPEND) {
|
|
if (rdev->desc->ops->set_suspend_voltage ||
|
|
rdev->desc->ops->set_suspend_mode)
|
|
rdev_warn(rdev, "No configuration\n");
|
|
return 0;
|
|
}
|
|
|
|
if (rstate->enabled == ENABLE_IN_SUSPEND &&
|
|
rdev->desc->ops->set_suspend_enable)
|
|
ret = rdev->desc->ops->set_suspend_enable(rdev);
|
|
else if (rstate->enabled == DISABLE_IN_SUSPEND &&
|
|
rdev->desc->ops->set_suspend_disable)
|
|
ret = rdev->desc->ops->set_suspend_disable(rdev);
|
|
else /* OK if set_suspend_enable or set_suspend_disable is NULL */
|
|
ret = 0;
|
|
|
|
if (ret < 0) {
|
|
rdev_err(rdev, "failed to enabled/disable\n");
|
|
return ret;
|
|
}
|
|
|
|
if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
|
|
ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
|
|
if (ret < 0) {
|
|
rdev_err(rdev, "failed to set voltage\n");
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
|
|
ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
|
|
if (ret < 0) {
|
|
rdev_err(rdev, "failed to set mode\n");
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void print_constraints(struct regulator_dev *rdev)
|
|
{
|
|
struct regulation_constraints *constraints = rdev->constraints;
|
|
char buf[160] = "";
|
|
size_t len = sizeof(buf) - 1;
|
|
int count = 0;
|
|
int ret;
|
|
|
|
if (constraints->min_uV && constraints->max_uV) {
|
|
if (constraints->min_uV == constraints->max_uV)
|
|
count += scnprintf(buf + count, len - count, "%d mV ",
|
|
constraints->min_uV / 1000);
|
|
else
|
|
count += scnprintf(buf + count, len - count,
|
|
"%d <--> %d mV ",
|
|
constraints->min_uV / 1000,
|
|
constraints->max_uV / 1000);
|
|
}
|
|
|
|
if (!constraints->min_uV ||
|
|
constraints->min_uV != constraints->max_uV) {
|
|
ret = regulator_get_voltage_rdev(rdev);
|
|
if (ret > 0)
|
|
count += scnprintf(buf + count, len - count,
|
|
"at %d mV ", ret / 1000);
|
|
}
|
|
|
|
if (constraints->uV_offset)
|
|
count += scnprintf(buf + count, len - count, "%dmV offset ",
|
|
constraints->uV_offset / 1000);
|
|
|
|
if (constraints->min_uA && constraints->max_uA) {
|
|
if (constraints->min_uA == constraints->max_uA)
|
|
count += scnprintf(buf + count, len - count, "%d mA ",
|
|
constraints->min_uA / 1000);
|
|
else
|
|
count += scnprintf(buf + count, len - count,
|
|
"%d <--> %d mA ",
|
|
constraints->min_uA / 1000,
|
|
constraints->max_uA / 1000);
|
|
}
|
|
|
|
if (!constraints->min_uA ||
|
|
constraints->min_uA != constraints->max_uA) {
|
|
ret = _regulator_get_current_limit(rdev);
|
|
if (ret > 0)
|
|
count += scnprintf(buf + count, len - count,
|
|
"at %d mA ", ret / 1000);
|
|
}
|
|
|
|
if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
|
|
count += scnprintf(buf + count, len - count, "fast ");
|
|
if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
|
|
count += scnprintf(buf + count, len - count, "normal ");
|
|
if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
|
|
count += scnprintf(buf + count, len - count, "idle ");
|
|
if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
|
|
count += scnprintf(buf + count, len - count, "standby");
|
|
|
|
if (!count)
|
|
scnprintf(buf, len, "no parameters");
|
|
|
|
rdev_dbg(rdev, "%s\n", buf);
|
|
|
|
if ((constraints->min_uV != constraints->max_uV) &&
|
|
!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
|
|
rdev_warn(rdev,
|
|
"Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
|
|
}
|
|
|
|
static int machine_constraints_voltage(struct regulator_dev *rdev,
|
|
struct regulation_constraints *constraints)
|
|
{
|
|
const struct regulator_ops *ops = rdev->desc->ops;
|
|
int ret;
|
|
|
|
/* do we need to apply the constraint voltage */
|
|
if (rdev->constraints->apply_uV &&
|
|
rdev->constraints->min_uV && rdev->constraints->max_uV) {
|
|
int target_min, target_max;
|
|
int current_uV = regulator_get_voltage_rdev(rdev);
|
|
|
|
if (current_uV == -ENOTRECOVERABLE) {
|
|
/* This regulator can't be read and must be initialized */
|
|
rdev_info(rdev, "Setting %d-%duV\n",
|
|
rdev->constraints->min_uV,
|
|
rdev->constraints->max_uV);
|
|
_regulator_do_set_voltage(rdev,
|
|
rdev->constraints->min_uV,
|
|
rdev->constraints->max_uV);
|
|
current_uV = regulator_get_voltage_rdev(rdev);
|
|
}
|
|
|
|
if (current_uV < 0) {
|
|
rdev_err(rdev,
|
|
"failed to get the current voltage(%d)\n",
|
|
current_uV);
|
|
return current_uV;
|
|
}
|
|
|
|
/*
|
|
* If we're below the minimum voltage move up to the
|
|
* minimum voltage, if we're above the maximum voltage
|
|
* then move down to the maximum.
|
|
*/
|
|
target_min = current_uV;
|
|
target_max = current_uV;
|
|
|
|
if (current_uV < rdev->constraints->min_uV) {
|
|
target_min = rdev->constraints->min_uV;
|
|
target_max = rdev->constraints->min_uV;
|
|
}
|
|
|
|
if (current_uV > rdev->constraints->max_uV) {
|
|
target_min = rdev->constraints->max_uV;
|
|
target_max = rdev->constraints->max_uV;
|
|
}
|
|
|
|
if (target_min != current_uV || target_max != current_uV) {
|
|
rdev_info(rdev, "Bringing %duV into %d-%duV\n",
|
|
current_uV, target_min, target_max);
|
|
ret = _regulator_do_set_voltage(
|
|
rdev, target_min, target_max);
|
|
if (ret < 0) {
|
|
rdev_err(rdev,
|
|
"failed to apply %d-%duV constraint(%d)\n",
|
|
target_min, target_max, ret);
|
|
return ret;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* constrain machine-level voltage specs to fit
|
|
* the actual range supported by this regulator.
|
|
*/
|
|
if (ops->list_voltage && rdev->desc->n_voltages) {
|
|
int count = rdev->desc->n_voltages;
|
|
int i;
|
|
int min_uV = INT_MAX;
|
|
int max_uV = INT_MIN;
|
|
int cmin = constraints->min_uV;
|
|
int cmax = constraints->max_uV;
|
|
|
|
/* it's safe to autoconfigure fixed-voltage supplies
|
|
and the constraints are used by list_voltage. */
|
|
if (count == 1 && !cmin) {
|
|
cmin = 1;
|
|
cmax = INT_MAX;
|
|
constraints->min_uV = cmin;
|
|
constraints->max_uV = cmax;
|
|
}
|
|
|
|
/* voltage constraints are optional */
|
|
if ((cmin == 0) && (cmax == 0))
|
|
return 0;
|
|
|
|
/* else require explicit machine-level constraints */
|
|
if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
|
|
rdev_err(rdev, "invalid voltage constraints\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* no need to loop voltages if range is continuous */
|
|
if (rdev->desc->continuous_voltage_range)
|
|
return 0;
|
|
|
|
/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
|
|
for (i = 0; i < count; i++) {
|
|
int value;
|
|
|
|
value = ops->list_voltage(rdev, i);
|
|
if (value <= 0)
|
|
continue;
|
|
|
|
/* maybe adjust [min_uV..max_uV] */
|
|
if (value >= cmin && value < min_uV)
|
|
min_uV = value;
|
|
if (value <= cmax && value > max_uV)
|
|
max_uV = value;
|
|
}
|
|
|
|
/* final: [min_uV..max_uV] valid iff constraints valid */
|
|
if (max_uV < min_uV) {
|
|
rdev_err(rdev,
|
|
"unsupportable voltage constraints %u-%uuV\n",
|
|
min_uV, max_uV);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* use regulator's subset of machine constraints */
|
|
if (constraints->min_uV < min_uV) {
|
|
rdev_dbg(rdev, "override min_uV, %d -> %d\n",
|
|
constraints->min_uV, min_uV);
|
|
constraints->min_uV = min_uV;
|
|
}
|
|
if (constraints->max_uV > max_uV) {
|
|
rdev_dbg(rdev, "override max_uV, %d -> %d\n",
|
|
constraints->max_uV, max_uV);
|
|
constraints->max_uV = max_uV;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int machine_constraints_current(struct regulator_dev *rdev,
|
|
struct regulation_constraints *constraints)
|
|
{
|
|
const struct regulator_ops *ops = rdev->desc->ops;
|
|
int ret;
|
|
|
|
if (!constraints->min_uA && !constraints->max_uA)
|
|
return 0;
|
|
|
|
if (constraints->min_uA > constraints->max_uA) {
|
|
rdev_err(rdev, "Invalid current constraints\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!ops->set_current_limit || !ops->get_current_limit) {
|
|
rdev_warn(rdev, "Operation of current configuration missing\n");
|
|
return 0;
|
|
}
|
|
|
|
/* Set regulator current in constraints range */
|
|
ret = ops->set_current_limit(rdev, constraints->min_uA,
|
|
constraints->max_uA);
|
|
if (ret < 0) {
|
|
rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int _regulator_do_enable(struct regulator_dev *rdev);
|
|
|
|
/**
|
|
* set_machine_constraints - sets regulator constraints
|
|
* @rdev: regulator source
|
|
* @constraints: constraints to apply
|
|
*
|
|
* Allows platform initialisation code to define and constrain
|
|
* regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
|
|
* Constraints *must* be set by platform code in order for some
|
|
* regulator operations to proceed i.e. set_voltage, set_current_limit,
|
|
* set_mode.
|
|
*/
|
|
static int set_machine_constraints(struct regulator_dev *rdev,
|
|
const struct regulation_constraints *constraints)
|
|
{
|
|
int ret = 0;
|
|
const struct regulator_ops *ops = rdev->desc->ops;
|
|
|
|
if (constraints)
|
|
rdev->constraints = kmemdup(constraints, sizeof(*constraints),
|
|
GFP_KERNEL);
|
|
else
|
|
rdev->constraints = kzalloc(sizeof(*constraints),
|
|
GFP_KERNEL);
|
|
if (!rdev->constraints)
|
|
return -ENOMEM;
|
|
|
|
ret = machine_constraints_voltage(rdev, rdev->constraints);
|
|
if (ret != 0)
|
|
return ret;
|
|
|
|
ret = machine_constraints_current(rdev, rdev->constraints);
|
|
if (ret != 0)
|
|
return ret;
|
|
|
|
if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
|
|
ret = ops->set_input_current_limit(rdev,
|
|
rdev->constraints->ilim_uA);
|
|
if (ret < 0) {
|
|
rdev_err(rdev, "failed to set input limit\n");
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
/* do we need to setup our suspend state */
|
|
if (rdev->constraints->initial_state) {
|
|
ret = suspend_set_state(rdev, rdev->constraints->initial_state);
|
|
if (ret < 0) {
|
|
rdev_err(rdev, "failed to set suspend state\n");
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
if (rdev->constraints->initial_mode) {
|
|
if (!ops->set_mode) {
|
|
rdev_err(rdev, "no set_mode operation\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
|
|
if (ret < 0) {
|
|
rdev_err(rdev, "failed to set initial mode: %d\n", ret);
|
|
return ret;
|
|
}
|
|
} else if (rdev->constraints->system_load) {
|
|
/*
|
|
* We'll only apply the initial system load if an
|
|
* initial mode wasn't specified.
|
|
*/
|
|
drms_uA_update(rdev);
|
|
}
|
|
|
|
if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
|
|
&& ops->set_ramp_delay) {
|
|
ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
|
|
if (ret < 0) {
|
|
rdev_err(rdev, "failed to set ramp_delay\n");
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
if (rdev->constraints->pull_down && ops->set_pull_down) {
|
|
ret = ops->set_pull_down(rdev);
|
|
if (ret < 0) {
|
|
rdev_err(rdev, "failed to set pull down\n");
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
if (rdev->constraints->soft_start && ops->set_soft_start) {
|
|
ret = ops->set_soft_start(rdev);
|
|
if (ret < 0) {
|
|
rdev_err(rdev, "failed to set soft start\n");
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
if (rdev->constraints->over_current_protection
|
|
&& ops->set_over_current_protection) {
|
|
ret = ops->set_over_current_protection(rdev);
|
|
if (ret < 0) {
|
|
rdev_err(rdev, "failed to set over current protection\n");
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
if (rdev->constraints->active_discharge && ops->set_active_discharge) {
|
|
bool ad_state = (rdev->constraints->active_discharge ==
|
|
REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
|
|
|
|
ret = ops->set_active_discharge(rdev, ad_state);
|
|
if (ret < 0) {
|
|
rdev_err(rdev, "failed to set active discharge\n");
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
/* If the constraints say the regulator should be on at this point
|
|
* and we have control then make sure it is enabled.
|
|
*/
|
|
if (rdev->constraints->always_on || rdev->constraints->boot_on) {
|
|
if (rdev->supply) {
|
|
ret = regulator_enable(rdev->supply);
|
|
if (ret < 0) {
|
|
_regulator_put(rdev->supply);
|
|
rdev->supply = NULL;
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
ret = _regulator_do_enable(rdev);
|
|
if (ret < 0 && ret != -EINVAL) {
|
|
rdev_err(rdev, "failed to enable\n");
|
|
return ret;
|
|
}
|
|
|
|
if (rdev->constraints->always_on)
|
|
rdev->use_count++;
|
|
}
|
|
|
|
print_constraints(rdev);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* set_supply - set regulator supply regulator
|
|
* @rdev: regulator name
|
|
* @supply_rdev: supply regulator name
|
|
*
|
|
* Called by platform initialisation code to set the supply regulator for this
|
|
* regulator. This ensures that a regulators supply will also be enabled by the
|
|
* core if it's child is enabled.
|
|
*/
|
|
static int set_supply(struct regulator_dev *rdev,
|
|
struct regulator_dev *supply_rdev)
|
|
{
|
|
int err;
|
|
|
|
rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
|
|
|
|
if (!try_module_get(supply_rdev->owner))
|
|
return -ENODEV;
|
|
|
|
rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
|
|
if (rdev->supply == NULL) {
|
|
err = -ENOMEM;
|
|
return err;
|
|
}
|
|
supply_rdev->open_count++;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* set_consumer_device_supply - Bind a regulator to a symbolic supply
|
|
* @rdev: regulator source
|
|
* @consumer_dev_name: dev_name() string for device supply applies to
|
|
* @supply: symbolic name for supply
|
|
*
|
|
* Allows platform initialisation code to map physical regulator
|
|
* sources to symbolic names for supplies for use by devices. Devices
|
|
* should use these symbolic names to request regulators, avoiding the
|
|
* need to provide board-specific regulator names as platform data.
|
|
*/
|
|
static int set_consumer_device_supply(struct regulator_dev *rdev,
|
|
const char *consumer_dev_name,
|
|
const char *supply)
|
|
{
|
|
struct regulator_map *node;
|
|
int has_dev;
|
|
|
|
if (supply == NULL)
|
|
return -EINVAL;
|
|
|
|
if (consumer_dev_name != NULL)
|
|
has_dev = 1;
|
|
else
|
|
has_dev = 0;
|
|
|
|
list_for_each_entry(node, ®ulator_map_list, list) {
|
|
if (node->dev_name && consumer_dev_name) {
|
|
if (strcmp(node->dev_name, consumer_dev_name) != 0)
|
|
continue;
|
|
} else if (node->dev_name || consumer_dev_name) {
|
|
continue;
|
|
}
|
|
|
|
if (strcmp(node->supply, supply) != 0)
|
|
continue;
|
|
|
|
pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
|
|
consumer_dev_name,
|
|
dev_name(&node->regulator->dev),
|
|
node->regulator->desc->name,
|
|
supply,
|
|
dev_name(&rdev->dev), rdev_get_name(rdev));
|
|
return -EBUSY;
|
|
}
|
|
|
|
node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
|
|
if (node == NULL)
|
|
return -ENOMEM;
|
|
|
|
node->regulator = rdev;
|
|
node->supply = supply;
|
|
|
|
if (has_dev) {
|
|
node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
|
|
if (node->dev_name == NULL) {
|
|
kfree(node);
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
|
|
list_add(&node->list, ®ulator_map_list);
|
|
return 0;
|
|
}
|
|
|
|
static void unset_regulator_supplies(struct regulator_dev *rdev)
|
|
{
|
|
struct regulator_map *node, *n;
|
|
|
|
list_for_each_entry_safe(node, n, ®ulator_map_list, list) {
|
|
if (rdev == node->regulator) {
|
|
list_del(&node->list);
|
|
kfree(node->dev_name);
|
|
kfree(node);
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_DEBUG_FS
|
|
static ssize_t constraint_flags_read_file(struct file *file,
|
|
char __user *user_buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
const struct regulator *regulator = file->private_data;
|
|
const struct regulation_constraints *c = regulator->rdev->constraints;
|
|
char *buf;
|
|
ssize_t ret;
|
|
|
|
if (!c)
|
|
return 0;
|
|
|
|
buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
|
|
if (!buf)
|
|
return -ENOMEM;
|
|
|
|
ret = snprintf(buf, PAGE_SIZE,
|
|
"always_on: %u\n"
|
|
"boot_on: %u\n"
|
|
"apply_uV: %u\n"
|
|
"ramp_disable: %u\n"
|
|
"soft_start: %u\n"
|
|
"pull_down: %u\n"
|
|
"over_current_protection: %u\n",
|
|
c->always_on,
|
|
c->boot_on,
|
|
c->apply_uV,
|
|
c->ramp_disable,
|
|
c->soft_start,
|
|
c->pull_down,
|
|
c->over_current_protection);
|
|
|
|
ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
|
|
kfree(buf);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#endif
|
|
|
|
static const struct file_operations constraint_flags_fops = {
|
|
#ifdef CONFIG_DEBUG_FS
|
|
.open = simple_open,
|
|
.read = constraint_flags_read_file,
|
|
.llseek = default_llseek,
|
|
#endif
|
|
};
|
|
|
|
#define REG_STR_SIZE 64
|
|
|
|
static struct regulator *create_regulator(struct regulator_dev *rdev,
|
|
struct device *dev,
|
|
const char *supply_name)
|
|
{
|
|
struct regulator *regulator;
|
|
char buf[REG_STR_SIZE];
|
|
int err, size;
|
|
|
|
regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
|
|
if (regulator == NULL)
|
|
return NULL;
|
|
|
|
regulator_lock(rdev);
|
|
regulator->rdev = rdev;
|
|
list_add(®ulator->list, &rdev->consumer_list);
|
|
|
|
if (dev) {
|
|
regulator->dev = dev;
|
|
|
|
/* Add a link to the device sysfs entry */
|
|
size = snprintf(buf, REG_STR_SIZE, "%s-%s",
|
|
dev->kobj.name, supply_name);
|
|
if (size >= REG_STR_SIZE)
|
|
goto overflow_err;
|
|
|
|
regulator->supply_name = kstrdup(buf, GFP_KERNEL);
|
|
if (regulator->supply_name == NULL)
|
|
goto overflow_err;
|
|
|
|
err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
|
|
buf);
|
|
if (err) {
|
|
rdev_dbg(rdev, "could not add device link %s err %d\n",
|
|
dev->kobj.name, err);
|
|
/* non-fatal */
|
|
}
|
|
} else {
|
|
regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
|
|
if (regulator->supply_name == NULL)
|
|
goto overflow_err;
|
|
}
|
|
|
|
regulator->debugfs = debugfs_create_dir(regulator->supply_name,
|
|
rdev->debugfs);
|
|
if (!regulator->debugfs) {
|
|
rdev_dbg(rdev, "Failed to create debugfs directory\n");
|
|
} else {
|
|
debugfs_create_u32("uA_load", 0444, regulator->debugfs,
|
|
®ulator->uA_load);
|
|
debugfs_create_u32("min_uV", 0444, regulator->debugfs,
|
|
®ulator->voltage[PM_SUSPEND_ON].min_uV);
|
|
debugfs_create_u32("max_uV", 0444, regulator->debugfs,
|
|
®ulator->voltage[PM_SUSPEND_ON].max_uV);
|
|
debugfs_create_file("constraint_flags", 0444,
|
|
regulator->debugfs, regulator,
|
|
&constraint_flags_fops);
|
|
}
|
|
|
|
/*
|
|
* Check now if the regulator is an always on regulator - if
|
|
* it is then we don't need to do nearly so much work for
|
|
* enable/disable calls.
|
|
*/
|
|
if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
|
|
_regulator_is_enabled(rdev))
|
|
regulator->always_on = true;
|
|
|
|
regulator_unlock(rdev);
|
|
return regulator;
|
|
overflow_err:
|
|
list_del(®ulator->list);
|
|
kfree(regulator);
|
|
regulator_unlock(rdev);
|
|
return NULL;
|
|
}
|
|
|
|
static int _regulator_get_enable_time(struct regulator_dev *rdev)
|
|
{
|
|
if (rdev->constraints && rdev->constraints->enable_time)
|
|
return rdev->constraints->enable_time;
|
|
if (rdev->desc->ops->enable_time)
|
|
return rdev->desc->ops->enable_time(rdev);
|
|
return rdev->desc->enable_time;
|
|
}
|
|
|
|
static struct regulator_supply_alias *regulator_find_supply_alias(
|
|
struct device *dev, const char *supply)
|
|
{
|
|
struct regulator_supply_alias *map;
|
|
|
|
list_for_each_entry(map, ®ulator_supply_alias_list, list)
|
|
if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
|
|
return map;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void regulator_supply_alias(struct device **dev, const char **supply)
|
|
{
|
|
struct regulator_supply_alias *map;
|
|
|
|
map = regulator_find_supply_alias(*dev, *supply);
|
|
if (map) {
|
|
dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
|
|
*supply, map->alias_supply,
|
|
dev_name(map->alias_dev));
|
|
*dev = map->alias_dev;
|
|
*supply = map->alias_supply;
|
|
}
|
|
}
|
|
|
|
static int regulator_match(struct device *dev, const void *data)
|
|
{
|
|
struct regulator_dev *r = dev_to_rdev(dev);
|
|
|
|
return strcmp(rdev_get_name(r), data) == 0;
|
|
}
|
|
|
|
static struct regulator_dev *regulator_lookup_by_name(const char *name)
|
|
{
|
|
struct device *dev;
|
|
|
|
dev = class_find_device(®ulator_class, NULL, name, regulator_match);
|
|
|
|
return dev ? dev_to_rdev(dev) : NULL;
|
|
}
|
|
|
|
/**
|
|
* regulator_dev_lookup - lookup a regulator device.
|
|
* @dev: device for regulator "consumer".
|
|
* @supply: Supply name or regulator ID.
|
|
*
|
|
* If successful, returns a struct regulator_dev that corresponds to the name
|
|
* @supply and with the embedded struct device refcount incremented by one.
|
|
* The refcount must be dropped by calling put_device().
|
|
* On failure one of the following ERR-PTR-encoded values is returned:
|
|
* -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
|
|
* in the future.
|
|
*/
|
|
static struct regulator_dev *regulator_dev_lookup(struct device *dev,
|
|
const char *supply)
|
|
{
|
|
struct regulator_dev *r = NULL;
|
|
struct device_node *node;
|
|
struct regulator_map *map;
|
|
const char *devname = NULL;
|
|
|
|
regulator_supply_alias(&dev, &supply);
|
|
|
|
/* first do a dt based lookup */
|
|
if (dev && dev->of_node) {
|
|
node = of_get_regulator(dev, supply);
|
|
if (node) {
|
|
r = of_find_regulator_by_node(node);
|
|
if (r)
|
|
return r;
|
|
|
|
/*
|
|
* We have a node, but there is no device.
|
|
* assume it has not registered yet.
|
|
*/
|
|
return ERR_PTR(-EPROBE_DEFER);
|
|
}
|
|
}
|
|
|
|
/* if not found, try doing it non-dt way */
|
|
if (dev)
|
|
devname = dev_name(dev);
|
|
|
|
mutex_lock(®ulator_list_mutex);
|
|
list_for_each_entry(map, ®ulator_map_list, list) {
|
|
/* If the mapping has a device set up it must match */
|
|
if (map->dev_name &&
|
|
(!devname || strcmp(map->dev_name, devname)))
|
|
continue;
|
|
|
|
if (strcmp(map->supply, supply) == 0 &&
|
|
get_device(&map->regulator->dev)) {
|
|
r = map->regulator;
|
|
break;
|
|
}
|
|
}
|
|
mutex_unlock(®ulator_list_mutex);
|
|
|
|
if (r)
|
|
return r;
|
|
|
|
r = regulator_lookup_by_name(supply);
|
|
if (r)
|
|
return r;
|
|
|
|
return ERR_PTR(-ENODEV);
|
|
}
|
|
|
|
static int regulator_resolve_supply(struct regulator_dev *rdev)
|
|
{
|
|
struct regulator_dev *r;
|
|
struct device *dev = rdev->dev.parent;
|
|
int ret;
|
|
|
|
/* No supply to resolve? */
|
|
if (!rdev->supply_name)
|
|
return 0;
|
|
|
|
/* Supply already resolved? */
|
|
if (rdev->supply)
|
|
return 0;
|
|
|
|
r = regulator_dev_lookup(dev, rdev->supply_name);
|
|
if (IS_ERR(r)) {
|
|
ret = PTR_ERR(r);
|
|
|
|
/* Did the lookup explicitly defer for us? */
|
|
if (ret == -EPROBE_DEFER)
|
|
return ret;
|
|
|
|
if (have_full_constraints()) {
|
|
r = dummy_regulator_rdev;
|
|
get_device(&r->dev);
|
|
} else {
|
|
dev_err(dev, "Failed to resolve %s-supply for %s\n",
|
|
rdev->supply_name, rdev->desc->name);
|
|
return -EPROBE_DEFER;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If the supply's parent device is not the same as the
|
|
* regulator's parent device, then ensure the parent device
|
|
* is bound before we resolve the supply, in case the parent
|
|
* device get probe deferred and unregisters the supply.
|
|
*/
|
|
if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
|
|
if (!device_is_bound(r->dev.parent)) {
|
|
put_device(&r->dev);
|
|
return -EPROBE_DEFER;
|
|
}
|
|
}
|
|
|
|
/* Recursively resolve the supply of the supply */
|
|
ret = regulator_resolve_supply(r);
|
|
if (ret < 0) {
|
|
put_device(&r->dev);
|
|
return ret;
|
|
}
|
|
|
|
ret = set_supply(rdev, r);
|
|
if (ret < 0) {
|
|
put_device(&r->dev);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* In set_machine_constraints() we may have turned this regulator on
|
|
* but we couldn't propagate to the supply if it hadn't been resolved
|
|
* yet. Do it now.
|
|
*/
|
|
if (rdev->use_count) {
|
|
ret = regulator_enable(rdev->supply);
|
|
if (ret < 0) {
|
|
_regulator_put(rdev->supply);
|
|
rdev->supply = NULL;
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Internal regulator request function */
|
|
struct regulator *_regulator_get(struct device *dev, const char *id,
|
|
enum regulator_get_type get_type)
|
|
{
|
|
struct regulator_dev *rdev;
|
|
struct regulator *regulator;
|
|
struct device_link *link;
|
|
int ret;
|
|
|
|
if (get_type >= MAX_GET_TYPE) {
|
|
dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
if (id == NULL) {
|
|
pr_err("get() with no identifier\n");
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
rdev = regulator_dev_lookup(dev, id);
|
|
if (IS_ERR(rdev)) {
|
|
ret = PTR_ERR(rdev);
|
|
|
|
/*
|
|
* If regulator_dev_lookup() fails with error other
|
|
* than -ENODEV our job here is done, we simply return it.
|
|
*/
|
|
if (ret != -ENODEV)
|
|
return ERR_PTR(ret);
|
|
|
|
if (!have_full_constraints()) {
|
|
dev_warn(dev,
|
|
"incomplete constraints, dummy supplies not allowed\n");
|
|
return ERR_PTR(-ENODEV);
|
|
}
|
|
|
|
switch (get_type) {
|
|
case NORMAL_GET:
|
|
/*
|
|
* Assume that a regulator is physically present and
|
|
* enabled, even if it isn't hooked up, and just
|
|
* provide a dummy.
|
|
*/
|
|
dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
|
|
rdev = dummy_regulator_rdev;
|
|
get_device(&rdev->dev);
|
|
break;
|
|
|
|
case EXCLUSIVE_GET:
|
|
dev_warn(dev,
|
|
"dummy supplies not allowed for exclusive requests\n");
|
|
/* fall through */
|
|
|
|
default:
|
|
return ERR_PTR(-ENODEV);
|
|
}
|
|
}
|
|
|
|
if (rdev->exclusive) {
|
|
regulator = ERR_PTR(-EPERM);
|
|
put_device(&rdev->dev);
|
|
return regulator;
|
|
}
|
|
|
|
if (get_type == EXCLUSIVE_GET && rdev->open_count) {
|
|
regulator = ERR_PTR(-EBUSY);
|
|
put_device(&rdev->dev);
|
|
return regulator;
|
|
}
|
|
|
|
mutex_lock(®ulator_list_mutex);
|
|
ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
|
|
mutex_unlock(®ulator_list_mutex);
|
|
|
|
if (ret != 0) {
|
|
regulator = ERR_PTR(-EPROBE_DEFER);
|
|
put_device(&rdev->dev);
|
|
return regulator;
|
|
}
|
|
|
|
ret = regulator_resolve_supply(rdev);
|
|
if (ret < 0) {
|
|
regulator = ERR_PTR(ret);
|
|
put_device(&rdev->dev);
|
|
return regulator;
|
|
}
|
|
|
|
if (!try_module_get(rdev->owner)) {
|
|
regulator = ERR_PTR(-EPROBE_DEFER);
|
|
put_device(&rdev->dev);
|
|
return regulator;
|
|
}
|
|
|
|
regulator = create_regulator(rdev, dev, id);
|
|
if (regulator == NULL) {
|
|
regulator = ERR_PTR(-ENOMEM);
|
|
module_put(rdev->owner);
|
|
put_device(&rdev->dev);
|
|
return regulator;
|
|
}
|
|
|
|
rdev->open_count++;
|
|
if (get_type == EXCLUSIVE_GET) {
|
|
rdev->exclusive = 1;
|
|
|
|
ret = _regulator_is_enabled(rdev);
|
|
if (ret > 0)
|
|
rdev->use_count = 1;
|
|
else
|
|
rdev->use_count = 0;
|
|
}
|
|
|
|
link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
|
|
if (!IS_ERR_OR_NULL(link))
|
|
regulator->device_link = true;
|
|
|
|
return regulator;
|
|
}
|
|
|
|
/**
|
|
* regulator_get - lookup and obtain a reference to a regulator.
|
|
* @dev: device for regulator "consumer"
|
|
* @id: Supply name or regulator ID.
|
|
*
|
|
* Returns a struct regulator corresponding to the regulator producer,
|
|
* or IS_ERR() condition containing errno.
|
|
*
|
|
* Use of supply names configured via regulator_set_device_supply() is
|
|
* strongly encouraged. It is recommended that the supply name used
|
|
* should match the name used for the supply and/or the relevant
|
|
* device pins in the datasheet.
|
|
*/
|
|
struct regulator *regulator_get(struct device *dev, const char *id)
|
|
{
|
|
return _regulator_get(dev, id, NORMAL_GET);
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_get);
|
|
|
|
/**
|
|
* regulator_get_exclusive - obtain exclusive access to a regulator.
|
|
* @dev: device for regulator "consumer"
|
|
* @id: Supply name or regulator ID.
|
|
*
|
|
* Returns a struct regulator corresponding to the regulator producer,
|
|
* or IS_ERR() condition containing errno. Other consumers will be
|
|
* unable to obtain this regulator while this reference is held and the
|
|
* use count for the regulator will be initialised to reflect the current
|
|
* state of the regulator.
|
|
*
|
|
* This is intended for use by consumers which cannot tolerate shared
|
|
* use of the regulator such as those which need to force the
|
|
* regulator off for correct operation of the hardware they are
|
|
* controlling.
|
|
*
|
|
* Use of supply names configured via regulator_set_device_supply() is
|
|
* strongly encouraged. It is recommended that the supply name used
|
|
* should match the name used for the supply and/or the relevant
|
|
* device pins in the datasheet.
|
|
*/
|
|
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
|
|
{
|
|
return _regulator_get(dev, id, EXCLUSIVE_GET);
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_get_exclusive);
|
|
|
|
/**
|
|
* regulator_get_optional - obtain optional access to a regulator.
|
|
* @dev: device for regulator "consumer"
|
|
* @id: Supply name or regulator ID.
|
|
*
|
|
* Returns a struct regulator corresponding to the regulator producer,
|
|
* or IS_ERR() condition containing errno.
|
|
*
|
|
* This is intended for use by consumers for devices which can have
|
|
* some supplies unconnected in normal use, such as some MMC devices.
|
|
* It can allow the regulator core to provide stub supplies for other
|
|
* supplies requested using normal regulator_get() calls without
|
|
* disrupting the operation of drivers that can handle absent
|
|
* supplies.
|
|
*
|
|
* Use of supply names configured via regulator_set_device_supply() is
|
|
* strongly encouraged. It is recommended that the supply name used
|
|
* should match the name used for the supply and/or the relevant
|
|
* device pins in the datasheet.
|
|
*/
|
|
struct regulator *regulator_get_optional(struct device *dev, const char *id)
|
|
{
|
|
return _regulator_get(dev, id, OPTIONAL_GET);
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_get_optional);
|
|
|
|
static void destroy_regulator(struct regulator *regulator)
|
|
{
|
|
struct regulator_dev *rdev = regulator->rdev;
|
|
|
|
debugfs_remove_recursive(regulator->debugfs);
|
|
|
|
if (regulator->dev) {
|
|
if (regulator->device_link)
|
|
device_link_remove(regulator->dev, &rdev->dev);
|
|
|
|
/* remove any sysfs entries */
|
|
sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
|
|
}
|
|
|
|
regulator_lock(rdev);
|
|
list_del(®ulator->list);
|
|
|
|
rdev->open_count--;
|
|
rdev->exclusive = 0;
|
|
regulator_unlock(rdev);
|
|
|
|
kfree_const(regulator->supply_name);
|
|
kfree(regulator);
|
|
}
|
|
|
|
/* regulator_list_mutex lock held by regulator_put() */
|
|
static void _regulator_put(struct regulator *regulator)
|
|
{
|
|
struct regulator_dev *rdev;
|
|
|
|
if (IS_ERR_OR_NULL(regulator))
|
|
return;
|
|
|
|
lockdep_assert_held_once(®ulator_list_mutex);
|
|
|
|
/* Docs say you must disable before calling regulator_put() */
|
|
WARN_ON(regulator->enable_count);
|
|
|
|
rdev = regulator->rdev;
|
|
|
|
destroy_regulator(regulator);
|
|
|
|
module_put(rdev->owner);
|
|
put_device(&rdev->dev);
|
|
}
|
|
|
|
/**
|
|
* regulator_put - "free" the regulator source
|
|
* @regulator: regulator source
|
|
*
|
|
* Note: drivers must ensure that all regulator_enable calls made on this
|
|
* regulator source are balanced by regulator_disable calls prior to calling
|
|
* this function.
|
|
*/
|
|
void regulator_put(struct regulator *regulator)
|
|
{
|
|
mutex_lock(®ulator_list_mutex);
|
|
_regulator_put(regulator);
|
|
mutex_unlock(®ulator_list_mutex);
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_put);
|
|
|
|
/**
|
|
* regulator_register_supply_alias - Provide device alias for supply lookup
|
|
*
|
|
* @dev: device that will be given as the regulator "consumer"
|
|
* @id: Supply name or regulator ID
|
|
* @alias_dev: device that should be used to lookup the supply
|
|
* @alias_id: Supply name or regulator ID that should be used to lookup the
|
|
* supply
|
|
*
|
|
* All lookups for id on dev will instead be conducted for alias_id on
|
|
* alias_dev.
|
|
*/
|
|
int regulator_register_supply_alias(struct device *dev, const char *id,
|
|
struct device *alias_dev,
|
|
const char *alias_id)
|
|
{
|
|
struct regulator_supply_alias *map;
|
|
|
|
map = regulator_find_supply_alias(dev, id);
|
|
if (map)
|
|
return -EEXIST;
|
|
|
|
map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
|
|
if (!map)
|
|
return -ENOMEM;
|
|
|
|
map->src_dev = dev;
|
|
map->src_supply = id;
|
|
map->alias_dev = alias_dev;
|
|
map->alias_supply = alias_id;
|
|
|
|
list_add(&map->list, ®ulator_supply_alias_list);
|
|
|
|
pr_info("Adding alias for supply %s,%s -> %s,%s\n",
|
|
id, dev_name(dev), alias_id, dev_name(alias_dev));
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
|
|
|
|
/**
|
|
* regulator_unregister_supply_alias - Remove device alias
|
|
*
|
|
* @dev: device that will be given as the regulator "consumer"
|
|
* @id: Supply name or regulator ID
|
|
*
|
|
* Remove a lookup alias if one exists for id on dev.
|
|
*/
|
|
void regulator_unregister_supply_alias(struct device *dev, const char *id)
|
|
{
|
|
struct regulator_supply_alias *map;
|
|
|
|
map = regulator_find_supply_alias(dev, id);
|
|
if (map) {
|
|
list_del(&map->list);
|
|
kfree(map);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
|
|
|
|
/**
|
|
* regulator_bulk_register_supply_alias - register multiple aliases
|
|
*
|
|
* @dev: device that will be given as the regulator "consumer"
|
|
* @id: List of supply names or regulator IDs
|
|
* @alias_dev: device that should be used to lookup the supply
|
|
* @alias_id: List of supply names or regulator IDs that should be used to
|
|
* lookup the supply
|
|
* @num_id: Number of aliases to register
|
|
*
|
|
* @return 0 on success, an errno on failure.
|
|
*
|
|
* This helper function allows drivers to register several supply
|
|
* aliases in one operation. If any of the aliases cannot be
|
|
* registered any aliases that were registered will be removed
|
|
* before returning to the caller.
|
|
*/
|
|
int regulator_bulk_register_supply_alias(struct device *dev,
|
|
const char *const *id,
|
|
struct device *alias_dev,
|
|
const char *const *alias_id,
|
|
int num_id)
|
|
{
|
|
int i;
|
|
int ret;
|
|
|
|
for (i = 0; i < num_id; ++i) {
|
|
ret = regulator_register_supply_alias(dev, id[i], alias_dev,
|
|
alias_id[i]);
|
|
if (ret < 0)
|
|
goto err;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err:
|
|
dev_err(dev,
|
|
"Failed to create supply alias %s,%s -> %s,%s\n",
|
|
id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
|
|
|
|
while (--i >= 0)
|
|
regulator_unregister_supply_alias(dev, id[i]);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
|
|
|
|
/**
|
|
* regulator_bulk_unregister_supply_alias - unregister multiple aliases
|
|
*
|
|
* @dev: device that will be given as the regulator "consumer"
|
|
* @id: List of supply names or regulator IDs
|
|
* @num_id: Number of aliases to unregister
|
|
*
|
|
* This helper function allows drivers to unregister several supply
|
|
* aliases in one operation.
|
|
*/
|
|
void regulator_bulk_unregister_supply_alias(struct device *dev,
|
|
const char *const *id,
|
|
int num_id)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < num_id; ++i)
|
|
regulator_unregister_supply_alias(dev, id[i]);
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
|
|
|
|
|
|
/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
|
|
static int regulator_ena_gpio_request(struct regulator_dev *rdev,
|
|
const struct regulator_config *config)
|
|
{
|
|
struct regulator_enable_gpio *pin;
|
|
struct gpio_desc *gpiod;
|
|
|
|
gpiod = config->ena_gpiod;
|
|
|
|
list_for_each_entry(pin, ®ulator_ena_gpio_list, list) {
|
|
if (pin->gpiod == gpiod) {
|
|
rdev_dbg(rdev, "GPIO is already used\n");
|
|
goto update_ena_gpio_to_rdev;
|
|
}
|
|
}
|
|
|
|
pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
|
|
if (pin == NULL)
|
|
return -ENOMEM;
|
|
|
|
pin->gpiod = gpiod;
|
|
list_add(&pin->list, ®ulator_ena_gpio_list);
|
|
|
|
update_ena_gpio_to_rdev:
|
|
pin->request_count++;
|
|
rdev->ena_pin = pin;
|
|
return 0;
|
|
}
|
|
|
|
static void regulator_ena_gpio_free(struct regulator_dev *rdev)
|
|
{
|
|
struct regulator_enable_gpio *pin, *n;
|
|
|
|
if (!rdev->ena_pin)
|
|
return;
|
|
|
|
/* Free the GPIO only in case of no use */
|
|
list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) {
|
|
if (pin->gpiod == rdev->ena_pin->gpiod) {
|
|
if (pin->request_count <= 1) {
|
|
pin->request_count = 0;
|
|
gpiod_put(pin->gpiod);
|
|
list_del(&pin->list);
|
|
kfree(pin);
|
|
rdev->ena_pin = NULL;
|
|
return;
|
|
} else {
|
|
pin->request_count--;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
|
|
* @rdev: regulator_dev structure
|
|
* @enable: enable GPIO at initial use?
|
|
*
|
|
* GPIO is enabled in case of initial use. (enable_count is 0)
|
|
* GPIO is disabled when it is not shared any more. (enable_count <= 1)
|
|
*/
|
|
static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
|
|
{
|
|
struct regulator_enable_gpio *pin = rdev->ena_pin;
|
|
|
|
if (!pin)
|
|
return -EINVAL;
|
|
|
|
if (enable) {
|
|
/* Enable GPIO at initial use */
|
|
if (pin->enable_count == 0)
|
|
gpiod_set_value_cansleep(pin->gpiod, 1);
|
|
|
|
pin->enable_count++;
|
|
} else {
|
|
if (pin->enable_count > 1) {
|
|
pin->enable_count--;
|
|
return 0;
|
|
}
|
|
|
|
/* Disable GPIO if not used */
|
|
if (pin->enable_count <= 1) {
|
|
gpiod_set_value_cansleep(pin->gpiod, 0);
|
|
pin->enable_count = 0;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* _regulator_enable_delay - a delay helper function
|
|
* @delay: time to delay in microseconds
|
|
*
|
|
* Delay for the requested amount of time as per the guidelines in:
|
|
*
|
|
* Documentation/timers/timers-howto.rst
|
|
*
|
|
* The assumption here is that regulators will never be enabled in
|
|
* atomic context and therefore sleeping functions can be used.
|
|
*/
|
|
static void _regulator_enable_delay(unsigned int delay)
|
|
{
|
|
unsigned int ms = delay / 1000;
|
|
unsigned int us = delay % 1000;
|
|
|
|
if (ms > 0) {
|
|
/*
|
|
* For small enough values, handle super-millisecond
|
|
* delays in the usleep_range() call below.
|
|
*/
|
|
if (ms < 20)
|
|
us += ms * 1000;
|
|
else
|
|
msleep(ms);
|
|
}
|
|
|
|
/*
|
|
* Give the scheduler some room to coalesce with any other
|
|
* wakeup sources. For delays shorter than 10 us, don't even
|
|
* bother setting up high-resolution timers and just busy-
|
|
* loop.
|
|
*/
|
|
if (us >= 10)
|
|
usleep_range(us, us + 100);
|
|
else
|
|
udelay(us);
|
|
}
|
|
|
|
/**
|
|
* _regulator_check_status_enabled
|
|
*
|
|
* A helper function to check if the regulator status can be interpreted
|
|
* as 'regulator is enabled'.
|
|
* @rdev: the regulator device to check
|
|
*
|
|
* Return:
|
|
* * 1 - if status shows regulator is in enabled state
|
|
* * 0 - if not enabled state
|
|
* * Error Value - as received from ops->get_status()
|
|
*/
|
|
static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
|
|
{
|
|
int ret = rdev->desc->ops->get_status(rdev);
|
|
|
|
if (ret < 0) {
|
|
rdev_info(rdev, "get_status returned error: %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
switch (ret) {
|
|
case REGULATOR_STATUS_OFF:
|
|
case REGULATOR_STATUS_ERROR:
|
|
case REGULATOR_STATUS_UNDEFINED:
|
|
return 0;
|
|
default:
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
static int _regulator_do_enable(struct regulator_dev *rdev)
|
|
{
|
|
int ret, delay;
|
|
|
|
/* Query before enabling in case configuration dependent. */
|
|
ret = _regulator_get_enable_time(rdev);
|
|
if (ret >= 0) {
|
|
delay = ret;
|
|
} else {
|
|
rdev_warn(rdev, "enable_time() failed: %d\n", ret);
|
|
delay = 0;
|
|
}
|
|
|
|
trace_regulator_enable(rdev_get_name(rdev));
|
|
|
|
if (rdev->desc->off_on_delay) {
|
|
/* if needed, keep a distance of off_on_delay from last time
|
|
* this regulator was disabled.
|
|
*/
|
|
unsigned long start_jiffy = jiffies;
|
|
unsigned long intended, max_delay, remaining;
|
|
|
|
max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
|
|
intended = rdev->last_off_jiffy + max_delay;
|
|
|
|
if (time_before(start_jiffy, intended)) {
|
|
/* calc remaining jiffies to deal with one-time
|
|
* timer wrapping.
|
|
* in case of multiple timer wrapping, either it can be
|
|
* detected by out-of-range remaining, or it cannot be
|
|
* detected and we get a penalty of
|
|
* _regulator_enable_delay().
|
|
*/
|
|
remaining = intended - start_jiffy;
|
|
if (remaining <= max_delay)
|
|
_regulator_enable_delay(
|
|
jiffies_to_usecs(remaining));
|
|
}
|
|
}
|
|
|
|
if (rdev->ena_pin) {
|
|
if (!rdev->ena_gpio_state) {
|
|
ret = regulator_ena_gpio_ctrl(rdev, true);
|
|
if (ret < 0)
|
|
return ret;
|
|
rdev->ena_gpio_state = 1;
|
|
}
|
|
} else if (rdev->desc->ops->enable) {
|
|
ret = rdev->desc->ops->enable(rdev);
|
|
if (ret < 0)
|
|
return ret;
|
|
} else {
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Allow the regulator to ramp; it would be useful to extend
|
|
* this for bulk operations so that the regulators can ramp
|
|
* together. */
|
|
trace_regulator_enable_delay(rdev_get_name(rdev));
|
|
|
|
/* If poll_enabled_time is set, poll upto the delay calculated
|
|
* above, delaying poll_enabled_time uS to check if the regulator
|
|
* actually got enabled.
|
|
* If the regulator isn't enabled after enable_delay has
|
|
* expired, return -ETIMEDOUT.
|
|
*/
|
|
if (rdev->desc->poll_enabled_time) {
|
|
unsigned int time_remaining = delay;
|
|
|
|
while (time_remaining > 0) {
|
|
_regulator_enable_delay(rdev->desc->poll_enabled_time);
|
|
|
|
if (rdev->desc->ops->get_status) {
|
|
ret = _regulator_check_status_enabled(rdev);
|
|
if (ret < 0)
|
|
return ret;
|
|
else if (ret)
|
|
break;
|
|
} else if (rdev->desc->ops->is_enabled(rdev))
|
|
break;
|
|
|
|
time_remaining -= rdev->desc->poll_enabled_time;
|
|
}
|
|
|
|
if (time_remaining <= 0) {
|
|
rdev_err(rdev, "Enabled check timed out\n");
|
|
return -ETIMEDOUT;
|
|
}
|
|
} else {
|
|
_regulator_enable_delay(delay);
|
|
}
|
|
|
|
trace_regulator_enable_complete(rdev_get_name(rdev));
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* _regulator_handle_consumer_enable - handle that a consumer enabled
|
|
* @regulator: regulator source
|
|
*
|
|
* Some things on a regulator consumer (like the contribution towards total
|
|
* load on the regulator) only have an effect when the consumer wants the
|
|
* regulator enabled. Explained in example with two consumers of the same
|
|
* regulator:
|
|
* consumer A: set_load(100); => total load = 0
|
|
* consumer A: regulator_enable(); => total load = 100
|
|
* consumer B: set_load(1000); => total load = 100
|
|
* consumer B: regulator_enable(); => total load = 1100
|
|
* consumer A: regulator_disable(); => total_load = 1000
|
|
*
|
|
* This function (together with _regulator_handle_consumer_disable) is
|
|
* responsible for keeping track of the refcount for a given regulator consumer
|
|
* and applying / unapplying these things.
|
|
*
|
|
* Returns 0 upon no error; -error upon error.
|
|
*/
|
|
static int _regulator_handle_consumer_enable(struct regulator *regulator)
|
|
{
|
|
struct regulator_dev *rdev = regulator->rdev;
|
|
|
|
lockdep_assert_held_once(&rdev->mutex.base);
|
|
|
|
regulator->enable_count++;
|
|
if (regulator->uA_load && regulator->enable_count == 1)
|
|
return drms_uA_update(rdev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* _regulator_handle_consumer_disable - handle that a consumer disabled
|
|
* @regulator: regulator source
|
|
*
|
|
* The opposite of _regulator_handle_consumer_enable().
|
|
*
|
|
* Returns 0 upon no error; -error upon error.
|
|
*/
|
|
static int _regulator_handle_consumer_disable(struct regulator *regulator)
|
|
{
|
|
struct regulator_dev *rdev = regulator->rdev;
|
|
|
|
lockdep_assert_held_once(&rdev->mutex.base);
|
|
|
|
if (!regulator->enable_count) {
|
|
rdev_err(rdev, "Underflow of regulator enable count\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
regulator->enable_count--;
|
|
if (regulator->uA_load && regulator->enable_count == 0)
|
|
return drms_uA_update(rdev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* locks held by regulator_enable() */
|
|
static int _regulator_enable(struct regulator *regulator)
|
|
{
|
|
struct regulator_dev *rdev = regulator->rdev;
|
|
int ret;
|
|
|
|
lockdep_assert_held_once(&rdev->mutex.base);
|
|
|
|
if (rdev->use_count == 0 && rdev->supply) {
|
|
ret = _regulator_enable(rdev->supply);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
/* balance only if there are regulators coupled */
|
|
if (rdev->coupling_desc.n_coupled > 1) {
|
|
ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
|
|
if (ret < 0)
|
|
goto err_disable_supply;
|
|
}
|
|
|
|
ret = _regulator_handle_consumer_enable(regulator);
|
|
if (ret < 0)
|
|
goto err_disable_supply;
|
|
|
|
if (rdev->use_count == 0) {
|
|
/* The regulator may on if it's not switchable or left on */
|
|
ret = _regulator_is_enabled(rdev);
|
|
if (ret == -EINVAL || ret == 0) {
|
|
if (!regulator_ops_is_valid(rdev,
|
|
REGULATOR_CHANGE_STATUS)) {
|
|
ret = -EPERM;
|
|
goto err_consumer_disable;
|
|
}
|
|
|
|
ret = _regulator_do_enable(rdev);
|
|
if (ret < 0)
|
|
goto err_consumer_disable;
|
|
|
|
_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
|
|
NULL);
|
|
} else if (ret < 0) {
|
|
rdev_err(rdev, "is_enabled() failed: %d\n", ret);
|
|
goto err_consumer_disable;
|
|
}
|
|
/* Fallthrough on positive return values - already enabled */
|
|
}
|
|
|
|
rdev->use_count++;
|
|
|
|
return 0;
|
|
|
|
err_consumer_disable:
|
|
_regulator_handle_consumer_disable(regulator);
|
|
|
|
err_disable_supply:
|
|
if (rdev->use_count == 0 && rdev->supply)
|
|
_regulator_disable(rdev->supply);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* regulator_enable - enable regulator output
|
|
* @regulator: regulator source
|
|
*
|
|
* Request that the regulator be enabled with the regulator output at
|
|
* the predefined voltage or current value. Calls to regulator_enable()
|
|
* must be balanced with calls to regulator_disable().
|
|
*
|
|
* NOTE: the output value can be set by other drivers, boot loader or may be
|
|
* hardwired in the regulator.
|
|
*/
|
|
int regulator_enable(struct regulator *regulator)
|
|
{
|
|
struct regulator_dev *rdev = regulator->rdev;
|
|
struct ww_acquire_ctx ww_ctx;
|
|
int ret;
|
|
|
|
regulator_lock_dependent(rdev, &ww_ctx);
|
|
ret = _regulator_enable(regulator);
|
|
regulator_unlock_dependent(rdev, &ww_ctx);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_enable);
|
|
|
|
static int _regulator_do_disable(struct regulator_dev *rdev)
|
|
{
|
|
int ret;
|
|
|
|
trace_regulator_disable(rdev_get_name(rdev));
|
|
|
|
if (rdev->ena_pin) {
|
|
if (rdev->ena_gpio_state) {
|
|
ret = regulator_ena_gpio_ctrl(rdev, false);
|
|
if (ret < 0)
|
|
return ret;
|
|
rdev->ena_gpio_state = 0;
|
|
}
|
|
|
|
} else if (rdev->desc->ops->disable) {
|
|
ret = rdev->desc->ops->disable(rdev);
|
|
if (ret != 0)
|
|
return ret;
|
|
}
|
|
|
|
/* cares about last_off_jiffy only if off_on_delay is required by
|
|
* device.
|
|
*/
|
|
if (rdev->desc->off_on_delay)
|
|
rdev->last_off_jiffy = jiffies;
|
|
|
|
trace_regulator_disable_complete(rdev_get_name(rdev));
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* locks held by regulator_disable() */
|
|
static int _regulator_disable(struct regulator *regulator)
|
|
{
|
|
struct regulator_dev *rdev = regulator->rdev;
|
|
int ret = 0;
|
|
|
|
lockdep_assert_held_once(&rdev->mutex.base);
|
|
|
|
if (WARN(rdev->use_count <= 0,
|
|
"unbalanced disables for %s\n", rdev_get_name(rdev)))
|
|
return -EIO;
|
|
|
|
/* are we the last user and permitted to disable ? */
|
|
if (rdev->use_count == 1 &&
|
|
(rdev->constraints && !rdev->constraints->always_on)) {
|
|
|
|
/* we are last user */
|
|
if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
|
|
ret = _notifier_call_chain(rdev,
|
|
REGULATOR_EVENT_PRE_DISABLE,
|
|
NULL);
|
|
if (ret & NOTIFY_STOP_MASK)
|
|
return -EINVAL;
|
|
|
|
ret = _regulator_do_disable(rdev);
|
|
if (ret < 0) {
|
|
rdev_err(rdev, "failed to disable\n");
|
|
_notifier_call_chain(rdev,
|
|
REGULATOR_EVENT_ABORT_DISABLE,
|
|
NULL);
|
|
return ret;
|
|
}
|
|
_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
|
|
NULL);
|
|
}
|
|
|
|
rdev->use_count = 0;
|
|
} else if (rdev->use_count > 1) {
|
|
rdev->use_count--;
|
|
}
|
|
|
|
if (ret == 0)
|
|
ret = _regulator_handle_consumer_disable(regulator);
|
|
|
|
if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
|
|
ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
|
|
|
|
if (ret == 0 && rdev->use_count == 0 && rdev->supply)
|
|
ret = _regulator_disable(rdev->supply);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* regulator_disable - disable regulator output
|
|
* @regulator: regulator source
|
|
*
|
|
* Disable the regulator output voltage or current. Calls to
|
|
* regulator_enable() must be balanced with calls to
|
|
* regulator_disable().
|
|
*
|
|
* NOTE: this will only disable the regulator output if no other consumer
|
|
* devices have it enabled, the regulator device supports disabling and
|
|
* machine constraints permit this operation.
|
|
*/
|
|
int regulator_disable(struct regulator *regulator)
|
|
{
|
|
struct regulator_dev *rdev = regulator->rdev;
|
|
struct ww_acquire_ctx ww_ctx;
|
|
int ret;
|
|
|
|
regulator_lock_dependent(rdev, &ww_ctx);
|
|
ret = _regulator_disable(regulator);
|
|
regulator_unlock_dependent(rdev, &ww_ctx);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_disable);
|
|
|
|
/* locks held by regulator_force_disable() */
|
|
static int _regulator_force_disable(struct regulator_dev *rdev)
|
|
{
|
|
int ret = 0;
|
|
|
|
lockdep_assert_held_once(&rdev->mutex.base);
|
|
|
|
ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
|
|
REGULATOR_EVENT_PRE_DISABLE, NULL);
|
|
if (ret & NOTIFY_STOP_MASK)
|
|
return -EINVAL;
|
|
|
|
ret = _regulator_do_disable(rdev);
|
|
if (ret < 0) {
|
|
rdev_err(rdev, "failed to force disable\n");
|
|
_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
|
|
REGULATOR_EVENT_ABORT_DISABLE, NULL);
|
|
return ret;
|
|
}
|
|
|
|
_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
|
|
REGULATOR_EVENT_DISABLE, NULL);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* regulator_force_disable - force disable regulator output
|
|
* @regulator: regulator source
|
|
*
|
|
* Forcibly disable the regulator output voltage or current.
|
|
* NOTE: this *will* disable the regulator output even if other consumer
|
|
* devices have it enabled. This should be used for situations when device
|
|
* damage will likely occur if the regulator is not disabled (e.g. over temp).
|
|
*/
|
|
int regulator_force_disable(struct regulator *regulator)
|
|
{
|
|
struct regulator_dev *rdev = regulator->rdev;
|
|
struct ww_acquire_ctx ww_ctx;
|
|
int ret;
|
|
|
|
regulator_lock_dependent(rdev, &ww_ctx);
|
|
|
|
ret = _regulator_force_disable(regulator->rdev);
|
|
|
|
if (rdev->coupling_desc.n_coupled > 1)
|
|
regulator_balance_voltage(rdev, PM_SUSPEND_ON);
|
|
|
|
if (regulator->uA_load) {
|
|
regulator->uA_load = 0;
|
|
ret = drms_uA_update(rdev);
|
|
}
|
|
|
|
if (rdev->use_count != 0 && rdev->supply)
|
|
_regulator_disable(rdev->supply);
|
|
|
|
regulator_unlock_dependent(rdev, &ww_ctx);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_force_disable);
|
|
|
|
static void regulator_disable_work(struct work_struct *work)
|
|
{
|
|
struct regulator_dev *rdev = container_of(work, struct regulator_dev,
|
|
disable_work.work);
|
|
struct ww_acquire_ctx ww_ctx;
|
|
int count, i, ret;
|
|
struct regulator *regulator;
|
|
int total_count = 0;
|
|
|
|
regulator_lock_dependent(rdev, &ww_ctx);
|
|
|
|
/*
|
|
* Workqueue functions queue the new work instance while the previous
|
|
* work instance is being processed. Cancel the queued work instance
|
|
* as the work instance under processing does the job of the queued
|
|
* work instance.
|
|
*/
|
|
cancel_delayed_work(&rdev->disable_work);
|
|
|
|
list_for_each_entry(regulator, &rdev->consumer_list, list) {
|
|
count = regulator->deferred_disables;
|
|
|
|
if (!count)
|
|
continue;
|
|
|
|
total_count += count;
|
|
regulator->deferred_disables = 0;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
ret = _regulator_disable(regulator);
|
|
if (ret != 0)
|
|
rdev_err(rdev, "Deferred disable failed: %d\n", ret);
|
|
}
|
|
}
|
|
WARN_ON(!total_count);
|
|
|
|
if (rdev->coupling_desc.n_coupled > 1)
|
|
regulator_balance_voltage(rdev, PM_SUSPEND_ON);
|
|
|
|
regulator_unlock_dependent(rdev, &ww_ctx);
|
|
}
|
|
|
|
/**
|
|
* regulator_disable_deferred - disable regulator output with delay
|
|
* @regulator: regulator source
|
|
* @ms: milliseconds until the regulator is disabled
|
|
*
|
|
* Execute regulator_disable() on the regulator after a delay. This
|
|
* is intended for use with devices that require some time to quiesce.
|
|
*
|
|
* NOTE: this will only disable the regulator output if no other consumer
|
|
* devices have it enabled, the regulator device supports disabling and
|
|
* machine constraints permit this operation.
|
|
*/
|
|
int regulator_disable_deferred(struct regulator *regulator, int ms)
|
|
{
|
|
struct regulator_dev *rdev = regulator->rdev;
|
|
|
|
if (!ms)
|
|
return regulator_disable(regulator);
|
|
|
|
regulator_lock(rdev);
|
|
regulator->deferred_disables++;
|
|
mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
|
|
msecs_to_jiffies(ms));
|
|
regulator_unlock(rdev);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_disable_deferred);
|
|
|
|
static int _regulator_is_enabled(struct regulator_dev *rdev)
|
|
{
|
|
/* A GPIO control always takes precedence */
|
|
if (rdev->ena_pin)
|
|
return rdev->ena_gpio_state;
|
|
|
|
/* If we don't know then assume that the regulator is always on */
|
|
if (!rdev->desc->ops->is_enabled)
|
|
return 1;
|
|
|
|
return rdev->desc->ops->is_enabled(rdev);
|
|
}
|
|
|
|
static int _regulator_list_voltage(struct regulator_dev *rdev,
|
|
unsigned selector, int lock)
|
|
{
|
|
const struct regulator_ops *ops = rdev->desc->ops;
|
|
int ret;
|
|
|
|
if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
|
|
return rdev->desc->fixed_uV;
|
|
|
|
if (ops->list_voltage) {
|
|
if (selector >= rdev->desc->n_voltages)
|
|
return -EINVAL;
|
|
if (lock)
|
|
regulator_lock(rdev);
|
|
ret = ops->list_voltage(rdev, selector);
|
|
if (lock)
|
|
regulator_unlock(rdev);
|
|
} else if (rdev->is_switch && rdev->supply) {
|
|
ret = _regulator_list_voltage(rdev->supply->rdev,
|
|
selector, lock);
|
|
} else {
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (ret > 0) {
|
|
if (ret < rdev->constraints->min_uV)
|
|
ret = 0;
|
|
else if (ret > rdev->constraints->max_uV)
|
|
ret = 0;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* regulator_is_enabled - is the regulator output enabled
|
|
* @regulator: regulator source
|
|
*
|
|
* Returns positive if the regulator driver backing the source/client
|
|
* has requested that the device be enabled, zero if it hasn't, else a
|
|
* negative errno code.
|
|
*
|
|
* Note that the device backing this regulator handle can have multiple
|
|
* users, so it might be enabled even if regulator_enable() was never
|
|
* called for this particular source.
|
|
*/
|
|
int regulator_is_enabled(struct regulator *regulator)
|
|
{
|
|
int ret;
|
|
|
|
if (regulator->always_on)
|
|
return 1;
|
|
|
|
regulator_lock(regulator->rdev);
|
|
ret = _regulator_is_enabled(regulator->rdev);
|
|
regulator_unlock(regulator->rdev);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_is_enabled);
|
|
|
|
/**
|
|
* regulator_count_voltages - count regulator_list_voltage() selectors
|
|
* @regulator: regulator source
|
|
*
|
|
* Returns number of selectors, or negative errno. Selectors are
|
|
* numbered starting at zero, and typically correspond to bitfields
|
|
* in hardware registers.
|
|
*/
|
|
int regulator_count_voltages(struct regulator *regulator)
|
|
{
|
|
struct regulator_dev *rdev = regulator->rdev;
|
|
|
|
if (rdev->desc->n_voltages)
|
|
return rdev->desc->n_voltages;
|
|
|
|
if (!rdev->is_switch || !rdev->supply)
|
|
return -EINVAL;
|
|
|
|
return regulator_count_voltages(rdev->supply);
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_count_voltages);
|
|
|
|
/**
|
|
* regulator_list_voltage - enumerate supported voltages
|
|
* @regulator: regulator source
|
|
* @selector: identify voltage to list
|
|
* Context: can sleep
|
|
*
|
|
* Returns a voltage that can be passed to @regulator_set_voltage(),
|
|
* zero if this selector code can't be used on this system, or a
|
|
* negative errno.
|
|
*/
|
|
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
|
|
{
|
|
return _regulator_list_voltage(regulator->rdev, selector, 1);
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_list_voltage);
|
|
|
|
/**
|
|
* regulator_get_regmap - get the regulator's register map
|
|
* @regulator: regulator source
|
|
*
|
|
* Returns the register map for the given regulator, or an ERR_PTR value
|
|
* if the regulator doesn't use regmap.
|
|
*/
|
|
struct regmap *regulator_get_regmap(struct regulator *regulator)
|
|
{
|
|
struct regmap *map = regulator->rdev->regmap;
|
|
|
|
return map ? map : ERR_PTR(-EOPNOTSUPP);
|
|
}
|
|
|
|
/**
|
|
* regulator_get_hardware_vsel_register - get the HW voltage selector register
|
|
* @regulator: regulator source
|
|
* @vsel_reg: voltage selector register, output parameter
|
|
* @vsel_mask: mask for voltage selector bitfield, output parameter
|
|
*
|
|
* Returns the hardware register offset and bitmask used for setting the
|
|
* regulator voltage. This might be useful when configuring voltage-scaling
|
|
* hardware or firmware that can make I2C requests behind the kernel's back,
|
|
* for example.
|
|
*
|
|
* On success, the output parameters @vsel_reg and @vsel_mask are filled in
|
|
* and 0 is returned, otherwise a negative errno is returned.
|
|
*/
|
|
int regulator_get_hardware_vsel_register(struct regulator *regulator,
|
|
unsigned *vsel_reg,
|
|
unsigned *vsel_mask)
|
|
{
|
|
struct regulator_dev *rdev = regulator->rdev;
|
|
const struct regulator_ops *ops = rdev->desc->ops;
|
|
|
|
if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
|
|
return -EOPNOTSUPP;
|
|
|
|
*vsel_reg = rdev->desc->vsel_reg;
|
|
*vsel_mask = rdev->desc->vsel_mask;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
|
|
|
|
/**
|
|
* regulator_list_hardware_vsel - get the HW-specific register value for a selector
|
|
* @regulator: regulator source
|
|
* @selector: identify voltage to list
|
|
*
|
|
* Converts the selector to a hardware-specific voltage selector that can be
|
|
* directly written to the regulator registers. The address of the voltage
|
|
* register can be determined by calling @regulator_get_hardware_vsel_register.
|
|
*
|
|
* On error a negative errno is returned.
|
|
*/
|
|
int regulator_list_hardware_vsel(struct regulator *regulator,
|
|
unsigned selector)
|
|
{
|
|
struct regulator_dev *rdev = regulator->rdev;
|
|
const struct regulator_ops *ops = rdev->desc->ops;
|
|
|
|
if (selector >= rdev->desc->n_voltages)
|
|
return -EINVAL;
|
|
if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
|
|
return -EOPNOTSUPP;
|
|
|
|
return selector;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
|
|
|
|
/**
|
|
* regulator_get_linear_step - return the voltage step size between VSEL values
|
|
* @regulator: regulator source
|
|
*
|
|
* Returns the voltage step size between VSEL values for linear
|
|
* regulators, or return 0 if the regulator isn't a linear regulator.
|
|
*/
|
|
unsigned int regulator_get_linear_step(struct regulator *regulator)
|
|
{
|
|
struct regulator_dev *rdev = regulator->rdev;
|
|
|
|
return rdev->desc->uV_step;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_get_linear_step);
|
|
|
|
/**
|
|
* regulator_is_supported_voltage - check if a voltage range can be supported
|
|
*
|
|
* @regulator: Regulator to check.
|
|
* @min_uV: Minimum required voltage in uV.
|
|
* @max_uV: Maximum required voltage in uV.
|
|
*
|
|
* Returns a boolean.
|
|
*/
|
|
int regulator_is_supported_voltage(struct regulator *regulator,
|
|
int min_uV, int max_uV)
|
|
{
|
|
struct regulator_dev *rdev = regulator->rdev;
|
|
int i, voltages, ret;
|
|
|
|
/* If we can't change voltage check the current voltage */
|
|
if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
|
|
ret = regulator_get_voltage(regulator);
|
|
if (ret >= 0)
|
|
return min_uV <= ret && ret <= max_uV;
|
|
else
|
|
return ret;
|
|
}
|
|
|
|
/* Any voltage within constrains range is fine? */
|
|
if (rdev->desc->continuous_voltage_range)
|
|
return min_uV >= rdev->constraints->min_uV &&
|
|
max_uV <= rdev->constraints->max_uV;
|
|
|
|
ret = regulator_count_voltages(regulator);
|
|
if (ret < 0)
|
|
return 0;
|
|
voltages = ret;
|
|
|
|
for (i = 0; i < voltages; i++) {
|
|
ret = regulator_list_voltage(regulator, i);
|
|
|
|
if (ret >= min_uV && ret <= max_uV)
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
|
|
|
|
static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
|
|
int max_uV)
|
|
{
|
|
const struct regulator_desc *desc = rdev->desc;
|
|
|
|
if (desc->ops->map_voltage)
|
|
return desc->ops->map_voltage(rdev, min_uV, max_uV);
|
|
|
|
if (desc->ops->list_voltage == regulator_list_voltage_linear)
|
|
return regulator_map_voltage_linear(rdev, min_uV, max_uV);
|
|
|
|
if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
|
|
return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
|
|
|
|
if (desc->ops->list_voltage ==
|
|
regulator_list_voltage_pickable_linear_range)
|
|
return regulator_map_voltage_pickable_linear_range(rdev,
|
|
min_uV, max_uV);
|
|
|
|
return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
|
|
}
|
|
|
|
static int _regulator_call_set_voltage(struct regulator_dev *rdev,
|
|
int min_uV, int max_uV,
|
|
unsigned *selector)
|
|
{
|
|
struct pre_voltage_change_data data;
|
|
int ret;
|
|
|
|
data.old_uV = regulator_get_voltage_rdev(rdev);
|
|
data.min_uV = min_uV;
|
|
data.max_uV = max_uV;
|
|
ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
|
|
&data);
|
|
if (ret & NOTIFY_STOP_MASK)
|
|
return -EINVAL;
|
|
|
|
ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
|
|
if (ret >= 0)
|
|
return ret;
|
|
|
|
_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
|
|
(void *)data.old_uV);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
|
|
int uV, unsigned selector)
|
|
{
|
|
struct pre_voltage_change_data data;
|
|
int ret;
|
|
|
|
data.old_uV = regulator_get_voltage_rdev(rdev);
|
|
data.min_uV = uV;
|
|
data.max_uV = uV;
|
|
ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
|
|
&data);
|
|
if (ret & NOTIFY_STOP_MASK)
|
|
return -EINVAL;
|
|
|
|
ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
|
|
if (ret >= 0)
|
|
return ret;
|
|
|
|
_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
|
|
(void *)data.old_uV);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
|
|
int uV, int new_selector)
|
|
{
|
|
const struct regulator_ops *ops = rdev->desc->ops;
|
|
int diff, old_sel, curr_sel, ret;
|
|
|
|
/* Stepping is only needed if the regulator is enabled. */
|
|
if (!_regulator_is_enabled(rdev))
|
|
goto final_set;
|
|
|
|
if (!ops->get_voltage_sel)
|
|
return -EINVAL;
|
|
|
|
old_sel = ops->get_voltage_sel(rdev);
|
|
if (old_sel < 0)
|
|
return old_sel;
|
|
|
|
diff = new_selector - old_sel;
|
|
if (diff == 0)
|
|
return 0; /* No change needed. */
|
|
|
|
if (diff > 0) {
|
|
/* Stepping up. */
|
|
for (curr_sel = old_sel + rdev->desc->vsel_step;
|
|
curr_sel < new_selector;
|
|
curr_sel += rdev->desc->vsel_step) {
|
|
/*
|
|
* Call the callback directly instead of using
|
|
* _regulator_call_set_voltage_sel() as we don't
|
|
* want to notify anyone yet. Same in the branch
|
|
* below.
|
|
*/
|
|
ret = ops->set_voltage_sel(rdev, curr_sel);
|
|
if (ret)
|
|
goto try_revert;
|
|
}
|
|
} else {
|
|
/* Stepping down. */
|
|
for (curr_sel = old_sel - rdev->desc->vsel_step;
|
|
curr_sel > new_selector;
|
|
curr_sel -= rdev->desc->vsel_step) {
|
|
ret = ops->set_voltage_sel(rdev, curr_sel);
|
|
if (ret)
|
|
goto try_revert;
|
|
}
|
|
}
|
|
|
|
final_set:
|
|
/* The final selector will trigger the notifiers. */
|
|
return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
|
|
|
|
try_revert:
|
|
/*
|
|
* At least try to return to the previous voltage if setting a new
|
|
* one failed.
|
|
*/
|
|
(void)ops->set_voltage_sel(rdev, old_sel);
|
|
return ret;
|
|
}
|
|
|
|
static int _regulator_set_voltage_time(struct regulator_dev *rdev,
|
|
int old_uV, int new_uV)
|
|
{
|
|
unsigned int ramp_delay = 0;
|
|
|
|
if (rdev->constraints->ramp_delay)
|
|
ramp_delay = rdev->constraints->ramp_delay;
|
|
else if (rdev->desc->ramp_delay)
|
|
ramp_delay = rdev->desc->ramp_delay;
|
|
else if (rdev->constraints->settling_time)
|
|
return rdev->constraints->settling_time;
|
|
else if (rdev->constraints->settling_time_up &&
|
|
(new_uV > old_uV))
|
|
return rdev->constraints->settling_time_up;
|
|
else if (rdev->constraints->settling_time_down &&
|
|
(new_uV < old_uV))
|
|
return rdev->constraints->settling_time_down;
|
|
|
|
if (ramp_delay == 0) {
|
|
rdev_dbg(rdev, "ramp_delay not set\n");
|
|
return 0;
|
|
}
|
|
|
|
return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
|
|
}
|
|
|
|
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
|
|
int min_uV, int max_uV)
|
|
{
|
|
int ret;
|
|
int delay = 0;
|
|
int best_val = 0;
|
|
unsigned int selector;
|
|
int old_selector = -1;
|
|
const struct regulator_ops *ops = rdev->desc->ops;
|
|
int old_uV = regulator_get_voltage_rdev(rdev);
|
|
|
|
trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
|
|
|
|
min_uV += rdev->constraints->uV_offset;
|
|
max_uV += rdev->constraints->uV_offset;
|
|
|
|
/*
|
|
* If we can't obtain the old selector there is not enough
|
|
* info to call set_voltage_time_sel().
|
|
*/
|
|
if (_regulator_is_enabled(rdev) &&
|
|
ops->set_voltage_time_sel && ops->get_voltage_sel) {
|
|
old_selector = ops->get_voltage_sel(rdev);
|
|
if (old_selector < 0)
|
|
return old_selector;
|
|
}
|
|
|
|
if (ops->set_voltage) {
|
|
ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
|
|
&selector);
|
|
|
|
if (ret >= 0) {
|
|
if (ops->list_voltage)
|
|
best_val = ops->list_voltage(rdev,
|
|
selector);
|
|
else
|
|
best_val = regulator_get_voltage_rdev(rdev);
|
|
}
|
|
|
|
} else if (ops->set_voltage_sel) {
|
|
ret = regulator_map_voltage(rdev, min_uV, max_uV);
|
|
if (ret >= 0) {
|
|
best_val = ops->list_voltage(rdev, ret);
|
|
if (min_uV <= best_val && max_uV >= best_val) {
|
|
selector = ret;
|
|
if (old_selector == selector)
|
|
ret = 0;
|
|
else if (rdev->desc->vsel_step)
|
|
ret = _regulator_set_voltage_sel_step(
|
|
rdev, best_val, selector);
|
|
else
|
|
ret = _regulator_call_set_voltage_sel(
|
|
rdev, best_val, selector);
|
|
} else {
|
|
ret = -EINVAL;
|
|
}
|
|
}
|
|
} else {
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
if (ret)
|
|
goto out;
|
|
|
|
if (ops->set_voltage_time_sel) {
|
|
/*
|
|
* Call set_voltage_time_sel if successfully obtained
|
|
* old_selector
|
|
*/
|
|
if (old_selector >= 0 && old_selector != selector)
|
|
delay = ops->set_voltage_time_sel(rdev, old_selector,
|
|
selector);
|
|
} else {
|
|
if (old_uV != best_val) {
|
|
if (ops->set_voltage_time)
|
|
delay = ops->set_voltage_time(rdev, old_uV,
|
|
best_val);
|
|
else
|
|
delay = _regulator_set_voltage_time(rdev,
|
|
old_uV,
|
|
best_val);
|
|
}
|
|
}
|
|
|
|
if (delay < 0) {
|
|
rdev_warn(rdev, "failed to get delay: %d\n", delay);
|
|
delay = 0;
|
|
}
|
|
|
|
/* Insert any necessary delays */
|
|
if (delay >= 1000) {
|
|
mdelay(delay / 1000);
|
|
udelay(delay % 1000);
|
|
} else if (delay) {
|
|
udelay(delay);
|
|
}
|
|
|
|
if (best_val >= 0) {
|
|
unsigned long data = best_val;
|
|
|
|
_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
|
|
(void *)data);
|
|
}
|
|
|
|
out:
|
|
trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
|
|
int min_uV, int max_uV, suspend_state_t state)
|
|
{
|
|
struct regulator_state *rstate;
|
|
int uV, sel;
|
|
|
|
rstate = regulator_get_suspend_state(rdev, state);
|
|
if (rstate == NULL)
|
|
return -EINVAL;
|
|
|
|
if (min_uV < rstate->min_uV)
|
|
min_uV = rstate->min_uV;
|
|
if (max_uV > rstate->max_uV)
|
|
max_uV = rstate->max_uV;
|
|
|
|
sel = regulator_map_voltage(rdev, min_uV, max_uV);
|
|
if (sel < 0)
|
|
return sel;
|
|
|
|
uV = rdev->desc->ops->list_voltage(rdev, sel);
|
|
if (uV >= min_uV && uV <= max_uV)
|
|
rstate->uV = uV;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int regulator_set_voltage_unlocked(struct regulator *regulator,
|
|
int min_uV, int max_uV,
|
|
suspend_state_t state)
|
|
{
|
|
struct regulator_dev *rdev = regulator->rdev;
|
|
struct regulator_voltage *voltage = ®ulator->voltage[state];
|
|
int ret = 0;
|
|
int old_min_uV, old_max_uV;
|
|
int current_uV;
|
|
|
|
/* If we're setting the same range as last time the change
|
|
* should be a noop (some cpufreq implementations use the same
|
|
* voltage for multiple frequencies, for example).
|
|
*/
|
|
if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
|
|
goto out;
|
|
|
|
/* If we're trying to set a range that overlaps the current voltage,
|
|
* return successfully even though the regulator does not support
|
|
* changing the voltage.
|
|
*/
|
|
if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
|
|
current_uV = regulator_get_voltage_rdev(rdev);
|
|
if (min_uV <= current_uV && current_uV <= max_uV) {
|
|
voltage->min_uV = min_uV;
|
|
voltage->max_uV = max_uV;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/* sanity check */
|
|
if (!rdev->desc->ops->set_voltage &&
|
|
!rdev->desc->ops->set_voltage_sel) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/* constraints check */
|
|
ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
/* restore original values in case of error */
|
|
old_min_uV = voltage->min_uV;
|
|
old_max_uV = voltage->max_uV;
|
|
voltage->min_uV = min_uV;
|
|
voltage->max_uV = max_uV;
|
|
|
|
/* for not coupled regulators this will just set the voltage */
|
|
ret = regulator_balance_voltage(rdev, state);
|
|
if (ret < 0) {
|
|
voltage->min_uV = old_min_uV;
|
|
voltage->max_uV = old_max_uV;
|
|
}
|
|
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
|
|
int max_uV, suspend_state_t state)
|
|
{
|
|
int best_supply_uV = 0;
|
|
int supply_change_uV = 0;
|
|
int ret;
|
|
|
|
if (rdev->supply &&
|
|
regulator_ops_is_valid(rdev->supply->rdev,
|
|
REGULATOR_CHANGE_VOLTAGE) &&
|
|
(rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
|
|
rdev->desc->ops->get_voltage_sel))) {
|
|
int current_supply_uV;
|
|
int selector;
|
|
|
|
selector = regulator_map_voltage(rdev, min_uV, max_uV);
|
|
if (selector < 0) {
|
|
ret = selector;
|
|
goto out;
|
|
}
|
|
|
|
best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
|
|
if (best_supply_uV < 0) {
|
|
ret = best_supply_uV;
|
|
goto out;
|
|
}
|
|
|
|
best_supply_uV += rdev->desc->min_dropout_uV;
|
|
|
|
current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
|
|
if (current_supply_uV < 0) {
|
|
ret = current_supply_uV;
|
|
goto out;
|
|
}
|
|
|
|
supply_change_uV = best_supply_uV - current_supply_uV;
|
|
}
|
|
|
|
if (supply_change_uV > 0) {
|
|
ret = regulator_set_voltage_unlocked(rdev->supply,
|
|
best_supply_uV, INT_MAX, state);
|
|
if (ret) {
|
|
dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
|
|
ret);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
if (state == PM_SUSPEND_ON)
|
|
ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
|
|
else
|
|
ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
|
|
max_uV, state);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
if (supply_change_uV < 0) {
|
|
ret = regulator_set_voltage_unlocked(rdev->supply,
|
|
best_supply_uV, INT_MAX, state);
|
|
if (ret)
|
|
dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
|
|
ret);
|
|
/* No need to fail here */
|
|
ret = 0;
|
|
}
|
|
|
|
out:
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
|
|
|
|
static int regulator_limit_voltage_step(struct regulator_dev *rdev,
|
|
int *current_uV, int *min_uV)
|
|
{
|
|
struct regulation_constraints *constraints = rdev->constraints;
|
|
|
|
/* Limit voltage change only if necessary */
|
|
if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
|
|
return 1;
|
|
|
|
if (*current_uV < 0) {
|
|
*current_uV = regulator_get_voltage_rdev(rdev);
|
|
|
|
if (*current_uV < 0)
|
|
return *current_uV;
|
|
}
|
|
|
|
if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
|
|
return 1;
|
|
|
|
/* Clamp target voltage within the given step */
|
|
if (*current_uV < *min_uV)
|
|
*min_uV = min(*current_uV + constraints->max_uV_step,
|
|
*min_uV);
|
|
else
|
|
*min_uV = max(*current_uV - constraints->max_uV_step,
|
|
*min_uV);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
|
|
int *current_uV,
|
|
int *min_uV, int *max_uV,
|
|
suspend_state_t state,
|
|
int n_coupled)
|
|
{
|
|
struct coupling_desc *c_desc = &rdev->coupling_desc;
|
|
struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
|
|
struct regulation_constraints *constraints = rdev->constraints;
|
|
int desired_min_uV = 0, desired_max_uV = INT_MAX;
|
|
int max_current_uV = 0, min_current_uV = INT_MAX;
|
|
int highest_min_uV = 0, target_uV, possible_uV;
|
|
int i, ret, max_spread;
|
|
bool done;
|
|
|
|
*current_uV = -1;
|
|
|
|
/*
|
|
* If there are no coupled regulators, simply set the voltage
|
|
* demanded by consumers.
|
|
*/
|
|
if (n_coupled == 1) {
|
|
/*
|
|
* If consumers don't provide any demands, set voltage
|
|
* to min_uV
|
|
*/
|
|
desired_min_uV = constraints->min_uV;
|
|
desired_max_uV = constraints->max_uV;
|
|
|
|
ret = regulator_check_consumers(rdev,
|
|
&desired_min_uV,
|
|
&desired_max_uV, state);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
possible_uV = desired_min_uV;
|
|
done = true;
|
|
|
|
goto finish;
|
|
}
|
|
|
|
/* Find highest min desired voltage */
|
|
for (i = 0; i < n_coupled; i++) {
|
|
int tmp_min = 0;
|
|
int tmp_max = INT_MAX;
|
|
|
|
lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
|
|
|
|
ret = regulator_check_consumers(c_rdevs[i],
|
|
&tmp_min,
|
|
&tmp_max, state);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
highest_min_uV = max(highest_min_uV, tmp_min);
|
|
|
|
if (i == 0) {
|
|
desired_min_uV = tmp_min;
|
|
desired_max_uV = tmp_max;
|
|
}
|
|
}
|
|
|
|
max_spread = constraints->max_spread[0];
|
|
|
|
/*
|
|
* Let target_uV be equal to the desired one if possible.
|
|
* If not, set it to minimum voltage, allowed by other coupled
|
|
* regulators.
|
|
*/
|
|
target_uV = max(desired_min_uV, highest_min_uV - max_spread);
|
|
|
|
/*
|
|
* Find min and max voltages, which currently aren't violating
|
|
* max_spread.
|
|
*/
|
|
for (i = 1; i < n_coupled; i++) {
|
|
int tmp_act;
|
|
|
|
if (!_regulator_is_enabled(c_rdevs[i]))
|
|
continue;
|
|
|
|
tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
|
|
if (tmp_act < 0)
|
|
return tmp_act;
|
|
|
|
min_current_uV = min(tmp_act, min_current_uV);
|
|
max_current_uV = max(tmp_act, max_current_uV);
|
|
}
|
|
|
|
/* There aren't any other regulators enabled */
|
|
if (max_current_uV == 0) {
|
|
possible_uV = target_uV;
|
|
} else {
|
|
/*
|
|
* Correct target voltage, so as it currently isn't
|
|
* violating max_spread
|
|
*/
|
|
possible_uV = max(target_uV, max_current_uV - max_spread);
|
|
possible_uV = min(possible_uV, min_current_uV + max_spread);
|
|
}
|
|
|
|
if (possible_uV > desired_max_uV)
|
|
return -EINVAL;
|
|
|
|
done = (possible_uV == target_uV);
|
|
desired_min_uV = possible_uV;
|
|
|
|
finish:
|
|
/* Apply max_uV_step constraint if necessary */
|
|
if (state == PM_SUSPEND_ON) {
|
|
ret = regulator_limit_voltage_step(rdev, current_uV,
|
|
&desired_min_uV);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (ret == 0)
|
|
done = false;
|
|
}
|
|
|
|
/* Set current_uV if wasn't done earlier in the code and if necessary */
|
|
if (n_coupled > 1 && *current_uV == -1) {
|
|
|
|
if (_regulator_is_enabled(rdev)) {
|
|
ret = regulator_get_voltage_rdev(rdev);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
*current_uV = ret;
|
|
} else {
|
|
*current_uV = desired_min_uV;
|
|
}
|
|
}
|
|
|
|
*min_uV = desired_min_uV;
|
|
*max_uV = desired_max_uV;
|
|
|
|
return done;
|
|
}
|
|
|
|
int regulator_do_balance_voltage(struct regulator_dev *rdev,
|
|
suspend_state_t state, bool skip_coupled)
|
|
{
|
|
struct regulator_dev **c_rdevs;
|
|
struct regulator_dev *best_rdev;
|
|
struct coupling_desc *c_desc = &rdev->coupling_desc;
|
|
int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
|
|
unsigned int delta, best_delta;
|
|
unsigned long c_rdev_done = 0;
|
|
bool best_c_rdev_done;
|
|
|
|
c_rdevs = c_desc->coupled_rdevs;
|
|
n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
|
|
|
|
/*
|
|
* Find the best possible voltage change on each loop. Leave the loop
|
|
* if there isn't any possible change.
|
|
*/
|
|
do {
|
|
best_c_rdev_done = false;
|
|
best_delta = 0;
|
|
best_min_uV = 0;
|
|
best_max_uV = 0;
|
|
best_c_rdev = 0;
|
|
best_rdev = NULL;
|
|
|
|
/*
|
|
* Find highest difference between optimal voltage
|
|
* and current voltage.
|
|
*/
|
|
for (i = 0; i < n_coupled; i++) {
|
|
/*
|
|
* optimal_uV is the best voltage that can be set for
|
|
* i-th regulator at the moment without violating
|
|
* max_spread constraint in order to balance
|
|
* the coupled voltages.
|
|
*/
|
|
int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
|
|
|
|
if (test_bit(i, &c_rdev_done))
|
|
continue;
|
|
|
|
ret = regulator_get_optimal_voltage(c_rdevs[i],
|
|
¤t_uV,
|
|
&optimal_uV,
|
|
&optimal_max_uV,
|
|
state, n_coupled);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
delta = abs(optimal_uV - current_uV);
|
|
|
|
if (delta && best_delta <= delta) {
|
|
best_c_rdev_done = ret;
|
|
best_delta = delta;
|
|
best_rdev = c_rdevs[i];
|
|
best_min_uV = optimal_uV;
|
|
best_max_uV = optimal_max_uV;
|
|
best_c_rdev = i;
|
|
}
|
|
}
|
|
|
|
/* Nothing to change, return successfully */
|
|
if (!best_rdev) {
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
|
|
ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
|
|
best_max_uV, state);
|
|
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
if (best_c_rdev_done)
|
|
set_bit(best_c_rdev, &c_rdev_done);
|
|
|
|
} while (n_coupled > 1);
|
|
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static int regulator_balance_voltage(struct regulator_dev *rdev,
|
|
suspend_state_t state)
|
|
{
|
|
struct coupling_desc *c_desc = &rdev->coupling_desc;
|
|
struct regulator_coupler *coupler = c_desc->coupler;
|
|
bool skip_coupled = false;
|
|
|
|
/*
|
|
* If system is in a state other than PM_SUSPEND_ON, don't check
|
|
* other coupled regulators.
|
|
*/
|
|
if (state != PM_SUSPEND_ON)
|
|
skip_coupled = true;
|
|
|
|
if (c_desc->n_resolved < c_desc->n_coupled) {
|
|
rdev_err(rdev, "Not all coupled regulators registered\n");
|
|
return -EPERM;
|
|
}
|
|
|
|
/* Invoke custom balancer for customized couplers */
|
|
if (coupler && coupler->balance_voltage)
|
|
return coupler->balance_voltage(coupler, rdev, state);
|
|
|
|
return regulator_do_balance_voltage(rdev, state, skip_coupled);
|
|
}
|
|
|
|
/**
|
|
* regulator_set_voltage - set regulator output voltage
|
|
* @regulator: regulator source
|
|
* @min_uV: Minimum required voltage in uV
|
|
* @max_uV: Maximum acceptable voltage in uV
|
|
*
|
|
* Sets a voltage regulator to the desired output voltage. This can be set
|
|
* during any regulator state. IOW, regulator can be disabled or enabled.
|
|
*
|
|
* If the regulator is enabled then the voltage will change to the new value
|
|
* immediately otherwise if the regulator is disabled the regulator will
|
|
* output at the new voltage when enabled.
|
|
*
|
|
* NOTE: If the regulator is shared between several devices then the lowest
|
|
* request voltage that meets the system constraints will be used.
|
|
* Regulator system constraints must be set for this regulator before
|
|
* calling this function otherwise this call will fail.
|
|
*/
|
|
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
|
|
{
|
|
struct ww_acquire_ctx ww_ctx;
|
|
int ret;
|
|
|
|
regulator_lock_dependent(regulator->rdev, &ww_ctx);
|
|
|
|
ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
|
|
PM_SUSPEND_ON);
|
|
|
|
regulator_unlock_dependent(regulator->rdev, &ww_ctx);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_set_voltage);
|
|
|
|
static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
|
|
suspend_state_t state, bool en)
|
|
{
|
|
struct regulator_state *rstate;
|
|
|
|
rstate = regulator_get_suspend_state(rdev, state);
|
|
if (rstate == NULL)
|
|
return -EINVAL;
|
|
|
|
if (!rstate->changeable)
|
|
return -EPERM;
|
|
|
|
rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int regulator_suspend_enable(struct regulator_dev *rdev,
|
|
suspend_state_t state)
|
|
{
|
|
return regulator_suspend_toggle(rdev, state, true);
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_suspend_enable);
|
|
|
|
int regulator_suspend_disable(struct regulator_dev *rdev,
|
|
suspend_state_t state)
|
|
{
|
|
struct regulator *regulator;
|
|
struct regulator_voltage *voltage;
|
|
|
|
/*
|
|
* if any consumer wants this regulator device keeping on in
|
|
* suspend states, don't set it as disabled.
|
|
*/
|
|
list_for_each_entry(regulator, &rdev->consumer_list, list) {
|
|
voltage = ®ulator->voltage[state];
|
|
if (voltage->min_uV || voltage->max_uV)
|
|
return 0;
|
|
}
|
|
|
|
return regulator_suspend_toggle(rdev, state, false);
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_suspend_disable);
|
|
|
|
static int _regulator_set_suspend_voltage(struct regulator *regulator,
|
|
int min_uV, int max_uV,
|
|
suspend_state_t state)
|
|
{
|
|
struct regulator_dev *rdev = regulator->rdev;
|
|
struct regulator_state *rstate;
|
|
|
|
rstate = regulator_get_suspend_state(rdev, state);
|
|
if (rstate == NULL)
|
|
return -EINVAL;
|
|
|
|
if (rstate->min_uV == rstate->max_uV) {
|
|
rdev_err(rdev, "The suspend voltage can't be changed!\n");
|
|
return -EPERM;
|
|
}
|
|
|
|
return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
|
|
}
|
|
|
|
int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
|
|
int max_uV, suspend_state_t state)
|
|
{
|
|
struct ww_acquire_ctx ww_ctx;
|
|
int ret;
|
|
|
|
/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
|
|
if (regulator_check_states(state) || state == PM_SUSPEND_ON)
|
|
return -EINVAL;
|
|
|
|
regulator_lock_dependent(regulator->rdev, &ww_ctx);
|
|
|
|
ret = _regulator_set_suspend_voltage(regulator, min_uV,
|
|
max_uV, state);
|
|
|
|
regulator_unlock_dependent(regulator->rdev, &ww_ctx);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
|
|
|
|
/**
|
|
* regulator_set_voltage_time - get raise/fall time
|
|
* @regulator: regulator source
|
|
* @old_uV: starting voltage in microvolts
|
|
* @new_uV: target voltage in microvolts
|
|
*
|
|
* Provided with the starting and ending voltage, this function attempts to
|
|
* calculate the time in microseconds required to rise or fall to this new
|
|
* voltage.
|
|
*/
|
|
int regulator_set_voltage_time(struct regulator *regulator,
|
|
int old_uV, int new_uV)
|
|
{
|
|
struct regulator_dev *rdev = regulator->rdev;
|
|
const struct regulator_ops *ops = rdev->desc->ops;
|
|
int old_sel = -1;
|
|
int new_sel = -1;
|
|
int voltage;
|
|
int i;
|
|
|
|
if (ops->set_voltage_time)
|
|
return ops->set_voltage_time(rdev, old_uV, new_uV);
|
|
else if (!ops->set_voltage_time_sel)
|
|
return _regulator_set_voltage_time(rdev, old_uV, new_uV);
|
|
|
|
/* Currently requires operations to do this */
|
|
if (!ops->list_voltage || !rdev->desc->n_voltages)
|
|
return -EINVAL;
|
|
|
|
for (i = 0; i < rdev->desc->n_voltages; i++) {
|
|
/* We only look for exact voltage matches here */
|
|
voltage = regulator_list_voltage(regulator, i);
|
|
if (voltage < 0)
|
|
return -EINVAL;
|
|
if (voltage == 0)
|
|
continue;
|
|
if (voltage == old_uV)
|
|
old_sel = i;
|
|
if (voltage == new_uV)
|
|
new_sel = i;
|
|
}
|
|
|
|
if (old_sel < 0 || new_sel < 0)
|
|
return -EINVAL;
|
|
|
|
return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
|
|
|
|
/**
|
|
* regulator_set_voltage_time_sel - get raise/fall time
|
|
* @rdev: regulator source device
|
|
* @old_selector: selector for starting voltage
|
|
* @new_selector: selector for target voltage
|
|
*
|
|
* Provided with the starting and target voltage selectors, this function
|
|
* returns time in microseconds required to rise or fall to this new voltage
|
|
*
|
|
* Drivers providing ramp_delay in regulation_constraints can use this as their
|
|
* set_voltage_time_sel() operation.
|
|
*/
|
|
int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
|
|
unsigned int old_selector,
|
|
unsigned int new_selector)
|
|
{
|
|
int old_volt, new_volt;
|
|
|
|
/* sanity check */
|
|
if (!rdev->desc->ops->list_voltage)
|
|
return -EINVAL;
|
|
|
|
old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
|
|
new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
|
|
|
|
if (rdev->desc->ops->set_voltage_time)
|
|
return rdev->desc->ops->set_voltage_time(rdev, old_volt,
|
|
new_volt);
|
|
else
|
|
return _regulator_set_voltage_time(rdev, old_volt, new_volt);
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
|
|
|
|
/**
|
|
* regulator_sync_voltage - re-apply last regulator output voltage
|
|
* @regulator: regulator source
|
|
*
|
|
* Re-apply the last configured voltage. This is intended to be used
|
|
* where some external control source the consumer is cooperating with
|
|
* has caused the configured voltage to change.
|
|
*/
|
|
int regulator_sync_voltage(struct regulator *regulator)
|
|
{
|
|
struct regulator_dev *rdev = regulator->rdev;
|
|
struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON];
|
|
int ret, min_uV, max_uV;
|
|
|
|
regulator_lock(rdev);
|
|
|
|
if (!rdev->desc->ops->set_voltage &&
|
|
!rdev->desc->ops->set_voltage_sel) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/* This is only going to work if we've had a voltage configured. */
|
|
if (!voltage->min_uV && !voltage->max_uV) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
min_uV = voltage->min_uV;
|
|
max_uV = voltage->max_uV;
|
|
|
|
/* This should be a paranoia check... */
|
|
ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
|
|
|
|
out:
|
|
regulator_unlock(rdev);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_sync_voltage);
|
|
|
|
int regulator_get_voltage_rdev(struct regulator_dev *rdev)
|
|
{
|
|
int sel, ret;
|
|
bool bypassed;
|
|
|
|
if (rdev->desc->ops->get_bypass) {
|
|
ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
|
|
if (ret < 0)
|
|
return ret;
|
|
if (bypassed) {
|
|
/* if bypassed the regulator must have a supply */
|
|
if (!rdev->supply) {
|
|
rdev_err(rdev,
|
|
"bypassed regulator has no supply!\n");
|
|
return -EPROBE_DEFER;
|
|
}
|
|
|
|
return regulator_get_voltage_rdev(rdev->supply->rdev);
|
|
}
|
|
}
|
|
|
|
if (rdev->desc->ops->get_voltage_sel) {
|
|
sel = rdev->desc->ops->get_voltage_sel(rdev);
|
|
if (sel < 0)
|
|
return sel;
|
|
ret = rdev->desc->ops->list_voltage(rdev, sel);
|
|
} else if (rdev->desc->ops->get_voltage) {
|
|
ret = rdev->desc->ops->get_voltage(rdev);
|
|
} else if (rdev->desc->ops->list_voltage) {
|
|
ret = rdev->desc->ops->list_voltage(rdev, 0);
|
|
} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
|
|
ret = rdev->desc->fixed_uV;
|
|
} else if (rdev->supply) {
|
|
ret = regulator_get_voltage_rdev(rdev->supply->rdev);
|
|
} else {
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (ret < 0)
|
|
return ret;
|
|
return ret - rdev->constraints->uV_offset;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
|
|
|
|
/**
|
|
* regulator_get_voltage - get regulator output voltage
|
|
* @regulator: regulator source
|
|
*
|
|
* This returns the current regulator voltage in uV.
|
|
*
|
|
* NOTE: If the regulator is disabled it will return the voltage value. This
|
|
* function should not be used to determine regulator state.
|
|
*/
|
|
int regulator_get_voltage(struct regulator *regulator)
|
|
{
|
|
struct ww_acquire_ctx ww_ctx;
|
|
int ret;
|
|
|
|
regulator_lock_dependent(regulator->rdev, &ww_ctx);
|
|
ret = regulator_get_voltage_rdev(regulator->rdev);
|
|
regulator_unlock_dependent(regulator->rdev, &ww_ctx);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_get_voltage);
|
|
|
|
/**
|
|
* regulator_set_current_limit - set regulator output current limit
|
|
* @regulator: regulator source
|
|
* @min_uA: Minimum supported current in uA
|
|
* @max_uA: Maximum supported current in uA
|
|
*
|
|
* Sets current sink to the desired output current. This can be set during
|
|
* any regulator state. IOW, regulator can be disabled or enabled.
|
|
*
|
|
* If the regulator is enabled then the current will change to the new value
|
|
* immediately otherwise if the regulator is disabled the regulator will
|
|
* output at the new current when enabled.
|
|
*
|
|
* NOTE: Regulator system constraints must be set for this regulator before
|
|
* calling this function otherwise this call will fail.
|
|
*/
|
|
int regulator_set_current_limit(struct regulator *regulator,
|
|
int min_uA, int max_uA)
|
|
{
|
|
struct regulator_dev *rdev = regulator->rdev;
|
|
int ret;
|
|
|
|
regulator_lock(rdev);
|
|
|
|
/* sanity check */
|
|
if (!rdev->desc->ops->set_current_limit) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/* constraints check */
|
|
ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
|
|
out:
|
|
regulator_unlock(rdev);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_set_current_limit);
|
|
|
|
static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
|
|
{
|
|
/* sanity check */
|
|
if (!rdev->desc->ops->get_current_limit)
|
|
return -EINVAL;
|
|
|
|
return rdev->desc->ops->get_current_limit(rdev);
|
|
}
|
|
|
|
static int _regulator_get_current_limit(struct regulator_dev *rdev)
|
|
{
|
|
int ret;
|
|
|
|
regulator_lock(rdev);
|
|
ret = _regulator_get_current_limit_unlocked(rdev);
|
|
regulator_unlock(rdev);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* regulator_get_current_limit - get regulator output current
|
|
* @regulator: regulator source
|
|
*
|
|
* This returns the current supplied by the specified current sink in uA.
|
|
*
|
|
* NOTE: If the regulator is disabled it will return the current value. This
|
|
* function should not be used to determine regulator state.
|
|
*/
|
|
int regulator_get_current_limit(struct regulator *regulator)
|
|
{
|
|
return _regulator_get_current_limit(regulator->rdev);
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_get_current_limit);
|
|
|
|
/**
|
|
* regulator_set_mode - set regulator operating mode
|
|
* @regulator: regulator source
|
|
* @mode: operating mode - one of the REGULATOR_MODE constants
|
|
*
|
|
* Set regulator operating mode to increase regulator efficiency or improve
|
|
* regulation performance.
|
|
*
|
|
* NOTE: Regulator system constraints must be set for this regulator before
|
|
* calling this function otherwise this call will fail.
|
|
*/
|
|
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
|
|
{
|
|
struct regulator_dev *rdev = regulator->rdev;
|
|
int ret;
|
|
int regulator_curr_mode;
|
|
|
|
regulator_lock(rdev);
|
|
|
|
/* sanity check */
|
|
if (!rdev->desc->ops->set_mode) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/* return if the same mode is requested */
|
|
if (rdev->desc->ops->get_mode) {
|
|
regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
|
|
if (regulator_curr_mode == mode) {
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/* constraints check */
|
|
ret = regulator_mode_constrain(rdev, &mode);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
ret = rdev->desc->ops->set_mode(rdev, mode);
|
|
out:
|
|
regulator_unlock(rdev);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_set_mode);
|
|
|
|
static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
|
|
{
|
|
/* sanity check */
|
|
if (!rdev->desc->ops->get_mode)
|
|
return -EINVAL;
|
|
|
|
return rdev->desc->ops->get_mode(rdev);
|
|
}
|
|
|
|
static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
|
|
{
|
|
int ret;
|
|
|
|
regulator_lock(rdev);
|
|
ret = _regulator_get_mode_unlocked(rdev);
|
|
regulator_unlock(rdev);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* regulator_get_mode - get regulator operating mode
|
|
* @regulator: regulator source
|
|
*
|
|
* Get the current regulator operating mode.
|
|
*/
|
|
unsigned int regulator_get_mode(struct regulator *regulator)
|
|
{
|
|
return _regulator_get_mode(regulator->rdev);
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_get_mode);
|
|
|
|
static int _regulator_get_error_flags(struct regulator_dev *rdev,
|
|
unsigned int *flags)
|
|
{
|
|
int ret;
|
|
|
|
regulator_lock(rdev);
|
|
|
|
/* sanity check */
|
|
if (!rdev->desc->ops->get_error_flags) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
ret = rdev->desc->ops->get_error_flags(rdev, flags);
|
|
out:
|
|
regulator_unlock(rdev);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* regulator_get_error_flags - get regulator error information
|
|
* @regulator: regulator source
|
|
* @flags: pointer to store error flags
|
|
*
|
|
* Get the current regulator error information.
|
|
*/
|
|
int regulator_get_error_flags(struct regulator *regulator,
|
|
unsigned int *flags)
|
|
{
|
|
return _regulator_get_error_flags(regulator->rdev, flags);
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_get_error_flags);
|
|
|
|
/**
|
|
* regulator_set_load - set regulator load
|
|
* @regulator: regulator source
|
|
* @uA_load: load current
|
|
*
|
|
* Notifies the regulator core of a new device load. This is then used by
|
|
* DRMS (if enabled by constraints) to set the most efficient regulator
|
|
* operating mode for the new regulator loading.
|
|
*
|
|
* Consumer devices notify their supply regulator of the maximum power
|
|
* they will require (can be taken from device datasheet in the power
|
|
* consumption tables) when they change operational status and hence power
|
|
* state. Examples of operational state changes that can affect power
|
|
* consumption are :-
|
|
*
|
|
* o Device is opened / closed.
|
|
* o Device I/O is about to begin or has just finished.
|
|
* o Device is idling in between work.
|
|
*
|
|
* This information is also exported via sysfs to userspace.
|
|
*
|
|
* DRMS will sum the total requested load on the regulator and change
|
|
* to the most efficient operating mode if platform constraints allow.
|
|
*
|
|
* NOTE: when a regulator consumer requests to have a regulator
|
|
* disabled then any load that consumer requested no longer counts
|
|
* toward the total requested load. If the regulator is re-enabled
|
|
* then the previously requested load will start counting again.
|
|
*
|
|
* If a regulator is an always-on regulator then an individual consumer's
|
|
* load will still be removed if that consumer is fully disabled.
|
|
*
|
|
* On error a negative errno is returned.
|
|
*/
|
|
int regulator_set_load(struct regulator *regulator, int uA_load)
|
|
{
|
|
struct regulator_dev *rdev = regulator->rdev;
|
|
int old_uA_load;
|
|
int ret = 0;
|
|
|
|
regulator_lock(rdev);
|
|
old_uA_load = regulator->uA_load;
|
|
regulator->uA_load = uA_load;
|
|
if (regulator->enable_count && old_uA_load != uA_load) {
|
|
ret = drms_uA_update(rdev);
|
|
if (ret < 0)
|
|
regulator->uA_load = old_uA_load;
|
|
}
|
|
regulator_unlock(rdev);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_set_load);
|
|
|
|
/**
|
|
* regulator_allow_bypass - allow the regulator to go into bypass mode
|
|
*
|
|
* @regulator: Regulator to configure
|
|
* @enable: enable or disable bypass mode
|
|
*
|
|
* Allow the regulator to go into bypass mode if all other consumers
|
|
* for the regulator also enable bypass mode and the machine
|
|
* constraints allow this. Bypass mode means that the regulator is
|
|
* simply passing the input directly to the output with no regulation.
|
|
*/
|
|
int regulator_allow_bypass(struct regulator *regulator, bool enable)
|
|
{
|
|
struct regulator_dev *rdev = regulator->rdev;
|
|
const char *name = rdev_get_name(rdev);
|
|
int ret = 0;
|
|
|
|
if (!rdev->desc->ops->set_bypass)
|
|
return 0;
|
|
|
|
if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
|
|
return 0;
|
|
|
|
regulator_lock(rdev);
|
|
|
|
if (enable && !regulator->bypass) {
|
|
rdev->bypass_count++;
|
|
|
|
if (rdev->bypass_count == rdev->open_count) {
|
|
trace_regulator_bypass_enable(name);
|
|
|
|
ret = rdev->desc->ops->set_bypass(rdev, enable);
|
|
if (ret != 0)
|
|
rdev->bypass_count--;
|
|
else
|
|
trace_regulator_bypass_enable_complete(name);
|
|
}
|
|
|
|
} else if (!enable && regulator->bypass) {
|
|
rdev->bypass_count--;
|
|
|
|
if (rdev->bypass_count != rdev->open_count) {
|
|
trace_regulator_bypass_disable(name);
|
|
|
|
ret = rdev->desc->ops->set_bypass(rdev, enable);
|
|
if (ret != 0)
|
|
rdev->bypass_count++;
|
|
else
|
|
trace_regulator_bypass_disable_complete(name);
|
|
}
|
|
}
|
|
|
|
if (ret == 0)
|
|
regulator->bypass = enable;
|
|
|
|
regulator_unlock(rdev);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_allow_bypass);
|
|
|
|
/**
|
|
* regulator_register_notifier - register regulator event notifier
|
|
* @regulator: regulator source
|
|
* @nb: notifier block
|
|
*
|
|
* Register notifier block to receive regulator events.
|
|
*/
|
|
int regulator_register_notifier(struct regulator *regulator,
|
|
struct notifier_block *nb)
|
|
{
|
|
return blocking_notifier_chain_register(®ulator->rdev->notifier,
|
|
nb);
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_register_notifier);
|
|
|
|
/**
|
|
* regulator_unregister_notifier - unregister regulator event notifier
|
|
* @regulator: regulator source
|
|
* @nb: notifier block
|
|
*
|
|
* Unregister regulator event notifier block.
|
|
*/
|
|
int regulator_unregister_notifier(struct regulator *regulator,
|
|
struct notifier_block *nb)
|
|
{
|
|
return blocking_notifier_chain_unregister(®ulator->rdev->notifier,
|
|
nb);
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
|
|
|
|
/* notify regulator consumers and downstream regulator consumers.
|
|
* Note mutex must be held by caller.
|
|
*/
|
|
static int _notifier_call_chain(struct regulator_dev *rdev,
|
|
unsigned long event, void *data)
|
|
{
|
|
/* call rdev chain first */
|
|
return blocking_notifier_call_chain(&rdev->notifier, event, data);
|
|
}
|
|
|
|
/**
|
|
* regulator_bulk_get - get multiple regulator consumers
|
|
*
|
|
* @dev: Device to supply
|
|
* @num_consumers: Number of consumers to register
|
|
* @consumers: Configuration of consumers; clients are stored here.
|
|
*
|
|
* @return 0 on success, an errno on failure.
|
|
*
|
|
* This helper function allows drivers to get several regulator
|
|
* consumers in one operation. If any of the regulators cannot be
|
|
* acquired then any regulators that were allocated will be freed
|
|
* before returning to the caller.
|
|
*/
|
|
int regulator_bulk_get(struct device *dev, int num_consumers,
|
|
struct regulator_bulk_data *consumers)
|
|
{
|
|
int i;
|
|
int ret;
|
|
|
|
for (i = 0; i < num_consumers; i++)
|
|
consumers[i].consumer = NULL;
|
|
|
|
for (i = 0; i < num_consumers; i++) {
|
|
consumers[i].consumer = regulator_get(dev,
|
|
consumers[i].supply);
|
|
if (IS_ERR(consumers[i].consumer)) {
|
|
ret = PTR_ERR(consumers[i].consumer);
|
|
consumers[i].consumer = NULL;
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
err:
|
|
if (ret != -EPROBE_DEFER)
|
|
dev_err(dev, "Failed to get supply '%s': %d\n",
|
|
consumers[i].supply, ret);
|
|
else
|
|
dev_dbg(dev, "Failed to get supply '%s', deferring\n",
|
|
consumers[i].supply);
|
|
|
|
while (--i >= 0)
|
|
regulator_put(consumers[i].consumer);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_bulk_get);
|
|
|
|
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
|
|
{
|
|
struct regulator_bulk_data *bulk = data;
|
|
|
|
bulk->ret = regulator_enable(bulk->consumer);
|
|
}
|
|
|
|
/**
|
|
* regulator_bulk_enable - enable multiple regulator consumers
|
|
*
|
|
* @num_consumers: Number of consumers
|
|
* @consumers: Consumer data; clients are stored here.
|
|
* @return 0 on success, an errno on failure
|
|
*
|
|
* This convenience API allows consumers to enable multiple regulator
|
|
* clients in a single API call. If any consumers cannot be enabled
|
|
* then any others that were enabled will be disabled again prior to
|
|
* return.
|
|
*/
|
|
int regulator_bulk_enable(int num_consumers,
|
|
struct regulator_bulk_data *consumers)
|
|
{
|
|
ASYNC_DOMAIN_EXCLUSIVE(async_domain);
|
|
int i;
|
|
int ret = 0;
|
|
|
|
for (i = 0; i < num_consumers; i++) {
|
|
async_schedule_domain(regulator_bulk_enable_async,
|
|
&consumers[i], &async_domain);
|
|
}
|
|
|
|
async_synchronize_full_domain(&async_domain);
|
|
|
|
/* If any consumer failed we need to unwind any that succeeded */
|
|
for (i = 0; i < num_consumers; i++) {
|
|
if (consumers[i].ret != 0) {
|
|
ret = consumers[i].ret;
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
err:
|
|
for (i = 0; i < num_consumers; i++) {
|
|
if (consumers[i].ret < 0)
|
|
pr_err("Failed to enable %s: %d\n", consumers[i].supply,
|
|
consumers[i].ret);
|
|
else
|
|
regulator_disable(consumers[i].consumer);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_bulk_enable);
|
|
|
|
/**
|
|
* regulator_bulk_disable - disable multiple regulator consumers
|
|
*
|
|
* @num_consumers: Number of consumers
|
|
* @consumers: Consumer data; clients are stored here.
|
|
* @return 0 on success, an errno on failure
|
|
*
|
|
* This convenience API allows consumers to disable multiple regulator
|
|
* clients in a single API call. If any consumers cannot be disabled
|
|
* then any others that were disabled will be enabled again prior to
|
|
* return.
|
|
*/
|
|
int regulator_bulk_disable(int num_consumers,
|
|
struct regulator_bulk_data *consumers)
|
|
{
|
|
int i;
|
|
int ret, r;
|
|
|
|
for (i = num_consumers - 1; i >= 0; --i) {
|
|
ret = regulator_disable(consumers[i].consumer);
|
|
if (ret != 0)
|
|
goto err;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err:
|
|
pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
|
|
for (++i; i < num_consumers; ++i) {
|
|
r = regulator_enable(consumers[i].consumer);
|
|
if (r != 0)
|
|
pr_err("Failed to re-enable %s: %d\n",
|
|
consumers[i].supply, r);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_bulk_disable);
|
|
|
|
/**
|
|
* regulator_bulk_force_disable - force disable multiple regulator consumers
|
|
*
|
|
* @num_consumers: Number of consumers
|
|
* @consumers: Consumer data; clients are stored here.
|
|
* @return 0 on success, an errno on failure
|
|
*
|
|
* This convenience API allows consumers to forcibly disable multiple regulator
|
|
* clients in a single API call.
|
|
* NOTE: This should be used for situations when device damage will
|
|
* likely occur if the regulators are not disabled (e.g. over temp).
|
|
* Although regulator_force_disable function call for some consumers can
|
|
* return error numbers, the function is called for all consumers.
|
|
*/
|
|
int regulator_bulk_force_disable(int num_consumers,
|
|
struct regulator_bulk_data *consumers)
|
|
{
|
|
int i;
|
|
int ret = 0;
|
|
|
|
for (i = 0; i < num_consumers; i++) {
|
|
consumers[i].ret =
|
|
regulator_force_disable(consumers[i].consumer);
|
|
|
|
/* Store first error for reporting */
|
|
if (consumers[i].ret && !ret)
|
|
ret = consumers[i].ret;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
|
|
|
|
/**
|
|
* regulator_bulk_free - free multiple regulator consumers
|
|
*
|
|
* @num_consumers: Number of consumers
|
|
* @consumers: Consumer data; clients are stored here.
|
|
*
|
|
* This convenience API allows consumers to free multiple regulator
|
|
* clients in a single API call.
|
|
*/
|
|
void regulator_bulk_free(int num_consumers,
|
|
struct regulator_bulk_data *consumers)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < num_consumers; i++) {
|
|
regulator_put(consumers[i].consumer);
|
|
consumers[i].consumer = NULL;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_bulk_free);
|
|
|
|
/**
|
|
* regulator_notifier_call_chain - call regulator event notifier
|
|
* @rdev: regulator source
|
|
* @event: notifier block
|
|
* @data: callback-specific data.
|
|
*
|
|
* Called by regulator drivers to notify clients a regulator event has
|
|
* occurred. We also notify regulator clients downstream.
|
|
* Note lock must be held by caller.
|
|
*/
|
|
int regulator_notifier_call_chain(struct regulator_dev *rdev,
|
|
unsigned long event, void *data)
|
|
{
|
|
lockdep_assert_held_once(&rdev->mutex.base);
|
|
|
|
_notifier_call_chain(rdev, event, data);
|
|
return NOTIFY_DONE;
|
|
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
|
|
|
|
/**
|
|
* regulator_mode_to_status - convert a regulator mode into a status
|
|
*
|
|
* @mode: Mode to convert
|
|
*
|
|
* Convert a regulator mode into a status.
|
|
*/
|
|
int regulator_mode_to_status(unsigned int mode)
|
|
{
|
|
switch (mode) {
|
|
case REGULATOR_MODE_FAST:
|
|
return REGULATOR_STATUS_FAST;
|
|
case REGULATOR_MODE_NORMAL:
|
|
return REGULATOR_STATUS_NORMAL;
|
|
case REGULATOR_MODE_IDLE:
|
|
return REGULATOR_STATUS_IDLE;
|
|
case REGULATOR_MODE_STANDBY:
|
|
return REGULATOR_STATUS_STANDBY;
|
|
default:
|
|
return REGULATOR_STATUS_UNDEFINED;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_mode_to_status);
|
|
|
|
static struct attribute *regulator_dev_attrs[] = {
|
|
&dev_attr_name.attr,
|
|
&dev_attr_num_users.attr,
|
|
&dev_attr_type.attr,
|
|
&dev_attr_microvolts.attr,
|
|
&dev_attr_microamps.attr,
|
|
&dev_attr_opmode.attr,
|
|
&dev_attr_state.attr,
|
|
&dev_attr_status.attr,
|
|
&dev_attr_bypass.attr,
|
|
&dev_attr_requested_microamps.attr,
|
|
&dev_attr_min_microvolts.attr,
|
|
&dev_attr_max_microvolts.attr,
|
|
&dev_attr_min_microamps.attr,
|
|
&dev_attr_max_microamps.attr,
|
|
&dev_attr_suspend_standby_state.attr,
|
|
&dev_attr_suspend_mem_state.attr,
|
|
&dev_attr_suspend_disk_state.attr,
|
|
&dev_attr_suspend_standby_microvolts.attr,
|
|
&dev_attr_suspend_mem_microvolts.attr,
|
|
&dev_attr_suspend_disk_microvolts.attr,
|
|
&dev_attr_suspend_standby_mode.attr,
|
|
&dev_attr_suspend_mem_mode.attr,
|
|
&dev_attr_suspend_disk_mode.attr,
|
|
NULL
|
|
};
|
|
|
|
/*
|
|
* To avoid cluttering sysfs (and memory) with useless state, only
|
|
* create attributes that can be meaningfully displayed.
|
|
*/
|
|
static umode_t regulator_attr_is_visible(struct kobject *kobj,
|
|
struct attribute *attr, int idx)
|
|
{
|
|
struct device *dev = kobj_to_dev(kobj);
|
|
struct regulator_dev *rdev = dev_to_rdev(dev);
|
|
const struct regulator_ops *ops = rdev->desc->ops;
|
|
umode_t mode = attr->mode;
|
|
|
|
/* these three are always present */
|
|
if (attr == &dev_attr_name.attr ||
|
|
attr == &dev_attr_num_users.attr ||
|
|
attr == &dev_attr_type.attr)
|
|
return mode;
|
|
|
|
/* some attributes need specific methods to be displayed */
|
|
if (attr == &dev_attr_microvolts.attr) {
|
|
if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
|
|
(ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
|
|
(ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
|
|
(rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
|
|
return mode;
|
|
return 0;
|
|
}
|
|
|
|
if (attr == &dev_attr_microamps.attr)
|
|
return ops->get_current_limit ? mode : 0;
|
|
|
|
if (attr == &dev_attr_opmode.attr)
|
|
return ops->get_mode ? mode : 0;
|
|
|
|
if (attr == &dev_attr_state.attr)
|
|
return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
|
|
|
|
if (attr == &dev_attr_status.attr)
|
|
return ops->get_status ? mode : 0;
|
|
|
|
if (attr == &dev_attr_bypass.attr)
|
|
return ops->get_bypass ? mode : 0;
|
|
|
|
/* constraints need specific supporting methods */
|
|
if (attr == &dev_attr_min_microvolts.attr ||
|
|
attr == &dev_attr_max_microvolts.attr)
|
|
return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
|
|
|
|
if (attr == &dev_attr_min_microamps.attr ||
|
|
attr == &dev_attr_max_microamps.attr)
|
|
return ops->set_current_limit ? mode : 0;
|
|
|
|
if (attr == &dev_attr_suspend_standby_state.attr ||
|
|
attr == &dev_attr_suspend_mem_state.attr ||
|
|
attr == &dev_attr_suspend_disk_state.attr)
|
|
return mode;
|
|
|
|
if (attr == &dev_attr_suspend_standby_microvolts.attr ||
|
|
attr == &dev_attr_suspend_mem_microvolts.attr ||
|
|
attr == &dev_attr_suspend_disk_microvolts.attr)
|
|
return ops->set_suspend_voltage ? mode : 0;
|
|
|
|
if (attr == &dev_attr_suspend_standby_mode.attr ||
|
|
attr == &dev_attr_suspend_mem_mode.attr ||
|
|
attr == &dev_attr_suspend_disk_mode.attr)
|
|
return ops->set_suspend_mode ? mode : 0;
|
|
|
|
return mode;
|
|
}
|
|
|
|
static const struct attribute_group regulator_dev_group = {
|
|
.attrs = regulator_dev_attrs,
|
|
.is_visible = regulator_attr_is_visible,
|
|
};
|
|
|
|
static const struct attribute_group *regulator_dev_groups[] = {
|
|
®ulator_dev_group,
|
|
NULL
|
|
};
|
|
|
|
static void regulator_dev_release(struct device *dev)
|
|
{
|
|
struct regulator_dev *rdev = dev_get_drvdata(dev);
|
|
|
|
kfree(rdev->constraints);
|
|
of_node_put(rdev->dev.of_node);
|
|
kfree(rdev);
|
|
}
|
|
|
|
static void rdev_init_debugfs(struct regulator_dev *rdev)
|
|
{
|
|
struct device *parent = rdev->dev.parent;
|
|
const char *rname = rdev_get_name(rdev);
|
|
char name[NAME_MAX];
|
|
|
|
/* Avoid duplicate debugfs directory names */
|
|
if (parent && rname == rdev->desc->name) {
|
|
snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
|
|
rname);
|
|
rname = name;
|
|
}
|
|
|
|
rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
|
|
if (!rdev->debugfs) {
|
|
rdev_warn(rdev, "Failed to create debugfs directory\n");
|
|
return;
|
|
}
|
|
|
|
debugfs_create_u32("use_count", 0444, rdev->debugfs,
|
|
&rdev->use_count);
|
|
debugfs_create_u32("open_count", 0444, rdev->debugfs,
|
|
&rdev->open_count);
|
|
debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
|
|
&rdev->bypass_count);
|
|
}
|
|
|
|
static int regulator_register_resolve_supply(struct device *dev, void *data)
|
|
{
|
|
struct regulator_dev *rdev = dev_to_rdev(dev);
|
|
|
|
if (regulator_resolve_supply(rdev))
|
|
rdev_dbg(rdev, "unable to resolve supply\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
int regulator_coupler_register(struct regulator_coupler *coupler)
|
|
{
|
|
mutex_lock(®ulator_list_mutex);
|
|
list_add_tail(&coupler->list, ®ulator_coupler_list);
|
|
mutex_unlock(®ulator_list_mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct regulator_coupler *
|
|
regulator_find_coupler(struct regulator_dev *rdev)
|
|
{
|
|
struct regulator_coupler *coupler;
|
|
int err;
|
|
|
|
/*
|
|
* Note that regulators are appended to the list and the generic
|
|
* coupler is registered first, hence it will be attached at last
|
|
* if nobody cared.
|
|
*/
|
|
list_for_each_entry_reverse(coupler, ®ulator_coupler_list, list) {
|
|
err = coupler->attach_regulator(coupler, rdev);
|
|
if (!err) {
|
|
if (!coupler->balance_voltage &&
|
|
rdev->coupling_desc.n_coupled > 2)
|
|
goto err_unsupported;
|
|
|
|
return coupler;
|
|
}
|
|
|
|
if (err < 0)
|
|
return ERR_PTR(err);
|
|
|
|
if (err == 1)
|
|
continue;
|
|
|
|
break;
|
|
}
|
|
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
err_unsupported:
|
|
if (coupler->detach_regulator)
|
|
coupler->detach_regulator(coupler, rdev);
|
|
|
|
rdev_err(rdev,
|
|
"Voltage balancing for multiple regulator couples is unimplemented\n");
|
|
|
|
return ERR_PTR(-EPERM);
|
|
}
|
|
|
|
static void regulator_resolve_coupling(struct regulator_dev *rdev)
|
|
{
|
|
struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
|
|
struct coupling_desc *c_desc = &rdev->coupling_desc;
|
|
int n_coupled = c_desc->n_coupled;
|
|
struct regulator_dev *c_rdev;
|
|
int i;
|
|
|
|
for (i = 1; i < n_coupled; i++) {
|
|
/* already resolved */
|
|
if (c_desc->coupled_rdevs[i])
|
|
continue;
|
|
|
|
c_rdev = of_parse_coupled_regulator(rdev, i - 1);
|
|
|
|
if (!c_rdev)
|
|
continue;
|
|
|
|
if (c_rdev->coupling_desc.coupler != coupler) {
|
|
rdev_err(rdev, "coupler mismatch with %s\n",
|
|
rdev_get_name(c_rdev));
|
|
return;
|
|
}
|
|
|
|
regulator_lock(c_rdev);
|
|
|
|
c_desc->coupled_rdevs[i] = c_rdev;
|
|
c_desc->n_resolved++;
|
|
|
|
regulator_unlock(c_rdev);
|
|
|
|
regulator_resolve_coupling(c_rdev);
|
|
}
|
|
}
|
|
|
|
static void regulator_remove_coupling(struct regulator_dev *rdev)
|
|
{
|
|
struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
|
|
struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
|
|
struct regulator_dev *__c_rdev, *c_rdev;
|
|
unsigned int __n_coupled, n_coupled;
|
|
int i, k;
|
|
int err;
|
|
|
|
n_coupled = c_desc->n_coupled;
|
|
|
|
for (i = 1; i < n_coupled; i++) {
|
|
c_rdev = c_desc->coupled_rdevs[i];
|
|
|
|
if (!c_rdev)
|
|
continue;
|
|
|
|
regulator_lock(c_rdev);
|
|
|
|
__c_desc = &c_rdev->coupling_desc;
|
|
__n_coupled = __c_desc->n_coupled;
|
|
|
|
for (k = 1; k < __n_coupled; k++) {
|
|
__c_rdev = __c_desc->coupled_rdevs[k];
|
|
|
|
if (__c_rdev == rdev) {
|
|
__c_desc->coupled_rdevs[k] = NULL;
|
|
__c_desc->n_resolved--;
|
|
break;
|
|
}
|
|
}
|
|
|
|
regulator_unlock(c_rdev);
|
|
|
|
c_desc->coupled_rdevs[i] = NULL;
|
|
c_desc->n_resolved--;
|
|
}
|
|
|
|
if (coupler && coupler->detach_regulator) {
|
|
err = coupler->detach_regulator(coupler, rdev);
|
|
if (err)
|
|
rdev_err(rdev, "failed to detach from coupler: %d\n",
|
|
err);
|
|
}
|
|
|
|
kfree(rdev->coupling_desc.coupled_rdevs);
|
|
rdev->coupling_desc.coupled_rdevs = NULL;
|
|
}
|
|
|
|
static int regulator_init_coupling(struct regulator_dev *rdev)
|
|
{
|
|
int err, n_phandles;
|
|
size_t alloc_size;
|
|
|
|
if (!IS_ENABLED(CONFIG_OF))
|
|
n_phandles = 0;
|
|
else
|
|
n_phandles = of_get_n_coupled(rdev);
|
|
|
|
alloc_size = sizeof(*rdev) * (n_phandles + 1);
|
|
|
|
rdev->coupling_desc.coupled_rdevs = kzalloc(alloc_size, GFP_KERNEL);
|
|
if (!rdev->coupling_desc.coupled_rdevs)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* Every regulator should always have coupling descriptor filled with
|
|
* at least pointer to itself.
|
|
*/
|
|
rdev->coupling_desc.coupled_rdevs[0] = rdev;
|
|
rdev->coupling_desc.n_coupled = n_phandles + 1;
|
|
rdev->coupling_desc.n_resolved++;
|
|
|
|
/* regulator isn't coupled */
|
|
if (n_phandles == 0)
|
|
return 0;
|
|
|
|
if (!of_check_coupling_data(rdev))
|
|
return -EPERM;
|
|
|
|
rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
|
|
if (IS_ERR(rdev->coupling_desc.coupler)) {
|
|
err = PTR_ERR(rdev->coupling_desc.coupler);
|
|
rdev_err(rdev, "failed to get coupler: %d\n", err);
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int generic_coupler_attach(struct regulator_coupler *coupler,
|
|
struct regulator_dev *rdev)
|
|
{
|
|
if (rdev->coupling_desc.n_coupled > 2) {
|
|
rdev_err(rdev,
|
|
"Voltage balancing for multiple regulator couples is unimplemented\n");
|
|
return -EPERM;
|
|
}
|
|
|
|
if (!rdev->constraints->always_on) {
|
|
rdev_err(rdev,
|
|
"Coupling of a non always-on regulator is unimplemented\n");
|
|
return -ENOTSUPP;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct regulator_coupler generic_regulator_coupler = {
|
|
.attach_regulator = generic_coupler_attach,
|
|
};
|
|
|
|
/**
|
|
* regulator_register - register regulator
|
|
* @regulator_desc: regulator to register
|
|
* @cfg: runtime configuration for regulator
|
|
*
|
|
* Called by regulator drivers to register a regulator.
|
|
* Returns a valid pointer to struct regulator_dev on success
|
|
* or an ERR_PTR() on error.
|
|
*/
|
|
struct regulator_dev *
|
|
regulator_register(const struct regulator_desc *regulator_desc,
|
|
const struct regulator_config *cfg)
|
|
{
|
|
const struct regulation_constraints *constraints = NULL;
|
|
const struct regulator_init_data *init_data;
|
|
struct regulator_config *config = NULL;
|
|
static atomic_t regulator_no = ATOMIC_INIT(-1);
|
|
struct regulator_dev *rdev;
|
|
bool dangling_cfg_gpiod = false;
|
|
bool dangling_of_gpiod = false;
|
|
struct device *dev;
|
|
int ret, i;
|
|
|
|
if (cfg == NULL)
|
|
return ERR_PTR(-EINVAL);
|
|
if (cfg->ena_gpiod)
|
|
dangling_cfg_gpiod = true;
|
|
if (regulator_desc == NULL) {
|
|
ret = -EINVAL;
|
|
goto rinse;
|
|
}
|
|
|
|
dev = cfg->dev;
|
|
WARN_ON(!dev);
|
|
|
|
if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
|
|
ret = -EINVAL;
|
|
goto rinse;
|
|
}
|
|
|
|
if (regulator_desc->type != REGULATOR_VOLTAGE &&
|
|
regulator_desc->type != REGULATOR_CURRENT) {
|
|
ret = -EINVAL;
|
|
goto rinse;
|
|
}
|
|
|
|
/* Only one of each should be implemented */
|
|
WARN_ON(regulator_desc->ops->get_voltage &&
|
|
regulator_desc->ops->get_voltage_sel);
|
|
WARN_ON(regulator_desc->ops->set_voltage &&
|
|
regulator_desc->ops->set_voltage_sel);
|
|
|
|
/* If we're using selectors we must implement list_voltage. */
|
|
if (regulator_desc->ops->get_voltage_sel &&
|
|
!regulator_desc->ops->list_voltage) {
|
|
ret = -EINVAL;
|
|
goto rinse;
|
|
}
|
|
if (regulator_desc->ops->set_voltage_sel &&
|
|
!regulator_desc->ops->list_voltage) {
|
|
ret = -EINVAL;
|
|
goto rinse;
|
|
}
|
|
|
|
rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
|
|
if (rdev == NULL) {
|
|
ret = -ENOMEM;
|
|
goto rinse;
|
|
}
|
|
|
|
/*
|
|
* Duplicate the config so the driver could override it after
|
|
* parsing init data.
|
|
*/
|
|
config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
|
|
if (config == NULL) {
|
|
kfree(rdev);
|
|
ret = -ENOMEM;
|
|
goto rinse;
|
|
}
|
|
|
|
init_data = regulator_of_get_init_data(dev, regulator_desc, config,
|
|
&rdev->dev.of_node);
|
|
|
|
/*
|
|
* Sometimes not all resources are probed already so we need to take
|
|
* that into account. This happens most the time if the ena_gpiod comes
|
|
* from a gpio extender or something else.
|
|
*/
|
|
if (PTR_ERR(init_data) == -EPROBE_DEFER) {
|
|
kfree(config);
|
|
kfree(rdev);
|
|
ret = -EPROBE_DEFER;
|
|
goto rinse;
|
|
}
|
|
|
|
/*
|
|
* We need to keep track of any GPIO descriptor coming from the
|
|
* device tree until we have handled it over to the core. If the
|
|
* config that was passed in to this function DOES NOT contain
|
|
* a descriptor, and the config after this call DOES contain
|
|
* a descriptor, we definitely got one from parsing the device
|
|
* tree.
|
|
*/
|
|
if (!cfg->ena_gpiod && config->ena_gpiod)
|
|
dangling_of_gpiod = true;
|
|
if (!init_data) {
|
|
init_data = config->init_data;
|
|
rdev->dev.of_node = of_node_get(config->of_node);
|
|
}
|
|
|
|
ww_mutex_init(&rdev->mutex, ®ulator_ww_class);
|
|
rdev->reg_data = config->driver_data;
|
|
rdev->owner = regulator_desc->owner;
|
|
rdev->desc = regulator_desc;
|
|
if (config->regmap)
|
|
rdev->regmap = config->regmap;
|
|
else if (dev_get_regmap(dev, NULL))
|
|
rdev->regmap = dev_get_regmap(dev, NULL);
|
|
else if (dev->parent)
|
|
rdev->regmap = dev_get_regmap(dev->parent, NULL);
|
|
INIT_LIST_HEAD(&rdev->consumer_list);
|
|
INIT_LIST_HEAD(&rdev->list);
|
|
BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
|
|
INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
|
|
|
|
/* preform any regulator specific init */
|
|
if (init_data && init_data->regulator_init) {
|
|
ret = init_data->regulator_init(rdev->reg_data);
|
|
if (ret < 0)
|
|
goto clean;
|
|
}
|
|
|
|
if (config->ena_gpiod) {
|
|
mutex_lock(®ulator_list_mutex);
|
|
ret = regulator_ena_gpio_request(rdev, config);
|
|
mutex_unlock(®ulator_list_mutex);
|
|
if (ret != 0) {
|
|
rdev_err(rdev, "Failed to request enable GPIO: %d\n",
|
|
ret);
|
|
goto clean;
|
|
}
|
|
/* The regulator core took over the GPIO descriptor */
|
|
dangling_cfg_gpiod = false;
|
|
dangling_of_gpiod = false;
|
|
}
|
|
|
|
/* register with sysfs */
|
|
device_initialize(&rdev->dev);
|
|
rdev->dev.class = ®ulator_class;
|
|
rdev->dev.parent = dev;
|
|
dev_set_name(&rdev->dev, "regulator.%lu",
|
|
(unsigned long) atomic_inc_return(®ulator_no));
|
|
dev_set_drvdata(&rdev->dev, rdev);
|
|
|
|
/* set regulator constraints */
|
|
if (init_data)
|
|
constraints = &init_data->constraints;
|
|
|
|
if (init_data && init_data->supply_regulator)
|
|
rdev->supply_name = init_data->supply_regulator;
|
|
else if (regulator_desc->supply_name)
|
|
rdev->supply_name = regulator_desc->supply_name;
|
|
|
|
/*
|
|
* Attempt to resolve the regulator supply, if specified,
|
|
* but don't return an error if we fail because we will try
|
|
* to resolve it again later as more regulators are added.
|
|
*/
|
|
if (regulator_resolve_supply(rdev))
|
|
rdev_dbg(rdev, "unable to resolve supply\n");
|
|
|
|
ret = set_machine_constraints(rdev, constraints);
|
|
if (ret < 0)
|
|
goto wash;
|
|
|
|
mutex_lock(®ulator_list_mutex);
|
|
ret = regulator_init_coupling(rdev);
|
|
mutex_unlock(®ulator_list_mutex);
|
|
if (ret < 0)
|
|
goto wash;
|
|
|
|
/* add consumers devices */
|
|
if (init_data) {
|
|
mutex_lock(®ulator_list_mutex);
|
|
for (i = 0; i < init_data->num_consumer_supplies; i++) {
|
|
ret = set_consumer_device_supply(rdev,
|
|
init_data->consumer_supplies[i].dev_name,
|
|
init_data->consumer_supplies[i].supply);
|
|
if (ret < 0) {
|
|
mutex_unlock(®ulator_list_mutex);
|
|
dev_err(dev, "Failed to set supply %s\n",
|
|
init_data->consumer_supplies[i].supply);
|
|
goto unset_supplies;
|
|
}
|
|
}
|
|
mutex_unlock(®ulator_list_mutex);
|
|
}
|
|
|
|
if (!rdev->desc->ops->get_voltage &&
|
|
!rdev->desc->ops->list_voltage &&
|
|
!rdev->desc->fixed_uV)
|
|
rdev->is_switch = true;
|
|
|
|
ret = device_add(&rdev->dev);
|
|
if (ret != 0)
|
|
goto unset_supplies;
|
|
|
|
rdev_init_debugfs(rdev);
|
|
|
|
/* try to resolve regulators coupling since a new one was registered */
|
|
mutex_lock(®ulator_list_mutex);
|
|
regulator_resolve_coupling(rdev);
|
|
mutex_unlock(®ulator_list_mutex);
|
|
|
|
/* try to resolve regulators supply since a new one was registered */
|
|
class_for_each_device(®ulator_class, NULL, NULL,
|
|
regulator_register_resolve_supply);
|
|
kfree(config);
|
|
return rdev;
|
|
|
|
unset_supplies:
|
|
mutex_lock(®ulator_list_mutex);
|
|
unset_regulator_supplies(rdev);
|
|
regulator_remove_coupling(rdev);
|
|
mutex_unlock(®ulator_list_mutex);
|
|
wash:
|
|
kfree(rdev->coupling_desc.coupled_rdevs);
|
|
mutex_lock(®ulator_list_mutex);
|
|
regulator_ena_gpio_free(rdev);
|
|
mutex_unlock(®ulator_list_mutex);
|
|
put_device(&rdev->dev);
|
|
rdev = NULL;
|
|
clean:
|
|
if (dangling_of_gpiod)
|
|
gpiod_put(config->ena_gpiod);
|
|
kfree(rdev);
|
|
kfree(config);
|
|
rinse:
|
|
if (dangling_cfg_gpiod)
|
|
gpiod_put(cfg->ena_gpiod);
|
|
return ERR_PTR(ret);
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_register);
|
|
|
|
/**
|
|
* regulator_unregister - unregister regulator
|
|
* @rdev: regulator to unregister
|
|
*
|
|
* Called by regulator drivers to unregister a regulator.
|
|
*/
|
|
void regulator_unregister(struct regulator_dev *rdev)
|
|
{
|
|
if (rdev == NULL)
|
|
return;
|
|
|
|
if (rdev->supply) {
|
|
while (rdev->use_count--)
|
|
regulator_disable(rdev->supply);
|
|
regulator_put(rdev->supply);
|
|
}
|
|
|
|
flush_work(&rdev->disable_work.work);
|
|
|
|
mutex_lock(®ulator_list_mutex);
|
|
|
|
debugfs_remove_recursive(rdev->debugfs);
|
|
WARN_ON(rdev->open_count);
|
|
regulator_remove_coupling(rdev);
|
|
unset_regulator_supplies(rdev);
|
|
list_del(&rdev->list);
|
|
regulator_ena_gpio_free(rdev);
|
|
device_unregister(&rdev->dev);
|
|
|
|
mutex_unlock(®ulator_list_mutex);
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_unregister);
|
|
|
|
#ifdef CONFIG_SUSPEND
|
|
/**
|
|
* regulator_suspend - prepare regulators for system wide suspend
|
|
* @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
|
|
*
|
|
* Configure each regulator with it's suspend operating parameters for state.
|
|
*/
|
|
static int regulator_suspend(struct device *dev)
|
|
{
|
|
struct regulator_dev *rdev = dev_to_rdev(dev);
|
|
suspend_state_t state = pm_suspend_target_state;
|
|
int ret;
|
|
|
|
regulator_lock(rdev);
|
|
ret = suspend_set_state(rdev, state);
|
|
regulator_unlock(rdev);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int regulator_resume(struct device *dev)
|
|
{
|
|
suspend_state_t state = pm_suspend_target_state;
|
|
struct regulator_dev *rdev = dev_to_rdev(dev);
|
|
struct regulator_state *rstate;
|
|
int ret = 0;
|
|
|
|
rstate = regulator_get_suspend_state(rdev, state);
|
|
if (rstate == NULL)
|
|
return 0;
|
|
|
|
regulator_lock(rdev);
|
|
|
|
if (rdev->desc->ops->resume &&
|
|
(rstate->enabled == ENABLE_IN_SUSPEND ||
|
|
rstate->enabled == DISABLE_IN_SUSPEND))
|
|
ret = rdev->desc->ops->resume(rdev);
|
|
|
|
regulator_unlock(rdev);
|
|
|
|
return ret;
|
|
}
|
|
#else /* !CONFIG_SUSPEND */
|
|
|
|
#define regulator_suspend NULL
|
|
#define regulator_resume NULL
|
|
|
|
#endif /* !CONFIG_SUSPEND */
|
|
|
|
#ifdef CONFIG_PM
|
|
static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
|
|
.suspend = regulator_suspend,
|
|
.resume = regulator_resume,
|
|
};
|
|
#endif
|
|
|
|
struct class regulator_class = {
|
|
.name = "regulator",
|
|
.dev_release = regulator_dev_release,
|
|
.dev_groups = regulator_dev_groups,
|
|
#ifdef CONFIG_PM
|
|
.pm = ®ulator_pm_ops,
|
|
#endif
|
|
};
|
|
/**
|
|
* regulator_has_full_constraints - the system has fully specified constraints
|
|
*
|
|
* Calling this function will cause the regulator API to disable all
|
|
* regulators which have a zero use count and don't have an always_on
|
|
* constraint in a late_initcall.
|
|
*
|
|
* The intention is that this will become the default behaviour in a
|
|
* future kernel release so users are encouraged to use this facility
|
|
* now.
|
|
*/
|
|
void regulator_has_full_constraints(void)
|
|
{
|
|
has_full_constraints = 1;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
|
|
|
|
/**
|
|
* rdev_get_drvdata - get rdev regulator driver data
|
|
* @rdev: regulator
|
|
*
|
|
* Get rdev regulator driver private data. This call can be used in the
|
|
* regulator driver context.
|
|
*/
|
|
void *rdev_get_drvdata(struct regulator_dev *rdev)
|
|
{
|
|
return rdev->reg_data;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rdev_get_drvdata);
|
|
|
|
/**
|
|
* regulator_get_drvdata - get regulator driver data
|
|
* @regulator: regulator
|
|
*
|
|
* Get regulator driver private data. This call can be used in the consumer
|
|
* driver context when non API regulator specific functions need to be called.
|
|
*/
|
|
void *regulator_get_drvdata(struct regulator *regulator)
|
|
{
|
|
return regulator->rdev->reg_data;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_get_drvdata);
|
|
|
|
/**
|
|
* regulator_set_drvdata - set regulator driver data
|
|
* @regulator: regulator
|
|
* @data: data
|
|
*/
|
|
void regulator_set_drvdata(struct regulator *regulator, void *data)
|
|
{
|
|
regulator->rdev->reg_data = data;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_set_drvdata);
|
|
|
|
/**
|
|
* regulator_get_id - get regulator ID
|
|
* @rdev: regulator
|
|
*/
|
|
int rdev_get_id(struct regulator_dev *rdev)
|
|
{
|
|
return rdev->desc->id;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rdev_get_id);
|
|
|
|
struct device *rdev_get_dev(struct regulator_dev *rdev)
|
|
{
|
|
return &rdev->dev;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rdev_get_dev);
|
|
|
|
struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
|
|
{
|
|
return rdev->regmap;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rdev_get_regmap);
|
|
|
|
void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
|
|
{
|
|
return reg_init_data->driver_data;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
|
|
|
|
#ifdef CONFIG_DEBUG_FS
|
|
static int supply_map_show(struct seq_file *sf, void *data)
|
|
{
|
|
struct regulator_map *map;
|
|
|
|
list_for_each_entry(map, ®ulator_map_list, list) {
|
|
seq_printf(sf, "%s -> %s.%s\n",
|
|
rdev_get_name(map->regulator), map->dev_name,
|
|
map->supply);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
DEFINE_SHOW_ATTRIBUTE(supply_map);
|
|
|
|
struct summary_data {
|
|
struct seq_file *s;
|
|
struct regulator_dev *parent;
|
|
int level;
|
|
};
|
|
|
|
static void regulator_summary_show_subtree(struct seq_file *s,
|
|
struct regulator_dev *rdev,
|
|
int level);
|
|
|
|
static int regulator_summary_show_children(struct device *dev, void *data)
|
|
{
|
|
struct regulator_dev *rdev = dev_to_rdev(dev);
|
|
struct summary_data *summary_data = data;
|
|
|
|
if (rdev->supply && rdev->supply->rdev == summary_data->parent)
|
|
regulator_summary_show_subtree(summary_data->s, rdev,
|
|
summary_data->level + 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void regulator_summary_show_subtree(struct seq_file *s,
|
|
struct regulator_dev *rdev,
|
|
int level)
|
|
{
|
|
struct regulation_constraints *c;
|
|
struct regulator *consumer;
|
|
struct summary_data summary_data;
|
|
unsigned int opmode;
|
|
|
|
if (!rdev)
|
|
return;
|
|
|
|
opmode = _regulator_get_mode_unlocked(rdev);
|
|
seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
|
|
level * 3 + 1, "",
|
|
30 - level * 3, rdev_get_name(rdev),
|
|
rdev->use_count, rdev->open_count, rdev->bypass_count,
|
|
regulator_opmode_to_str(opmode));
|
|
|
|
seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
|
|
seq_printf(s, "%5dmA ",
|
|
_regulator_get_current_limit_unlocked(rdev) / 1000);
|
|
|
|
c = rdev->constraints;
|
|
if (c) {
|
|
switch (rdev->desc->type) {
|
|
case REGULATOR_VOLTAGE:
|
|
seq_printf(s, "%5dmV %5dmV ",
|
|
c->min_uV / 1000, c->max_uV / 1000);
|
|
break;
|
|
case REGULATOR_CURRENT:
|
|
seq_printf(s, "%5dmA %5dmA ",
|
|
c->min_uA / 1000, c->max_uA / 1000);
|
|
break;
|
|
}
|
|
}
|
|
|
|
seq_puts(s, "\n");
|
|
|
|
list_for_each_entry(consumer, &rdev->consumer_list, list) {
|
|
if (consumer->dev && consumer->dev->class == ®ulator_class)
|
|
continue;
|
|
|
|
seq_printf(s, "%*s%-*s ",
|
|
(level + 1) * 3 + 1, "",
|
|
30 - (level + 1) * 3,
|
|
consumer->supply_name ? consumer->supply_name :
|
|
consumer->dev ? dev_name(consumer->dev) : "deviceless");
|
|
|
|
switch (rdev->desc->type) {
|
|
case REGULATOR_VOLTAGE:
|
|
seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
|
|
consumer->enable_count,
|
|
consumer->uA_load / 1000,
|
|
consumer->uA_load && !consumer->enable_count ?
|
|
'*' : ' ',
|
|
consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
|
|
consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
|
|
break;
|
|
case REGULATOR_CURRENT:
|
|
break;
|
|
}
|
|
|
|
seq_puts(s, "\n");
|
|
}
|
|
|
|
summary_data.s = s;
|
|
summary_data.level = level;
|
|
summary_data.parent = rdev;
|
|
|
|
class_for_each_device(®ulator_class, NULL, &summary_data,
|
|
regulator_summary_show_children);
|
|
}
|
|
|
|
struct summary_lock_data {
|
|
struct ww_acquire_ctx *ww_ctx;
|
|
struct regulator_dev **new_contended_rdev;
|
|
struct regulator_dev **old_contended_rdev;
|
|
};
|
|
|
|
static int regulator_summary_lock_one(struct device *dev, void *data)
|
|
{
|
|
struct regulator_dev *rdev = dev_to_rdev(dev);
|
|
struct summary_lock_data *lock_data = data;
|
|
int ret = 0;
|
|
|
|
if (rdev != *lock_data->old_contended_rdev) {
|
|
ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
|
|
|
|
if (ret == -EDEADLK)
|
|
*lock_data->new_contended_rdev = rdev;
|
|
else
|
|
WARN_ON_ONCE(ret);
|
|
} else {
|
|
*lock_data->old_contended_rdev = NULL;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int regulator_summary_unlock_one(struct device *dev, void *data)
|
|
{
|
|
struct regulator_dev *rdev = dev_to_rdev(dev);
|
|
struct summary_lock_data *lock_data = data;
|
|
|
|
if (lock_data) {
|
|
if (rdev == *lock_data->new_contended_rdev)
|
|
return -EDEADLK;
|
|
}
|
|
|
|
regulator_unlock(rdev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
|
|
struct regulator_dev **new_contended_rdev,
|
|
struct regulator_dev **old_contended_rdev)
|
|
{
|
|
struct summary_lock_data lock_data;
|
|
int ret;
|
|
|
|
lock_data.ww_ctx = ww_ctx;
|
|
lock_data.new_contended_rdev = new_contended_rdev;
|
|
lock_data.old_contended_rdev = old_contended_rdev;
|
|
|
|
ret = class_for_each_device(®ulator_class, NULL, &lock_data,
|
|
regulator_summary_lock_one);
|
|
if (ret)
|
|
class_for_each_device(®ulator_class, NULL, &lock_data,
|
|
regulator_summary_unlock_one);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
|
|
{
|
|
struct regulator_dev *new_contended_rdev = NULL;
|
|
struct regulator_dev *old_contended_rdev = NULL;
|
|
int err;
|
|
|
|
mutex_lock(®ulator_list_mutex);
|
|
|
|
ww_acquire_init(ww_ctx, ®ulator_ww_class);
|
|
|
|
do {
|
|
if (new_contended_rdev) {
|
|
ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
|
|
old_contended_rdev = new_contended_rdev;
|
|
old_contended_rdev->ref_cnt++;
|
|
}
|
|
|
|
err = regulator_summary_lock_all(ww_ctx,
|
|
&new_contended_rdev,
|
|
&old_contended_rdev);
|
|
|
|
if (old_contended_rdev)
|
|
regulator_unlock(old_contended_rdev);
|
|
|
|
} while (err == -EDEADLK);
|
|
|
|
ww_acquire_done(ww_ctx);
|
|
}
|
|
|
|
static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
|
|
{
|
|
class_for_each_device(®ulator_class, NULL, NULL,
|
|
regulator_summary_unlock_one);
|
|
ww_acquire_fini(ww_ctx);
|
|
|
|
mutex_unlock(®ulator_list_mutex);
|
|
}
|
|
|
|
static int regulator_summary_show_roots(struct device *dev, void *data)
|
|
{
|
|
struct regulator_dev *rdev = dev_to_rdev(dev);
|
|
struct seq_file *s = data;
|
|
|
|
if (!rdev->supply)
|
|
regulator_summary_show_subtree(s, rdev, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int regulator_summary_show(struct seq_file *s, void *data)
|
|
{
|
|
struct ww_acquire_ctx ww_ctx;
|
|
|
|
seq_puts(s, " regulator use open bypass opmode voltage current min max\n");
|
|
seq_puts(s, "---------------------------------------------------------------------------------------\n");
|
|
|
|
regulator_summary_lock(&ww_ctx);
|
|
|
|
class_for_each_device(®ulator_class, NULL, s,
|
|
regulator_summary_show_roots);
|
|
|
|
regulator_summary_unlock(&ww_ctx);
|
|
|
|
return 0;
|
|
}
|
|
DEFINE_SHOW_ATTRIBUTE(regulator_summary);
|
|
#endif /* CONFIG_DEBUG_FS */
|
|
|
|
static int __init regulator_init(void)
|
|
{
|
|
int ret;
|
|
|
|
ret = class_register(®ulator_class);
|
|
|
|
debugfs_root = debugfs_create_dir("regulator", NULL);
|
|
if (!debugfs_root)
|
|
pr_warn("regulator: Failed to create debugfs directory\n");
|
|
|
|
#ifdef CONFIG_DEBUG_FS
|
|
debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
|
|
&supply_map_fops);
|
|
|
|
debugfs_create_file("regulator_summary", 0444, debugfs_root,
|
|
NULL, ®ulator_summary_fops);
|
|
#endif
|
|
regulator_dummy_init();
|
|
|
|
regulator_coupler_register(&generic_regulator_coupler);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* init early to allow our consumers to complete system booting */
|
|
core_initcall(regulator_init);
|
|
|
|
static int regulator_late_cleanup(struct device *dev, void *data)
|
|
{
|
|
struct regulator_dev *rdev = dev_to_rdev(dev);
|
|
const struct regulator_ops *ops = rdev->desc->ops;
|
|
struct regulation_constraints *c = rdev->constraints;
|
|
int enabled, ret;
|
|
|
|
if (c && c->always_on)
|
|
return 0;
|
|
|
|
if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
|
|
return 0;
|
|
|
|
regulator_lock(rdev);
|
|
|
|
if (rdev->use_count)
|
|
goto unlock;
|
|
|
|
/* If we can't read the status assume it's on. */
|
|
if (ops->is_enabled)
|
|
enabled = ops->is_enabled(rdev);
|
|
else
|
|
enabled = 1;
|
|
|
|
if (!enabled)
|
|
goto unlock;
|
|
|
|
if (have_full_constraints()) {
|
|
/* We log since this may kill the system if it goes
|
|
* wrong. */
|
|
rdev_info(rdev, "disabling\n");
|
|
ret = _regulator_do_disable(rdev);
|
|
if (ret != 0)
|
|
rdev_err(rdev, "couldn't disable: %d\n", ret);
|
|
} else {
|
|
/* The intention is that in future we will
|
|
* assume that full constraints are provided
|
|
* so warn even if we aren't going to do
|
|
* anything here.
|
|
*/
|
|
rdev_warn(rdev, "incomplete constraints, leaving on\n");
|
|
}
|
|
|
|
unlock:
|
|
regulator_unlock(rdev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void regulator_init_complete_work_function(struct work_struct *work)
|
|
{
|
|
/*
|
|
* Regulators may had failed to resolve their input supplies
|
|
* when were registered, either because the input supply was
|
|
* not registered yet or because its parent device was not
|
|
* bound yet. So attempt to resolve the input supplies for
|
|
* pending regulators before trying to disable unused ones.
|
|
*/
|
|
class_for_each_device(®ulator_class, NULL, NULL,
|
|
regulator_register_resolve_supply);
|
|
|
|
/* If we have a full configuration then disable any regulators
|
|
* we have permission to change the status for and which are
|
|
* not in use or always_on. This is effectively the default
|
|
* for DT and ACPI as they have full constraints.
|
|
*/
|
|
class_for_each_device(®ulator_class, NULL, NULL,
|
|
regulator_late_cleanup);
|
|
}
|
|
|
|
static DECLARE_DELAYED_WORK(regulator_init_complete_work,
|
|
regulator_init_complete_work_function);
|
|
|
|
static int __init regulator_init_complete(void)
|
|
{
|
|
/*
|
|
* Since DT doesn't provide an idiomatic mechanism for
|
|
* enabling full constraints and since it's much more natural
|
|
* with DT to provide them just assume that a DT enabled
|
|
* system has full constraints.
|
|
*/
|
|
if (of_have_populated_dt())
|
|
has_full_constraints = true;
|
|
|
|
/*
|
|
* We punt completion for an arbitrary amount of time since
|
|
* systems like distros will load many drivers from userspace
|
|
* so consumers might not always be ready yet, this is
|
|
* particularly an issue with laptops where this might bounce
|
|
* the display off then on. Ideally we'd get a notification
|
|
* from userspace when this happens but we don't so just wait
|
|
* a bit and hope we waited long enough. It'd be better if
|
|
* we'd only do this on systems that need it, and a kernel
|
|
* command line option might be useful.
|
|
*/
|
|
schedule_delayed_work(®ulator_init_complete_work,
|
|
msecs_to_jiffies(30000));
|
|
|
|
return 0;
|
|
}
|
|
late_initcall_sync(regulator_init_complete);
|