linux/drivers/accel/qaic/qaic_control.c
Carl Vanderlip 44df9a2a13 accel/qaic: Increase number of in_reset states
'in_reset' holds the state of the device. As part of bringup, the device
needs to be queried to check if it's in a valid state. Add a new state
that indicates that the device is coming up, but not ready for users
yet. Rename to 'dev_state' to better describe the variable.

Signed-off-by: Carl Vanderlip <quic_carlv@quicinc.com>
Reviewed-by: Pranjal Ramajor Asha Kanojiya <quic_pkanojiy@quicinc.com>
Reviewed-by: Jeffrey Hugo <quic_jhugo@quicinc.com>
Signed-off-by: Jeffrey Hugo <quic_jhugo@quicinc.com>
Reviewed-by: Jacek Lawrynowicz <jacek.lawrynowicz@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20231117174337.20174-2-quic_jhugo@quicinc.com
2023-12-01 10:35:32 -07:00

1558 lines
41 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (c) 2019-2021, The Linux Foundation. All rights reserved. */
/* Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved. */
#include <asm/byteorder.h>
#include <linux/completion.h>
#include <linux/crc32.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/kref.h>
#include <linux/list.h>
#include <linux/mhi.h>
#include <linux/mm.h>
#include <linux/moduleparam.h>
#include <linux/mutex.h>
#include <linux/overflow.h>
#include <linux/pci.h>
#include <linux/scatterlist.h>
#include <linux/types.h>
#include <linux/uaccess.h>
#include <linux/workqueue.h>
#include <linux/wait.h>
#include <drm/drm_device.h>
#include <drm/drm_file.h>
#include <uapi/drm/qaic_accel.h>
#include "qaic.h"
#define MANAGE_MAGIC_NUMBER ((__force __le32)0x43494151) /* "QAIC" in little endian */
#define QAIC_DBC_Q_GAP SZ_256
#define QAIC_DBC_Q_BUF_ALIGN SZ_4K
#define QAIC_MANAGE_EXT_MSG_LENGTH SZ_64K /* Max DMA message length */
#define QAIC_WRAPPER_MAX_SIZE SZ_4K
#define QAIC_MHI_RETRY_WAIT_MS 100
#define QAIC_MHI_RETRY_MAX 20
static unsigned int control_resp_timeout_s = 60; /* 60 sec default */
module_param(control_resp_timeout_s, uint, 0600);
MODULE_PARM_DESC(control_resp_timeout_s, "Timeout for NNC responses from QSM");
struct manage_msg {
u32 len;
u32 count;
u8 data[];
};
/*
* wire encoding structures for the manage protocol.
* All fields are little endian on the wire
*/
struct wire_msg_hdr {
__le32 crc32; /* crc of everything following this field in the message */
__le32 magic_number;
__le32 sequence_number;
__le32 len; /* length of this message */
__le32 count; /* number of transactions in this message */
__le32 handle; /* unique id to track the resources consumed */
__le32 partition_id; /* partition id for the request (signed) */
__le32 padding; /* must be 0 */
} __packed;
struct wire_msg {
struct wire_msg_hdr hdr;
u8 data[];
} __packed;
struct wire_trans_hdr {
__le32 type;
__le32 len;
} __packed;
/* Each message sent from driver to device are organized in a list of wrapper_msg */
struct wrapper_msg {
struct list_head list;
struct kref ref_count;
u32 len; /* length of data to transfer */
struct wrapper_list *head;
union {
struct wire_msg msg;
struct wire_trans_hdr trans;
};
};
struct wrapper_list {
struct list_head list;
spinlock_t lock; /* Protects the list state during additions and removals */
};
struct wire_trans_passthrough {
struct wire_trans_hdr hdr;
u8 data[];
} __packed;
struct wire_addr_size_pair {
__le64 addr;
__le64 size;
} __packed;
struct wire_trans_dma_xfer {
struct wire_trans_hdr hdr;
__le32 tag;
__le32 count;
__le32 dma_chunk_id;
__le32 padding;
struct wire_addr_size_pair data[];
} __packed;
/* Initiated by device to continue the DMA xfer of a large piece of data */
struct wire_trans_dma_xfer_cont {
struct wire_trans_hdr hdr;
__le32 dma_chunk_id;
__le32 padding;
__le64 xferred_size;
} __packed;
struct wire_trans_activate_to_dev {
struct wire_trans_hdr hdr;
__le64 req_q_addr;
__le64 rsp_q_addr;
__le32 req_q_size;
__le32 rsp_q_size;
__le32 buf_len;
__le32 options; /* unused, but BIT(16) has meaning to the device */
} __packed;
struct wire_trans_activate_from_dev {
struct wire_trans_hdr hdr;
__le32 status;
__le32 dbc_id;
__le64 options; /* unused */
} __packed;
struct wire_trans_deactivate_from_dev {
struct wire_trans_hdr hdr;
__le32 status;
__le32 dbc_id;
} __packed;
struct wire_trans_terminate_to_dev {
struct wire_trans_hdr hdr;
__le32 handle;
__le32 padding;
} __packed;
struct wire_trans_terminate_from_dev {
struct wire_trans_hdr hdr;
__le32 status;
__le32 padding;
} __packed;
struct wire_trans_status_to_dev {
struct wire_trans_hdr hdr;
} __packed;
struct wire_trans_status_from_dev {
struct wire_trans_hdr hdr;
__le16 major;
__le16 minor;
__le32 status;
__le64 status_flags;
} __packed;
struct wire_trans_validate_part_to_dev {
struct wire_trans_hdr hdr;
__le32 part_id;
__le32 padding;
} __packed;
struct wire_trans_validate_part_from_dev {
struct wire_trans_hdr hdr;
__le32 status;
__le32 padding;
} __packed;
struct xfer_queue_elem {
/*
* Node in list of ongoing transfer request on control channel.
* Maintained by root device struct.
*/
struct list_head list;
/* Sequence number of this transfer request */
u32 seq_num;
/* This is used to wait on until completion of transfer request */
struct completion xfer_done;
/* Received data from device */
void *buf;
};
struct dma_xfer {
/* Node in list of DMA transfers which is used for cleanup */
struct list_head list;
/* SG table of memory used for DMA */
struct sg_table *sgt;
/* Array pages used for DMA */
struct page **page_list;
/* Number of pages used for DMA */
unsigned long nr_pages;
};
struct ioctl_resources {
/* List of all DMA transfers which is used later for cleanup */
struct list_head dma_xfers;
/* Base address of request queue which belongs to a DBC */
void *buf;
/*
* Base bus address of request queue which belongs to a DBC. Response
* queue base bus address can be calculated by adding size of request
* queue to base bus address of request queue.
*/
dma_addr_t dma_addr;
/* Total size of request queue and response queue in byte */
u32 total_size;
/* Total number of elements that can be queued in each of request and response queue */
u32 nelem;
/* Base address of response queue which belongs to a DBC */
void *rsp_q_base;
/* Status of the NNC message received */
u32 status;
/* DBC id of the DBC received from device */
u32 dbc_id;
/*
* DMA transfer request messages can be big in size and it may not be
* possible to send them in one shot. In such cases the messages are
* broken into chunks, this field stores ID of such chunks.
*/
u32 dma_chunk_id;
/* Total number of bytes transferred for a DMA xfer request */
u64 xferred_dma_size;
/* Header of transaction message received from user. Used during DMA xfer request. */
void *trans_hdr;
};
struct resp_work {
struct work_struct work;
struct qaic_device *qdev;
void *buf;
};
/*
* Since we're working with little endian messages, its useful to be able to
* increment without filling a whole line with conversions back and forth just
* to add one(1) to a message count.
*/
static __le32 incr_le32(__le32 val)
{
return cpu_to_le32(le32_to_cpu(val) + 1);
}
static u32 gen_crc(void *msg)
{
struct wrapper_list *wrappers = msg;
struct wrapper_msg *w;
u32 crc = ~0;
list_for_each_entry(w, &wrappers->list, list)
crc = crc32(crc, &w->msg, w->len);
return crc ^ ~0;
}
static u32 gen_crc_stub(void *msg)
{
return 0;
}
static bool valid_crc(void *msg)
{
struct wire_msg_hdr *hdr = msg;
bool ret;
u32 crc;
/*
* The output of this algorithm is always converted to the native
* endianness.
*/
crc = le32_to_cpu(hdr->crc32);
hdr->crc32 = 0;
ret = (crc32(~0, msg, le32_to_cpu(hdr->len)) ^ ~0) == crc;
hdr->crc32 = cpu_to_le32(crc);
return ret;
}
static bool valid_crc_stub(void *msg)
{
return true;
}
static void free_wrapper(struct kref *ref)
{
struct wrapper_msg *wrapper = container_of(ref, struct wrapper_msg, ref_count);
list_del(&wrapper->list);
kfree(wrapper);
}
static void save_dbc_buf(struct qaic_device *qdev, struct ioctl_resources *resources,
struct qaic_user *usr)
{
u32 dbc_id = resources->dbc_id;
if (resources->buf) {
wait_event_interruptible(qdev->dbc[dbc_id].dbc_release, !qdev->dbc[dbc_id].in_use);
qdev->dbc[dbc_id].req_q_base = resources->buf;
qdev->dbc[dbc_id].rsp_q_base = resources->rsp_q_base;
qdev->dbc[dbc_id].dma_addr = resources->dma_addr;
qdev->dbc[dbc_id].total_size = resources->total_size;
qdev->dbc[dbc_id].nelem = resources->nelem;
enable_dbc(qdev, dbc_id, usr);
qdev->dbc[dbc_id].in_use = true;
resources->buf = NULL;
}
}
static void free_dbc_buf(struct qaic_device *qdev, struct ioctl_resources *resources)
{
if (resources->buf)
dma_free_coherent(&qdev->pdev->dev, resources->total_size, resources->buf,
resources->dma_addr);
resources->buf = NULL;
}
static void free_dma_xfers(struct qaic_device *qdev, struct ioctl_resources *resources)
{
struct dma_xfer *xfer;
struct dma_xfer *x;
int i;
list_for_each_entry_safe(xfer, x, &resources->dma_xfers, list) {
dma_unmap_sgtable(&qdev->pdev->dev, xfer->sgt, DMA_TO_DEVICE, 0);
sg_free_table(xfer->sgt);
kfree(xfer->sgt);
for (i = 0; i < xfer->nr_pages; ++i)
put_page(xfer->page_list[i]);
kfree(xfer->page_list);
list_del(&xfer->list);
kfree(xfer);
}
}
static struct wrapper_msg *add_wrapper(struct wrapper_list *wrappers, u32 size)
{
struct wrapper_msg *w = kzalloc(size, GFP_KERNEL);
if (!w)
return NULL;
list_add_tail(&w->list, &wrappers->list);
kref_init(&w->ref_count);
w->head = wrappers;
return w;
}
static int encode_passthrough(struct qaic_device *qdev, void *trans, struct wrapper_list *wrappers,
u32 *user_len)
{
struct qaic_manage_trans_passthrough *in_trans = trans;
struct wire_trans_passthrough *out_trans;
struct wrapper_msg *trans_wrapper;
struct wrapper_msg *wrapper;
struct wire_msg *msg;
u32 msg_hdr_len;
wrapper = list_first_entry(&wrappers->list, struct wrapper_msg, list);
msg = &wrapper->msg;
msg_hdr_len = le32_to_cpu(msg->hdr.len);
if (in_trans->hdr.len % 8 != 0)
return -EINVAL;
if (size_add(msg_hdr_len, in_trans->hdr.len) > QAIC_MANAGE_EXT_MSG_LENGTH)
return -ENOSPC;
trans_wrapper = add_wrapper(wrappers,
offsetof(struct wrapper_msg, trans) + in_trans->hdr.len);
if (!trans_wrapper)
return -ENOMEM;
trans_wrapper->len = in_trans->hdr.len;
out_trans = (struct wire_trans_passthrough *)&trans_wrapper->trans;
memcpy(out_trans->data, in_trans->data, in_trans->hdr.len - sizeof(in_trans->hdr));
msg->hdr.len = cpu_to_le32(msg_hdr_len + in_trans->hdr.len);
msg->hdr.count = incr_le32(msg->hdr.count);
*user_len += in_trans->hdr.len;
out_trans->hdr.type = cpu_to_le32(QAIC_TRANS_PASSTHROUGH_TO_DEV);
out_trans->hdr.len = cpu_to_le32(in_trans->hdr.len);
return 0;
}
/* returns error code for failure, 0 if enough pages alloc'd, 1 if dma_cont is needed */
static int find_and_map_user_pages(struct qaic_device *qdev,
struct qaic_manage_trans_dma_xfer *in_trans,
struct ioctl_resources *resources, struct dma_xfer *xfer)
{
u64 xfer_start_addr, remaining, end, total;
unsigned long need_pages;
struct page **page_list;
unsigned long nr_pages;
struct sg_table *sgt;
int ret;
int i;
if (check_add_overflow(in_trans->addr, resources->xferred_dma_size, &xfer_start_addr))
return -EINVAL;
if (in_trans->size < resources->xferred_dma_size)
return -EINVAL;
remaining = in_trans->size - resources->xferred_dma_size;
if (remaining == 0)
return 0;
if (check_add_overflow(xfer_start_addr, remaining, &end))
return -EINVAL;
total = remaining + offset_in_page(xfer_start_addr);
if (total >= SIZE_MAX)
return -EINVAL;
need_pages = DIV_ROUND_UP(total, PAGE_SIZE);
nr_pages = need_pages;
while (1) {
page_list = kmalloc_array(nr_pages, sizeof(*page_list), GFP_KERNEL | __GFP_NOWARN);
if (!page_list) {
nr_pages = nr_pages / 2;
if (!nr_pages)
return -ENOMEM;
} else {
break;
}
}
ret = get_user_pages_fast(xfer_start_addr, nr_pages, 0, page_list);
if (ret < 0)
goto free_page_list;
if (ret != nr_pages) {
nr_pages = ret;
ret = -EFAULT;
goto put_pages;
}
sgt = kmalloc(sizeof(*sgt), GFP_KERNEL);
if (!sgt) {
ret = -ENOMEM;
goto put_pages;
}
ret = sg_alloc_table_from_pages(sgt, page_list, nr_pages,
offset_in_page(xfer_start_addr),
remaining, GFP_KERNEL);
if (ret) {
ret = -ENOMEM;
goto free_sgt;
}
ret = dma_map_sgtable(&qdev->pdev->dev, sgt, DMA_TO_DEVICE, 0);
if (ret)
goto free_table;
xfer->sgt = sgt;
xfer->page_list = page_list;
xfer->nr_pages = nr_pages;
return need_pages > nr_pages ? 1 : 0;
free_table:
sg_free_table(sgt);
free_sgt:
kfree(sgt);
put_pages:
for (i = 0; i < nr_pages; ++i)
put_page(page_list[i]);
free_page_list:
kfree(page_list);
return ret;
}
/* returns error code for failure, 0 if everything was encoded, 1 if dma_cont is needed */
static int encode_addr_size_pairs(struct dma_xfer *xfer, struct wrapper_list *wrappers,
struct ioctl_resources *resources, u32 msg_hdr_len, u32 *size,
struct wire_trans_dma_xfer **out_trans)
{
struct wrapper_msg *trans_wrapper;
struct sg_table *sgt = xfer->sgt;
struct wire_addr_size_pair *asp;
struct scatterlist *sg;
struct wrapper_msg *w;
unsigned int dma_len;
u64 dma_chunk_len;
void *boundary;
int nents_dma;
int nents;
int i;
nents = sgt->nents;
nents_dma = nents;
*size = QAIC_MANAGE_EXT_MSG_LENGTH - msg_hdr_len - sizeof(**out_trans);
for_each_sgtable_sg(sgt, sg, i) {
*size -= sizeof(*asp);
/* Save 1K for possible follow-up transactions. */
if (*size < SZ_1K) {
nents_dma = i;
break;
}
}
trans_wrapper = add_wrapper(wrappers, QAIC_WRAPPER_MAX_SIZE);
if (!trans_wrapper)
return -ENOMEM;
*out_trans = (struct wire_trans_dma_xfer *)&trans_wrapper->trans;
asp = (*out_trans)->data;
boundary = (void *)trans_wrapper + QAIC_WRAPPER_MAX_SIZE;
*size = 0;
dma_len = 0;
w = trans_wrapper;
dma_chunk_len = 0;
for_each_sg(sgt->sgl, sg, nents_dma, i) {
asp->size = cpu_to_le64(dma_len);
dma_chunk_len += dma_len;
if (dma_len) {
asp++;
if ((void *)asp + sizeof(*asp) > boundary) {
w->len = (void *)asp - (void *)&w->msg;
*size += w->len;
w = add_wrapper(wrappers, QAIC_WRAPPER_MAX_SIZE);
if (!w)
return -ENOMEM;
boundary = (void *)w + QAIC_WRAPPER_MAX_SIZE;
asp = (struct wire_addr_size_pair *)&w->msg;
}
}
asp->addr = cpu_to_le64(sg_dma_address(sg));
dma_len = sg_dma_len(sg);
}
/* finalize the last segment */
asp->size = cpu_to_le64(dma_len);
w->len = (void *)asp + sizeof(*asp) - (void *)&w->msg;
*size += w->len;
dma_chunk_len += dma_len;
resources->xferred_dma_size += dma_chunk_len;
return nents_dma < nents ? 1 : 0;
}
static void cleanup_xfer(struct qaic_device *qdev, struct dma_xfer *xfer)
{
int i;
dma_unmap_sgtable(&qdev->pdev->dev, xfer->sgt, DMA_TO_DEVICE, 0);
sg_free_table(xfer->sgt);
kfree(xfer->sgt);
for (i = 0; i < xfer->nr_pages; ++i)
put_page(xfer->page_list[i]);
kfree(xfer->page_list);
}
static int encode_dma(struct qaic_device *qdev, void *trans, struct wrapper_list *wrappers,
u32 *user_len, struct ioctl_resources *resources, struct qaic_user *usr)
{
struct qaic_manage_trans_dma_xfer *in_trans = trans;
struct wire_trans_dma_xfer *out_trans;
struct wrapper_msg *wrapper;
struct dma_xfer *xfer;
struct wire_msg *msg;
bool need_cont_dma;
u32 msg_hdr_len;
u32 size;
int ret;
wrapper = list_first_entry(&wrappers->list, struct wrapper_msg, list);
msg = &wrapper->msg;
msg_hdr_len = le32_to_cpu(msg->hdr.len);
/* There should be enough space to hold at least one ASP entry. */
if (size_add(msg_hdr_len, sizeof(*out_trans) + sizeof(struct wire_addr_size_pair)) >
QAIC_MANAGE_EXT_MSG_LENGTH)
return -ENOMEM;
xfer = kmalloc(sizeof(*xfer), GFP_KERNEL);
if (!xfer)
return -ENOMEM;
ret = find_and_map_user_pages(qdev, in_trans, resources, xfer);
if (ret < 0)
goto free_xfer;
need_cont_dma = (bool)ret;
ret = encode_addr_size_pairs(xfer, wrappers, resources, msg_hdr_len, &size, &out_trans);
if (ret < 0)
goto cleanup_xfer;
need_cont_dma = need_cont_dma || (bool)ret;
msg->hdr.len = cpu_to_le32(msg_hdr_len + size);
msg->hdr.count = incr_le32(msg->hdr.count);
out_trans->hdr.type = cpu_to_le32(QAIC_TRANS_DMA_XFER_TO_DEV);
out_trans->hdr.len = cpu_to_le32(size);
out_trans->tag = cpu_to_le32(in_trans->tag);
out_trans->count = cpu_to_le32((size - sizeof(*out_trans)) /
sizeof(struct wire_addr_size_pair));
*user_len += in_trans->hdr.len;
if (resources->dma_chunk_id) {
out_trans->dma_chunk_id = cpu_to_le32(resources->dma_chunk_id);
} else if (need_cont_dma) {
while (resources->dma_chunk_id == 0)
resources->dma_chunk_id = atomic_inc_return(&usr->chunk_id);
out_trans->dma_chunk_id = cpu_to_le32(resources->dma_chunk_id);
}
resources->trans_hdr = trans;
list_add(&xfer->list, &resources->dma_xfers);
return 0;
cleanup_xfer:
cleanup_xfer(qdev, xfer);
free_xfer:
kfree(xfer);
return ret;
}
static int encode_activate(struct qaic_device *qdev, void *trans, struct wrapper_list *wrappers,
u32 *user_len, struct ioctl_resources *resources)
{
struct qaic_manage_trans_activate_to_dev *in_trans = trans;
struct wire_trans_activate_to_dev *out_trans;
struct wrapper_msg *trans_wrapper;
struct wrapper_msg *wrapper;
struct wire_msg *msg;
dma_addr_t dma_addr;
u32 msg_hdr_len;
void *buf;
u32 nelem;
u32 size;
int ret;
wrapper = list_first_entry(&wrappers->list, struct wrapper_msg, list);
msg = &wrapper->msg;
msg_hdr_len = le32_to_cpu(msg->hdr.len);
if (size_add(msg_hdr_len, sizeof(*out_trans)) > QAIC_MANAGE_MAX_MSG_LENGTH)
return -ENOSPC;
if (!in_trans->queue_size)
return -EINVAL;
if (in_trans->pad)
return -EINVAL;
nelem = in_trans->queue_size;
size = (get_dbc_req_elem_size() + get_dbc_rsp_elem_size()) * nelem;
if (size / nelem != get_dbc_req_elem_size() + get_dbc_rsp_elem_size())
return -EINVAL;
if (size + QAIC_DBC_Q_GAP + QAIC_DBC_Q_BUF_ALIGN < size)
return -EINVAL;
size = ALIGN((size + QAIC_DBC_Q_GAP), QAIC_DBC_Q_BUF_ALIGN);
buf = dma_alloc_coherent(&qdev->pdev->dev, size, &dma_addr, GFP_KERNEL);
if (!buf)
return -ENOMEM;
trans_wrapper = add_wrapper(wrappers,
offsetof(struct wrapper_msg, trans) + sizeof(*out_trans));
if (!trans_wrapper) {
ret = -ENOMEM;
goto free_dma;
}
trans_wrapper->len = sizeof(*out_trans);
out_trans = (struct wire_trans_activate_to_dev *)&trans_wrapper->trans;
out_trans->hdr.type = cpu_to_le32(QAIC_TRANS_ACTIVATE_TO_DEV);
out_trans->hdr.len = cpu_to_le32(sizeof(*out_trans));
out_trans->buf_len = cpu_to_le32(size);
out_trans->req_q_addr = cpu_to_le64(dma_addr);
out_trans->req_q_size = cpu_to_le32(nelem);
out_trans->rsp_q_addr = cpu_to_le64(dma_addr + size - nelem * get_dbc_rsp_elem_size());
out_trans->rsp_q_size = cpu_to_le32(nelem);
out_trans->options = cpu_to_le32(in_trans->options);
*user_len += in_trans->hdr.len;
msg->hdr.len = cpu_to_le32(msg_hdr_len + sizeof(*out_trans));
msg->hdr.count = incr_le32(msg->hdr.count);
resources->buf = buf;
resources->dma_addr = dma_addr;
resources->total_size = size;
resources->nelem = nelem;
resources->rsp_q_base = buf + size - nelem * get_dbc_rsp_elem_size();
return 0;
free_dma:
dma_free_coherent(&qdev->pdev->dev, size, buf, dma_addr);
return ret;
}
static int encode_deactivate(struct qaic_device *qdev, void *trans,
u32 *user_len, struct qaic_user *usr)
{
struct qaic_manage_trans_deactivate *in_trans = trans;
if (in_trans->dbc_id >= qdev->num_dbc || in_trans->pad)
return -EINVAL;
*user_len += in_trans->hdr.len;
return disable_dbc(qdev, in_trans->dbc_id, usr);
}
static int encode_status(struct qaic_device *qdev, void *trans, struct wrapper_list *wrappers,
u32 *user_len)
{
struct qaic_manage_trans_status_to_dev *in_trans = trans;
struct wire_trans_status_to_dev *out_trans;
struct wrapper_msg *trans_wrapper;
struct wrapper_msg *wrapper;
struct wire_msg *msg;
u32 msg_hdr_len;
wrapper = list_first_entry(&wrappers->list, struct wrapper_msg, list);
msg = &wrapper->msg;
msg_hdr_len = le32_to_cpu(msg->hdr.len);
if (size_add(msg_hdr_len, in_trans->hdr.len) > QAIC_MANAGE_MAX_MSG_LENGTH)
return -ENOSPC;
trans_wrapper = add_wrapper(wrappers, sizeof(*trans_wrapper));
if (!trans_wrapper)
return -ENOMEM;
trans_wrapper->len = sizeof(*out_trans);
out_trans = (struct wire_trans_status_to_dev *)&trans_wrapper->trans;
out_trans->hdr.type = cpu_to_le32(QAIC_TRANS_STATUS_TO_DEV);
out_trans->hdr.len = cpu_to_le32(in_trans->hdr.len);
msg->hdr.len = cpu_to_le32(msg_hdr_len + in_trans->hdr.len);
msg->hdr.count = incr_le32(msg->hdr.count);
*user_len += in_trans->hdr.len;
return 0;
}
static int encode_message(struct qaic_device *qdev, struct manage_msg *user_msg,
struct wrapper_list *wrappers, struct ioctl_resources *resources,
struct qaic_user *usr)
{
struct qaic_manage_trans_hdr *trans_hdr;
struct wrapper_msg *wrapper;
struct wire_msg *msg;
u32 user_len = 0;
int ret;
int i;
if (!user_msg->count ||
user_msg->len < sizeof(*trans_hdr)) {
ret = -EINVAL;
goto out;
}
wrapper = list_first_entry(&wrappers->list, struct wrapper_msg, list);
msg = &wrapper->msg;
msg->hdr.len = cpu_to_le32(sizeof(msg->hdr));
if (resources->dma_chunk_id) {
ret = encode_dma(qdev, resources->trans_hdr, wrappers, &user_len, resources, usr);
msg->hdr.count = cpu_to_le32(1);
goto out;
}
for (i = 0; i < user_msg->count; ++i) {
if (user_len > user_msg->len - sizeof(*trans_hdr)) {
ret = -EINVAL;
break;
}
trans_hdr = (struct qaic_manage_trans_hdr *)(user_msg->data + user_len);
if (trans_hdr->len < sizeof(trans_hdr) ||
size_add(user_len, trans_hdr->len) > user_msg->len) {
ret = -EINVAL;
break;
}
switch (trans_hdr->type) {
case QAIC_TRANS_PASSTHROUGH_FROM_USR:
ret = encode_passthrough(qdev, trans_hdr, wrappers, &user_len);
break;
case QAIC_TRANS_DMA_XFER_FROM_USR:
ret = encode_dma(qdev, trans_hdr, wrappers, &user_len, resources, usr);
break;
case QAIC_TRANS_ACTIVATE_FROM_USR:
ret = encode_activate(qdev, trans_hdr, wrappers, &user_len, resources);
break;
case QAIC_TRANS_DEACTIVATE_FROM_USR:
ret = encode_deactivate(qdev, trans_hdr, &user_len, usr);
break;
case QAIC_TRANS_STATUS_FROM_USR:
ret = encode_status(qdev, trans_hdr, wrappers, &user_len);
break;
default:
ret = -EINVAL;
break;
}
if (ret)
break;
}
if (user_len != user_msg->len)
ret = -EINVAL;
out:
if (ret) {
free_dma_xfers(qdev, resources);
free_dbc_buf(qdev, resources);
return ret;
}
return 0;
}
static int decode_passthrough(struct qaic_device *qdev, void *trans, struct manage_msg *user_msg,
u32 *msg_len)
{
struct qaic_manage_trans_passthrough *out_trans;
struct wire_trans_passthrough *in_trans = trans;
u32 len;
out_trans = (void *)user_msg->data + user_msg->len;
len = le32_to_cpu(in_trans->hdr.len);
if (len % 8 != 0)
return -EINVAL;
if (user_msg->len + len > QAIC_MANAGE_MAX_MSG_LENGTH)
return -ENOSPC;
memcpy(out_trans->data, in_trans->data, len - sizeof(in_trans->hdr));
user_msg->len += len;
*msg_len += len;
out_trans->hdr.type = le32_to_cpu(in_trans->hdr.type);
out_trans->hdr.len = len;
return 0;
}
static int decode_activate(struct qaic_device *qdev, void *trans, struct manage_msg *user_msg,
u32 *msg_len, struct ioctl_resources *resources, struct qaic_user *usr)
{
struct qaic_manage_trans_activate_from_dev *out_trans;
struct wire_trans_activate_from_dev *in_trans = trans;
u32 len;
out_trans = (void *)user_msg->data + user_msg->len;
len = le32_to_cpu(in_trans->hdr.len);
if (user_msg->len + len > QAIC_MANAGE_MAX_MSG_LENGTH)
return -ENOSPC;
user_msg->len += len;
*msg_len += len;
out_trans->hdr.type = le32_to_cpu(in_trans->hdr.type);
out_trans->hdr.len = len;
out_trans->status = le32_to_cpu(in_trans->status);
out_trans->dbc_id = le32_to_cpu(in_trans->dbc_id);
out_trans->options = le64_to_cpu(in_trans->options);
if (!resources->buf)
/* how did we get an activate response without a request? */
return -EINVAL;
if (out_trans->dbc_id >= qdev->num_dbc)
/*
* The device assigned an invalid resource, which should never
* happen. Return an error so the user can try to recover.
*/
return -ENODEV;
if (out_trans->status)
/*
* Allocating resources failed on device side. This is not an
* expected behaviour, user is expected to handle this situation.
*/
return -ECANCELED;
resources->status = out_trans->status;
resources->dbc_id = out_trans->dbc_id;
save_dbc_buf(qdev, resources, usr);
return 0;
}
static int decode_deactivate(struct qaic_device *qdev, void *trans, u32 *msg_len,
struct qaic_user *usr)
{
struct wire_trans_deactivate_from_dev *in_trans = trans;
u32 dbc_id = le32_to_cpu(in_trans->dbc_id);
u32 status = le32_to_cpu(in_trans->status);
if (dbc_id >= qdev->num_dbc)
/*
* The device assigned an invalid resource, which should never
* happen. Inject an error so the user can try to recover.
*/
return -ENODEV;
if (status) {
/*
* Releasing resources failed on the device side, which puts
* us in a bind since they may still be in use, so enable the
* dbc. User is expected to retry deactivation.
*/
enable_dbc(qdev, dbc_id, usr);
return -ECANCELED;
}
release_dbc(qdev, dbc_id);
*msg_len += sizeof(*in_trans);
return 0;
}
static int decode_status(struct qaic_device *qdev, void *trans, struct manage_msg *user_msg,
u32 *user_len, struct wire_msg *msg)
{
struct qaic_manage_trans_status_from_dev *out_trans;
struct wire_trans_status_from_dev *in_trans = trans;
u32 len;
out_trans = (void *)user_msg->data + user_msg->len;
len = le32_to_cpu(in_trans->hdr.len);
if (user_msg->len + len > QAIC_MANAGE_MAX_MSG_LENGTH)
return -ENOSPC;
out_trans->hdr.type = QAIC_TRANS_STATUS_FROM_DEV;
out_trans->hdr.len = len;
out_trans->major = le16_to_cpu(in_trans->major);
out_trans->minor = le16_to_cpu(in_trans->minor);
out_trans->status_flags = le64_to_cpu(in_trans->status_flags);
out_trans->status = le32_to_cpu(in_trans->status);
*user_len += le32_to_cpu(in_trans->hdr.len);
user_msg->len += len;
if (out_trans->status)
return -ECANCELED;
if (out_trans->status_flags & BIT(0) && !valid_crc(msg))
return -EPIPE;
return 0;
}
static int decode_message(struct qaic_device *qdev, struct manage_msg *user_msg,
struct wire_msg *msg, struct ioctl_resources *resources,
struct qaic_user *usr)
{
u32 msg_hdr_len = le32_to_cpu(msg->hdr.len);
struct wire_trans_hdr *trans_hdr;
u32 msg_len = 0;
int ret;
int i;
if (msg_hdr_len < sizeof(*trans_hdr) ||
msg_hdr_len > QAIC_MANAGE_MAX_MSG_LENGTH)
return -EINVAL;
user_msg->len = 0;
user_msg->count = le32_to_cpu(msg->hdr.count);
for (i = 0; i < user_msg->count; ++i) {
u32 hdr_len;
if (msg_len > msg_hdr_len - sizeof(*trans_hdr))
return -EINVAL;
trans_hdr = (struct wire_trans_hdr *)(msg->data + msg_len);
hdr_len = le32_to_cpu(trans_hdr->len);
if (hdr_len < sizeof(*trans_hdr) ||
size_add(msg_len, hdr_len) > msg_hdr_len)
return -EINVAL;
switch (le32_to_cpu(trans_hdr->type)) {
case QAIC_TRANS_PASSTHROUGH_FROM_DEV:
ret = decode_passthrough(qdev, trans_hdr, user_msg, &msg_len);
break;
case QAIC_TRANS_ACTIVATE_FROM_DEV:
ret = decode_activate(qdev, trans_hdr, user_msg, &msg_len, resources, usr);
break;
case QAIC_TRANS_DEACTIVATE_FROM_DEV:
ret = decode_deactivate(qdev, trans_hdr, &msg_len, usr);
break;
case QAIC_TRANS_STATUS_FROM_DEV:
ret = decode_status(qdev, trans_hdr, user_msg, &msg_len, msg);
break;
default:
return -EINVAL;
}
if (ret)
return ret;
}
if (msg_len != (msg_hdr_len - sizeof(msg->hdr)))
return -EINVAL;
return 0;
}
static void *msg_xfer(struct qaic_device *qdev, struct wrapper_list *wrappers, u32 seq_num,
bool ignore_signal)
{
struct xfer_queue_elem elem;
struct wire_msg *out_buf;
struct wrapper_msg *w;
long ret = -EAGAIN;
int xfer_count = 0;
int retry_count;
/* Allow QAIC_BOOT state since we need to check control protocol version */
if (qdev->dev_state == QAIC_OFFLINE) {
mutex_unlock(&qdev->cntl_mutex);
return ERR_PTR(-ENODEV);
}
/* Attempt to avoid a partial commit of a message */
list_for_each_entry(w, &wrappers->list, list)
xfer_count++;
for (retry_count = 0; retry_count < QAIC_MHI_RETRY_MAX; retry_count++) {
if (xfer_count <= mhi_get_free_desc_count(qdev->cntl_ch, DMA_TO_DEVICE)) {
ret = 0;
break;
}
msleep_interruptible(QAIC_MHI_RETRY_WAIT_MS);
if (signal_pending(current))
break;
}
if (ret) {
mutex_unlock(&qdev->cntl_mutex);
return ERR_PTR(ret);
}
elem.seq_num = seq_num;
elem.buf = NULL;
init_completion(&elem.xfer_done);
if (likely(!qdev->cntl_lost_buf)) {
/*
* The max size of request to device is QAIC_MANAGE_EXT_MSG_LENGTH.
* The max size of response from device is QAIC_MANAGE_MAX_MSG_LENGTH.
*/
out_buf = kmalloc(QAIC_MANAGE_MAX_MSG_LENGTH, GFP_KERNEL);
if (!out_buf) {
mutex_unlock(&qdev->cntl_mutex);
return ERR_PTR(-ENOMEM);
}
ret = mhi_queue_buf(qdev->cntl_ch, DMA_FROM_DEVICE, out_buf,
QAIC_MANAGE_MAX_MSG_LENGTH, MHI_EOT);
if (ret) {
mutex_unlock(&qdev->cntl_mutex);
return ERR_PTR(ret);
}
} else {
/*
* we lost a buffer because we queued a recv buf, but then
* queuing the corresponding tx buf failed. To try to avoid
* a memory leak, lets reclaim it and use it for this
* transaction.
*/
qdev->cntl_lost_buf = false;
}
list_for_each_entry(w, &wrappers->list, list) {
kref_get(&w->ref_count);
retry_count = 0;
ret = mhi_queue_buf(qdev->cntl_ch, DMA_TO_DEVICE, &w->msg, w->len,
list_is_last(&w->list, &wrappers->list) ? MHI_EOT : MHI_CHAIN);
if (ret) {
qdev->cntl_lost_buf = true;
kref_put(&w->ref_count, free_wrapper);
mutex_unlock(&qdev->cntl_mutex);
return ERR_PTR(ret);
}
}
list_add_tail(&elem.list, &qdev->cntl_xfer_list);
mutex_unlock(&qdev->cntl_mutex);
if (ignore_signal)
ret = wait_for_completion_timeout(&elem.xfer_done, control_resp_timeout_s * HZ);
else
ret = wait_for_completion_interruptible_timeout(&elem.xfer_done,
control_resp_timeout_s * HZ);
/*
* not using _interruptable because we have to cleanup or we'll
* likely cause memory corruption
*/
mutex_lock(&qdev->cntl_mutex);
if (!list_empty(&elem.list))
list_del(&elem.list);
if (!ret && !elem.buf)
ret = -ETIMEDOUT;
else if (ret > 0 && !elem.buf)
ret = -EIO;
mutex_unlock(&qdev->cntl_mutex);
if (ret < 0) {
kfree(elem.buf);
return ERR_PTR(ret);
} else if (!qdev->valid_crc(elem.buf)) {
kfree(elem.buf);
return ERR_PTR(-EPIPE);
}
return elem.buf;
}
/* Add a transaction to abort the outstanding DMA continuation */
static int abort_dma_cont(struct qaic_device *qdev, struct wrapper_list *wrappers, u32 dma_chunk_id)
{
struct wire_trans_dma_xfer *out_trans;
u32 size = sizeof(*out_trans);
struct wrapper_msg *wrapper;
struct wrapper_msg *w;
struct wire_msg *msg;
wrapper = list_first_entry(&wrappers->list, struct wrapper_msg, list);
msg = &wrapper->msg;
/* Remove all but the first wrapper which has the msg header */
list_for_each_entry_safe(wrapper, w, &wrappers->list, list)
if (!list_is_first(&wrapper->list, &wrappers->list))
kref_put(&wrapper->ref_count, free_wrapper);
wrapper = add_wrapper(wrappers, sizeof(*wrapper));
if (!wrapper)
return -ENOMEM;
out_trans = (struct wire_trans_dma_xfer *)&wrapper->trans;
out_trans->hdr.type = cpu_to_le32(QAIC_TRANS_DMA_XFER_TO_DEV);
out_trans->hdr.len = cpu_to_le32(size);
out_trans->tag = cpu_to_le32(0);
out_trans->count = cpu_to_le32(0);
out_trans->dma_chunk_id = cpu_to_le32(dma_chunk_id);
msg->hdr.len = cpu_to_le32(size + sizeof(*msg));
msg->hdr.count = cpu_to_le32(1);
wrapper->len = size;
return 0;
}
static struct wrapper_list *alloc_wrapper_list(void)
{
struct wrapper_list *wrappers;
wrappers = kmalloc(sizeof(*wrappers), GFP_KERNEL);
if (!wrappers)
return NULL;
INIT_LIST_HEAD(&wrappers->list);
spin_lock_init(&wrappers->lock);
return wrappers;
}
static int qaic_manage_msg_xfer(struct qaic_device *qdev, struct qaic_user *usr,
struct manage_msg *user_msg, struct ioctl_resources *resources,
struct wire_msg **rsp)
{
struct wrapper_list *wrappers;
struct wrapper_msg *wrapper;
struct wrapper_msg *w;
bool all_done = false;
struct wire_msg *msg;
int ret;
wrappers = alloc_wrapper_list();
if (!wrappers)
return -ENOMEM;
wrapper = add_wrapper(wrappers, sizeof(*wrapper));
if (!wrapper) {
kfree(wrappers);
return -ENOMEM;
}
msg = &wrapper->msg;
wrapper->len = sizeof(*msg);
ret = encode_message(qdev, user_msg, wrappers, resources, usr);
if (ret && resources->dma_chunk_id)
ret = abort_dma_cont(qdev, wrappers, resources->dma_chunk_id);
if (ret)
goto encode_failed;
ret = mutex_lock_interruptible(&qdev->cntl_mutex);
if (ret)
goto lock_failed;
msg->hdr.magic_number = MANAGE_MAGIC_NUMBER;
msg->hdr.sequence_number = cpu_to_le32(qdev->next_seq_num++);
if (usr) {
msg->hdr.handle = cpu_to_le32(usr->handle);
msg->hdr.partition_id = cpu_to_le32(usr->qddev->partition_id);
} else {
msg->hdr.handle = 0;
msg->hdr.partition_id = cpu_to_le32(QAIC_NO_PARTITION);
}
msg->hdr.padding = cpu_to_le32(0);
msg->hdr.crc32 = cpu_to_le32(qdev->gen_crc(wrappers));
/* msg_xfer releases the mutex */
*rsp = msg_xfer(qdev, wrappers, qdev->next_seq_num - 1, false);
if (IS_ERR(*rsp))
ret = PTR_ERR(*rsp);
lock_failed:
free_dma_xfers(qdev, resources);
encode_failed:
spin_lock(&wrappers->lock);
list_for_each_entry_safe(wrapper, w, &wrappers->list, list)
kref_put(&wrapper->ref_count, free_wrapper);
all_done = list_empty(&wrappers->list);
spin_unlock(&wrappers->lock);
if (all_done)
kfree(wrappers);
return ret;
}
static int qaic_manage(struct qaic_device *qdev, struct qaic_user *usr, struct manage_msg *user_msg)
{
struct wire_trans_dma_xfer_cont *dma_cont = NULL;
struct ioctl_resources resources;
struct wire_msg *rsp = NULL;
int ret;
memset(&resources, 0, sizeof(struct ioctl_resources));
INIT_LIST_HEAD(&resources.dma_xfers);
if (user_msg->len > QAIC_MANAGE_MAX_MSG_LENGTH ||
user_msg->count > QAIC_MANAGE_MAX_MSG_LENGTH / sizeof(struct qaic_manage_trans_hdr))
return -EINVAL;
dma_xfer_continue:
ret = qaic_manage_msg_xfer(qdev, usr, user_msg, &resources, &rsp);
if (ret)
return ret;
/* dma_cont should be the only transaction if present */
if (le32_to_cpu(rsp->hdr.count) == 1) {
dma_cont = (struct wire_trans_dma_xfer_cont *)rsp->data;
if (le32_to_cpu(dma_cont->hdr.type) != QAIC_TRANS_DMA_XFER_CONT)
dma_cont = NULL;
}
if (dma_cont) {
if (le32_to_cpu(dma_cont->dma_chunk_id) == resources.dma_chunk_id &&
le64_to_cpu(dma_cont->xferred_size) == resources.xferred_dma_size) {
kfree(rsp);
goto dma_xfer_continue;
}
ret = -EINVAL;
goto dma_cont_failed;
}
ret = decode_message(qdev, user_msg, rsp, &resources, usr);
dma_cont_failed:
free_dbc_buf(qdev, &resources);
kfree(rsp);
return ret;
}
int qaic_manage_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
{
struct qaic_manage_msg *user_msg = data;
struct qaic_device *qdev;
struct manage_msg *msg;
struct qaic_user *usr;
u8 __user *user_data;
int qdev_rcu_id;
int usr_rcu_id;
int ret;
if (user_msg->len > QAIC_MANAGE_MAX_MSG_LENGTH)
return -EINVAL;
usr = file_priv->driver_priv;
usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
if (!usr->qddev) {
srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
return -ENODEV;
}
qdev = usr->qddev->qdev;
qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
if (qdev->dev_state != QAIC_ONLINE) {
srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
return -ENODEV;
}
msg = kzalloc(QAIC_MANAGE_MAX_MSG_LENGTH + sizeof(*msg), GFP_KERNEL);
if (!msg) {
ret = -ENOMEM;
goto out;
}
msg->len = user_msg->len;
msg->count = user_msg->count;
user_data = u64_to_user_ptr(user_msg->data);
if (copy_from_user(msg->data, user_data, user_msg->len)) {
ret = -EFAULT;
goto free_msg;
}
ret = qaic_manage(qdev, usr, msg);
/*
* If the qaic_manage() is successful then we copy the message onto
* userspace memory but we have an exception for -ECANCELED.
* For -ECANCELED, it means that device has NACKed the message with a
* status error code which userspace would like to know.
*/
if (ret == -ECANCELED || !ret) {
if (copy_to_user(user_data, msg->data, msg->len)) {
ret = -EFAULT;
} else {
user_msg->len = msg->len;
user_msg->count = msg->count;
}
}
free_msg:
kfree(msg);
out:
srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
return ret;
}
int get_cntl_version(struct qaic_device *qdev, struct qaic_user *usr, u16 *major, u16 *minor)
{
struct qaic_manage_trans_status_from_dev *status_result;
struct qaic_manage_trans_status_to_dev *status_query;
struct manage_msg *user_msg;
int ret;
user_msg = kmalloc(sizeof(*user_msg) + sizeof(*status_result), GFP_KERNEL);
if (!user_msg) {
ret = -ENOMEM;
goto out;
}
user_msg->len = sizeof(*status_query);
user_msg->count = 1;
status_query = (struct qaic_manage_trans_status_to_dev *)user_msg->data;
status_query->hdr.type = QAIC_TRANS_STATUS_FROM_USR;
status_query->hdr.len = sizeof(status_query->hdr);
ret = qaic_manage(qdev, usr, user_msg);
if (ret)
goto kfree_user_msg;
status_result = (struct qaic_manage_trans_status_from_dev *)user_msg->data;
*major = status_result->major;
*minor = status_result->minor;
if (status_result->status_flags & BIT(0)) { /* device is using CRC */
/* By default qdev->gen_crc is programmed to generate CRC */
qdev->valid_crc = valid_crc;
} else {
/* By default qdev->valid_crc is programmed to bypass CRC */
qdev->gen_crc = gen_crc_stub;
}
kfree_user_msg:
kfree(user_msg);
out:
return ret;
}
static void resp_worker(struct work_struct *work)
{
struct resp_work *resp = container_of(work, struct resp_work, work);
struct qaic_device *qdev = resp->qdev;
struct wire_msg *msg = resp->buf;
struct xfer_queue_elem *elem;
struct xfer_queue_elem *i;
bool found = false;
mutex_lock(&qdev->cntl_mutex);
list_for_each_entry_safe(elem, i, &qdev->cntl_xfer_list, list) {
if (elem->seq_num == le32_to_cpu(msg->hdr.sequence_number)) {
found = true;
list_del_init(&elem->list);
elem->buf = msg;
complete_all(&elem->xfer_done);
break;
}
}
mutex_unlock(&qdev->cntl_mutex);
if (!found)
/* request must have timed out, drop packet */
kfree(msg);
kfree(resp);
}
static void free_wrapper_from_list(struct wrapper_list *wrappers, struct wrapper_msg *wrapper)
{
bool all_done = false;
spin_lock(&wrappers->lock);
kref_put(&wrapper->ref_count, free_wrapper);
all_done = list_empty(&wrappers->list);
spin_unlock(&wrappers->lock);
if (all_done)
kfree(wrappers);
}
void qaic_mhi_ul_xfer_cb(struct mhi_device *mhi_dev, struct mhi_result *mhi_result)
{
struct wire_msg *msg = mhi_result->buf_addr;
struct wrapper_msg *wrapper = container_of(msg, struct wrapper_msg, msg);
free_wrapper_from_list(wrapper->head, wrapper);
}
void qaic_mhi_dl_xfer_cb(struct mhi_device *mhi_dev, struct mhi_result *mhi_result)
{
struct qaic_device *qdev = dev_get_drvdata(&mhi_dev->dev);
struct wire_msg *msg = mhi_result->buf_addr;
struct resp_work *resp;
if (mhi_result->transaction_status || msg->hdr.magic_number != MANAGE_MAGIC_NUMBER) {
kfree(msg);
return;
}
resp = kmalloc(sizeof(*resp), GFP_ATOMIC);
if (!resp) {
kfree(msg);
return;
}
INIT_WORK(&resp->work, resp_worker);
resp->qdev = qdev;
resp->buf = msg;
queue_work(qdev->cntl_wq, &resp->work);
}
int qaic_control_open(struct qaic_device *qdev)
{
if (!qdev->cntl_ch)
return -ENODEV;
qdev->cntl_lost_buf = false;
/*
* By default qaic should assume that device has CRC enabled.
* Qaic comes to know if device has CRC enabled or disabled during the
* device status transaction, which is the first transaction performed
* on control channel.
*
* So CRC validation of first device status transaction response is
* ignored (by calling valid_crc_stub) and is done later during decoding
* if device has CRC enabled.
* Now that qaic knows whether device has CRC enabled or not it acts
* accordingly.
*/
qdev->gen_crc = gen_crc;
qdev->valid_crc = valid_crc_stub;
return mhi_prepare_for_transfer(qdev->cntl_ch);
}
void qaic_control_close(struct qaic_device *qdev)
{
mhi_unprepare_from_transfer(qdev->cntl_ch);
}
void qaic_release_usr(struct qaic_device *qdev, struct qaic_user *usr)
{
struct wire_trans_terminate_to_dev *trans;
struct wrapper_list *wrappers;
struct wrapper_msg *wrapper;
struct wire_msg *msg;
struct wire_msg *rsp;
wrappers = alloc_wrapper_list();
if (!wrappers)
return;
wrapper = add_wrapper(wrappers, sizeof(*wrapper) + sizeof(*msg) + sizeof(*trans));
if (!wrapper)
return;
msg = &wrapper->msg;
trans = (struct wire_trans_terminate_to_dev *)msg->data;
trans->hdr.type = cpu_to_le32(QAIC_TRANS_TERMINATE_TO_DEV);
trans->hdr.len = cpu_to_le32(sizeof(*trans));
trans->handle = cpu_to_le32(usr->handle);
mutex_lock(&qdev->cntl_mutex);
wrapper->len = sizeof(msg->hdr) + sizeof(*trans);
msg->hdr.magic_number = MANAGE_MAGIC_NUMBER;
msg->hdr.sequence_number = cpu_to_le32(qdev->next_seq_num++);
msg->hdr.len = cpu_to_le32(wrapper->len);
msg->hdr.count = cpu_to_le32(1);
msg->hdr.handle = cpu_to_le32(usr->handle);
msg->hdr.padding = cpu_to_le32(0);
msg->hdr.crc32 = cpu_to_le32(qdev->gen_crc(wrappers));
/*
* msg_xfer releases the mutex
* We don't care about the return of msg_xfer since we will not do
* anything different based on what happens.
* We ignore pending signals since one will be set if the user is
* killed, and we need give the device a chance to cleanup, otherwise
* DMA may still be in progress when we return.
*/
rsp = msg_xfer(qdev, wrappers, qdev->next_seq_num - 1, true);
if (!IS_ERR(rsp))
kfree(rsp);
free_wrapper_from_list(wrappers, wrapper);
}
void wake_all_cntl(struct qaic_device *qdev)
{
struct xfer_queue_elem *elem;
struct xfer_queue_elem *i;
mutex_lock(&qdev->cntl_mutex);
list_for_each_entry_safe(elem, i, &qdev->cntl_xfer_list, list) {
list_del_init(&elem->list);
complete_all(&elem->xfer_done);
}
mutex_unlock(&qdev->cntl_mutex);
}