linux/net/hsr/hsr_framereg.c
Shigeru Yoshida ddbec99f58 hsr: Fix uninit-value access in hsr_get_node()
KMSAN reported the following uninit-value access issue [1]:

=====================================================
BUG: KMSAN: uninit-value in hsr_get_node+0xa2e/0xa40 net/hsr/hsr_framereg.c:246
 hsr_get_node+0xa2e/0xa40 net/hsr/hsr_framereg.c:246
 fill_frame_info net/hsr/hsr_forward.c:577 [inline]
 hsr_forward_skb+0xe12/0x30e0 net/hsr/hsr_forward.c:615
 hsr_dev_xmit+0x1a1/0x270 net/hsr/hsr_device.c:223
 __netdev_start_xmit include/linux/netdevice.h:4940 [inline]
 netdev_start_xmit include/linux/netdevice.h:4954 [inline]
 xmit_one net/core/dev.c:3548 [inline]
 dev_hard_start_xmit+0x247/0xa10 net/core/dev.c:3564
 __dev_queue_xmit+0x33b8/0x5130 net/core/dev.c:4349
 dev_queue_xmit include/linux/netdevice.h:3134 [inline]
 packet_xmit+0x9c/0x6b0 net/packet/af_packet.c:276
 packet_snd net/packet/af_packet.c:3087 [inline]
 packet_sendmsg+0x8b1d/0x9f30 net/packet/af_packet.c:3119
 sock_sendmsg_nosec net/socket.c:730 [inline]
 __sock_sendmsg net/socket.c:745 [inline]
 __sys_sendto+0x735/0xa10 net/socket.c:2191
 __do_sys_sendto net/socket.c:2203 [inline]
 __se_sys_sendto net/socket.c:2199 [inline]
 __x64_sys_sendto+0x125/0x1c0 net/socket.c:2199
 do_syscall_x64 arch/x86/entry/common.c:52 [inline]
 do_syscall_64+0x6d/0x140 arch/x86/entry/common.c:83
 entry_SYSCALL_64_after_hwframe+0x63/0x6b

Uninit was created at:
 slab_post_alloc_hook+0x129/0xa70 mm/slab.h:768
 slab_alloc_node mm/slub.c:3478 [inline]
 kmem_cache_alloc_node+0x5e9/0xb10 mm/slub.c:3523
 kmalloc_reserve+0x13d/0x4a0 net/core/skbuff.c:560
 __alloc_skb+0x318/0x740 net/core/skbuff.c:651
 alloc_skb include/linux/skbuff.h:1286 [inline]
 alloc_skb_with_frags+0xc8/0xbd0 net/core/skbuff.c:6334
 sock_alloc_send_pskb+0xa80/0xbf0 net/core/sock.c:2787
 packet_alloc_skb net/packet/af_packet.c:2936 [inline]
 packet_snd net/packet/af_packet.c:3030 [inline]
 packet_sendmsg+0x70e8/0x9f30 net/packet/af_packet.c:3119
 sock_sendmsg_nosec net/socket.c:730 [inline]
 __sock_sendmsg net/socket.c:745 [inline]
 __sys_sendto+0x735/0xa10 net/socket.c:2191
 __do_sys_sendto net/socket.c:2203 [inline]
 __se_sys_sendto net/socket.c:2199 [inline]
 __x64_sys_sendto+0x125/0x1c0 net/socket.c:2199
 do_syscall_x64 arch/x86/entry/common.c:52 [inline]
 do_syscall_64+0x6d/0x140 arch/x86/entry/common.c:83
 entry_SYSCALL_64_after_hwframe+0x63/0x6b

CPU: 1 PID: 5033 Comm: syz-executor334 Not tainted 6.7.0-syzkaller-00562-g9f8413c4a66f #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 11/17/2023
=====================================================

If the packet type ID field in the Ethernet header is either ETH_P_PRP or
ETH_P_HSR, but it is not followed by an HSR tag, hsr_get_skb_sequence_nr()
reads an invalid value as a sequence number. This causes the above issue.

This patch fixes the issue by returning NULL if the Ethernet header is not
followed by an HSR tag.

Fixes: f266a683a4 ("net/hsr: Better frame dispatch")
Reported-and-tested-by: syzbot+2ef3a8ce8e91b5a50098@syzkaller.appspotmail.com
Closes: https://syzkaller.appspot.com/bug?extid=2ef3a8ce8e91b5a50098 [1]
Signed-off-by: Shigeru Yoshida <syoshida@redhat.com>
Link: https://lore.kernel.org/r/20240312152719.724530-1-syoshida@redhat.com
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
2024-03-14 13:02:51 +01:00

638 lines
17 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Copyright 2011-2014 Autronica Fire and Security AS
*
* Author(s):
* 2011-2014 Arvid Brodin, arvid.brodin@alten.se
*
* The HSR spec says never to forward the same frame twice on the same
* interface. A frame is identified by its source MAC address and its HSR
* sequence number. This code keeps track of senders and their sequence numbers
* to allow filtering of duplicate frames, and to detect HSR ring errors.
* Same code handles filtering of duplicates for PRP as well.
*/
#include <linux/if_ether.h>
#include <linux/etherdevice.h>
#include <linux/slab.h>
#include <linux/rculist.h>
#include "hsr_main.h"
#include "hsr_framereg.h"
#include "hsr_netlink.h"
/* seq_nr_after(a, b) - return true if a is after (higher in sequence than) b,
* false otherwise.
*/
static bool seq_nr_after(u16 a, u16 b)
{
/* Remove inconsistency where
* seq_nr_after(a, b) == seq_nr_before(a, b)
*/
if ((int)b - a == 32768)
return false;
return (((s16)(b - a)) < 0);
}
#define seq_nr_before(a, b) seq_nr_after((b), (a))
#define seq_nr_before_or_eq(a, b) (!seq_nr_after((a), (b)))
bool hsr_addr_is_self(struct hsr_priv *hsr, unsigned char *addr)
{
struct hsr_self_node *sn;
bool ret = false;
rcu_read_lock();
sn = rcu_dereference(hsr->self_node);
if (!sn) {
WARN_ONCE(1, "HSR: No self node\n");
goto out;
}
if (ether_addr_equal(addr, sn->macaddress_A) ||
ether_addr_equal(addr, sn->macaddress_B))
ret = true;
out:
rcu_read_unlock();
return ret;
}
/* Search for mac entry. Caller must hold rcu read lock.
*/
static struct hsr_node *find_node_by_addr_A(struct list_head *node_db,
const unsigned char addr[ETH_ALEN])
{
struct hsr_node *node;
list_for_each_entry_rcu(node, node_db, mac_list) {
if (ether_addr_equal(node->macaddress_A, addr))
return node;
}
return NULL;
}
/* Helper for device init; the self_node is used in hsr_rcv() to recognize
* frames from self that's been looped over the HSR ring.
*/
int hsr_create_self_node(struct hsr_priv *hsr,
const unsigned char addr_a[ETH_ALEN],
const unsigned char addr_b[ETH_ALEN])
{
struct hsr_self_node *sn, *old;
sn = kmalloc(sizeof(*sn), GFP_KERNEL);
if (!sn)
return -ENOMEM;
ether_addr_copy(sn->macaddress_A, addr_a);
ether_addr_copy(sn->macaddress_B, addr_b);
spin_lock_bh(&hsr->list_lock);
old = rcu_replace_pointer(hsr->self_node, sn,
lockdep_is_held(&hsr->list_lock));
spin_unlock_bh(&hsr->list_lock);
if (old)
kfree_rcu(old, rcu_head);
return 0;
}
void hsr_del_self_node(struct hsr_priv *hsr)
{
struct hsr_self_node *old;
spin_lock_bh(&hsr->list_lock);
old = rcu_replace_pointer(hsr->self_node, NULL,
lockdep_is_held(&hsr->list_lock));
spin_unlock_bh(&hsr->list_lock);
if (old)
kfree_rcu(old, rcu_head);
}
void hsr_del_nodes(struct list_head *node_db)
{
struct hsr_node *node;
struct hsr_node *tmp;
list_for_each_entry_safe(node, tmp, node_db, mac_list)
kfree(node);
}
void prp_handle_san_frame(bool san, enum hsr_port_type port,
struct hsr_node *node)
{
/* Mark if the SAN node is over LAN_A or LAN_B */
if (port == HSR_PT_SLAVE_A) {
node->san_a = true;
return;
}
if (port == HSR_PT_SLAVE_B)
node->san_b = true;
}
/* Allocate an hsr_node and add it to node_db. 'addr' is the node's address_A;
* seq_out is used to initialize filtering of outgoing duplicate frames
* originating from the newly added node.
*/
static struct hsr_node *hsr_add_node(struct hsr_priv *hsr,
struct list_head *node_db,
unsigned char addr[],
u16 seq_out, bool san,
enum hsr_port_type rx_port)
{
struct hsr_node *new_node, *node;
unsigned long now;
int i;
new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC);
if (!new_node)
return NULL;
ether_addr_copy(new_node->macaddress_A, addr);
spin_lock_init(&new_node->seq_out_lock);
/* We are only interested in time diffs here, so use current jiffies
* as initialization. (0 could trigger an spurious ring error warning).
*/
now = jiffies;
for (i = 0; i < HSR_PT_PORTS; i++) {
new_node->time_in[i] = now;
new_node->time_out[i] = now;
}
for (i = 0; i < HSR_PT_PORTS; i++)
new_node->seq_out[i] = seq_out;
if (san && hsr->proto_ops->handle_san_frame)
hsr->proto_ops->handle_san_frame(san, rx_port, new_node);
spin_lock_bh(&hsr->list_lock);
list_for_each_entry_rcu(node, node_db, mac_list,
lockdep_is_held(&hsr->list_lock)) {
if (ether_addr_equal(node->macaddress_A, addr))
goto out;
if (ether_addr_equal(node->macaddress_B, addr))
goto out;
}
list_add_tail_rcu(&new_node->mac_list, node_db);
spin_unlock_bh(&hsr->list_lock);
return new_node;
out:
spin_unlock_bh(&hsr->list_lock);
kfree(new_node);
return node;
}
void prp_update_san_info(struct hsr_node *node, bool is_sup)
{
if (!is_sup)
return;
node->san_a = false;
node->san_b = false;
}
/* Get the hsr_node from which 'skb' was sent.
*/
struct hsr_node *hsr_get_node(struct hsr_port *port, struct list_head *node_db,
struct sk_buff *skb, bool is_sup,
enum hsr_port_type rx_port)
{
struct hsr_priv *hsr = port->hsr;
struct hsr_node *node;
struct ethhdr *ethhdr;
struct prp_rct *rct;
bool san = false;
u16 seq_out;
if (!skb_mac_header_was_set(skb))
return NULL;
ethhdr = (struct ethhdr *)skb_mac_header(skb);
list_for_each_entry_rcu(node, node_db, mac_list) {
if (ether_addr_equal(node->macaddress_A, ethhdr->h_source)) {
if (hsr->proto_ops->update_san_info)
hsr->proto_ops->update_san_info(node, is_sup);
return node;
}
if (ether_addr_equal(node->macaddress_B, ethhdr->h_source)) {
if (hsr->proto_ops->update_san_info)
hsr->proto_ops->update_san_info(node, is_sup);
return node;
}
}
/* Everyone may create a node entry, connected node to a HSR/PRP
* device.
*/
if (ethhdr->h_proto == htons(ETH_P_PRP) ||
ethhdr->h_proto == htons(ETH_P_HSR)) {
/* Check if skb contains hsr_ethhdr */
if (skb->mac_len < sizeof(struct hsr_ethhdr))
return NULL;
/* Use the existing sequence_nr from the tag as starting point
* for filtering duplicate frames.
*/
seq_out = hsr_get_skb_sequence_nr(skb) - 1;
} else {
rct = skb_get_PRP_rct(skb);
if (rct && prp_check_lsdu_size(skb, rct, is_sup)) {
seq_out = prp_get_skb_sequence_nr(rct);
} else {
if (rx_port != HSR_PT_MASTER)
san = true;
seq_out = HSR_SEQNR_START;
}
}
return hsr_add_node(hsr, node_db, ethhdr->h_source, seq_out,
san, rx_port);
}
/* Use the Supervision frame's info about an eventual macaddress_B for merging
* nodes that has previously had their macaddress_B registered as a separate
* node.
*/
void hsr_handle_sup_frame(struct hsr_frame_info *frame)
{
struct hsr_node *node_curr = frame->node_src;
struct hsr_port *port_rcv = frame->port_rcv;
struct hsr_priv *hsr = port_rcv->hsr;
struct hsr_sup_payload *hsr_sp;
struct hsr_sup_tlv *hsr_sup_tlv;
struct hsr_node *node_real;
struct sk_buff *skb = NULL;
struct list_head *node_db;
struct ethhdr *ethhdr;
int i;
unsigned int pull_size = 0;
unsigned int total_pull_size = 0;
/* Here either frame->skb_hsr or frame->skb_prp should be
* valid as supervision frame always will have protocol
* header info.
*/
if (frame->skb_hsr)
skb = frame->skb_hsr;
else if (frame->skb_prp)
skb = frame->skb_prp;
else if (frame->skb_std)
skb = frame->skb_std;
if (!skb)
return;
/* Leave the ethernet header. */
pull_size = sizeof(struct ethhdr);
skb_pull(skb, pull_size);
total_pull_size += pull_size;
ethhdr = (struct ethhdr *)skb_mac_header(skb);
/* And leave the HSR tag. */
if (ethhdr->h_proto == htons(ETH_P_HSR)) {
pull_size = sizeof(struct hsr_tag);
skb_pull(skb, pull_size);
total_pull_size += pull_size;
}
/* And leave the HSR sup tag. */
pull_size = sizeof(struct hsr_sup_tag);
skb_pull(skb, pull_size);
total_pull_size += pull_size;
/* get HSR sup payload */
hsr_sp = (struct hsr_sup_payload *)skb->data;
/* Merge node_curr (registered on macaddress_B) into node_real */
node_db = &port_rcv->hsr->node_db;
node_real = find_node_by_addr_A(node_db, hsr_sp->macaddress_A);
if (!node_real)
/* No frame received from AddrA of this node yet */
node_real = hsr_add_node(hsr, node_db, hsr_sp->macaddress_A,
HSR_SEQNR_START - 1, true,
port_rcv->type);
if (!node_real)
goto done; /* No mem */
if (node_real == node_curr)
/* Node has already been merged */
goto done;
/* Leave the first HSR sup payload. */
pull_size = sizeof(struct hsr_sup_payload);
skb_pull(skb, pull_size);
total_pull_size += pull_size;
/* Get second supervision tlv */
hsr_sup_tlv = (struct hsr_sup_tlv *)skb->data;
/* And check if it is a redbox mac TLV */
if (hsr_sup_tlv->HSR_TLV_type == PRP_TLV_REDBOX_MAC) {
/* We could stop here after pushing hsr_sup_payload,
* or proceed and allow macaddress_B and for redboxes.
*/
/* Sanity check length */
if (hsr_sup_tlv->HSR_TLV_length != 6)
goto done;
/* Leave the second HSR sup tlv. */
pull_size = sizeof(struct hsr_sup_tlv);
skb_pull(skb, pull_size);
total_pull_size += pull_size;
/* Get redbox mac address. */
hsr_sp = (struct hsr_sup_payload *)skb->data;
/* Check if redbox mac and node mac are equal. */
if (!ether_addr_equal(node_real->macaddress_A, hsr_sp->macaddress_A)) {
/* This is a redbox supervision frame for a VDAN! */
goto done;
}
}
ether_addr_copy(node_real->macaddress_B, ethhdr->h_source);
spin_lock_bh(&node_real->seq_out_lock);
for (i = 0; i < HSR_PT_PORTS; i++) {
if (!node_curr->time_in_stale[i] &&
time_after(node_curr->time_in[i], node_real->time_in[i])) {
node_real->time_in[i] = node_curr->time_in[i];
node_real->time_in_stale[i] =
node_curr->time_in_stale[i];
}
if (seq_nr_after(node_curr->seq_out[i], node_real->seq_out[i]))
node_real->seq_out[i] = node_curr->seq_out[i];
}
spin_unlock_bh(&node_real->seq_out_lock);
node_real->addr_B_port = port_rcv->type;
spin_lock_bh(&hsr->list_lock);
if (!node_curr->removed) {
list_del_rcu(&node_curr->mac_list);
node_curr->removed = true;
kfree_rcu(node_curr, rcu_head);
}
spin_unlock_bh(&hsr->list_lock);
done:
/* Push back here */
skb_push(skb, total_pull_size);
}
/* 'skb' is a frame meant for this host, that is to be passed to upper layers.
*
* If the frame was sent by a node's B interface, replace the source
* address with that node's "official" address (macaddress_A) so that upper
* layers recognize where it came from.
*/
void hsr_addr_subst_source(struct hsr_node *node, struct sk_buff *skb)
{
if (!skb_mac_header_was_set(skb)) {
WARN_ONCE(1, "%s: Mac header not set\n", __func__);
return;
}
memcpy(&eth_hdr(skb)->h_source, node->macaddress_A, ETH_ALEN);
}
/* 'skb' is a frame meant for another host.
* 'port' is the outgoing interface
*
* Substitute the target (dest) MAC address if necessary, so the it matches the
* recipient interface MAC address, regardless of whether that is the
* recipient's A or B interface.
* This is needed to keep the packets flowing through switches that learn on
* which "side" the different interfaces are.
*/
void hsr_addr_subst_dest(struct hsr_node *node_src, struct sk_buff *skb,
struct hsr_port *port)
{
struct hsr_node *node_dst;
if (!skb_mac_header_was_set(skb)) {
WARN_ONCE(1, "%s: Mac header not set\n", __func__);
return;
}
if (!is_unicast_ether_addr(eth_hdr(skb)->h_dest))
return;
node_dst = find_node_by_addr_A(&port->hsr->node_db,
eth_hdr(skb)->h_dest);
if (!node_dst) {
if (port->hsr->prot_version != PRP_V1 && net_ratelimit())
netdev_err(skb->dev, "%s: Unknown node\n", __func__);
return;
}
if (port->type != node_dst->addr_B_port)
return;
if (is_valid_ether_addr(node_dst->macaddress_B))
ether_addr_copy(eth_hdr(skb)->h_dest, node_dst->macaddress_B);
}
void hsr_register_frame_in(struct hsr_node *node, struct hsr_port *port,
u16 sequence_nr)
{
/* Don't register incoming frames without a valid sequence number. This
* ensures entries of restarted nodes gets pruned so that they can
* re-register and resume communications.
*/
if (!(port->dev->features & NETIF_F_HW_HSR_TAG_RM) &&
seq_nr_before(sequence_nr, node->seq_out[port->type]))
return;
node->time_in[port->type] = jiffies;
node->time_in_stale[port->type] = false;
}
/* 'skb' is a HSR Ethernet frame (with a HSR tag inserted), with a valid
* ethhdr->h_source address and skb->mac_header set.
*
* Return:
* 1 if frame can be shown to have been sent recently on this interface,
* 0 otherwise, or
* negative error code on error
*/
int hsr_register_frame_out(struct hsr_port *port, struct hsr_node *node,
u16 sequence_nr)
{
spin_lock_bh(&node->seq_out_lock);
if (seq_nr_before_or_eq(sequence_nr, node->seq_out[port->type]) &&
time_is_after_jiffies(node->time_out[port->type] +
msecs_to_jiffies(HSR_ENTRY_FORGET_TIME))) {
spin_unlock_bh(&node->seq_out_lock);
return 1;
}
node->time_out[port->type] = jiffies;
node->seq_out[port->type] = sequence_nr;
spin_unlock_bh(&node->seq_out_lock);
return 0;
}
static struct hsr_port *get_late_port(struct hsr_priv *hsr,
struct hsr_node *node)
{
if (node->time_in_stale[HSR_PT_SLAVE_A])
return hsr_port_get_hsr(hsr, HSR_PT_SLAVE_A);
if (node->time_in_stale[HSR_PT_SLAVE_B])
return hsr_port_get_hsr(hsr, HSR_PT_SLAVE_B);
if (time_after(node->time_in[HSR_PT_SLAVE_B],
node->time_in[HSR_PT_SLAVE_A] +
msecs_to_jiffies(MAX_SLAVE_DIFF)))
return hsr_port_get_hsr(hsr, HSR_PT_SLAVE_A);
if (time_after(node->time_in[HSR_PT_SLAVE_A],
node->time_in[HSR_PT_SLAVE_B] +
msecs_to_jiffies(MAX_SLAVE_DIFF)))
return hsr_port_get_hsr(hsr, HSR_PT_SLAVE_B);
return NULL;
}
/* Remove stale sequence_nr records. Called by timer every
* HSR_LIFE_CHECK_INTERVAL (two seconds or so).
*/
void hsr_prune_nodes(struct timer_list *t)
{
struct hsr_priv *hsr = from_timer(hsr, t, prune_timer);
struct hsr_node *node;
struct hsr_node *tmp;
struct hsr_port *port;
unsigned long timestamp;
unsigned long time_a, time_b;
spin_lock_bh(&hsr->list_lock);
list_for_each_entry_safe(node, tmp, &hsr->node_db, mac_list) {
/* Don't prune own node. Neither time_in[HSR_PT_SLAVE_A]
* nor time_in[HSR_PT_SLAVE_B], will ever be updated for
* the master port. Thus the master node will be repeatedly
* pruned leading to packet loss.
*/
if (hsr_addr_is_self(hsr, node->macaddress_A))
continue;
/* Shorthand */
time_a = node->time_in[HSR_PT_SLAVE_A];
time_b = node->time_in[HSR_PT_SLAVE_B];
/* Check for timestamps old enough to risk wrap-around */
if (time_after(jiffies, time_a + MAX_JIFFY_OFFSET / 2))
node->time_in_stale[HSR_PT_SLAVE_A] = true;
if (time_after(jiffies, time_b + MAX_JIFFY_OFFSET / 2))
node->time_in_stale[HSR_PT_SLAVE_B] = true;
/* Get age of newest frame from node.
* At least one time_in is OK here; nodes get pruned long
* before both time_ins can get stale
*/
timestamp = time_a;
if (node->time_in_stale[HSR_PT_SLAVE_A] ||
(!node->time_in_stale[HSR_PT_SLAVE_B] &&
time_after(time_b, time_a)))
timestamp = time_b;
/* Warn of ring error only as long as we get frames at all */
if (time_is_after_jiffies(timestamp +
msecs_to_jiffies(1.5 * MAX_SLAVE_DIFF))) {
rcu_read_lock();
port = get_late_port(hsr, node);
if (port)
hsr_nl_ringerror(hsr, node->macaddress_A, port);
rcu_read_unlock();
}
/* Prune old entries */
if (time_is_before_jiffies(timestamp +
msecs_to_jiffies(HSR_NODE_FORGET_TIME))) {
hsr_nl_nodedown(hsr, node->macaddress_A);
if (!node->removed) {
list_del_rcu(&node->mac_list);
node->removed = true;
/* Note that we need to free this entry later: */
kfree_rcu(node, rcu_head);
}
}
}
spin_unlock_bh(&hsr->list_lock);
/* Restart timer */
mod_timer(&hsr->prune_timer,
jiffies + msecs_to_jiffies(PRUNE_PERIOD));
}
void *hsr_get_next_node(struct hsr_priv *hsr, void *_pos,
unsigned char addr[ETH_ALEN])
{
struct hsr_node *node;
if (!_pos) {
node = list_first_or_null_rcu(&hsr->node_db,
struct hsr_node, mac_list);
if (node)
ether_addr_copy(addr, node->macaddress_A);
return node;
}
node = _pos;
list_for_each_entry_continue_rcu(node, &hsr->node_db, mac_list) {
ether_addr_copy(addr, node->macaddress_A);
return node;
}
return NULL;
}
int hsr_get_node_data(struct hsr_priv *hsr,
const unsigned char *addr,
unsigned char addr_b[ETH_ALEN],
unsigned int *addr_b_ifindex,
int *if1_age,
u16 *if1_seq,
int *if2_age,
u16 *if2_seq)
{
struct hsr_node *node;
struct hsr_port *port;
unsigned long tdiff;
node = find_node_by_addr_A(&hsr->node_db, addr);
if (!node)
return -ENOENT;
ether_addr_copy(addr_b, node->macaddress_B);
tdiff = jiffies - node->time_in[HSR_PT_SLAVE_A];
if (node->time_in_stale[HSR_PT_SLAVE_A])
*if1_age = INT_MAX;
#if HZ <= MSEC_PER_SEC
else if (tdiff > msecs_to_jiffies(INT_MAX))
*if1_age = INT_MAX;
#endif
else
*if1_age = jiffies_to_msecs(tdiff);
tdiff = jiffies - node->time_in[HSR_PT_SLAVE_B];
if (node->time_in_stale[HSR_PT_SLAVE_B])
*if2_age = INT_MAX;
#if HZ <= MSEC_PER_SEC
else if (tdiff > msecs_to_jiffies(INT_MAX))
*if2_age = INT_MAX;
#endif
else
*if2_age = jiffies_to_msecs(tdiff);
/* Present sequence numbers as if they were incoming on interface */
*if1_seq = node->seq_out[HSR_PT_SLAVE_B];
*if2_seq = node->seq_out[HSR_PT_SLAVE_A];
if (node->addr_B_port != HSR_PT_NONE) {
port = hsr_port_get_hsr(hsr, node->addr_B_port);
*addr_b_ifindex = port->dev->ifindex;
} else {
*addr_b_ifindex = -1;
}
return 0;
}