linux/drivers/media/pci/intel/ipu-bridge.c
Hans de Goede 928d8e2fa6 media: ipu-bridge: Move initialization of node_names.vcm to ipu_bridge_init_swnode_names()
Move initialization of node_names.vcm to ipu_bridge_init_swnode_names()
where it belongs.

And make the initialization of nodes[SWNODE_VCM] unconditional,
ipu_bridge_init_swnode_group() takes care of not registering it
when there is no VCM.

Reviewed-by: Andy Shevchenko <andy@kernel.org>
Reviewed-by: Daniel Scally <dan.scally@ideasonboard.com>
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Signed-off-by: Sakari Ailus <sakari.ailus@linux.intel.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab@kernel.org>
2023-08-10 07:58:40 +02:00

501 lines
14 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Author: Dan Scally <djrscally@gmail.com> */
#include <linux/acpi.h>
#include <linux/device.h>
#include <linux/i2c.h>
#include <linux/property.h>
#include <media/v4l2-fwnode.h>
#include "ipu-bridge.h"
/*
* Extend this array with ACPI Hardware IDs of devices known to be working
* plus the number of link-frequencies expected by their drivers, along with
* the frequency values in hertz. This is somewhat opportunistic way of adding
* support for this for now in the hopes of a better source for the information
* (possibly some encoded value in the SSDB buffer that we're unaware of)
* becoming apparent in the future.
*
* Do not add an entry for a sensor that is not actually supported.
*/
static const struct ipu_sensor_config ipu_supported_sensors[] = {
/* Omnivision OV5693 */
IPU_SENSOR_CONFIG("INT33BE", 1, 419200000),
/* Omnivision OV8865 */
IPU_SENSOR_CONFIG("INT347A", 1, 360000000),
/* Omnivision OV7251 */
IPU_SENSOR_CONFIG("INT347E", 1, 319200000),
/* Omnivision OV2680 */
IPU_SENSOR_CONFIG("OVTI2680", 0),
/* Omnivision ov8856 */
IPU_SENSOR_CONFIG("OVTI8856", 3, 180000000, 360000000, 720000000),
/* Omnivision ov2740 */
IPU_SENSOR_CONFIG("INT3474", 1, 360000000),
/* Hynix hi556 */
IPU_SENSOR_CONFIG("INT3537", 1, 437000000),
/* Omnivision ov13b10 */
IPU_SENSOR_CONFIG("OVTIDB10", 1, 560000000),
};
static const struct ipu_property_names prop_names = {
.clock_frequency = "clock-frequency",
.rotation = "rotation",
.orientation = "orientation",
.bus_type = "bus-type",
.data_lanes = "data-lanes",
.remote_endpoint = "remote-endpoint",
.link_frequencies = "link-frequencies",
};
static const char * const ipu_vcm_types[] = {
"ad5823",
"dw9714",
"ad5816",
"dw9719",
"dw9718",
"dw9806b",
"wv517s",
"lc898122xa",
"lc898212axb",
};
static int ipu_bridge_read_acpi_buffer(struct acpi_device *adev, char *id,
void *data, u32 size)
{
struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
union acpi_object *obj;
acpi_status status;
int ret = 0;
status = acpi_evaluate_object(adev->handle, id, NULL, &buffer);
if (ACPI_FAILURE(status))
return -ENODEV;
obj = buffer.pointer;
if (!obj) {
dev_err(&adev->dev, "Couldn't locate ACPI buffer\n");
return -ENODEV;
}
if (obj->type != ACPI_TYPE_BUFFER) {
dev_err(&adev->dev, "Not an ACPI buffer\n");
ret = -ENODEV;
goto out_free_buff;
}
if (obj->buffer.length > size) {
dev_err(&adev->dev, "Given buffer is too small\n");
ret = -EINVAL;
goto out_free_buff;
}
memcpy(data, obj->buffer.pointer, obj->buffer.length);
out_free_buff:
kfree(buffer.pointer);
return ret;
}
static u32 ipu_bridge_parse_rotation(struct ipu_sensor *sensor)
{
switch (sensor->ssdb.degree) {
case IPU_SENSOR_ROTATION_NORMAL:
return 0;
case IPU_SENSOR_ROTATION_INVERTED:
return 180;
default:
dev_warn(&sensor->adev->dev,
"Unknown rotation %d. Assume 0 degree rotation\n",
sensor->ssdb.degree);
return 0;
}
}
static enum v4l2_fwnode_orientation ipu_bridge_parse_orientation(struct ipu_sensor *sensor)
{
switch (sensor->pld->panel) {
case ACPI_PLD_PANEL_FRONT:
return V4L2_FWNODE_ORIENTATION_FRONT;
case ACPI_PLD_PANEL_BACK:
return V4L2_FWNODE_ORIENTATION_BACK;
case ACPI_PLD_PANEL_TOP:
case ACPI_PLD_PANEL_LEFT:
case ACPI_PLD_PANEL_RIGHT:
case ACPI_PLD_PANEL_UNKNOWN:
return V4L2_FWNODE_ORIENTATION_EXTERNAL;
default:
dev_warn(&sensor->adev->dev, "Unknown _PLD panel value %d\n",
sensor->pld->panel);
return V4L2_FWNODE_ORIENTATION_EXTERNAL;
}
}
static void ipu_bridge_create_fwnode_properties(
struct ipu_sensor *sensor,
struct ipu_bridge *bridge,
const struct ipu_sensor_config *cfg)
{
u32 rotation;
enum v4l2_fwnode_orientation orientation;
rotation = ipu_bridge_parse_rotation(sensor);
orientation = ipu_bridge_parse_orientation(sensor);
sensor->prop_names = prop_names;
sensor->local_ref[0] = SOFTWARE_NODE_REFERENCE(&sensor->swnodes[SWNODE_IPU_ENDPOINT]);
sensor->remote_ref[0] = SOFTWARE_NODE_REFERENCE(&sensor->swnodes[SWNODE_SENSOR_ENDPOINT]);
sensor->dev_properties[0] = PROPERTY_ENTRY_U32(
sensor->prop_names.clock_frequency,
sensor->ssdb.mclkspeed);
sensor->dev_properties[1] = PROPERTY_ENTRY_U32(
sensor->prop_names.rotation,
rotation);
sensor->dev_properties[2] = PROPERTY_ENTRY_U32(
sensor->prop_names.orientation,
orientation);
if (sensor->ssdb.vcmtype) {
sensor->vcm_ref[0] =
SOFTWARE_NODE_REFERENCE(&sensor->swnodes[SWNODE_VCM]);
sensor->dev_properties[3] =
PROPERTY_ENTRY_REF_ARRAY("lens-focus", sensor->vcm_ref);
}
sensor->ep_properties[0] = PROPERTY_ENTRY_U32(
sensor->prop_names.bus_type,
V4L2_FWNODE_BUS_TYPE_CSI2_DPHY);
sensor->ep_properties[1] = PROPERTY_ENTRY_U32_ARRAY_LEN(
sensor->prop_names.data_lanes,
bridge->data_lanes,
sensor->ssdb.lanes);
sensor->ep_properties[2] = PROPERTY_ENTRY_REF_ARRAY(
sensor->prop_names.remote_endpoint,
sensor->local_ref);
if (cfg->nr_link_freqs > 0)
sensor->ep_properties[3] = PROPERTY_ENTRY_U64_ARRAY_LEN(
sensor->prop_names.link_frequencies,
cfg->link_freqs,
cfg->nr_link_freqs);
sensor->ipu_properties[0] = PROPERTY_ENTRY_U32_ARRAY_LEN(
sensor->prop_names.data_lanes,
bridge->data_lanes,
sensor->ssdb.lanes);
sensor->ipu_properties[1] = PROPERTY_ENTRY_REF_ARRAY(
sensor->prop_names.remote_endpoint,
sensor->remote_ref);
}
static void ipu_bridge_init_swnode_names(struct ipu_sensor *sensor)
{
snprintf(sensor->node_names.remote_port,
sizeof(sensor->node_names.remote_port),
SWNODE_GRAPH_PORT_NAME_FMT, sensor->ssdb.link);
snprintf(sensor->node_names.port,
sizeof(sensor->node_names.port),
SWNODE_GRAPH_PORT_NAME_FMT, 0); /* Always port 0 */
snprintf(sensor->node_names.endpoint,
sizeof(sensor->node_names.endpoint),
SWNODE_GRAPH_ENDPOINT_NAME_FMT, 0); /* And endpoint 0 */
if (sensor->ssdb.vcmtype) {
/* append ssdb.link to distinguish nodes with same model VCM */
snprintf(sensor->node_names.vcm, sizeof(sensor->node_names.vcm),
"%s-%u", ipu_vcm_types[sensor->ssdb.vcmtype - 1],
sensor->ssdb.link);
}
}
static void ipu_bridge_init_swnode_group(struct ipu_sensor *sensor)
{
struct software_node *nodes = sensor->swnodes;
sensor->group[SWNODE_SENSOR_HID] = &nodes[SWNODE_SENSOR_HID];
sensor->group[SWNODE_SENSOR_PORT] = &nodes[SWNODE_SENSOR_PORT];
sensor->group[SWNODE_SENSOR_ENDPOINT] = &nodes[SWNODE_SENSOR_ENDPOINT];
sensor->group[SWNODE_IPU_PORT] = &nodes[SWNODE_IPU_PORT];
sensor->group[SWNODE_IPU_ENDPOINT] = &nodes[SWNODE_IPU_ENDPOINT];
if (sensor->ssdb.vcmtype)
sensor->group[SWNODE_VCM] = &nodes[SWNODE_VCM];
}
static void ipu_bridge_create_connection_swnodes(struct ipu_bridge *bridge,
struct ipu_sensor *sensor)
{
struct software_node *nodes = sensor->swnodes;
ipu_bridge_init_swnode_names(sensor);
nodes[SWNODE_SENSOR_HID] = NODE_SENSOR(sensor->name,
sensor->dev_properties);
nodes[SWNODE_SENSOR_PORT] = NODE_PORT(sensor->node_names.port,
&nodes[SWNODE_SENSOR_HID]);
nodes[SWNODE_SENSOR_ENDPOINT] = NODE_ENDPOINT(
sensor->node_names.endpoint,
&nodes[SWNODE_SENSOR_PORT],
sensor->ep_properties);
nodes[SWNODE_IPU_PORT] = NODE_PORT(sensor->node_names.remote_port,
&bridge->ipu_hid_node);
nodes[SWNODE_IPU_ENDPOINT] = NODE_ENDPOINT(
sensor->node_names.endpoint,
&nodes[SWNODE_IPU_PORT],
sensor->ipu_properties);
nodes[SWNODE_VCM] = NODE_VCM(sensor->node_names.vcm);
ipu_bridge_init_swnode_group(sensor);
}
static void ipu_bridge_instantiate_vcm_i2c_client(struct ipu_sensor *sensor)
{
struct i2c_board_info board_info = { };
char name[16];
if (!sensor->ssdb.vcmtype)
return;
snprintf(name, sizeof(name), "%s-VCM", acpi_dev_name(sensor->adev));
board_info.dev_name = name;
strscpy(board_info.type, ipu_vcm_types[sensor->ssdb.vcmtype - 1],
ARRAY_SIZE(board_info.type));
board_info.swnode = &sensor->swnodes[SWNODE_VCM];
sensor->vcm_i2c_client =
i2c_acpi_new_device_by_fwnode(acpi_fwnode_handle(sensor->adev),
1, &board_info);
if (IS_ERR(sensor->vcm_i2c_client)) {
dev_warn(&sensor->adev->dev, "Error instantiation VCM i2c-client: %ld\n",
PTR_ERR(sensor->vcm_i2c_client));
sensor->vcm_i2c_client = NULL;
}
}
static void ipu_bridge_unregister_sensors(struct ipu_bridge *bridge)
{
struct ipu_sensor *sensor;
unsigned int i;
for (i = 0; i < bridge->n_sensors; i++) {
sensor = &bridge->sensors[i];
software_node_unregister_node_group(sensor->group);
ACPI_FREE(sensor->pld);
acpi_dev_put(sensor->adev);
i2c_unregister_device(sensor->vcm_i2c_client);
}
}
static int ipu_bridge_connect_sensor(const struct ipu_sensor_config *cfg,
struct ipu_bridge *bridge,
struct device *dev)
{
struct fwnode_handle *fwnode, *primary;
struct ipu_sensor *sensor;
struct acpi_device *adev;
acpi_status status;
int ret;
for_each_acpi_dev_match(adev, cfg->hid, NULL, -1) {
if (!adev->status.enabled)
continue;
if (bridge->n_sensors >= IPU_MAX_PORTS) {
acpi_dev_put(adev);
dev_err(dev, "Exceeded available IPU ports\n");
return -EINVAL;
}
sensor = &bridge->sensors[bridge->n_sensors];
/*
* Borrow our adev ref to the sensor for now, on success
* acpi_dev_get(adev) is done further below.
*/
sensor->adev = adev;
ret = ipu_bridge_read_acpi_buffer(adev, "SSDB",
&sensor->ssdb,
sizeof(sensor->ssdb));
if (ret)
goto err_put_adev;
snprintf(sensor->name, sizeof(sensor->name), "%s-%u",
cfg->hid, sensor->ssdb.link);
if (sensor->ssdb.vcmtype > ARRAY_SIZE(ipu_vcm_types)) {
dev_warn(&adev->dev, "Unknown VCM type %d\n",
sensor->ssdb.vcmtype);
sensor->ssdb.vcmtype = 0;
}
status = acpi_get_physical_device_location(adev->handle, &sensor->pld);
if (ACPI_FAILURE(status)) {
ret = -ENODEV;
goto err_put_adev;
}
if (sensor->ssdb.lanes > IPU_MAX_LANES) {
dev_err(&adev->dev,
"Number of lanes in SSDB is invalid\n");
ret = -EINVAL;
goto err_free_pld;
}
ipu_bridge_create_fwnode_properties(sensor, bridge, cfg);
ipu_bridge_create_connection_swnodes(bridge, sensor);
ret = software_node_register_node_group(sensor->group);
if (ret)
goto err_free_pld;
fwnode = software_node_fwnode(&sensor->swnodes[
SWNODE_SENSOR_HID]);
if (!fwnode) {
ret = -ENODEV;
goto err_free_swnodes;
}
sensor->adev = acpi_dev_get(adev);
primary = acpi_fwnode_handle(adev);
primary->secondary = fwnode;
ipu_bridge_instantiate_vcm_i2c_client(sensor);
dev_info(dev, "Found supported sensor %s\n",
acpi_dev_name(adev));
bridge->n_sensors++;
}
return 0;
err_free_swnodes:
software_node_unregister_node_group(sensor->group);
err_free_pld:
ACPI_FREE(sensor->pld);
err_put_adev:
acpi_dev_put(adev);
return ret;
}
static int ipu_bridge_connect_sensors(struct ipu_bridge *bridge,
struct device *dev)
{
unsigned int i;
int ret;
for (i = 0; i < ARRAY_SIZE(ipu_supported_sensors); i++) {
const struct ipu_sensor_config *cfg =
&ipu_supported_sensors[i];
ret = ipu_bridge_connect_sensor(cfg, bridge, dev);
if (ret)
goto err_unregister_sensors;
}
return 0;
err_unregister_sensors:
ipu_bridge_unregister_sensors(bridge);
return ret;
}
/*
* The VCM cannot be probed until the PMIC is completely setup. We cannot rely
* on -EPROBE_DEFER for this, since the consumer<->supplier relations between
* the VCM and regulators/clks are not described in ACPI, instead they are
* passed as board-data to the PMIC drivers. Since -PROBE_DEFER does not work
* for the clks/regulators the VCM i2c-clients must not be instantiated until
* the PMIC is fully setup.
*
* The sensor/VCM ACPI device has an ACPI _DEP on the PMIC, check this using the
* acpi_dev_ready_for_enumeration() helper, like the i2c-core-acpi code does
* for the sensors.
*/
static int ipu_bridge_sensors_are_ready(void)
{
struct acpi_device *adev;
bool ready = true;
unsigned int i;
for (i = 0; i < ARRAY_SIZE(ipu_supported_sensors); i++) {
const struct ipu_sensor_config *cfg =
&ipu_supported_sensors[i];
for_each_acpi_dev_match(adev, cfg->hid, NULL, -1) {
if (!adev->status.enabled)
continue;
if (!acpi_dev_ready_for_enumeration(adev))
ready = false;
}
}
return ready;
}
int ipu_bridge_init(struct device *dev)
{
struct fwnode_handle *fwnode;
struct ipu_bridge *bridge;
unsigned int i;
int ret;
if (!ipu_bridge_sensors_are_ready())
return -EPROBE_DEFER;
bridge = kzalloc(sizeof(*bridge), GFP_KERNEL);
if (!bridge)
return -ENOMEM;
strscpy(bridge->ipu_node_name, IPU_HID,
sizeof(bridge->ipu_node_name));
bridge->ipu_hid_node.name = bridge->ipu_node_name;
ret = software_node_register(&bridge->ipu_hid_node);
if (ret < 0) {
dev_err(dev, "Failed to register the IPU HID node\n");
goto err_free_bridge;
}
/*
* Map the lane arrangement, which is fixed for the IPU3 (meaning we
* only need one, rather than one per sensor). We include it as a
* member of the struct ipu_bridge rather than a global variable so
* that it survives if the module is unloaded along with the rest of
* the struct.
*/
for (i = 0; i < IPU_MAX_LANES; i++)
bridge->data_lanes[i] = i + 1;
ret = ipu_bridge_connect_sensors(bridge, dev);
if (ret || bridge->n_sensors == 0)
goto err_unregister_ipu;
dev_info(dev, "Connected %d cameras\n", bridge->n_sensors);
fwnode = software_node_fwnode(&bridge->ipu_hid_node);
if (!fwnode) {
dev_err(dev, "Error getting fwnode from ipu software_node\n");
ret = -ENODEV;
goto err_unregister_sensors;
}
set_secondary_fwnode(dev, fwnode);
return 0;
err_unregister_sensors:
ipu_bridge_unregister_sensors(bridge);
err_unregister_ipu:
software_node_unregister(&bridge->ipu_hid_node);
err_free_bridge:
kfree(bridge);
return ret;
}
EXPORT_SYMBOL_NS_GPL(ipu_bridge_init, INTEL_IPU_BRIDGE);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Intel IPU Sensors Bridge driver");