93c5aecc35
The x64 bpf jit expects bpf images converge within the given passes, but it could fail to do so with some corner cases. For example: l0: ja 40 l1: ja 40 [... repeated ja 40 ] l39: ja 40 l40: ret #0 This bpf program contains 40 "ja 40" instructions which are effectively NOPs and designed to be replaced with valid code dynamically. Ideally, bpf jit should optimize those "ja 40" instructions out when translating the bpf instructions into x64 machine code. However, do_jit() can only remove one "ja 40" for offset==0 on each pass, so it requires at least 40 runs to eliminate those JMPs and exceeds the current limit of passes(20). In the end, the program got rejected when BPF_JIT_ALWAYS_ON is set even though it's legit as a classic socket filter. To make bpf images more likely converge within 20 passes, this commit pads some instructions with NOPs in the last 5 passes: 1. conditional jumps A possible size variance comes from the adoption of imm8 JMP. If the offset is imm8, we calculate the size difference of this BPF instruction between the previous and the current pass and fill the gap with NOPs. To avoid the recalculation of jump offset, those NOPs are inserted before the JMP code, so we have to subtract the 2 bytes of imm8 JMP when calculating the NOP number. 2. BPF_JA There are two conditions for BPF_JA. a.) nop jumps If this instruction is not optimized out in the previous pass, instead of removing it, we insert the equivalent size of NOPs. b.) label jumps Similar to condition jumps, we prepend NOPs right before the JMP code. To make the code concise, emit_nops() is modified to use the signed len and return the number of inserted NOPs. For bpf-to-bpf, we always enable padding for the extra pass since there is only one extra run and the jump padding doesn't affected the images that converge without padding. After applying this patch, the corner case was loaded with the following jit code: flen=45 proglen=77 pass=17 image=ffffffffc03367d4 from=jump pid=10097 JIT code: 00000000: 0f 1f 44 00 00 55 48 89 e5 53 41 55 31 c0 45 31 JIT code: 00000010: ed 48 89 fb eb 30 eb 2e eb 2c eb 2a eb 28 eb 26 JIT code: 00000020: eb 24 eb 22 eb 20 eb 1e eb 1c eb 1a eb 18 eb 16 JIT code: 00000030: eb 14 eb 12 eb 10 eb 0e eb 0c eb 0a eb 08 eb 06 JIT code: 00000040: eb 04 eb 02 66 90 31 c0 41 5d 5b c9 c3 0: 0f 1f 44 00 00 nop DWORD PTR [rax+rax*1+0x0] 5: 55 push rbp 6: 48 89 e5 mov rbp,rsp 9: 53 push rbx a: 41 55 push r13 c: 31 c0 xor eax,eax e: 45 31 ed xor r13d,r13d 11: 48 89 fb mov rbx,rdi 14: eb 30 jmp 0x46 16: eb 2e jmp 0x46 ... 3e: eb 06 jmp 0x46 40: eb 04 jmp 0x46 42: eb 02 jmp 0x46 44: 66 90 xchg ax,ax 46: 31 c0 xor eax,eax 48: 41 5d pop r13 4a: 5b pop rbx 4b: c9 leave 4c: c3 ret At the 16th pass, 15 jumps were already optimized out, and one jump was replaced with NOPs at 44 and the image converged at the 17th pass. v4: - Add the detailed comments about the possible padding bytes v3: - Copy the instructions of prologue separately or the size calculation of the first BPF instruction would include the prologue. - Replace WARN_ONCE() with pr_err() and EFAULT - Use MAX_PASSES in the for loop condition check - Remove the "padded" flag from x64_jit_data. For the extra pass of subprogs, padding is always enabled since it won't hurt the images that converge without padding. v2: - Simplify the sample code in the description and provide the jit code - Check the expected padding bytes with WARN_ONCE - Move the 'padded' flag to 'struct x64_jit_data' Signed-off-by: Gary Lin <glin@suse.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20210119102501.511-2-glin@suse.com
2299 lines
60 KiB
C
2299 lines
60 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* bpf_jit_comp.c: BPF JIT compiler
|
|
*
|
|
* Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
|
|
* Internal BPF Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
|
|
*/
|
|
#include <linux/netdevice.h>
|
|
#include <linux/filter.h>
|
|
#include <linux/if_vlan.h>
|
|
#include <linux/bpf.h>
|
|
#include <linux/memory.h>
|
|
#include <linux/sort.h>
|
|
#include <asm/extable.h>
|
|
#include <asm/set_memory.h>
|
|
#include <asm/nospec-branch.h>
|
|
#include <asm/text-patching.h>
|
|
#include <asm/asm-prototypes.h>
|
|
|
|
static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
|
|
{
|
|
if (len == 1)
|
|
*ptr = bytes;
|
|
else if (len == 2)
|
|
*(u16 *)ptr = bytes;
|
|
else {
|
|
*(u32 *)ptr = bytes;
|
|
barrier();
|
|
}
|
|
return ptr + len;
|
|
}
|
|
|
|
#define EMIT(bytes, len) \
|
|
do { prog = emit_code(prog, bytes, len); cnt += len; } while (0)
|
|
|
|
#define EMIT1(b1) EMIT(b1, 1)
|
|
#define EMIT2(b1, b2) EMIT((b1) + ((b2) << 8), 2)
|
|
#define EMIT3(b1, b2, b3) EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
|
|
#define EMIT4(b1, b2, b3, b4) EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
|
|
|
|
#define EMIT1_off32(b1, off) \
|
|
do { EMIT1(b1); EMIT(off, 4); } while (0)
|
|
#define EMIT2_off32(b1, b2, off) \
|
|
do { EMIT2(b1, b2); EMIT(off, 4); } while (0)
|
|
#define EMIT3_off32(b1, b2, b3, off) \
|
|
do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
|
|
#define EMIT4_off32(b1, b2, b3, b4, off) \
|
|
do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
|
|
|
|
static bool is_imm8(int value)
|
|
{
|
|
return value <= 127 && value >= -128;
|
|
}
|
|
|
|
static bool is_simm32(s64 value)
|
|
{
|
|
return value == (s64)(s32)value;
|
|
}
|
|
|
|
static bool is_uimm32(u64 value)
|
|
{
|
|
return value == (u64)(u32)value;
|
|
}
|
|
|
|
/* mov dst, src */
|
|
#define EMIT_mov(DST, SRC) \
|
|
do { \
|
|
if (DST != SRC) \
|
|
EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \
|
|
} while (0)
|
|
|
|
static int bpf_size_to_x86_bytes(int bpf_size)
|
|
{
|
|
if (bpf_size == BPF_W)
|
|
return 4;
|
|
else if (bpf_size == BPF_H)
|
|
return 2;
|
|
else if (bpf_size == BPF_B)
|
|
return 1;
|
|
else if (bpf_size == BPF_DW)
|
|
return 4; /* imm32 */
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* List of x86 cond jumps opcodes (. + s8)
|
|
* Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
|
|
*/
|
|
#define X86_JB 0x72
|
|
#define X86_JAE 0x73
|
|
#define X86_JE 0x74
|
|
#define X86_JNE 0x75
|
|
#define X86_JBE 0x76
|
|
#define X86_JA 0x77
|
|
#define X86_JL 0x7C
|
|
#define X86_JGE 0x7D
|
|
#define X86_JLE 0x7E
|
|
#define X86_JG 0x7F
|
|
|
|
/* Pick a register outside of BPF range for JIT internal work */
|
|
#define AUX_REG (MAX_BPF_JIT_REG + 1)
|
|
#define X86_REG_R9 (MAX_BPF_JIT_REG + 2)
|
|
|
|
/*
|
|
* The following table maps BPF registers to x86-64 registers.
|
|
*
|
|
* x86-64 register R12 is unused, since if used as base address
|
|
* register in load/store instructions, it always needs an
|
|
* extra byte of encoding and is callee saved.
|
|
*
|
|
* x86-64 register R9 is not used by BPF programs, but can be used by BPF
|
|
* trampoline. x86-64 register R10 is used for blinding (if enabled).
|
|
*/
|
|
static const int reg2hex[] = {
|
|
[BPF_REG_0] = 0, /* RAX */
|
|
[BPF_REG_1] = 7, /* RDI */
|
|
[BPF_REG_2] = 6, /* RSI */
|
|
[BPF_REG_3] = 2, /* RDX */
|
|
[BPF_REG_4] = 1, /* RCX */
|
|
[BPF_REG_5] = 0, /* R8 */
|
|
[BPF_REG_6] = 3, /* RBX callee saved */
|
|
[BPF_REG_7] = 5, /* R13 callee saved */
|
|
[BPF_REG_8] = 6, /* R14 callee saved */
|
|
[BPF_REG_9] = 7, /* R15 callee saved */
|
|
[BPF_REG_FP] = 5, /* RBP readonly */
|
|
[BPF_REG_AX] = 2, /* R10 temp register */
|
|
[AUX_REG] = 3, /* R11 temp register */
|
|
[X86_REG_R9] = 1, /* R9 register, 6th function argument */
|
|
};
|
|
|
|
static const int reg2pt_regs[] = {
|
|
[BPF_REG_0] = offsetof(struct pt_regs, ax),
|
|
[BPF_REG_1] = offsetof(struct pt_regs, di),
|
|
[BPF_REG_2] = offsetof(struct pt_regs, si),
|
|
[BPF_REG_3] = offsetof(struct pt_regs, dx),
|
|
[BPF_REG_4] = offsetof(struct pt_regs, cx),
|
|
[BPF_REG_5] = offsetof(struct pt_regs, r8),
|
|
[BPF_REG_6] = offsetof(struct pt_regs, bx),
|
|
[BPF_REG_7] = offsetof(struct pt_regs, r13),
|
|
[BPF_REG_8] = offsetof(struct pt_regs, r14),
|
|
[BPF_REG_9] = offsetof(struct pt_regs, r15),
|
|
};
|
|
|
|
/*
|
|
* is_ereg() == true if BPF register 'reg' maps to x86-64 r8..r15
|
|
* which need extra byte of encoding.
|
|
* rax,rcx,...,rbp have simpler encoding
|
|
*/
|
|
static bool is_ereg(u32 reg)
|
|
{
|
|
return (1 << reg) & (BIT(BPF_REG_5) |
|
|
BIT(AUX_REG) |
|
|
BIT(BPF_REG_7) |
|
|
BIT(BPF_REG_8) |
|
|
BIT(BPF_REG_9) |
|
|
BIT(X86_REG_R9) |
|
|
BIT(BPF_REG_AX));
|
|
}
|
|
|
|
/*
|
|
* is_ereg_8l() == true if BPF register 'reg' is mapped to access x86-64
|
|
* lower 8-bit registers dil,sil,bpl,spl,r8b..r15b, which need extra byte
|
|
* of encoding. al,cl,dl,bl have simpler encoding.
|
|
*/
|
|
static bool is_ereg_8l(u32 reg)
|
|
{
|
|
return is_ereg(reg) ||
|
|
(1 << reg) & (BIT(BPF_REG_1) |
|
|
BIT(BPF_REG_2) |
|
|
BIT(BPF_REG_FP));
|
|
}
|
|
|
|
static bool is_axreg(u32 reg)
|
|
{
|
|
return reg == BPF_REG_0;
|
|
}
|
|
|
|
/* Add modifiers if 'reg' maps to x86-64 registers R8..R15 */
|
|
static u8 add_1mod(u8 byte, u32 reg)
|
|
{
|
|
if (is_ereg(reg))
|
|
byte |= 1;
|
|
return byte;
|
|
}
|
|
|
|
static u8 add_2mod(u8 byte, u32 r1, u32 r2)
|
|
{
|
|
if (is_ereg(r1))
|
|
byte |= 1;
|
|
if (is_ereg(r2))
|
|
byte |= 4;
|
|
return byte;
|
|
}
|
|
|
|
/* Encode 'dst_reg' register into x86-64 opcode 'byte' */
|
|
static u8 add_1reg(u8 byte, u32 dst_reg)
|
|
{
|
|
return byte + reg2hex[dst_reg];
|
|
}
|
|
|
|
/* Encode 'dst_reg' and 'src_reg' registers into x86-64 opcode 'byte' */
|
|
static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
|
|
{
|
|
return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3);
|
|
}
|
|
|
|
/* Some 1-byte opcodes for binary ALU operations */
|
|
static u8 simple_alu_opcodes[] = {
|
|
[BPF_ADD] = 0x01,
|
|
[BPF_SUB] = 0x29,
|
|
[BPF_AND] = 0x21,
|
|
[BPF_OR] = 0x09,
|
|
[BPF_XOR] = 0x31,
|
|
[BPF_LSH] = 0xE0,
|
|
[BPF_RSH] = 0xE8,
|
|
[BPF_ARSH] = 0xF8,
|
|
};
|
|
|
|
static void jit_fill_hole(void *area, unsigned int size)
|
|
{
|
|
/* Fill whole space with INT3 instructions */
|
|
memset(area, 0xcc, size);
|
|
}
|
|
|
|
struct jit_context {
|
|
int cleanup_addr; /* Epilogue code offset */
|
|
};
|
|
|
|
/* Maximum number of bytes emitted while JITing one eBPF insn */
|
|
#define BPF_MAX_INSN_SIZE 128
|
|
#define BPF_INSN_SAFETY 64
|
|
|
|
/* Number of bytes emit_patch() needs to generate instructions */
|
|
#define X86_PATCH_SIZE 5
|
|
/* Number of bytes that will be skipped on tailcall */
|
|
#define X86_TAIL_CALL_OFFSET 11
|
|
|
|
static void push_callee_regs(u8 **pprog, bool *callee_regs_used)
|
|
{
|
|
u8 *prog = *pprog;
|
|
int cnt = 0;
|
|
|
|
if (callee_regs_used[0])
|
|
EMIT1(0x53); /* push rbx */
|
|
if (callee_regs_used[1])
|
|
EMIT2(0x41, 0x55); /* push r13 */
|
|
if (callee_regs_used[2])
|
|
EMIT2(0x41, 0x56); /* push r14 */
|
|
if (callee_regs_used[3])
|
|
EMIT2(0x41, 0x57); /* push r15 */
|
|
*pprog = prog;
|
|
}
|
|
|
|
static void pop_callee_regs(u8 **pprog, bool *callee_regs_used)
|
|
{
|
|
u8 *prog = *pprog;
|
|
int cnt = 0;
|
|
|
|
if (callee_regs_used[3])
|
|
EMIT2(0x41, 0x5F); /* pop r15 */
|
|
if (callee_regs_used[2])
|
|
EMIT2(0x41, 0x5E); /* pop r14 */
|
|
if (callee_regs_used[1])
|
|
EMIT2(0x41, 0x5D); /* pop r13 */
|
|
if (callee_regs_used[0])
|
|
EMIT1(0x5B); /* pop rbx */
|
|
*pprog = prog;
|
|
}
|
|
|
|
/*
|
|
* Emit x86-64 prologue code for BPF program.
|
|
* bpf_tail_call helper will skip the first X86_TAIL_CALL_OFFSET bytes
|
|
* while jumping to another program
|
|
*/
|
|
static void emit_prologue(u8 **pprog, u32 stack_depth, bool ebpf_from_cbpf,
|
|
bool tail_call_reachable, bool is_subprog)
|
|
{
|
|
u8 *prog = *pprog;
|
|
int cnt = X86_PATCH_SIZE;
|
|
|
|
/* BPF trampoline can be made to work without these nops,
|
|
* but let's waste 5 bytes for now and optimize later
|
|
*/
|
|
memcpy(prog, ideal_nops[NOP_ATOMIC5], cnt);
|
|
prog += cnt;
|
|
if (!ebpf_from_cbpf) {
|
|
if (tail_call_reachable && !is_subprog)
|
|
EMIT2(0x31, 0xC0); /* xor eax, eax */
|
|
else
|
|
EMIT2(0x66, 0x90); /* nop2 */
|
|
}
|
|
EMIT1(0x55); /* push rbp */
|
|
EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
|
|
/* sub rsp, rounded_stack_depth */
|
|
if (stack_depth)
|
|
EMIT3_off32(0x48, 0x81, 0xEC, round_up(stack_depth, 8));
|
|
if (tail_call_reachable)
|
|
EMIT1(0x50); /* push rax */
|
|
*pprog = prog;
|
|
}
|
|
|
|
static int emit_patch(u8 **pprog, void *func, void *ip, u8 opcode)
|
|
{
|
|
u8 *prog = *pprog;
|
|
int cnt = 0;
|
|
s64 offset;
|
|
|
|
offset = func - (ip + X86_PATCH_SIZE);
|
|
if (!is_simm32(offset)) {
|
|
pr_err("Target call %p is out of range\n", func);
|
|
return -ERANGE;
|
|
}
|
|
EMIT1_off32(opcode, offset);
|
|
*pprog = prog;
|
|
return 0;
|
|
}
|
|
|
|
static int emit_call(u8 **pprog, void *func, void *ip)
|
|
{
|
|
return emit_patch(pprog, func, ip, 0xE8);
|
|
}
|
|
|
|
static int emit_jump(u8 **pprog, void *func, void *ip)
|
|
{
|
|
return emit_patch(pprog, func, ip, 0xE9);
|
|
}
|
|
|
|
static int __bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
|
|
void *old_addr, void *new_addr,
|
|
const bool text_live)
|
|
{
|
|
const u8 *nop_insn = ideal_nops[NOP_ATOMIC5];
|
|
u8 old_insn[X86_PATCH_SIZE];
|
|
u8 new_insn[X86_PATCH_SIZE];
|
|
u8 *prog;
|
|
int ret;
|
|
|
|
memcpy(old_insn, nop_insn, X86_PATCH_SIZE);
|
|
if (old_addr) {
|
|
prog = old_insn;
|
|
ret = t == BPF_MOD_CALL ?
|
|
emit_call(&prog, old_addr, ip) :
|
|
emit_jump(&prog, old_addr, ip);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
memcpy(new_insn, nop_insn, X86_PATCH_SIZE);
|
|
if (new_addr) {
|
|
prog = new_insn;
|
|
ret = t == BPF_MOD_CALL ?
|
|
emit_call(&prog, new_addr, ip) :
|
|
emit_jump(&prog, new_addr, ip);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
ret = -EBUSY;
|
|
mutex_lock(&text_mutex);
|
|
if (memcmp(ip, old_insn, X86_PATCH_SIZE))
|
|
goto out;
|
|
ret = 1;
|
|
if (memcmp(ip, new_insn, X86_PATCH_SIZE)) {
|
|
if (text_live)
|
|
text_poke_bp(ip, new_insn, X86_PATCH_SIZE, NULL);
|
|
else
|
|
memcpy(ip, new_insn, X86_PATCH_SIZE);
|
|
ret = 0;
|
|
}
|
|
out:
|
|
mutex_unlock(&text_mutex);
|
|
return ret;
|
|
}
|
|
|
|
int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
|
|
void *old_addr, void *new_addr)
|
|
{
|
|
if (!is_kernel_text((long)ip) &&
|
|
!is_bpf_text_address((long)ip))
|
|
/* BPF poking in modules is not supported */
|
|
return -EINVAL;
|
|
|
|
return __bpf_arch_text_poke(ip, t, old_addr, new_addr, true);
|
|
}
|
|
|
|
static int get_pop_bytes(bool *callee_regs_used)
|
|
{
|
|
int bytes = 0;
|
|
|
|
if (callee_regs_used[3])
|
|
bytes += 2;
|
|
if (callee_regs_used[2])
|
|
bytes += 2;
|
|
if (callee_regs_used[1])
|
|
bytes += 2;
|
|
if (callee_regs_used[0])
|
|
bytes += 1;
|
|
|
|
return bytes;
|
|
}
|
|
|
|
/*
|
|
* Generate the following code:
|
|
*
|
|
* ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
|
|
* if (index >= array->map.max_entries)
|
|
* goto out;
|
|
* if (++tail_call_cnt > MAX_TAIL_CALL_CNT)
|
|
* goto out;
|
|
* prog = array->ptrs[index];
|
|
* if (prog == NULL)
|
|
* goto out;
|
|
* goto *(prog->bpf_func + prologue_size);
|
|
* out:
|
|
*/
|
|
static void emit_bpf_tail_call_indirect(u8 **pprog, bool *callee_regs_used,
|
|
u32 stack_depth)
|
|
{
|
|
int tcc_off = -4 - round_up(stack_depth, 8);
|
|
u8 *prog = *pprog;
|
|
int pop_bytes = 0;
|
|
int off1 = 42;
|
|
int off2 = 31;
|
|
int off3 = 9;
|
|
int cnt = 0;
|
|
|
|
/* count the additional bytes used for popping callee regs from stack
|
|
* that need to be taken into account for each of the offsets that
|
|
* are used for bailing out of the tail call
|
|
*/
|
|
pop_bytes = get_pop_bytes(callee_regs_used);
|
|
off1 += pop_bytes;
|
|
off2 += pop_bytes;
|
|
off3 += pop_bytes;
|
|
|
|
if (stack_depth) {
|
|
off1 += 7;
|
|
off2 += 7;
|
|
off3 += 7;
|
|
}
|
|
|
|
/*
|
|
* rdi - pointer to ctx
|
|
* rsi - pointer to bpf_array
|
|
* rdx - index in bpf_array
|
|
*/
|
|
|
|
/*
|
|
* if (index >= array->map.max_entries)
|
|
* goto out;
|
|
*/
|
|
EMIT2(0x89, 0xD2); /* mov edx, edx */
|
|
EMIT3(0x39, 0x56, /* cmp dword ptr [rsi + 16], edx */
|
|
offsetof(struct bpf_array, map.max_entries));
|
|
#define OFFSET1 (off1 + RETPOLINE_RCX_BPF_JIT_SIZE) /* Number of bytes to jump */
|
|
EMIT2(X86_JBE, OFFSET1); /* jbe out */
|
|
|
|
/*
|
|
* if (tail_call_cnt > MAX_TAIL_CALL_CNT)
|
|
* goto out;
|
|
*/
|
|
EMIT2_off32(0x8B, 0x85, tcc_off); /* mov eax, dword ptr [rbp - tcc_off] */
|
|
EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT); /* cmp eax, MAX_TAIL_CALL_CNT */
|
|
#define OFFSET2 (off2 + RETPOLINE_RCX_BPF_JIT_SIZE)
|
|
EMIT2(X86_JA, OFFSET2); /* ja out */
|
|
EMIT3(0x83, 0xC0, 0x01); /* add eax, 1 */
|
|
EMIT2_off32(0x89, 0x85, tcc_off); /* mov dword ptr [rbp - tcc_off], eax */
|
|
|
|
/* prog = array->ptrs[index]; */
|
|
EMIT4_off32(0x48, 0x8B, 0x8C, 0xD6, /* mov rcx, [rsi + rdx * 8 + offsetof(...)] */
|
|
offsetof(struct bpf_array, ptrs));
|
|
|
|
/*
|
|
* if (prog == NULL)
|
|
* goto out;
|
|
*/
|
|
EMIT3(0x48, 0x85, 0xC9); /* test rcx,rcx */
|
|
#define OFFSET3 (off3 + RETPOLINE_RCX_BPF_JIT_SIZE)
|
|
EMIT2(X86_JE, OFFSET3); /* je out */
|
|
|
|
*pprog = prog;
|
|
pop_callee_regs(pprog, callee_regs_used);
|
|
prog = *pprog;
|
|
|
|
EMIT1(0x58); /* pop rax */
|
|
if (stack_depth)
|
|
EMIT3_off32(0x48, 0x81, 0xC4, /* add rsp, sd */
|
|
round_up(stack_depth, 8));
|
|
|
|
/* goto *(prog->bpf_func + X86_TAIL_CALL_OFFSET); */
|
|
EMIT4(0x48, 0x8B, 0x49, /* mov rcx, qword ptr [rcx + 32] */
|
|
offsetof(struct bpf_prog, bpf_func));
|
|
EMIT4(0x48, 0x83, 0xC1, /* add rcx, X86_TAIL_CALL_OFFSET */
|
|
X86_TAIL_CALL_OFFSET);
|
|
/*
|
|
* Now we're ready to jump into next BPF program
|
|
* rdi == ctx (1st arg)
|
|
* rcx == prog->bpf_func + X86_TAIL_CALL_OFFSET
|
|
*/
|
|
RETPOLINE_RCX_BPF_JIT();
|
|
|
|
/* out: */
|
|
*pprog = prog;
|
|
}
|
|
|
|
static void emit_bpf_tail_call_direct(struct bpf_jit_poke_descriptor *poke,
|
|
u8 **pprog, int addr, u8 *image,
|
|
bool *callee_regs_used, u32 stack_depth)
|
|
{
|
|
int tcc_off = -4 - round_up(stack_depth, 8);
|
|
u8 *prog = *pprog;
|
|
int pop_bytes = 0;
|
|
int off1 = 20;
|
|
int poke_off;
|
|
int cnt = 0;
|
|
|
|
/* count the additional bytes used for popping callee regs to stack
|
|
* that need to be taken into account for jump offset that is used for
|
|
* bailing out from of the tail call when limit is reached
|
|
*/
|
|
pop_bytes = get_pop_bytes(callee_regs_used);
|
|
off1 += pop_bytes;
|
|
|
|
/*
|
|
* total bytes for:
|
|
* - nop5/ jmpq $off
|
|
* - pop callee regs
|
|
* - sub rsp, $val if depth > 0
|
|
* - pop rax
|
|
*/
|
|
poke_off = X86_PATCH_SIZE + pop_bytes + 1;
|
|
if (stack_depth) {
|
|
poke_off += 7;
|
|
off1 += 7;
|
|
}
|
|
|
|
/*
|
|
* if (tail_call_cnt > MAX_TAIL_CALL_CNT)
|
|
* goto out;
|
|
*/
|
|
EMIT2_off32(0x8B, 0x85, tcc_off); /* mov eax, dword ptr [rbp - tcc_off] */
|
|
EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT); /* cmp eax, MAX_TAIL_CALL_CNT */
|
|
EMIT2(X86_JA, off1); /* ja out */
|
|
EMIT3(0x83, 0xC0, 0x01); /* add eax, 1 */
|
|
EMIT2_off32(0x89, 0x85, tcc_off); /* mov dword ptr [rbp - tcc_off], eax */
|
|
|
|
poke->tailcall_bypass = image + (addr - poke_off - X86_PATCH_SIZE);
|
|
poke->adj_off = X86_TAIL_CALL_OFFSET;
|
|
poke->tailcall_target = image + (addr - X86_PATCH_SIZE);
|
|
poke->bypass_addr = (u8 *)poke->tailcall_target + X86_PATCH_SIZE;
|
|
|
|
emit_jump(&prog, (u8 *)poke->tailcall_target + X86_PATCH_SIZE,
|
|
poke->tailcall_bypass);
|
|
|
|
*pprog = prog;
|
|
pop_callee_regs(pprog, callee_regs_used);
|
|
prog = *pprog;
|
|
EMIT1(0x58); /* pop rax */
|
|
if (stack_depth)
|
|
EMIT3_off32(0x48, 0x81, 0xC4, round_up(stack_depth, 8));
|
|
|
|
memcpy(prog, ideal_nops[NOP_ATOMIC5], X86_PATCH_SIZE);
|
|
prog += X86_PATCH_SIZE;
|
|
/* out: */
|
|
|
|
*pprog = prog;
|
|
}
|
|
|
|
static void bpf_tail_call_direct_fixup(struct bpf_prog *prog)
|
|
{
|
|
struct bpf_jit_poke_descriptor *poke;
|
|
struct bpf_array *array;
|
|
struct bpf_prog *target;
|
|
int i, ret;
|
|
|
|
for (i = 0; i < prog->aux->size_poke_tab; i++) {
|
|
poke = &prog->aux->poke_tab[i];
|
|
WARN_ON_ONCE(READ_ONCE(poke->tailcall_target_stable));
|
|
|
|
if (poke->reason != BPF_POKE_REASON_TAIL_CALL)
|
|
continue;
|
|
|
|
array = container_of(poke->tail_call.map, struct bpf_array, map);
|
|
mutex_lock(&array->aux->poke_mutex);
|
|
target = array->ptrs[poke->tail_call.key];
|
|
if (target) {
|
|
/* Plain memcpy is used when image is not live yet
|
|
* and still not locked as read-only. Once poke
|
|
* location is active (poke->tailcall_target_stable),
|
|
* any parallel bpf_arch_text_poke() might occur
|
|
* still on the read-write image until we finally
|
|
* locked it as read-only. Both modifications on
|
|
* the given image are under text_mutex to avoid
|
|
* interference.
|
|
*/
|
|
ret = __bpf_arch_text_poke(poke->tailcall_target,
|
|
BPF_MOD_JUMP, NULL,
|
|
(u8 *)target->bpf_func +
|
|
poke->adj_off, false);
|
|
BUG_ON(ret < 0);
|
|
ret = __bpf_arch_text_poke(poke->tailcall_bypass,
|
|
BPF_MOD_JUMP,
|
|
(u8 *)poke->tailcall_target +
|
|
X86_PATCH_SIZE, NULL, false);
|
|
BUG_ON(ret < 0);
|
|
}
|
|
WRITE_ONCE(poke->tailcall_target_stable, true);
|
|
mutex_unlock(&array->aux->poke_mutex);
|
|
}
|
|
}
|
|
|
|
static void emit_mov_imm32(u8 **pprog, bool sign_propagate,
|
|
u32 dst_reg, const u32 imm32)
|
|
{
|
|
u8 *prog = *pprog;
|
|
u8 b1, b2, b3;
|
|
int cnt = 0;
|
|
|
|
/*
|
|
* Optimization: if imm32 is positive, use 'mov %eax, imm32'
|
|
* (which zero-extends imm32) to save 2 bytes.
|
|
*/
|
|
if (sign_propagate && (s32)imm32 < 0) {
|
|
/* 'mov %rax, imm32' sign extends imm32 */
|
|
b1 = add_1mod(0x48, dst_reg);
|
|
b2 = 0xC7;
|
|
b3 = 0xC0;
|
|
EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32);
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* Optimization: if imm32 is zero, use 'xor %eax, %eax'
|
|
* to save 3 bytes.
|
|
*/
|
|
if (imm32 == 0) {
|
|
if (is_ereg(dst_reg))
|
|
EMIT1(add_2mod(0x40, dst_reg, dst_reg));
|
|
b2 = 0x31; /* xor */
|
|
b3 = 0xC0;
|
|
EMIT2(b2, add_2reg(b3, dst_reg, dst_reg));
|
|
goto done;
|
|
}
|
|
|
|
/* mov %eax, imm32 */
|
|
if (is_ereg(dst_reg))
|
|
EMIT1(add_1mod(0x40, dst_reg));
|
|
EMIT1_off32(add_1reg(0xB8, dst_reg), imm32);
|
|
done:
|
|
*pprog = prog;
|
|
}
|
|
|
|
static void emit_mov_imm64(u8 **pprog, u32 dst_reg,
|
|
const u32 imm32_hi, const u32 imm32_lo)
|
|
{
|
|
u8 *prog = *pprog;
|
|
int cnt = 0;
|
|
|
|
if (is_uimm32(((u64)imm32_hi << 32) | (u32)imm32_lo)) {
|
|
/*
|
|
* For emitting plain u32, where sign bit must not be
|
|
* propagated LLVM tends to load imm64 over mov32
|
|
* directly, so save couple of bytes by just doing
|
|
* 'mov %eax, imm32' instead.
|
|
*/
|
|
emit_mov_imm32(&prog, false, dst_reg, imm32_lo);
|
|
} else {
|
|
/* movabsq %rax, imm64 */
|
|
EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg));
|
|
EMIT(imm32_lo, 4);
|
|
EMIT(imm32_hi, 4);
|
|
}
|
|
|
|
*pprog = prog;
|
|
}
|
|
|
|
static void emit_mov_reg(u8 **pprog, bool is64, u32 dst_reg, u32 src_reg)
|
|
{
|
|
u8 *prog = *pprog;
|
|
int cnt = 0;
|
|
|
|
if (is64) {
|
|
/* mov dst, src */
|
|
EMIT_mov(dst_reg, src_reg);
|
|
} else {
|
|
/* mov32 dst, src */
|
|
if (is_ereg(dst_reg) || is_ereg(src_reg))
|
|
EMIT1(add_2mod(0x40, dst_reg, src_reg));
|
|
EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg));
|
|
}
|
|
|
|
*pprog = prog;
|
|
}
|
|
|
|
/* Emit the suffix (ModR/M etc) for addressing *(ptr_reg + off) and val_reg */
|
|
static void emit_insn_suffix(u8 **pprog, u32 ptr_reg, u32 val_reg, int off)
|
|
{
|
|
u8 *prog = *pprog;
|
|
int cnt = 0;
|
|
|
|
if (is_imm8(off)) {
|
|
/* 1-byte signed displacement.
|
|
*
|
|
* If off == 0 we could skip this and save one extra byte, but
|
|
* special case of x86 R13 which always needs an offset is not
|
|
* worth the hassle
|
|
*/
|
|
EMIT2(add_2reg(0x40, ptr_reg, val_reg), off);
|
|
} else {
|
|
/* 4-byte signed displacement */
|
|
EMIT1_off32(add_2reg(0x80, ptr_reg, val_reg), off);
|
|
}
|
|
*pprog = prog;
|
|
}
|
|
|
|
/*
|
|
* Emit a REX byte if it will be necessary to address these registers
|
|
*/
|
|
static void maybe_emit_mod(u8 **pprog, u32 dst_reg, u32 src_reg, bool is64)
|
|
{
|
|
u8 *prog = *pprog;
|
|
int cnt = 0;
|
|
|
|
if (is64)
|
|
EMIT1(add_2mod(0x48, dst_reg, src_reg));
|
|
else if (is_ereg(dst_reg) || is_ereg(src_reg))
|
|
EMIT1(add_2mod(0x40, dst_reg, src_reg));
|
|
*pprog = prog;
|
|
}
|
|
|
|
/* LDX: dst_reg = *(u8*)(src_reg + off) */
|
|
static void emit_ldx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
|
|
{
|
|
u8 *prog = *pprog;
|
|
int cnt = 0;
|
|
|
|
switch (size) {
|
|
case BPF_B:
|
|
/* Emit 'movzx rax, byte ptr [rax + off]' */
|
|
EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6);
|
|
break;
|
|
case BPF_H:
|
|
/* Emit 'movzx rax, word ptr [rax + off]' */
|
|
EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7);
|
|
break;
|
|
case BPF_W:
|
|
/* Emit 'mov eax, dword ptr [rax+0x14]' */
|
|
if (is_ereg(dst_reg) || is_ereg(src_reg))
|
|
EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B);
|
|
else
|
|
EMIT1(0x8B);
|
|
break;
|
|
case BPF_DW:
|
|
/* Emit 'mov rax, qword ptr [rax+0x14]' */
|
|
EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B);
|
|
break;
|
|
}
|
|
emit_insn_suffix(&prog, src_reg, dst_reg, off);
|
|
*pprog = prog;
|
|
}
|
|
|
|
/* STX: *(u8*)(dst_reg + off) = src_reg */
|
|
static void emit_stx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
|
|
{
|
|
u8 *prog = *pprog;
|
|
int cnt = 0;
|
|
|
|
switch (size) {
|
|
case BPF_B:
|
|
/* Emit 'mov byte ptr [rax + off], al' */
|
|
if (is_ereg(dst_reg) || is_ereg_8l(src_reg))
|
|
/* Add extra byte for eregs or SIL,DIL,BPL in src_reg */
|
|
EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88);
|
|
else
|
|
EMIT1(0x88);
|
|
break;
|
|
case BPF_H:
|
|
if (is_ereg(dst_reg) || is_ereg(src_reg))
|
|
EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89);
|
|
else
|
|
EMIT2(0x66, 0x89);
|
|
break;
|
|
case BPF_W:
|
|
if (is_ereg(dst_reg) || is_ereg(src_reg))
|
|
EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89);
|
|
else
|
|
EMIT1(0x89);
|
|
break;
|
|
case BPF_DW:
|
|
EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89);
|
|
break;
|
|
}
|
|
emit_insn_suffix(&prog, dst_reg, src_reg, off);
|
|
*pprog = prog;
|
|
}
|
|
|
|
static int emit_atomic(u8 **pprog, u8 atomic_op,
|
|
u32 dst_reg, u32 src_reg, s16 off, u8 bpf_size)
|
|
{
|
|
u8 *prog = *pprog;
|
|
int cnt = 0;
|
|
|
|
EMIT1(0xF0); /* lock prefix */
|
|
|
|
maybe_emit_mod(&prog, dst_reg, src_reg, bpf_size == BPF_DW);
|
|
|
|
/* emit opcode */
|
|
switch (atomic_op) {
|
|
case BPF_ADD:
|
|
case BPF_SUB:
|
|
case BPF_AND:
|
|
case BPF_OR:
|
|
case BPF_XOR:
|
|
/* lock *(u32/u64*)(dst_reg + off) <op>= src_reg */
|
|
EMIT1(simple_alu_opcodes[atomic_op]);
|
|
break;
|
|
case BPF_ADD | BPF_FETCH:
|
|
/* src_reg = atomic_fetch_add(dst_reg + off, src_reg); */
|
|
EMIT2(0x0F, 0xC1);
|
|
break;
|
|
case BPF_XCHG:
|
|
/* src_reg = atomic_xchg(dst_reg + off, src_reg); */
|
|
EMIT1(0x87);
|
|
break;
|
|
case BPF_CMPXCHG:
|
|
/* r0 = atomic_cmpxchg(dst_reg + off, r0, src_reg); */
|
|
EMIT2(0x0F, 0xB1);
|
|
break;
|
|
default:
|
|
pr_err("bpf_jit: unknown atomic opcode %02x\n", atomic_op);
|
|
return -EFAULT;
|
|
}
|
|
|
|
emit_insn_suffix(&prog, dst_reg, src_reg, off);
|
|
|
|
*pprog = prog;
|
|
return 0;
|
|
}
|
|
|
|
static bool ex_handler_bpf(const struct exception_table_entry *x,
|
|
struct pt_regs *regs, int trapnr,
|
|
unsigned long error_code, unsigned long fault_addr)
|
|
{
|
|
u32 reg = x->fixup >> 8;
|
|
|
|
/* jump over faulting load and clear dest register */
|
|
*(unsigned long *)((void *)regs + reg) = 0;
|
|
regs->ip += x->fixup & 0xff;
|
|
return true;
|
|
}
|
|
|
|
static void detect_reg_usage(struct bpf_insn *insn, int insn_cnt,
|
|
bool *regs_used, bool *tail_call_seen)
|
|
{
|
|
int i;
|
|
|
|
for (i = 1; i <= insn_cnt; i++, insn++) {
|
|
if (insn->code == (BPF_JMP | BPF_TAIL_CALL))
|
|
*tail_call_seen = true;
|
|
if (insn->dst_reg == BPF_REG_6 || insn->src_reg == BPF_REG_6)
|
|
regs_used[0] = true;
|
|
if (insn->dst_reg == BPF_REG_7 || insn->src_reg == BPF_REG_7)
|
|
regs_used[1] = true;
|
|
if (insn->dst_reg == BPF_REG_8 || insn->src_reg == BPF_REG_8)
|
|
regs_used[2] = true;
|
|
if (insn->dst_reg == BPF_REG_9 || insn->src_reg == BPF_REG_9)
|
|
regs_used[3] = true;
|
|
}
|
|
}
|
|
|
|
static int emit_nops(u8 **pprog, int len)
|
|
{
|
|
u8 *prog = *pprog;
|
|
int i, noplen, cnt = 0;
|
|
|
|
while (len > 0) {
|
|
noplen = len;
|
|
|
|
if (noplen > ASM_NOP_MAX)
|
|
noplen = ASM_NOP_MAX;
|
|
|
|
for (i = 0; i < noplen; i++)
|
|
EMIT1(ideal_nops[noplen][i]);
|
|
len -= noplen;
|
|
}
|
|
|
|
*pprog = prog;
|
|
|
|
return cnt;
|
|
}
|
|
|
|
#define INSN_SZ_DIFF (((addrs[i] - addrs[i - 1]) - (prog - temp)))
|
|
|
|
static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image,
|
|
int oldproglen, struct jit_context *ctx, bool jmp_padding)
|
|
{
|
|
bool tail_call_reachable = bpf_prog->aux->tail_call_reachable;
|
|
struct bpf_insn *insn = bpf_prog->insnsi;
|
|
bool callee_regs_used[4] = {};
|
|
int insn_cnt = bpf_prog->len;
|
|
bool tail_call_seen = false;
|
|
bool seen_exit = false;
|
|
u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
|
|
int i, cnt = 0, excnt = 0;
|
|
int ilen, proglen = 0;
|
|
u8 *prog = temp;
|
|
int err;
|
|
|
|
detect_reg_usage(insn, insn_cnt, callee_regs_used,
|
|
&tail_call_seen);
|
|
|
|
/* tail call's presence in current prog implies it is reachable */
|
|
tail_call_reachable |= tail_call_seen;
|
|
|
|
emit_prologue(&prog, bpf_prog->aux->stack_depth,
|
|
bpf_prog_was_classic(bpf_prog), tail_call_reachable,
|
|
bpf_prog->aux->func_idx != 0);
|
|
push_callee_regs(&prog, callee_regs_used);
|
|
|
|
ilen = prog - temp;
|
|
if (image)
|
|
memcpy(image + proglen, temp, ilen);
|
|
proglen += ilen;
|
|
addrs[0] = proglen;
|
|
prog = temp;
|
|
|
|
for (i = 1; i <= insn_cnt; i++, insn++) {
|
|
const s32 imm32 = insn->imm;
|
|
u32 dst_reg = insn->dst_reg;
|
|
u32 src_reg = insn->src_reg;
|
|
u8 b2 = 0, b3 = 0;
|
|
s64 jmp_offset;
|
|
u8 jmp_cond;
|
|
u8 *func;
|
|
int nops;
|
|
|
|
switch (insn->code) {
|
|
/* ALU */
|
|
case BPF_ALU | BPF_ADD | BPF_X:
|
|
case BPF_ALU | BPF_SUB | BPF_X:
|
|
case BPF_ALU | BPF_AND | BPF_X:
|
|
case BPF_ALU | BPF_OR | BPF_X:
|
|
case BPF_ALU | BPF_XOR | BPF_X:
|
|
case BPF_ALU64 | BPF_ADD | BPF_X:
|
|
case BPF_ALU64 | BPF_SUB | BPF_X:
|
|
case BPF_ALU64 | BPF_AND | BPF_X:
|
|
case BPF_ALU64 | BPF_OR | BPF_X:
|
|
case BPF_ALU64 | BPF_XOR | BPF_X:
|
|
maybe_emit_mod(&prog, dst_reg, src_reg,
|
|
BPF_CLASS(insn->code) == BPF_ALU64);
|
|
b2 = simple_alu_opcodes[BPF_OP(insn->code)];
|
|
EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg));
|
|
break;
|
|
|
|
case BPF_ALU64 | BPF_MOV | BPF_X:
|
|
case BPF_ALU | BPF_MOV | BPF_X:
|
|
emit_mov_reg(&prog,
|
|
BPF_CLASS(insn->code) == BPF_ALU64,
|
|
dst_reg, src_reg);
|
|
break;
|
|
|
|
/* neg dst */
|
|
case BPF_ALU | BPF_NEG:
|
|
case BPF_ALU64 | BPF_NEG:
|
|
if (BPF_CLASS(insn->code) == BPF_ALU64)
|
|
EMIT1(add_1mod(0x48, dst_reg));
|
|
else if (is_ereg(dst_reg))
|
|
EMIT1(add_1mod(0x40, dst_reg));
|
|
EMIT2(0xF7, add_1reg(0xD8, dst_reg));
|
|
break;
|
|
|
|
case BPF_ALU | BPF_ADD | BPF_K:
|
|
case BPF_ALU | BPF_SUB | BPF_K:
|
|
case BPF_ALU | BPF_AND | BPF_K:
|
|
case BPF_ALU | BPF_OR | BPF_K:
|
|
case BPF_ALU | BPF_XOR | BPF_K:
|
|
case BPF_ALU64 | BPF_ADD | BPF_K:
|
|
case BPF_ALU64 | BPF_SUB | BPF_K:
|
|
case BPF_ALU64 | BPF_AND | BPF_K:
|
|
case BPF_ALU64 | BPF_OR | BPF_K:
|
|
case BPF_ALU64 | BPF_XOR | BPF_K:
|
|
if (BPF_CLASS(insn->code) == BPF_ALU64)
|
|
EMIT1(add_1mod(0x48, dst_reg));
|
|
else if (is_ereg(dst_reg))
|
|
EMIT1(add_1mod(0x40, dst_reg));
|
|
|
|
/*
|
|
* b3 holds 'normal' opcode, b2 short form only valid
|
|
* in case dst is eax/rax.
|
|
*/
|
|
switch (BPF_OP(insn->code)) {
|
|
case BPF_ADD:
|
|
b3 = 0xC0;
|
|
b2 = 0x05;
|
|
break;
|
|
case BPF_SUB:
|
|
b3 = 0xE8;
|
|
b2 = 0x2D;
|
|
break;
|
|
case BPF_AND:
|
|
b3 = 0xE0;
|
|
b2 = 0x25;
|
|
break;
|
|
case BPF_OR:
|
|
b3 = 0xC8;
|
|
b2 = 0x0D;
|
|
break;
|
|
case BPF_XOR:
|
|
b3 = 0xF0;
|
|
b2 = 0x35;
|
|
break;
|
|
}
|
|
|
|
if (is_imm8(imm32))
|
|
EMIT3(0x83, add_1reg(b3, dst_reg), imm32);
|
|
else if (is_axreg(dst_reg))
|
|
EMIT1_off32(b2, imm32);
|
|
else
|
|
EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32);
|
|
break;
|
|
|
|
case BPF_ALU64 | BPF_MOV | BPF_K:
|
|
case BPF_ALU | BPF_MOV | BPF_K:
|
|
emit_mov_imm32(&prog, BPF_CLASS(insn->code) == BPF_ALU64,
|
|
dst_reg, imm32);
|
|
break;
|
|
|
|
case BPF_LD | BPF_IMM | BPF_DW:
|
|
emit_mov_imm64(&prog, dst_reg, insn[1].imm, insn[0].imm);
|
|
insn++;
|
|
i++;
|
|
break;
|
|
|
|
/* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */
|
|
case BPF_ALU | BPF_MOD | BPF_X:
|
|
case BPF_ALU | BPF_DIV | BPF_X:
|
|
case BPF_ALU | BPF_MOD | BPF_K:
|
|
case BPF_ALU | BPF_DIV | BPF_K:
|
|
case BPF_ALU64 | BPF_MOD | BPF_X:
|
|
case BPF_ALU64 | BPF_DIV | BPF_X:
|
|
case BPF_ALU64 | BPF_MOD | BPF_K:
|
|
case BPF_ALU64 | BPF_DIV | BPF_K:
|
|
EMIT1(0x50); /* push rax */
|
|
EMIT1(0x52); /* push rdx */
|
|
|
|
if (BPF_SRC(insn->code) == BPF_X)
|
|
/* mov r11, src_reg */
|
|
EMIT_mov(AUX_REG, src_reg);
|
|
else
|
|
/* mov r11, imm32 */
|
|
EMIT3_off32(0x49, 0xC7, 0xC3, imm32);
|
|
|
|
/* mov rax, dst_reg */
|
|
EMIT_mov(BPF_REG_0, dst_reg);
|
|
|
|
/*
|
|
* xor edx, edx
|
|
* equivalent to 'xor rdx, rdx', but one byte less
|
|
*/
|
|
EMIT2(0x31, 0xd2);
|
|
|
|
if (BPF_CLASS(insn->code) == BPF_ALU64)
|
|
/* div r11 */
|
|
EMIT3(0x49, 0xF7, 0xF3);
|
|
else
|
|
/* div r11d */
|
|
EMIT3(0x41, 0xF7, 0xF3);
|
|
|
|
if (BPF_OP(insn->code) == BPF_MOD)
|
|
/* mov r11, rdx */
|
|
EMIT3(0x49, 0x89, 0xD3);
|
|
else
|
|
/* mov r11, rax */
|
|
EMIT3(0x49, 0x89, 0xC3);
|
|
|
|
EMIT1(0x5A); /* pop rdx */
|
|
EMIT1(0x58); /* pop rax */
|
|
|
|
/* mov dst_reg, r11 */
|
|
EMIT_mov(dst_reg, AUX_REG);
|
|
break;
|
|
|
|
case BPF_ALU | BPF_MUL | BPF_K:
|
|
case BPF_ALU | BPF_MUL | BPF_X:
|
|
case BPF_ALU64 | BPF_MUL | BPF_K:
|
|
case BPF_ALU64 | BPF_MUL | BPF_X:
|
|
{
|
|
bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
|
|
|
|
if (dst_reg != BPF_REG_0)
|
|
EMIT1(0x50); /* push rax */
|
|
if (dst_reg != BPF_REG_3)
|
|
EMIT1(0x52); /* push rdx */
|
|
|
|
/* mov r11, dst_reg */
|
|
EMIT_mov(AUX_REG, dst_reg);
|
|
|
|
if (BPF_SRC(insn->code) == BPF_X)
|
|
emit_mov_reg(&prog, is64, BPF_REG_0, src_reg);
|
|
else
|
|
emit_mov_imm32(&prog, is64, BPF_REG_0, imm32);
|
|
|
|
if (is64)
|
|
EMIT1(add_1mod(0x48, AUX_REG));
|
|
else if (is_ereg(AUX_REG))
|
|
EMIT1(add_1mod(0x40, AUX_REG));
|
|
/* mul(q) r11 */
|
|
EMIT2(0xF7, add_1reg(0xE0, AUX_REG));
|
|
|
|
if (dst_reg != BPF_REG_3)
|
|
EMIT1(0x5A); /* pop rdx */
|
|
if (dst_reg != BPF_REG_0) {
|
|
/* mov dst_reg, rax */
|
|
EMIT_mov(dst_reg, BPF_REG_0);
|
|
EMIT1(0x58); /* pop rax */
|
|
}
|
|
break;
|
|
}
|
|
/* Shifts */
|
|
case BPF_ALU | BPF_LSH | BPF_K:
|
|
case BPF_ALU | BPF_RSH | BPF_K:
|
|
case BPF_ALU | BPF_ARSH | BPF_K:
|
|
case BPF_ALU64 | BPF_LSH | BPF_K:
|
|
case BPF_ALU64 | BPF_RSH | BPF_K:
|
|
case BPF_ALU64 | BPF_ARSH | BPF_K:
|
|
if (BPF_CLASS(insn->code) == BPF_ALU64)
|
|
EMIT1(add_1mod(0x48, dst_reg));
|
|
else if (is_ereg(dst_reg))
|
|
EMIT1(add_1mod(0x40, dst_reg));
|
|
|
|
b3 = simple_alu_opcodes[BPF_OP(insn->code)];
|
|
if (imm32 == 1)
|
|
EMIT2(0xD1, add_1reg(b3, dst_reg));
|
|
else
|
|
EMIT3(0xC1, add_1reg(b3, dst_reg), imm32);
|
|
break;
|
|
|
|
case BPF_ALU | BPF_LSH | BPF_X:
|
|
case BPF_ALU | BPF_RSH | BPF_X:
|
|
case BPF_ALU | BPF_ARSH | BPF_X:
|
|
case BPF_ALU64 | BPF_LSH | BPF_X:
|
|
case BPF_ALU64 | BPF_RSH | BPF_X:
|
|
case BPF_ALU64 | BPF_ARSH | BPF_X:
|
|
|
|
/* Check for bad case when dst_reg == rcx */
|
|
if (dst_reg == BPF_REG_4) {
|
|
/* mov r11, dst_reg */
|
|
EMIT_mov(AUX_REG, dst_reg);
|
|
dst_reg = AUX_REG;
|
|
}
|
|
|
|
if (src_reg != BPF_REG_4) { /* common case */
|
|
EMIT1(0x51); /* push rcx */
|
|
|
|
/* mov rcx, src_reg */
|
|
EMIT_mov(BPF_REG_4, src_reg);
|
|
}
|
|
|
|
/* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */
|
|
if (BPF_CLASS(insn->code) == BPF_ALU64)
|
|
EMIT1(add_1mod(0x48, dst_reg));
|
|
else if (is_ereg(dst_reg))
|
|
EMIT1(add_1mod(0x40, dst_reg));
|
|
|
|
b3 = simple_alu_opcodes[BPF_OP(insn->code)];
|
|
EMIT2(0xD3, add_1reg(b3, dst_reg));
|
|
|
|
if (src_reg != BPF_REG_4)
|
|
EMIT1(0x59); /* pop rcx */
|
|
|
|
if (insn->dst_reg == BPF_REG_4)
|
|
/* mov dst_reg, r11 */
|
|
EMIT_mov(insn->dst_reg, AUX_REG);
|
|
break;
|
|
|
|
case BPF_ALU | BPF_END | BPF_FROM_BE:
|
|
switch (imm32) {
|
|
case 16:
|
|
/* Emit 'ror %ax, 8' to swap lower 2 bytes */
|
|
EMIT1(0x66);
|
|
if (is_ereg(dst_reg))
|
|
EMIT1(0x41);
|
|
EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8);
|
|
|
|
/* Emit 'movzwl eax, ax' */
|
|
if (is_ereg(dst_reg))
|
|
EMIT3(0x45, 0x0F, 0xB7);
|
|
else
|
|
EMIT2(0x0F, 0xB7);
|
|
EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
|
|
break;
|
|
case 32:
|
|
/* Emit 'bswap eax' to swap lower 4 bytes */
|
|
if (is_ereg(dst_reg))
|
|
EMIT2(0x41, 0x0F);
|
|
else
|
|
EMIT1(0x0F);
|
|
EMIT1(add_1reg(0xC8, dst_reg));
|
|
break;
|
|
case 64:
|
|
/* Emit 'bswap rax' to swap 8 bytes */
|
|
EMIT3(add_1mod(0x48, dst_reg), 0x0F,
|
|
add_1reg(0xC8, dst_reg));
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case BPF_ALU | BPF_END | BPF_FROM_LE:
|
|
switch (imm32) {
|
|
case 16:
|
|
/*
|
|
* Emit 'movzwl eax, ax' to zero extend 16-bit
|
|
* into 64 bit
|
|
*/
|
|
if (is_ereg(dst_reg))
|
|
EMIT3(0x45, 0x0F, 0xB7);
|
|
else
|
|
EMIT2(0x0F, 0xB7);
|
|
EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
|
|
break;
|
|
case 32:
|
|
/* Emit 'mov eax, eax' to clear upper 32-bits */
|
|
if (is_ereg(dst_reg))
|
|
EMIT1(0x45);
|
|
EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg));
|
|
break;
|
|
case 64:
|
|
/* nop */
|
|
break;
|
|
}
|
|
break;
|
|
|
|
/* ST: *(u8*)(dst_reg + off) = imm */
|
|
case BPF_ST | BPF_MEM | BPF_B:
|
|
if (is_ereg(dst_reg))
|
|
EMIT2(0x41, 0xC6);
|
|
else
|
|
EMIT1(0xC6);
|
|
goto st;
|
|
case BPF_ST | BPF_MEM | BPF_H:
|
|
if (is_ereg(dst_reg))
|
|
EMIT3(0x66, 0x41, 0xC7);
|
|
else
|
|
EMIT2(0x66, 0xC7);
|
|
goto st;
|
|
case BPF_ST | BPF_MEM | BPF_W:
|
|
if (is_ereg(dst_reg))
|
|
EMIT2(0x41, 0xC7);
|
|
else
|
|
EMIT1(0xC7);
|
|
goto st;
|
|
case BPF_ST | BPF_MEM | BPF_DW:
|
|
EMIT2(add_1mod(0x48, dst_reg), 0xC7);
|
|
|
|
st: if (is_imm8(insn->off))
|
|
EMIT2(add_1reg(0x40, dst_reg), insn->off);
|
|
else
|
|
EMIT1_off32(add_1reg(0x80, dst_reg), insn->off);
|
|
|
|
EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code)));
|
|
break;
|
|
|
|
/* STX: *(u8*)(dst_reg + off) = src_reg */
|
|
case BPF_STX | BPF_MEM | BPF_B:
|
|
case BPF_STX | BPF_MEM | BPF_H:
|
|
case BPF_STX | BPF_MEM | BPF_W:
|
|
case BPF_STX | BPF_MEM | BPF_DW:
|
|
emit_stx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
|
|
break;
|
|
|
|
/* LDX: dst_reg = *(u8*)(src_reg + off) */
|
|
case BPF_LDX | BPF_MEM | BPF_B:
|
|
case BPF_LDX | BPF_PROBE_MEM | BPF_B:
|
|
case BPF_LDX | BPF_MEM | BPF_H:
|
|
case BPF_LDX | BPF_PROBE_MEM | BPF_H:
|
|
case BPF_LDX | BPF_MEM | BPF_W:
|
|
case BPF_LDX | BPF_PROBE_MEM | BPF_W:
|
|
case BPF_LDX | BPF_MEM | BPF_DW:
|
|
case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
|
|
emit_ldx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
|
|
if (BPF_MODE(insn->code) == BPF_PROBE_MEM) {
|
|
struct exception_table_entry *ex;
|
|
u8 *_insn = image + proglen;
|
|
s64 delta;
|
|
|
|
if (!bpf_prog->aux->extable)
|
|
break;
|
|
|
|
if (excnt >= bpf_prog->aux->num_exentries) {
|
|
pr_err("ex gen bug\n");
|
|
return -EFAULT;
|
|
}
|
|
ex = &bpf_prog->aux->extable[excnt++];
|
|
|
|
delta = _insn - (u8 *)&ex->insn;
|
|
if (!is_simm32(delta)) {
|
|
pr_err("extable->insn doesn't fit into 32-bit\n");
|
|
return -EFAULT;
|
|
}
|
|
ex->insn = delta;
|
|
|
|
delta = (u8 *)ex_handler_bpf - (u8 *)&ex->handler;
|
|
if (!is_simm32(delta)) {
|
|
pr_err("extable->handler doesn't fit into 32-bit\n");
|
|
return -EFAULT;
|
|
}
|
|
ex->handler = delta;
|
|
|
|
if (dst_reg > BPF_REG_9) {
|
|
pr_err("verifier error\n");
|
|
return -EFAULT;
|
|
}
|
|
/*
|
|
* Compute size of x86 insn and its target dest x86 register.
|
|
* ex_handler_bpf() will use lower 8 bits to adjust
|
|
* pt_regs->ip to jump over this x86 instruction
|
|
* and upper bits to figure out which pt_regs to zero out.
|
|
* End result: x86 insn "mov rbx, qword ptr [rax+0x14]"
|
|
* of 4 bytes will be ignored and rbx will be zero inited.
|
|
*/
|
|
ex->fixup = (prog - temp) | (reg2pt_regs[dst_reg] << 8);
|
|
}
|
|
break;
|
|
|
|
case BPF_STX | BPF_ATOMIC | BPF_W:
|
|
case BPF_STX | BPF_ATOMIC | BPF_DW:
|
|
if (insn->imm == (BPF_AND | BPF_FETCH) ||
|
|
insn->imm == (BPF_OR | BPF_FETCH) ||
|
|
insn->imm == (BPF_XOR | BPF_FETCH)) {
|
|
u8 *branch_target;
|
|
bool is64 = BPF_SIZE(insn->code) == BPF_DW;
|
|
|
|
/*
|
|
* Can't be implemented with a single x86 insn.
|
|
* Need to do a CMPXCHG loop.
|
|
*/
|
|
|
|
/* Will need RAX as a CMPXCHG operand so save R0 */
|
|
emit_mov_reg(&prog, true, BPF_REG_AX, BPF_REG_0);
|
|
branch_target = prog;
|
|
/* Load old value */
|
|
emit_ldx(&prog, BPF_SIZE(insn->code),
|
|
BPF_REG_0, dst_reg, insn->off);
|
|
/*
|
|
* Perform the (commutative) operation locally,
|
|
* put the result in the AUX_REG.
|
|
*/
|
|
emit_mov_reg(&prog, is64, AUX_REG, BPF_REG_0);
|
|
maybe_emit_mod(&prog, AUX_REG, src_reg, is64);
|
|
EMIT2(simple_alu_opcodes[BPF_OP(insn->imm)],
|
|
add_2reg(0xC0, AUX_REG, src_reg));
|
|
/* Attempt to swap in new value */
|
|
err = emit_atomic(&prog, BPF_CMPXCHG,
|
|
dst_reg, AUX_REG, insn->off,
|
|
BPF_SIZE(insn->code));
|
|
if (WARN_ON(err))
|
|
return err;
|
|
/*
|
|
* ZF tells us whether we won the race. If it's
|
|
* cleared we need to try again.
|
|
*/
|
|
EMIT2(X86_JNE, -(prog - branch_target) - 2);
|
|
/* Return the pre-modification value */
|
|
emit_mov_reg(&prog, is64, src_reg, BPF_REG_0);
|
|
/* Restore R0 after clobbering RAX */
|
|
emit_mov_reg(&prog, true, BPF_REG_0, BPF_REG_AX);
|
|
break;
|
|
|
|
}
|
|
|
|
err = emit_atomic(&prog, insn->imm, dst_reg, src_reg,
|
|
insn->off, BPF_SIZE(insn->code));
|
|
if (err)
|
|
return err;
|
|
break;
|
|
|
|
/* call */
|
|
case BPF_JMP | BPF_CALL:
|
|
func = (u8 *) __bpf_call_base + imm32;
|
|
if (tail_call_reachable) {
|
|
EMIT3_off32(0x48, 0x8B, 0x85,
|
|
-(bpf_prog->aux->stack_depth + 8));
|
|
if (!imm32 || emit_call(&prog, func, image + addrs[i - 1] + 7))
|
|
return -EINVAL;
|
|
} else {
|
|
if (!imm32 || emit_call(&prog, func, image + addrs[i - 1]))
|
|
return -EINVAL;
|
|
}
|
|
break;
|
|
|
|
case BPF_JMP | BPF_TAIL_CALL:
|
|
if (imm32)
|
|
emit_bpf_tail_call_direct(&bpf_prog->aux->poke_tab[imm32 - 1],
|
|
&prog, addrs[i], image,
|
|
callee_regs_used,
|
|
bpf_prog->aux->stack_depth);
|
|
else
|
|
emit_bpf_tail_call_indirect(&prog,
|
|
callee_regs_used,
|
|
bpf_prog->aux->stack_depth);
|
|
break;
|
|
|
|
/* cond jump */
|
|
case BPF_JMP | BPF_JEQ | BPF_X:
|
|
case BPF_JMP | BPF_JNE | BPF_X:
|
|
case BPF_JMP | BPF_JGT | BPF_X:
|
|
case BPF_JMP | BPF_JLT | BPF_X:
|
|
case BPF_JMP | BPF_JGE | BPF_X:
|
|
case BPF_JMP | BPF_JLE | BPF_X:
|
|
case BPF_JMP | BPF_JSGT | BPF_X:
|
|
case BPF_JMP | BPF_JSLT | BPF_X:
|
|
case BPF_JMP | BPF_JSGE | BPF_X:
|
|
case BPF_JMP | BPF_JSLE | BPF_X:
|
|
case BPF_JMP32 | BPF_JEQ | BPF_X:
|
|
case BPF_JMP32 | BPF_JNE | BPF_X:
|
|
case BPF_JMP32 | BPF_JGT | BPF_X:
|
|
case BPF_JMP32 | BPF_JLT | BPF_X:
|
|
case BPF_JMP32 | BPF_JGE | BPF_X:
|
|
case BPF_JMP32 | BPF_JLE | BPF_X:
|
|
case BPF_JMP32 | BPF_JSGT | BPF_X:
|
|
case BPF_JMP32 | BPF_JSLT | BPF_X:
|
|
case BPF_JMP32 | BPF_JSGE | BPF_X:
|
|
case BPF_JMP32 | BPF_JSLE | BPF_X:
|
|
/* cmp dst_reg, src_reg */
|
|
maybe_emit_mod(&prog, dst_reg, src_reg,
|
|
BPF_CLASS(insn->code) == BPF_JMP);
|
|
EMIT2(0x39, add_2reg(0xC0, dst_reg, src_reg));
|
|
goto emit_cond_jmp;
|
|
|
|
case BPF_JMP | BPF_JSET | BPF_X:
|
|
case BPF_JMP32 | BPF_JSET | BPF_X:
|
|
/* test dst_reg, src_reg */
|
|
maybe_emit_mod(&prog, dst_reg, src_reg,
|
|
BPF_CLASS(insn->code) == BPF_JMP);
|
|
EMIT2(0x85, add_2reg(0xC0, dst_reg, src_reg));
|
|
goto emit_cond_jmp;
|
|
|
|
case BPF_JMP | BPF_JSET | BPF_K:
|
|
case BPF_JMP32 | BPF_JSET | BPF_K:
|
|
/* test dst_reg, imm32 */
|
|
if (BPF_CLASS(insn->code) == BPF_JMP)
|
|
EMIT1(add_1mod(0x48, dst_reg));
|
|
else if (is_ereg(dst_reg))
|
|
EMIT1(add_1mod(0x40, dst_reg));
|
|
EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32);
|
|
goto emit_cond_jmp;
|
|
|
|
case BPF_JMP | BPF_JEQ | BPF_K:
|
|
case BPF_JMP | BPF_JNE | BPF_K:
|
|
case BPF_JMP | BPF_JGT | BPF_K:
|
|
case BPF_JMP | BPF_JLT | BPF_K:
|
|
case BPF_JMP | BPF_JGE | BPF_K:
|
|
case BPF_JMP | BPF_JLE | BPF_K:
|
|
case BPF_JMP | BPF_JSGT | BPF_K:
|
|
case BPF_JMP | BPF_JSLT | BPF_K:
|
|
case BPF_JMP | BPF_JSGE | BPF_K:
|
|
case BPF_JMP | BPF_JSLE | BPF_K:
|
|
case BPF_JMP32 | BPF_JEQ | BPF_K:
|
|
case BPF_JMP32 | BPF_JNE | BPF_K:
|
|
case BPF_JMP32 | BPF_JGT | BPF_K:
|
|
case BPF_JMP32 | BPF_JLT | BPF_K:
|
|
case BPF_JMP32 | BPF_JGE | BPF_K:
|
|
case BPF_JMP32 | BPF_JLE | BPF_K:
|
|
case BPF_JMP32 | BPF_JSGT | BPF_K:
|
|
case BPF_JMP32 | BPF_JSLT | BPF_K:
|
|
case BPF_JMP32 | BPF_JSGE | BPF_K:
|
|
case BPF_JMP32 | BPF_JSLE | BPF_K:
|
|
/* test dst_reg, dst_reg to save one extra byte */
|
|
if (imm32 == 0) {
|
|
maybe_emit_mod(&prog, dst_reg, dst_reg,
|
|
BPF_CLASS(insn->code) == BPF_JMP);
|
|
EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg));
|
|
goto emit_cond_jmp;
|
|
}
|
|
|
|
/* cmp dst_reg, imm8/32 */
|
|
if (BPF_CLASS(insn->code) == BPF_JMP)
|
|
EMIT1(add_1mod(0x48, dst_reg));
|
|
else if (is_ereg(dst_reg))
|
|
EMIT1(add_1mod(0x40, dst_reg));
|
|
|
|
if (is_imm8(imm32))
|
|
EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32);
|
|
else
|
|
EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32);
|
|
|
|
emit_cond_jmp: /* Convert BPF opcode to x86 */
|
|
switch (BPF_OP(insn->code)) {
|
|
case BPF_JEQ:
|
|
jmp_cond = X86_JE;
|
|
break;
|
|
case BPF_JSET:
|
|
case BPF_JNE:
|
|
jmp_cond = X86_JNE;
|
|
break;
|
|
case BPF_JGT:
|
|
/* GT is unsigned '>', JA in x86 */
|
|
jmp_cond = X86_JA;
|
|
break;
|
|
case BPF_JLT:
|
|
/* LT is unsigned '<', JB in x86 */
|
|
jmp_cond = X86_JB;
|
|
break;
|
|
case BPF_JGE:
|
|
/* GE is unsigned '>=', JAE in x86 */
|
|
jmp_cond = X86_JAE;
|
|
break;
|
|
case BPF_JLE:
|
|
/* LE is unsigned '<=', JBE in x86 */
|
|
jmp_cond = X86_JBE;
|
|
break;
|
|
case BPF_JSGT:
|
|
/* Signed '>', GT in x86 */
|
|
jmp_cond = X86_JG;
|
|
break;
|
|
case BPF_JSLT:
|
|
/* Signed '<', LT in x86 */
|
|
jmp_cond = X86_JL;
|
|
break;
|
|
case BPF_JSGE:
|
|
/* Signed '>=', GE in x86 */
|
|
jmp_cond = X86_JGE;
|
|
break;
|
|
case BPF_JSLE:
|
|
/* Signed '<=', LE in x86 */
|
|
jmp_cond = X86_JLE;
|
|
break;
|
|
default: /* to silence GCC warning */
|
|
return -EFAULT;
|
|
}
|
|
jmp_offset = addrs[i + insn->off] - addrs[i];
|
|
if (is_imm8(jmp_offset)) {
|
|
if (jmp_padding) {
|
|
/* To keep the jmp_offset valid, the extra bytes are
|
|
* padded before the jump insn, so we substract the
|
|
* 2 bytes of jmp_cond insn from INSN_SZ_DIFF.
|
|
*
|
|
* If the previous pass already emits an imm8
|
|
* jmp_cond, then this BPF insn won't shrink, so
|
|
* "nops" is 0.
|
|
*
|
|
* On the other hand, if the previous pass emits an
|
|
* imm32 jmp_cond, the extra 4 bytes(*) is padded to
|
|
* keep the image from shrinking further.
|
|
*
|
|
* (*) imm32 jmp_cond is 6 bytes, and imm8 jmp_cond
|
|
* is 2 bytes, so the size difference is 4 bytes.
|
|
*/
|
|
nops = INSN_SZ_DIFF - 2;
|
|
if (nops != 0 && nops != 4) {
|
|
pr_err("unexpected jmp_cond padding: %d bytes\n",
|
|
nops);
|
|
return -EFAULT;
|
|
}
|
|
cnt += emit_nops(&prog, nops);
|
|
}
|
|
EMIT2(jmp_cond, jmp_offset);
|
|
} else if (is_simm32(jmp_offset)) {
|
|
EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
|
|
} else {
|
|
pr_err("cond_jmp gen bug %llx\n", jmp_offset);
|
|
return -EFAULT;
|
|
}
|
|
|
|
break;
|
|
|
|
case BPF_JMP | BPF_JA:
|
|
if (insn->off == -1)
|
|
/* -1 jmp instructions will always jump
|
|
* backwards two bytes. Explicitly handling
|
|
* this case avoids wasting too many passes
|
|
* when there are long sequences of replaced
|
|
* dead code.
|
|
*/
|
|
jmp_offset = -2;
|
|
else
|
|
jmp_offset = addrs[i + insn->off] - addrs[i];
|
|
|
|
if (!jmp_offset) {
|
|
/*
|
|
* If jmp_padding is enabled, the extra nops will
|
|
* be inserted. Otherwise, optimize out nop jumps.
|
|
*/
|
|
if (jmp_padding) {
|
|
/* There are 3 possible conditions.
|
|
* (1) This BPF_JA is already optimized out in
|
|
* the previous run, so there is no need
|
|
* to pad any extra byte (0 byte).
|
|
* (2) The previous pass emits an imm8 jmp,
|
|
* so we pad 2 bytes to match the previous
|
|
* insn size.
|
|
* (3) Similarly, the previous pass emits an
|
|
* imm32 jmp, and 5 bytes is padded.
|
|
*/
|
|
nops = INSN_SZ_DIFF;
|
|
if (nops != 0 && nops != 2 && nops != 5) {
|
|
pr_err("unexpected nop jump padding: %d bytes\n",
|
|
nops);
|
|
return -EFAULT;
|
|
}
|
|
cnt += emit_nops(&prog, nops);
|
|
}
|
|
break;
|
|
}
|
|
emit_jmp:
|
|
if (is_imm8(jmp_offset)) {
|
|
if (jmp_padding) {
|
|
/* To avoid breaking jmp_offset, the extra bytes
|
|
* are padded before the actual jmp insn, so
|
|
* 2 bytes is substracted from INSN_SZ_DIFF.
|
|
*
|
|
* If the previous pass already emits an imm8
|
|
* jmp, there is nothing to pad (0 byte).
|
|
*
|
|
* If it emits an imm32 jmp (5 bytes) previously
|
|
* and now an imm8 jmp (2 bytes), then we pad
|
|
* (5 - 2 = 3) bytes to stop the image from
|
|
* shrinking further.
|
|
*/
|
|
nops = INSN_SZ_DIFF - 2;
|
|
if (nops != 0 && nops != 3) {
|
|
pr_err("unexpected jump padding: %d bytes\n",
|
|
nops);
|
|
return -EFAULT;
|
|
}
|
|
cnt += emit_nops(&prog, INSN_SZ_DIFF - 2);
|
|
}
|
|
EMIT2(0xEB, jmp_offset);
|
|
} else if (is_simm32(jmp_offset)) {
|
|
EMIT1_off32(0xE9, jmp_offset);
|
|
} else {
|
|
pr_err("jmp gen bug %llx\n", jmp_offset);
|
|
return -EFAULT;
|
|
}
|
|
break;
|
|
|
|
case BPF_JMP | BPF_EXIT:
|
|
if (seen_exit) {
|
|
jmp_offset = ctx->cleanup_addr - addrs[i];
|
|
goto emit_jmp;
|
|
}
|
|
seen_exit = true;
|
|
/* Update cleanup_addr */
|
|
ctx->cleanup_addr = proglen;
|
|
pop_callee_regs(&prog, callee_regs_used);
|
|
EMIT1(0xC9); /* leave */
|
|
EMIT1(0xC3); /* ret */
|
|
break;
|
|
|
|
default:
|
|
/*
|
|
* By design x86-64 JIT should support all BPF instructions.
|
|
* This error will be seen if new instruction was added
|
|
* to the interpreter, but not to the JIT, or if there is
|
|
* junk in bpf_prog.
|
|
*/
|
|
pr_err("bpf_jit: unknown opcode %02x\n", insn->code);
|
|
return -EINVAL;
|
|
}
|
|
|
|
ilen = prog - temp;
|
|
if (ilen > BPF_MAX_INSN_SIZE) {
|
|
pr_err("bpf_jit: fatal insn size error\n");
|
|
return -EFAULT;
|
|
}
|
|
|
|
if (image) {
|
|
if (unlikely(proglen + ilen > oldproglen)) {
|
|
pr_err("bpf_jit: fatal error\n");
|
|
return -EFAULT;
|
|
}
|
|
memcpy(image + proglen, temp, ilen);
|
|
}
|
|
proglen += ilen;
|
|
addrs[i] = proglen;
|
|
prog = temp;
|
|
}
|
|
|
|
if (image && excnt != bpf_prog->aux->num_exentries) {
|
|
pr_err("extable is not populated\n");
|
|
return -EFAULT;
|
|
}
|
|
return proglen;
|
|
}
|
|
|
|
static void save_regs(const struct btf_func_model *m, u8 **prog, int nr_args,
|
|
int stack_size)
|
|
{
|
|
int i;
|
|
/* Store function arguments to stack.
|
|
* For a function that accepts two pointers the sequence will be:
|
|
* mov QWORD PTR [rbp-0x10],rdi
|
|
* mov QWORD PTR [rbp-0x8],rsi
|
|
*/
|
|
for (i = 0; i < min(nr_args, 6); i++)
|
|
emit_stx(prog, bytes_to_bpf_size(m->arg_size[i]),
|
|
BPF_REG_FP,
|
|
i == 5 ? X86_REG_R9 : BPF_REG_1 + i,
|
|
-(stack_size - i * 8));
|
|
}
|
|
|
|
static void restore_regs(const struct btf_func_model *m, u8 **prog, int nr_args,
|
|
int stack_size)
|
|
{
|
|
int i;
|
|
|
|
/* Restore function arguments from stack.
|
|
* For a function that accepts two pointers the sequence will be:
|
|
* EMIT4(0x48, 0x8B, 0x7D, 0xF0); mov rdi,QWORD PTR [rbp-0x10]
|
|
* EMIT4(0x48, 0x8B, 0x75, 0xF8); mov rsi,QWORD PTR [rbp-0x8]
|
|
*/
|
|
for (i = 0; i < min(nr_args, 6); i++)
|
|
emit_ldx(prog, bytes_to_bpf_size(m->arg_size[i]),
|
|
i == 5 ? X86_REG_R9 : BPF_REG_1 + i,
|
|
BPF_REG_FP,
|
|
-(stack_size - i * 8));
|
|
}
|
|
|
|
static int invoke_bpf_prog(const struct btf_func_model *m, u8 **pprog,
|
|
struct bpf_prog *p, int stack_size, bool mod_ret)
|
|
{
|
|
u8 *prog = *pprog;
|
|
int cnt = 0;
|
|
|
|
if (p->aux->sleepable) {
|
|
if (emit_call(&prog, __bpf_prog_enter_sleepable, prog))
|
|
return -EINVAL;
|
|
} else {
|
|
if (emit_call(&prog, __bpf_prog_enter, prog))
|
|
return -EINVAL;
|
|
/* remember prog start time returned by __bpf_prog_enter */
|
|
emit_mov_reg(&prog, true, BPF_REG_6, BPF_REG_0);
|
|
}
|
|
|
|
/* arg1: lea rdi, [rbp - stack_size] */
|
|
EMIT4(0x48, 0x8D, 0x7D, -stack_size);
|
|
/* arg2: progs[i]->insnsi for interpreter */
|
|
if (!p->jited)
|
|
emit_mov_imm64(&prog, BPF_REG_2,
|
|
(long) p->insnsi >> 32,
|
|
(u32) (long) p->insnsi);
|
|
/* call JITed bpf program or interpreter */
|
|
if (emit_call(&prog, p->bpf_func, prog))
|
|
return -EINVAL;
|
|
|
|
/* BPF_TRAMP_MODIFY_RETURN trampolines can modify the return
|
|
* of the previous call which is then passed on the stack to
|
|
* the next BPF program.
|
|
*/
|
|
if (mod_ret)
|
|
emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
|
|
|
|
if (p->aux->sleepable) {
|
|
if (emit_call(&prog, __bpf_prog_exit_sleepable, prog))
|
|
return -EINVAL;
|
|
} else {
|
|
/* arg1: mov rdi, progs[i] */
|
|
emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32,
|
|
(u32) (long) p);
|
|
/* arg2: mov rsi, rbx <- start time in nsec */
|
|
emit_mov_reg(&prog, true, BPF_REG_2, BPF_REG_6);
|
|
if (emit_call(&prog, __bpf_prog_exit, prog))
|
|
return -EINVAL;
|
|
}
|
|
|
|
*pprog = prog;
|
|
return 0;
|
|
}
|
|
|
|
static void emit_align(u8 **pprog, u32 align)
|
|
{
|
|
u8 *target, *prog = *pprog;
|
|
|
|
target = PTR_ALIGN(prog, align);
|
|
if (target != prog)
|
|
emit_nops(&prog, target - prog);
|
|
|
|
*pprog = prog;
|
|
}
|
|
|
|
static int emit_cond_near_jump(u8 **pprog, void *func, void *ip, u8 jmp_cond)
|
|
{
|
|
u8 *prog = *pprog;
|
|
int cnt = 0;
|
|
s64 offset;
|
|
|
|
offset = func - (ip + 2 + 4);
|
|
if (!is_simm32(offset)) {
|
|
pr_err("Target %p is out of range\n", func);
|
|
return -EINVAL;
|
|
}
|
|
EMIT2_off32(0x0F, jmp_cond + 0x10, offset);
|
|
*pprog = prog;
|
|
return 0;
|
|
}
|
|
|
|
static int invoke_bpf(const struct btf_func_model *m, u8 **pprog,
|
|
struct bpf_tramp_progs *tp, int stack_size)
|
|
{
|
|
int i;
|
|
u8 *prog = *pprog;
|
|
|
|
for (i = 0; i < tp->nr_progs; i++) {
|
|
if (invoke_bpf_prog(m, &prog, tp->progs[i], stack_size, false))
|
|
return -EINVAL;
|
|
}
|
|
*pprog = prog;
|
|
return 0;
|
|
}
|
|
|
|
static int invoke_bpf_mod_ret(const struct btf_func_model *m, u8 **pprog,
|
|
struct bpf_tramp_progs *tp, int stack_size,
|
|
u8 **branches)
|
|
{
|
|
u8 *prog = *pprog;
|
|
int i, cnt = 0;
|
|
|
|
/* The first fmod_ret program will receive a garbage return value.
|
|
* Set this to 0 to avoid confusing the program.
|
|
*/
|
|
emit_mov_imm32(&prog, false, BPF_REG_0, 0);
|
|
emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
|
|
for (i = 0; i < tp->nr_progs; i++) {
|
|
if (invoke_bpf_prog(m, &prog, tp->progs[i], stack_size, true))
|
|
return -EINVAL;
|
|
|
|
/* mod_ret prog stored return value into [rbp - 8]. Emit:
|
|
* if (*(u64 *)(rbp - 8) != 0)
|
|
* goto do_fexit;
|
|
*/
|
|
/* cmp QWORD PTR [rbp - 0x8], 0x0 */
|
|
EMIT4(0x48, 0x83, 0x7d, 0xf8); EMIT1(0x00);
|
|
|
|
/* Save the location of the branch and Generate 6 nops
|
|
* (4 bytes for an offset and 2 bytes for the jump) These nops
|
|
* are replaced with a conditional jump once do_fexit (i.e. the
|
|
* start of the fexit invocation) is finalized.
|
|
*/
|
|
branches[i] = prog;
|
|
emit_nops(&prog, 4 + 2);
|
|
}
|
|
|
|
*pprog = prog;
|
|
return 0;
|
|
}
|
|
|
|
/* Example:
|
|
* __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev);
|
|
* its 'struct btf_func_model' will be nr_args=2
|
|
* The assembly code when eth_type_trans is executing after trampoline:
|
|
*
|
|
* push rbp
|
|
* mov rbp, rsp
|
|
* sub rsp, 16 // space for skb and dev
|
|
* push rbx // temp regs to pass start time
|
|
* mov qword ptr [rbp - 16], rdi // save skb pointer to stack
|
|
* mov qword ptr [rbp - 8], rsi // save dev pointer to stack
|
|
* call __bpf_prog_enter // rcu_read_lock and preempt_disable
|
|
* mov rbx, rax // remember start time in bpf stats are enabled
|
|
* lea rdi, [rbp - 16] // R1==ctx of bpf prog
|
|
* call addr_of_jited_FENTRY_prog
|
|
* movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off
|
|
* mov rsi, rbx // prog start time
|
|
* call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math
|
|
* mov rdi, qword ptr [rbp - 16] // restore skb pointer from stack
|
|
* mov rsi, qword ptr [rbp - 8] // restore dev pointer from stack
|
|
* pop rbx
|
|
* leave
|
|
* ret
|
|
*
|
|
* eth_type_trans has 5 byte nop at the beginning. These 5 bytes will be
|
|
* replaced with 'call generated_bpf_trampoline'. When it returns
|
|
* eth_type_trans will continue executing with original skb and dev pointers.
|
|
*
|
|
* The assembly code when eth_type_trans is called from trampoline:
|
|
*
|
|
* push rbp
|
|
* mov rbp, rsp
|
|
* sub rsp, 24 // space for skb, dev, return value
|
|
* push rbx // temp regs to pass start time
|
|
* mov qword ptr [rbp - 24], rdi // save skb pointer to stack
|
|
* mov qword ptr [rbp - 16], rsi // save dev pointer to stack
|
|
* call __bpf_prog_enter // rcu_read_lock and preempt_disable
|
|
* mov rbx, rax // remember start time if bpf stats are enabled
|
|
* lea rdi, [rbp - 24] // R1==ctx of bpf prog
|
|
* call addr_of_jited_FENTRY_prog // bpf prog can access skb and dev
|
|
* movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off
|
|
* mov rsi, rbx // prog start time
|
|
* call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math
|
|
* mov rdi, qword ptr [rbp - 24] // restore skb pointer from stack
|
|
* mov rsi, qword ptr [rbp - 16] // restore dev pointer from stack
|
|
* call eth_type_trans+5 // execute body of eth_type_trans
|
|
* mov qword ptr [rbp - 8], rax // save return value
|
|
* call __bpf_prog_enter // rcu_read_lock and preempt_disable
|
|
* mov rbx, rax // remember start time in bpf stats are enabled
|
|
* lea rdi, [rbp - 24] // R1==ctx of bpf prog
|
|
* call addr_of_jited_FEXIT_prog // bpf prog can access skb, dev, return value
|
|
* movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off
|
|
* mov rsi, rbx // prog start time
|
|
* call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math
|
|
* mov rax, qword ptr [rbp - 8] // restore eth_type_trans's return value
|
|
* pop rbx
|
|
* leave
|
|
* add rsp, 8 // skip eth_type_trans's frame
|
|
* ret // return to its caller
|
|
*/
|
|
int arch_prepare_bpf_trampoline(void *image, void *image_end,
|
|
const struct btf_func_model *m, u32 flags,
|
|
struct bpf_tramp_progs *tprogs,
|
|
void *orig_call)
|
|
{
|
|
int ret, i, cnt = 0, nr_args = m->nr_args;
|
|
int stack_size = nr_args * 8;
|
|
struct bpf_tramp_progs *fentry = &tprogs[BPF_TRAMP_FENTRY];
|
|
struct bpf_tramp_progs *fexit = &tprogs[BPF_TRAMP_FEXIT];
|
|
struct bpf_tramp_progs *fmod_ret = &tprogs[BPF_TRAMP_MODIFY_RETURN];
|
|
u8 **branches = NULL;
|
|
u8 *prog;
|
|
|
|
/* x86-64 supports up to 6 arguments. 7+ can be added in the future */
|
|
if (nr_args > 6)
|
|
return -ENOTSUPP;
|
|
|
|
if ((flags & BPF_TRAMP_F_RESTORE_REGS) &&
|
|
(flags & BPF_TRAMP_F_SKIP_FRAME))
|
|
return -EINVAL;
|
|
|
|
if (flags & BPF_TRAMP_F_CALL_ORIG)
|
|
stack_size += 8; /* room for return value of orig_call */
|
|
|
|
if (flags & BPF_TRAMP_F_SKIP_FRAME)
|
|
/* skip patched call instruction and point orig_call to actual
|
|
* body of the kernel function.
|
|
*/
|
|
orig_call += X86_PATCH_SIZE;
|
|
|
|
prog = image;
|
|
|
|
EMIT1(0x55); /* push rbp */
|
|
EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
|
|
EMIT4(0x48, 0x83, 0xEC, stack_size); /* sub rsp, stack_size */
|
|
EMIT1(0x53); /* push rbx */
|
|
|
|
save_regs(m, &prog, nr_args, stack_size);
|
|
|
|
if (fentry->nr_progs)
|
|
if (invoke_bpf(m, &prog, fentry, stack_size))
|
|
return -EINVAL;
|
|
|
|
if (fmod_ret->nr_progs) {
|
|
branches = kcalloc(fmod_ret->nr_progs, sizeof(u8 *),
|
|
GFP_KERNEL);
|
|
if (!branches)
|
|
return -ENOMEM;
|
|
|
|
if (invoke_bpf_mod_ret(m, &prog, fmod_ret, stack_size,
|
|
branches)) {
|
|
ret = -EINVAL;
|
|
goto cleanup;
|
|
}
|
|
}
|
|
|
|
if (flags & BPF_TRAMP_F_CALL_ORIG) {
|
|
if (fentry->nr_progs || fmod_ret->nr_progs)
|
|
restore_regs(m, &prog, nr_args, stack_size);
|
|
|
|
/* call original function */
|
|
if (emit_call(&prog, orig_call, prog)) {
|
|
ret = -EINVAL;
|
|
goto cleanup;
|
|
}
|
|
/* remember return value in a stack for bpf prog to access */
|
|
emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
|
|
}
|
|
|
|
if (fmod_ret->nr_progs) {
|
|
/* From Intel 64 and IA-32 Architectures Optimization
|
|
* Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
|
|
* Coding Rule 11: All branch targets should be 16-byte
|
|
* aligned.
|
|
*/
|
|
emit_align(&prog, 16);
|
|
/* Update the branches saved in invoke_bpf_mod_ret with the
|
|
* aligned address of do_fexit.
|
|
*/
|
|
for (i = 0; i < fmod_ret->nr_progs; i++)
|
|
emit_cond_near_jump(&branches[i], prog, branches[i],
|
|
X86_JNE);
|
|
}
|
|
|
|
if (fexit->nr_progs)
|
|
if (invoke_bpf(m, &prog, fexit, stack_size)) {
|
|
ret = -EINVAL;
|
|
goto cleanup;
|
|
}
|
|
|
|
if (flags & BPF_TRAMP_F_RESTORE_REGS)
|
|
restore_regs(m, &prog, nr_args, stack_size);
|
|
|
|
/* This needs to be done regardless. If there were fmod_ret programs,
|
|
* the return value is only updated on the stack and still needs to be
|
|
* restored to R0.
|
|
*/
|
|
if (flags & BPF_TRAMP_F_CALL_ORIG)
|
|
/* restore original return value back into RAX */
|
|
emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, -8);
|
|
|
|
EMIT1(0x5B); /* pop rbx */
|
|
EMIT1(0xC9); /* leave */
|
|
if (flags & BPF_TRAMP_F_SKIP_FRAME)
|
|
/* skip our return address and return to parent */
|
|
EMIT4(0x48, 0x83, 0xC4, 8); /* add rsp, 8 */
|
|
EMIT1(0xC3); /* ret */
|
|
/* Make sure the trampoline generation logic doesn't overflow */
|
|
if (WARN_ON_ONCE(prog > (u8 *)image_end - BPF_INSN_SAFETY)) {
|
|
ret = -EFAULT;
|
|
goto cleanup;
|
|
}
|
|
ret = prog - (u8 *)image;
|
|
|
|
cleanup:
|
|
kfree(branches);
|
|
return ret;
|
|
}
|
|
|
|
static int emit_fallback_jump(u8 **pprog)
|
|
{
|
|
u8 *prog = *pprog;
|
|
int err = 0;
|
|
|
|
#ifdef CONFIG_RETPOLINE
|
|
/* Note that this assumes the the compiler uses external
|
|
* thunks for indirect calls. Both clang and GCC use the same
|
|
* naming convention for external thunks.
|
|
*/
|
|
err = emit_jump(&prog, __x86_indirect_thunk_rdx, prog);
|
|
#else
|
|
int cnt = 0;
|
|
|
|
EMIT2(0xFF, 0xE2); /* jmp rdx */
|
|
#endif
|
|
*pprog = prog;
|
|
return err;
|
|
}
|
|
|
|
static int emit_bpf_dispatcher(u8 **pprog, int a, int b, s64 *progs)
|
|
{
|
|
u8 *jg_reloc, *prog = *pprog;
|
|
int pivot, err, jg_bytes = 1, cnt = 0;
|
|
s64 jg_offset;
|
|
|
|
if (a == b) {
|
|
/* Leaf node of recursion, i.e. not a range of indices
|
|
* anymore.
|
|
*/
|
|
EMIT1(add_1mod(0x48, BPF_REG_3)); /* cmp rdx,func */
|
|
if (!is_simm32(progs[a]))
|
|
return -1;
|
|
EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3),
|
|
progs[a]);
|
|
err = emit_cond_near_jump(&prog, /* je func */
|
|
(void *)progs[a], prog,
|
|
X86_JE);
|
|
if (err)
|
|
return err;
|
|
|
|
err = emit_fallback_jump(&prog); /* jmp thunk/indirect */
|
|
if (err)
|
|
return err;
|
|
|
|
*pprog = prog;
|
|
return 0;
|
|
}
|
|
|
|
/* Not a leaf node, so we pivot, and recursively descend into
|
|
* the lower and upper ranges.
|
|
*/
|
|
pivot = (b - a) / 2;
|
|
EMIT1(add_1mod(0x48, BPF_REG_3)); /* cmp rdx,func */
|
|
if (!is_simm32(progs[a + pivot]))
|
|
return -1;
|
|
EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3), progs[a + pivot]);
|
|
|
|
if (pivot > 2) { /* jg upper_part */
|
|
/* Require near jump. */
|
|
jg_bytes = 4;
|
|
EMIT2_off32(0x0F, X86_JG + 0x10, 0);
|
|
} else {
|
|
EMIT2(X86_JG, 0);
|
|
}
|
|
jg_reloc = prog;
|
|
|
|
err = emit_bpf_dispatcher(&prog, a, a + pivot, /* emit lower_part */
|
|
progs);
|
|
if (err)
|
|
return err;
|
|
|
|
/* From Intel 64 and IA-32 Architectures Optimization
|
|
* Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
|
|
* Coding Rule 11: All branch targets should be 16-byte
|
|
* aligned.
|
|
*/
|
|
emit_align(&prog, 16);
|
|
jg_offset = prog - jg_reloc;
|
|
emit_code(jg_reloc - jg_bytes, jg_offset, jg_bytes);
|
|
|
|
err = emit_bpf_dispatcher(&prog, a + pivot + 1, /* emit upper_part */
|
|
b, progs);
|
|
if (err)
|
|
return err;
|
|
|
|
*pprog = prog;
|
|
return 0;
|
|
}
|
|
|
|
static int cmp_ips(const void *a, const void *b)
|
|
{
|
|
const s64 *ipa = a;
|
|
const s64 *ipb = b;
|
|
|
|
if (*ipa > *ipb)
|
|
return 1;
|
|
if (*ipa < *ipb)
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
int arch_prepare_bpf_dispatcher(void *image, s64 *funcs, int num_funcs)
|
|
{
|
|
u8 *prog = image;
|
|
|
|
sort(funcs, num_funcs, sizeof(funcs[0]), cmp_ips, NULL);
|
|
return emit_bpf_dispatcher(&prog, 0, num_funcs - 1, funcs);
|
|
}
|
|
|
|
struct x64_jit_data {
|
|
struct bpf_binary_header *header;
|
|
int *addrs;
|
|
u8 *image;
|
|
int proglen;
|
|
struct jit_context ctx;
|
|
};
|
|
|
|
#define MAX_PASSES 20
|
|
#define PADDING_PASSES (MAX_PASSES - 5)
|
|
|
|
struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
|
|
{
|
|
struct bpf_binary_header *header = NULL;
|
|
struct bpf_prog *tmp, *orig_prog = prog;
|
|
struct x64_jit_data *jit_data;
|
|
int proglen, oldproglen = 0;
|
|
struct jit_context ctx = {};
|
|
bool tmp_blinded = false;
|
|
bool extra_pass = false;
|
|
bool padding = false;
|
|
u8 *image = NULL;
|
|
int *addrs;
|
|
int pass;
|
|
int i;
|
|
|
|
if (!prog->jit_requested)
|
|
return orig_prog;
|
|
|
|
tmp = bpf_jit_blind_constants(prog);
|
|
/*
|
|
* If blinding was requested and we failed during blinding,
|
|
* we must fall back to the interpreter.
|
|
*/
|
|
if (IS_ERR(tmp))
|
|
return orig_prog;
|
|
if (tmp != prog) {
|
|
tmp_blinded = true;
|
|
prog = tmp;
|
|
}
|
|
|
|
jit_data = prog->aux->jit_data;
|
|
if (!jit_data) {
|
|
jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
|
|
if (!jit_data) {
|
|
prog = orig_prog;
|
|
goto out;
|
|
}
|
|
prog->aux->jit_data = jit_data;
|
|
}
|
|
addrs = jit_data->addrs;
|
|
if (addrs) {
|
|
ctx = jit_data->ctx;
|
|
oldproglen = jit_data->proglen;
|
|
image = jit_data->image;
|
|
header = jit_data->header;
|
|
extra_pass = true;
|
|
padding = true;
|
|
goto skip_init_addrs;
|
|
}
|
|
addrs = kmalloc_array(prog->len + 1, sizeof(*addrs), GFP_KERNEL);
|
|
if (!addrs) {
|
|
prog = orig_prog;
|
|
goto out_addrs;
|
|
}
|
|
|
|
/*
|
|
* Before first pass, make a rough estimation of addrs[]
|
|
* each BPF instruction is translated to less than 64 bytes
|
|
*/
|
|
for (proglen = 0, i = 0; i <= prog->len; i++) {
|
|
proglen += 64;
|
|
addrs[i] = proglen;
|
|
}
|
|
ctx.cleanup_addr = proglen;
|
|
skip_init_addrs:
|
|
|
|
/*
|
|
* JITed image shrinks with every pass and the loop iterates
|
|
* until the image stops shrinking. Very large BPF programs
|
|
* may converge on the last pass. In such case do one more
|
|
* pass to emit the final image.
|
|
*/
|
|
for (pass = 0; pass < MAX_PASSES || image; pass++) {
|
|
if (!padding && pass >= PADDING_PASSES)
|
|
padding = true;
|
|
proglen = do_jit(prog, addrs, image, oldproglen, &ctx, padding);
|
|
if (proglen <= 0) {
|
|
out_image:
|
|
image = NULL;
|
|
if (header)
|
|
bpf_jit_binary_free(header);
|
|
prog = orig_prog;
|
|
goto out_addrs;
|
|
}
|
|
if (image) {
|
|
if (proglen != oldproglen) {
|
|
pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
|
|
proglen, oldproglen);
|
|
goto out_image;
|
|
}
|
|
break;
|
|
}
|
|
if (proglen == oldproglen) {
|
|
/*
|
|
* The number of entries in extable is the number of BPF_LDX
|
|
* insns that access kernel memory via "pointer to BTF type".
|
|
* The verifier changed their opcode from LDX|MEM|size
|
|
* to LDX|PROBE_MEM|size to make JITing easier.
|
|
*/
|
|
u32 align = __alignof__(struct exception_table_entry);
|
|
u32 extable_size = prog->aux->num_exentries *
|
|
sizeof(struct exception_table_entry);
|
|
|
|
/* allocate module memory for x86 insns and extable */
|
|
header = bpf_jit_binary_alloc(roundup(proglen, align) + extable_size,
|
|
&image, align, jit_fill_hole);
|
|
if (!header) {
|
|
prog = orig_prog;
|
|
goto out_addrs;
|
|
}
|
|
prog->aux->extable = (void *) image + roundup(proglen, align);
|
|
}
|
|
oldproglen = proglen;
|
|
cond_resched();
|
|
}
|
|
|
|
if (bpf_jit_enable > 1)
|
|
bpf_jit_dump(prog->len, proglen, pass + 1, image);
|
|
|
|
if (image) {
|
|
if (!prog->is_func || extra_pass) {
|
|
bpf_tail_call_direct_fixup(prog);
|
|
bpf_jit_binary_lock_ro(header);
|
|
} else {
|
|
jit_data->addrs = addrs;
|
|
jit_data->ctx = ctx;
|
|
jit_data->proglen = proglen;
|
|
jit_data->image = image;
|
|
jit_data->header = header;
|
|
}
|
|
prog->bpf_func = (void *)image;
|
|
prog->jited = 1;
|
|
prog->jited_len = proglen;
|
|
} else {
|
|
prog = orig_prog;
|
|
}
|
|
|
|
if (!image || !prog->is_func || extra_pass) {
|
|
if (image)
|
|
bpf_prog_fill_jited_linfo(prog, addrs + 1);
|
|
out_addrs:
|
|
kfree(addrs);
|
|
kfree(jit_data);
|
|
prog->aux->jit_data = NULL;
|
|
}
|
|
out:
|
|
if (tmp_blinded)
|
|
bpf_jit_prog_release_other(prog, prog == orig_prog ?
|
|
tmp : orig_prog);
|
|
return prog;
|
|
}
|