b261eda84e
Kazuho Oku reported that setsockopt(SO_INCOMING_CPU) does not work with setsockopt(SO_REUSEPORT) since v4.6. With the combination of SO_REUSEPORT and SO_INCOMING_CPU, we could build a highly efficient server application. setsockopt(SO_INCOMING_CPU) associates a CPU with a TCP listener or UDP socket, and then incoming packets processed on the CPU will likely be distributed to the socket. Technically, a socket could even receive packets handled on another CPU if no sockets in the reuseport group have the same CPU receiving the flow. The logic exists in compute_score() so that a socket will get a higher score if it has the same CPU with the flow. However, the score gets ignored after the blamed two commits, which introduced a faster socket selection algorithm for SO_REUSEPORT. This patch introduces a counter of sockets with SO_INCOMING_CPU in a reuseport group to check if we should iterate all sockets to find a proper one. We increment the counter when * calling listen() if the socket has SO_INCOMING_CPU and SO_REUSEPORT * enabling SO_INCOMING_CPU if the socket is in a reuseport group Also, we decrement it when * detaching a socket out of the group to apply SO_INCOMING_CPU to migrated TCP requests * disabling SO_INCOMING_CPU if the socket is in a reuseport group When the counter reaches 0, we can get back to the O(1) selection algorithm. The overall changes are negligible for the non-SO_INCOMING_CPU case, and the only notable thing is that we have to update sk_incomnig_cpu under reuseport_lock. Otherwise, the race prevents transitioning to the O(n) algorithm and results in the wrong socket selection. cpu1 (setsockopt) cpu2 (listen) +-----------------+ +-------------+ lock_sock(sk1) lock_sock(sk2) reuseport_update_incoming_cpu(sk1, val) . | /* set CPU as 0 */ |- WRITE_ONCE(sk1->incoming_cpu, val) | | spin_lock_bh(&reuseport_lock) | reuseport_grow(sk2, reuse) | . | |- more_socks_size = reuse->max_socks * 2U; | |- if (more_socks_size > U16_MAX && | | reuse->num_closed_socks) | | . | | |- RCU_INIT_POINTER(sk1->sk_reuseport_cb, NULL); | | `- __reuseport_detach_closed_sock(sk1, reuse) | | . | | `- reuseport_put_incoming_cpu(sk1, reuse) | | . | | | /* Read shutdown()ed sk1's sk_incoming_cpu | | | * without lock_sock(). | | | */ | | `- if (sk1->sk_incoming_cpu >= 0) | | . | | | /* decrement not-yet-incremented | | | * count, which is never incremented. | | | */ | | `- __reuseport_put_incoming_cpu(reuse); | | | `- spin_lock_bh(&reuseport_lock) | |- spin_lock_bh(&reuseport_lock) | |- reuse = rcu_dereference_protected(sk1->sk_reuseport_cb, ...) |- if (!reuse) | . | | /* Cannot increment reuse->incoming_cpu. */ | `- goto out; | `- spin_unlock_bh(&reuseport_lock) Fixes: e32ea7e74727 ("soreuseport: fast reuseport UDP socket selection") Fixes: c125e80b8868 ("soreuseport: fast reuseport TCP socket selection") Reported-by: Kazuho Oku <kazuhooku@gmail.com> Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com> Signed-off-by: Paolo Abeni <pabeni@redhat.com>
750 lines
19 KiB
C
750 lines
19 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* To speed up listener socket lookup, create an array to store all sockets
|
|
* listening on the same port. This allows a decision to be made after finding
|
|
* the first socket. An optional BPF program can also be configured for
|
|
* selecting the socket index from the array of available sockets.
|
|
*/
|
|
|
|
#include <net/ip.h>
|
|
#include <net/sock_reuseport.h>
|
|
#include <linux/bpf.h>
|
|
#include <linux/idr.h>
|
|
#include <linux/filter.h>
|
|
#include <linux/rcupdate.h>
|
|
|
|
#define INIT_SOCKS 128
|
|
|
|
DEFINE_SPINLOCK(reuseport_lock);
|
|
|
|
static DEFINE_IDA(reuseport_ida);
|
|
static int reuseport_resurrect(struct sock *sk, struct sock_reuseport *old_reuse,
|
|
struct sock_reuseport *reuse, bool bind_inany);
|
|
|
|
void reuseport_has_conns_set(struct sock *sk)
|
|
{
|
|
struct sock_reuseport *reuse;
|
|
|
|
if (!rcu_access_pointer(sk->sk_reuseport_cb))
|
|
return;
|
|
|
|
spin_lock_bh(&reuseport_lock);
|
|
reuse = rcu_dereference_protected(sk->sk_reuseport_cb,
|
|
lockdep_is_held(&reuseport_lock));
|
|
if (likely(reuse))
|
|
reuse->has_conns = 1;
|
|
spin_unlock_bh(&reuseport_lock);
|
|
}
|
|
EXPORT_SYMBOL(reuseport_has_conns_set);
|
|
|
|
static void __reuseport_get_incoming_cpu(struct sock_reuseport *reuse)
|
|
{
|
|
/* Paired with READ_ONCE() in reuseport_select_sock_by_hash(). */
|
|
WRITE_ONCE(reuse->incoming_cpu, reuse->incoming_cpu + 1);
|
|
}
|
|
|
|
static void __reuseport_put_incoming_cpu(struct sock_reuseport *reuse)
|
|
{
|
|
/* Paired with READ_ONCE() in reuseport_select_sock_by_hash(). */
|
|
WRITE_ONCE(reuse->incoming_cpu, reuse->incoming_cpu - 1);
|
|
}
|
|
|
|
static void reuseport_get_incoming_cpu(struct sock *sk, struct sock_reuseport *reuse)
|
|
{
|
|
if (sk->sk_incoming_cpu >= 0)
|
|
__reuseport_get_incoming_cpu(reuse);
|
|
}
|
|
|
|
static void reuseport_put_incoming_cpu(struct sock *sk, struct sock_reuseport *reuse)
|
|
{
|
|
if (sk->sk_incoming_cpu >= 0)
|
|
__reuseport_put_incoming_cpu(reuse);
|
|
}
|
|
|
|
void reuseport_update_incoming_cpu(struct sock *sk, int val)
|
|
{
|
|
struct sock_reuseport *reuse;
|
|
int old_sk_incoming_cpu;
|
|
|
|
if (unlikely(!rcu_access_pointer(sk->sk_reuseport_cb))) {
|
|
/* Paired with REAE_ONCE() in sk_incoming_cpu_update()
|
|
* and compute_score().
|
|
*/
|
|
WRITE_ONCE(sk->sk_incoming_cpu, val);
|
|
return;
|
|
}
|
|
|
|
spin_lock_bh(&reuseport_lock);
|
|
|
|
/* This must be done under reuseport_lock to avoid a race with
|
|
* reuseport_grow(), which accesses sk->sk_incoming_cpu without
|
|
* lock_sock() when detaching a shutdown()ed sk.
|
|
*
|
|
* Paired with READ_ONCE() in reuseport_select_sock_by_hash().
|
|
*/
|
|
old_sk_incoming_cpu = sk->sk_incoming_cpu;
|
|
WRITE_ONCE(sk->sk_incoming_cpu, val);
|
|
|
|
reuse = rcu_dereference_protected(sk->sk_reuseport_cb,
|
|
lockdep_is_held(&reuseport_lock));
|
|
|
|
/* reuseport_grow() has detached a closed sk. */
|
|
if (!reuse)
|
|
goto out;
|
|
|
|
if (old_sk_incoming_cpu < 0 && val >= 0)
|
|
__reuseport_get_incoming_cpu(reuse);
|
|
else if (old_sk_incoming_cpu >= 0 && val < 0)
|
|
__reuseport_put_incoming_cpu(reuse);
|
|
|
|
out:
|
|
spin_unlock_bh(&reuseport_lock);
|
|
}
|
|
|
|
static int reuseport_sock_index(struct sock *sk,
|
|
const struct sock_reuseport *reuse,
|
|
bool closed)
|
|
{
|
|
int left, right;
|
|
|
|
if (!closed) {
|
|
left = 0;
|
|
right = reuse->num_socks;
|
|
} else {
|
|
left = reuse->max_socks - reuse->num_closed_socks;
|
|
right = reuse->max_socks;
|
|
}
|
|
|
|
for (; left < right; left++)
|
|
if (reuse->socks[left] == sk)
|
|
return left;
|
|
return -1;
|
|
}
|
|
|
|
static void __reuseport_add_sock(struct sock *sk,
|
|
struct sock_reuseport *reuse)
|
|
{
|
|
reuse->socks[reuse->num_socks] = sk;
|
|
/* paired with smp_rmb() in reuseport_(select|migrate)_sock() */
|
|
smp_wmb();
|
|
reuse->num_socks++;
|
|
reuseport_get_incoming_cpu(sk, reuse);
|
|
}
|
|
|
|
static bool __reuseport_detach_sock(struct sock *sk,
|
|
struct sock_reuseport *reuse)
|
|
{
|
|
int i = reuseport_sock_index(sk, reuse, false);
|
|
|
|
if (i == -1)
|
|
return false;
|
|
|
|
reuse->socks[i] = reuse->socks[reuse->num_socks - 1];
|
|
reuse->num_socks--;
|
|
reuseport_put_incoming_cpu(sk, reuse);
|
|
|
|
return true;
|
|
}
|
|
|
|
static void __reuseport_add_closed_sock(struct sock *sk,
|
|
struct sock_reuseport *reuse)
|
|
{
|
|
reuse->socks[reuse->max_socks - reuse->num_closed_socks - 1] = sk;
|
|
/* paired with READ_ONCE() in inet_csk_bind_conflict() */
|
|
WRITE_ONCE(reuse->num_closed_socks, reuse->num_closed_socks + 1);
|
|
reuseport_get_incoming_cpu(sk, reuse);
|
|
}
|
|
|
|
static bool __reuseport_detach_closed_sock(struct sock *sk,
|
|
struct sock_reuseport *reuse)
|
|
{
|
|
int i = reuseport_sock_index(sk, reuse, true);
|
|
|
|
if (i == -1)
|
|
return false;
|
|
|
|
reuse->socks[i] = reuse->socks[reuse->max_socks - reuse->num_closed_socks];
|
|
/* paired with READ_ONCE() in inet_csk_bind_conflict() */
|
|
WRITE_ONCE(reuse->num_closed_socks, reuse->num_closed_socks - 1);
|
|
reuseport_put_incoming_cpu(sk, reuse);
|
|
|
|
return true;
|
|
}
|
|
|
|
static struct sock_reuseport *__reuseport_alloc(unsigned int max_socks)
|
|
{
|
|
unsigned int size = sizeof(struct sock_reuseport) +
|
|
sizeof(struct sock *) * max_socks;
|
|
struct sock_reuseport *reuse = kzalloc(size, GFP_ATOMIC);
|
|
|
|
if (!reuse)
|
|
return NULL;
|
|
|
|
reuse->max_socks = max_socks;
|
|
|
|
RCU_INIT_POINTER(reuse->prog, NULL);
|
|
return reuse;
|
|
}
|
|
|
|
int reuseport_alloc(struct sock *sk, bool bind_inany)
|
|
{
|
|
struct sock_reuseport *reuse;
|
|
int id, ret = 0;
|
|
|
|
/* bh lock used since this function call may precede hlist lock in
|
|
* soft irq of receive path or setsockopt from process context
|
|
*/
|
|
spin_lock_bh(&reuseport_lock);
|
|
|
|
/* Allocation attempts can occur concurrently via the setsockopt path
|
|
* and the bind/hash path. Nothing to do when we lose the race.
|
|
*/
|
|
reuse = rcu_dereference_protected(sk->sk_reuseport_cb,
|
|
lockdep_is_held(&reuseport_lock));
|
|
if (reuse) {
|
|
if (reuse->num_closed_socks) {
|
|
/* sk was shutdown()ed before */
|
|
ret = reuseport_resurrect(sk, reuse, NULL, bind_inany);
|
|
goto out;
|
|
}
|
|
|
|
/* Only set reuse->bind_inany if the bind_inany is true.
|
|
* Otherwise, it will overwrite the reuse->bind_inany
|
|
* which was set by the bind/hash path.
|
|
*/
|
|
if (bind_inany)
|
|
reuse->bind_inany = bind_inany;
|
|
goto out;
|
|
}
|
|
|
|
reuse = __reuseport_alloc(INIT_SOCKS);
|
|
if (!reuse) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
id = ida_alloc(&reuseport_ida, GFP_ATOMIC);
|
|
if (id < 0) {
|
|
kfree(reuse);
|
|
ret = id;
|
|
goto out;
|
|
}
|
|
|
|
reuse->reuseport_id = id;
|
|
reuse->bind_inany = bind_inany;
|
|
reuse->socks[0] = sk;
|
|
reuse->num_socks = 1;
|
|
reuseport_get_incoming_cpu(sk, reuse);
|
|
rcu_assign_pointer(sk->sk_reuseport_cb, reuse);
|
|
|
|
out:
|
|
spin_unlock_bh(&reuseport_lock);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(reuseport_alloc);
|
|
|
|
static struct sock_reuseport *reuseport_grow(struct sock_reuseport *reuse)
|
|
{
|
|
struct sock_reuseport *more_reuse;
|
|
u32 more_socks_size, i;
|
|
|
|
more_socks_size = reuse->max_socks * 2U;
|
|
if (more_socks_size > U16_MAX) {
|
|
if (reuse->num_closed_socks) {
|
|
/* Make room by removing a closed sk.
|
|
* The child has already been migrated.
|
|
* Only reqsk left at this point.
|
|
*/
|
|
struct sock *sk;
|
|
|
|
sk = reuse->socks[reuse->max_socks - reuse->num_closed_socks];
|
|
RCU_INIT_POINTER(sk->sk_reuseport_cb, NULL);
|
|
__reuseport_detach_closed_sock(sk, reuse);
|
|
|
|
return reuse;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
more_reuse = __reuseport_alloc(more_socks_size);
|
|
if (!more_reuse)
|
|
return NULL;
|
|
|
|
more_reuse->num_socks = reuse->num_socks;
|
|
more_reuse->num_closed_socks = reuse->num_closed_socks;
|
|
more_reuse->prog = reuse->prog;
|
|
more_reuse->reuseport_id = reuse->reuseport_id;
|
|
more_reuse->bind_inany = reuse->bind_inany;
|
|
more_reuse->has_conns = reuse->has_conns;
|
|
more_reuse->incoming_cpu = reuse->incoming_cpu;
|
|
|
|
memcpy(more_reuse->socks, reuse->socks,
|
|
reuse->num_socks * sizeof(struct sock *));
|
|
memcpy(more_reuse->socks +
|
|
(more_reuse->max_socks - more_reuse->num_closed_socks),
|
|
reuse->socks + (reuse->max_socks - reuse->num_closed_socks),
|
|
reuse->num_closed_socks * sizeof(struct sock *));
|
|
more_reuse->synq_overflow_ts = READ_ONCE(reuse->synq_overflow_ts);
|
|
|
|
for (i = 0; i < reuse->max_socks; ++i)
|
|
rcu_assign_pointer(reuse->socks[i]->sk_reuseport_cb,
|
|
more_reuse);
|
|
|
|
/* Note: we use kfree_rcu here instead of reuseport_free_rcu so
|
|
* that reuse and more_reuse can temporarily share a reference
|
|
* to prog.
|
|
*/
|
|
kfree_rcu(reuse, rcu);
|
|
return more_reuse;
|
|
}
|
|
|
|
static void reuseport_free_rcu(struct rcu_head *head)
|
|
{
|
|
struct sock_reuseport *reuse;
|
|
|
|
reuse = container_of(head, struct sock_reuseport, rcu);
|
|
sk_reuseport_prog_free(rcu_dereference_protected(reuse->prog, 1));
|
|
ida_free(&reuseport_ida, reuse->reuseport_id);
|
|
kfree(reuse);
|
|
}
|
|
|
|
/**
|
|
* reuseport_add_sock - Add a socket to the reuseport group of another.
|
|
* @sk: New socket to add to the group.
|
|
* @sk2: Socket belonging to the existing reuseport group.
|
|
* @bind_inany: Whether or not the group is bound to a local INANY address.
|
|
*
|
|
* May return ENOMEM and not add socket to group under memory pressure.
|
|
*/
|
|
int reuseport_add_sock(struct sock *sk, struct sock *sk2, bool bind_inany)
|
|
{
|
|
struct sock_reuseport *old_reuse, *reuse;
|
|
|
|
if (!rcu_access_pointer(sk2->sk_reuseport_cb)) {
|
|
int err = reuseport_alloc(sk2, bind_inany);
|
|
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
spin_lock_bh(&reuseport_lock);
|
|
reuse = rcu_dereference_protected(sk2->sk_reuseport_cb,
|
|
lockdep_is_held(&reuseport_lock));
|
|
old_reuse = rcu_dereference_protected(sk->sk_reuseport_cb,
|
|
lockdep_is_held(&reuseport_lock));
|
|
if (old_reuse && old_reuse->num_closed_socks) {
|
|
/* sk was shutdown()ed before */
|
|
int err = reuseport_resurrect(sk, old_reuse, reuse, reuse->bind_inany);
|
|
|
|
spin_unlock_bh(&reuseport_lock);
|
|
return err;
|
|
}
|
|
|
|
if (old_reuse && old_reuse->num_socks != 1) {
|
|
spin_unlock_bh(&reuseport_lock);
|
|
return -EBUSY;
|
|
}
|
|
|
|
if (reuse->num_socks + reuse->num_closed_socks == reuse->max_socks) {
|
|
reuse = reuseport_grow(reuse);
|
|
if (!reuse) {
|
|
spin_unlock_bh(&reuseport_lock);
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
|
|
__reuseport_add_sock(sk, reuse);
|
|
rcu_assign_pointer(sk->sk_reuseport_cb, reuse);
|
|
|
|
spin_unlock_bh(&reuseport_lock);
|
|
|
|
if (old_reuse)
|
|
call_rcu(&old_reuse->rcu, reuseport_free_rcu);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(reuseport_add_sock);
|
|
|
|
static int reuseport_resurrect(struct sock *sk, struct sock_reuseport *old_reuse,
|
|
struct sock_reuseport *reuse, bool bind_inany)
|
|
{
|
|
if (old_reuse == reuse) {
|
|
/* If sk was in the same reuseport group, just pop sk out of
|
|
* the closed section and push sk into the listening section.
|
|
*/
|
|
__reuseport_detach_closed_sock(sk, old_reuse);
|
|
__reuseport_add_sock(sk, old_reuse);
|
|
return 0;
|
|
}
|
|
|
|
if (!reuse) {
|
|
/* In bind()/listen() path, we cannot carry over the eBPF prog
|
|
* for the shutdown()ed socket. In setsockopt() path, we should
|
|
* not change the eBPF prog of listening sockets by attaching a
|
|
* prog to the shutdown()ed socket. Thus, we will allocate a new
|
|
* reuseport group and detach sk from the old group.
|
|
*/
|
|
int id;
|
|
|
|
reuse = __reuseport_alloc(INIT_SOCKS);
|
|
if (!reuse)
|
|
return -ENOMEM;
|
|
|
|
id = ida_alloc(&reuseport_ida, GFP_ATOMIC);
|
|
if (id < 0) {
|
|
kfree(reuse);
|
|
return id;
|
|
}
|
|
|
|
reuse->reuseport_id = id;
|
|
reuse->bind_inany = bind_inany;
|
|
} else {
|
|
/* Move sk from the old group to the new one if
|
|
* - all the other listeners in the old group were close()d or
|
|
* shutdown()ed, and then sk2 has listen()ed on the same port
|
|
* OR
|
|
* - sk listen()ed without bind() (or with autobind), was
|
|
* shutdown()ed, and then listen()s on another port which
|
|
* sk2 listen()s on.
|
|
*/
|
|
if (reuse->num_socks + reuse->num_closed_socks == reuse->max_socks) {
|
|
reuse = reuseport_grow(reuse);
|
|
if (!reuse)
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
|
|
__reuseport_detach_closed_sock(sk, old_reuse);
|
|
__reuseport_add_sock(sk, reuse);
|
|
rcu_assign_pointer(sk->sk_reuseport_cb, reuse);
|
|
|
|
if (old_reuse->num_socks + old_reuse->num_closed_socks == 0)
|
|
call_rcu(&old_reuse->rcu, reuseport_free_rcu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void reuseport_detach_sock(struct sock *sk)
|
|
{
|
|
struct sock_reuseport *reuse;
|
|
|
|
spin_lock_bh(&reuseport_lock);
|
|
reuse = rcu_dereference_protected(sk->sk_reuseport_cb,
|
|
lockdep_is_held(&reuseport_lock));
|
|
|
|
/* reuseport_grow() has detached a closed sk */
|
|
if (!reuse)
|
|
goto out;
|
|
|
|
/* Notify the bpf side. The sk may be added to a sockarray
|
|
* map. If so, sockarray logic will remove it from the map.
|
|
*
|
|
* Other bpf map types that work with reuseport, like sockmap,
|
|
* don't need an explicit callback from here. They override sk
|
|
* unhash/close ops to remove the sk from the map before we
|
|
* get to this point.
|
|
*/
|
|
bpf_sk_reuseport_detach(sk);
|
|
|
|
rcu_assign_pointer(sk->sk_reuseport_cb, NULL);
|
|
|
|
if (!__reuseport_detach_closed_sock(sk, reuse))
|
|
__reuseport_detach_sock(sk, reuse);
|
|
|
|
if (reuse->num_socks + reuse->num_closed_socks == 0)
|
|
call_rcu(&reuse->rcu, reuseport_free_rcu);
|
|
|
|
out:
|
|
spin_unlock_bh(&reuseport_lock);
|
|
}
|
|
EXPORT_SYMBOL(reuseport_detach_sock);
|
|
|
|
void reuseport_stop_listen_sock(struct sock *sk)
|
|
{
|
|
if (sk->sk_protocol == IPPROTO_TCP) {
|
|
struct sock_reuseport *reuse;
|
|
struct bpf_prog *prog;
|
|
|
|
spin_lock_bh(&reuseport_lock);
|
|
|
|
reuse = rcu_dereference_protected(sk->sk_reuseport_cb,
|
|
lockdep_is_held(&reuseport_lock));
|
|
prog = rcu_dereference_protected(reuse->prog,
|
|
lockdep_is_held(&reuseport_lock));
|
|
|
|
if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_migrate_req) ||
|
|
(prog && prog->expected_attach_type == BPF_SK_REUSEPORT_SELECT_OR_MIGRATE)) {
|
|
/* Migration capable, move sk from the listening section
|
|
* to the closed section.
|
|
*/
|
|
bpf_sk_reuseport_detach(sk);
|
|
|
|
__reuseport_detach_sock(sk, reuse);
|
|
__reuseport_add_closed_sock(sk, reuse);
|
|
|
|
spin_unlock_bh(&reuseport_lock);
|
|
return;
|
|
}
|
|
|
|
spin_unlock_bh(&reuseport_lock);
|
|
}
|
|
|
|
/* Not capable to do migration, detach immediately */
|
|
reuseport_detach_sock(sk);
|
|
}
|
|
EXPORT_SYMBOL(reuseport_stop_listen_sock);
|
|
|
|
static struct sock *run_bpf_filter(struct sock_reuseport *reuse, u16 socks,
|
|
struct bpf_prog *prog, struct sk_buff *skb,
|
|
int hdr_len)
|
|
{
|
|
struct sk_buff *nskb = NULL;
|
|
u32 index;
|
|
|
|
if (skb_shared(skb)) {
|
|
nskb = skb_clone(skb, GFP_ATOMIC);
|
|
if (!nskb)
|
|
return NULL;
|
|
skb = nskb;
|
|
}
|
|
|
|
/* temporarily advance data past protocol header */
|
|
if (!pskb_pull(skb, hdr_len)) {
|
|
kfree_skb(nskb);
|
|
return NULL;
|
|
}
|
|
index = bpf_prog_run_save_cb(prog, skb);
|
|
__skb_push(skb, hdr_len);
|
|
|
|
consume_skb(nskb);
|
|
|
|
if (index >= socks)
|
|
return NULL;
|
|
|
|
return reuse->socks[index];
|
|
}
|
|
|
|
static struct sock *reuseport_select_sock_by_hash(struct sock_reuseport *reuse,
|
|
u32 hash, u16 num_socks)
|
|
{
|
|
struct sock *first_valid_sk = NULL;
|
|
int i, j;
|
|
|
|
i = j = reciprocal_scale(hash, num_socks);
|
|
do {
|
|
struct sock *sk = reuse->socks[i];
|
|
|
|
if (sk->sk_state != TCP_ESTABLISHED) {
|
|
/* Paired with WRITE_ONCE() in __reuseport_(get|put)_incoming_cpu(). */
|
|
if (!READ_ONCE(reuse->incoming_cpu))
|
|
return sk;
|
|
|
|
/* Paired with WRITE_ONCE() in reuseport_update_incoming_cpu(). */
|
|
if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
|
|
return sk;
|
|
|
|
if (!first_valid_sk)
|
|
first_valid_sk = sk;
|
|
}
|
|
|
|
i++;
|
|
if (i >= num_socks)
|
|
i = 0;
|
|
} while (i != j);
|
|
|
|
return first_valid_sk;
|
|
}
|
|
|
|
/**
|
|
* reuseport_select_sock - Select a socket from an SO_REUSEPORT group.
|
|
* @sk: First socket in the group.
|
|
* @hash: When no BPF filter is available, use this hash to select.
|
|
* @skb: skb to run through BPF filter.
|
|
* @hdr_len: BPF filter expects skb data pointer at payload data. If
|
|
* the skb does not yet point at the payload, this parameter represents
|
|
* how far the pointer needs to advance to reach the payload.
|
|
* Returns a socket that should receive the packet (or NULL on error).
|
|
*/
|
|
struct sock *reuseport_select_sock(struct sock *sk,
|
|
u32 hash,
|
|
struct sk_buff *skb,
|
|
int hdr_len)
|
|
{
|
|
struct sock_reuseport *reuse;
|
|
struct bpf_prog *prog;
|
|
struct sock *sk2 = NULL;
|
|
u16 socks;
|
|
|
|
rcu_read_lock();
|
|
reuse = rcu_dereference(sk->sk_reuseport_cb);
|
|
|
|
/* if memory allocation failed or add call is not yet complete */
|
|
if (!reuse)
|
|
goto out;
|
|
|
|
prog = rcu_dereference(reuse->prog);
|
|
socks = READ_ONCE(reuse->num_socks);
|
|
if (likely(socks)) {
|
|
/* paired with smp_wmb() in __reuseport_add_sock() */
|
|
smp_rmb();
|
|
|
|
if (!prog || !skb)
|
|
goto select_by_hash;
|
|
|
|
if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
|
|
sk2 = bpf_run_sk_reuseport(reuse, sk, prog, skb, NULL, hash);
|
|
else
|
|
sk2 = run_bpf_filter(reuse, socks, prog, skb, hdr_len);
|
|
|
|
select_by_hash:
|
|
/* no bpf or invalid bpf result: fall back to hash usage */
|
|
if (!sk2)
|
|
sk2 = reuseport_select_sock_by_hash(reuse, hash, socks);
|
|
}
|
|
|
|
out:
|
|
rcu_read_unlock();
|
|
return sk2;
|
|
}
|
|
EXPORT_SYMBOL(reuseport_select_sock);
|
|
|
|
/**
|
|
* reuseport_migrate_sock - Select a socket from an SO_REUSEPORT group.
|
|
* @sk: close()ed or shutdown()ed socket in the group.
|
|
* @migrating_sk: ESTABLISHED/SYN_RECV full socket in the accept queue or
|
|
* NEW_SYN_RECV request socket during 3WHS.
|
|
* @skb: skb to run through BPF filter.
|
|
* Returns a socket (with sk_refcnt +1) that should accept the child socket
|
|
* (or NULL on error).
|
|
*/
|
|
struct sock *reuseport_migrate_sock(struct sock *sk,
|
|
struct sock *migrating_sk,
|
|
struct sk_buff *skb)
|
|
{
|
|
struct sock_reuseport *reuse;
|
|
struct sock *nsk = NULL;
|
|
bool allocated = false;
|
|
struct bpf_prog *prog;
|
|
u16 socks;
|
|
u32 hash;
|
|
|
|
rcu_read_lock();
|
|
|
|
reuse = rcu_dereference(sk->sk_reuseport_cb);
|
|
if (!reuse)
|
|
goto out;
|
|
|
|
socks = READ_ONCE(reuse->num_socks);
|
|
if (unlikely(!socks))
|
|
goto failure;
|
|
|
|
/* paired with smp_wmb() in __reuseport_add_sock() */
|
|
smp_rmb();
|
|
|
|
hash = migrating_sk->sk_hash;
|
|
prog = rcu_dereference(reuse->prog);
|
|
if (!prog || prog->expected_attach_type != BPF_SK_REUSEPORT_SELECT_OR_MIGRATE) {
|
|
if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_migrate_req))
|
|
goto select_by_hash;
|
|
goto failure;
|
|
}
|
|
|
|
if (!skb) {
|
|
skb = alloc_skb(0, GFP_ATOMIC);
|
|
if (!skb)
|
|
goto failure;
|
|
allocated = true;
|
|
}
|
|
|
|
nsk = bpf_run_sk_reuseport(reuse, sk, prog, skb, migrating_sk, hash);
|
|
|
|
if (allocated)
|
|
kfree_skb(skb);
|
|
|
|
select_by_hash:
|
|
if (!nsk)
|
|
nsk = reuseport_select_sock_by_hash(reuse, hash, socks);
|
|
|
|
if (IS_ERR_OR_NULL(nsk) || unlikely(!refcount_inc_not_zero(&nsk->sk_refcnt))) {
|
|
nsk = NULL;
|
|
goto failure;
|
|
}
|
|
|
|
out:
|
|
rcu_read_unlock();
|
|
return nsk;
|
|
|
|
failure:
|
|
__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
|
|
goto out;
|
|
}
|
|
EXPORT_SYMBOL(reuseport_migrate_sock);
|
|
|
|
int reuseport_attach_prog(struct sock *sk, struct bpf_prog *prog)
|
|
{
|
|
struct sock_reuseport *reuse;
|
|
struct bpf_prog *old_prog;
|
|
|
|
if (sk_unhashed(sk)) {
|
|
int err;
|
|
|
|
if (!sk->sk_reuseport)
|
|
return -EINVAL;
|
|
|
|
err = reuseport_alloc(sk, false);
|
|
if (err)
|
|
return err;
|
|
} else if (!rcu_access_pointer(sk->sk_reuseport_cb)) {
|
|
/* The socket wasn't bound with SO_REUSEPORT */
|
|
return -EINVAL;
|
|
}
|
|
|
|
spin_lock_bh(&reuseport_lock);
|
|
reuse = rcu_dereference_protected(sk->sk_reuseport_cb,
|
|
lockdep_is_held(&reuseport_lock));
|
|
old_prog = rcu_dereference_protected(reuse->prog,
|
|
lockdep_is_held(&reuseport_lock));
|
|
rcu_assign_pointer(reuse->prog, prog);
|
|
spin_unlock_bh(&reuseport_lock);
|
|
|
|
sk_reuseport_prog_free(old_prog);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(reuseport_attach_prog);
|
|
|
|
int reuseport_detach_prog(struct sock *sk)
|
|
{
|
|
struct sock_reuseport *reuse;
|
|
struct bpf_prog *old_prog;
|
|
|
|
old_prog = NULL;
|
|
spin_lock_bh(&reuseport_lock);
|
|
reuse = rcu_dereference_protected(sk->sk_reuseport_cb,
|
|
lockdep_is_held(&reuseport_lock));
|
|
|
|
/* reuse must be checked after acquiring the reuseport_lock
|
|
* because reuseport_grow() can detach a closed sk.
|
|
*/
|
|
if (!reuse) {
|
|
spin_unlock_bh(&reuseport_lock);
|
|
return sk->sk_reuseport ? -ENOENT : -EINVAL;
|
|
}
|
|
|
|
if (sk_unhashed(sk) && reuse->num_closed_socks) {
|
|
spin_unlock_bh(&reuseport_lock);
|
|
return -ENOENT;
|
|
}
|
|
|
|
old_prog = rcu_replace_pointer(reuse->prog, old_prog,
|
|
lockdep_is_held(&reuseport_lock));
|
|
spin_unlock_bh(&reuseport_lock);
|
|
|
|
if (!old_prog)
|
|
return -ENOENT;
|
|
|
|
sk_reuseport_prog_free(old_prog);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(reuseport_detach_prog);
|