a9beb7e81b
1) tbl->gc_thresh1, tbl->gc_thresh2, tbl->gc_thresh3 and tbl->gc_interval can be written from sysfs. 2) tbl->last_flush is read locklessly from neigh_alloc() 3) tbl->proxy_queue.qlen is read locklessly from neightbl_fill_info() 4) neightbl_fill_info() reads cpu stats that can be changed concurrently. Fixes: c7fb64db001f ("[NETLINK]: Neighbour table configuration and statistics via rtnetlink") Signed-off-by: Eric Dumazet <edumazet@google.com> Link: https://lore.kernel.org/r/20231019122104.1448310-1-edumazet@google.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
3895 lines
98 KiB
C
3895 lines
98 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* Generic address resolution entity
|
|
*
|
|
* Authors:
|
|
* Pedro Roque <roque@di.fc.ul.pt>
|
|
* Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
|
|
*
|
|
* Fixes:
|
|
* Vitaly E. Lavrov releasing NULL neighbor in neigh_add.
|
|
* Harald Welte Add neighbour cache statistics like rtstat
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/slab.h>
|
|
#include <linux/kmemleak.h>
|
|
#include <linux/types.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/socket.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/proc_fs.h>
|
|
#ifdef CONFIG_SYSCTL
|
|
#include <linux/sysctl.h>
|
|
#endif
|
|
#include <linux/times.h>
|
|
#include <net/net_namespace.h>
|
|
#include <net/neighbour.h>
|
|
#include <net/arp.h>
|
|
#include <net/dst.h>
|
|
#include <net/sock.h>
|
|
#include <net/netevent.h>
|
|
#include <net/netlink.h>
|
|
#include <linux/rtnetlink.h>
|
|
#include <linux/random.h>
|
|
#include <linux/string.h>
|
|
#include <linux/log2.h>
|
|
#include <linux/inetdevice.h>
|
|
#include <net/addrconf.h>
|
|
|
|
#include <trace/events/neigh.h>
|
|
|
|
#define NEIGH_DEBUG 1
|
|
#define neigh_dbg(level, fmt, ...) \
|
|
do { \
|
|
if (level <= NEIGH_DEBUG) \
|
|
pr_debug(fmt, ##__VA_ARGS__); \
|
|
} while (0)
|
|
|
|
#define PNEIGH_HASHMASK 0xF
|
|
|
|
static void neigh_timer_handler(struct timer_list *t);
|
|
static void __neigh_notify(struct neighbour *n, int type, int flags,
|
|
u32 pid);
|
|
static void neigh_update_notify(struct neighbour *neigh, u32 nlmsg_pid);
|
|
static int pneigh_ifdown_and_unlock(struct neigh_table *tbl,
|
|
struct net_device *dev);
|
|
|
|
#ifdef CONFIG_PROC_FS
|
|
static const struct seq_operations neigh_stat_seq_ops;
|
|
#endif
|
|
|
|
/*
|
|
Neighbour hash table buckets are protected with rwlock tbl->lock.
|
|
|
|
- All the scans/updates to hash buckets MUST be made under this lock.
|
|
- NOTHING clever should be made under this lock: no callbacks
|
|
to protocol backends, no attempts to send something to network.
|
|
It will result in deadlocks, if backend/driver wants to use neighbour
|
|
cache.
|
|
- If the entry requires some non-trivial actions, increase
|
|
its reference count and release table lock.
|
|
|
|
Neighbour entries are protected:
|
|
- with reference count.
|
|
- with rwlock neigh->lock
|
|
|
|
Reference count prevents destruction.
|
|
|
|
neigh->lock mainly serializes ll address data and its validity state.
|
|
However, the same lock is used to protect another entry fields:
|
|
- timer
|
|
- resolution queue
|
|
|
|
Again, nothing clever shall be made under neigh->lock,
|
|
the most complicated procedure, which we allow is dev->hard_header.
|
|
It is supposed, that dev->hard_header is simplistic and does
|
|
not make callbacks to neighbour tables.
|
|
*/
|
|
|
|
static int neigh_blackhole(struct neighbour *neigh, struct sk_buff *skb)
|
|
{
|
|
kfree_skb(skb);
|
|
return -ENETDOWN;
|
|
}
|
|
|
|
static void neigh_cleanup_and_release(struct neighbour *neigh)
|
|
{
|
|
trace_neigh_cleanup_and_release(neigh, 0);
|
|
__neigh_notify(neigh, RTM_DELNEIGH, 0, 0);
|
|
call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh);
|
|
neigh_release(neigh);
|
|
}
|
|
|
|
/*
|
|
* It is random distribution in the interval (1/2)*base...(3/2)*base.
|
|
* It corresponds to default IPv6 settings and is not overridable,
|
|
* because it is really reasonable choice.
|
|
*/
|
|
|
|
unsigned long neigh_rand_reach_time(unsigned long base)
|
|
{
|
|
return base ? get_random_u32_below(base) + (base >> 1) : 0;
|
|
}
|
|
EXPORT_SYMBOL(neigh_rand_reach_time);
|
|
|
|
static void neigh_mark_dead(struct neighbour *n)
|
|
{
|
|
n->dead = 1;
|
|
if (!list_empty(&n->gc_list)) {
|
|
list_del_init(&n->gc_list);
|
|
atomic_dec(&n->tbl->gc_entries);
|
|
}
|
|
if (!list_empty(&n->managed_list))
|
|
list_del_init(&n->managed_list);
|
|
}
|
|
|
|
static void neigh_update_gc_list(struct neighbour *n)
|
|
{
|
|
bool on_gc_list, exempt_from_gc;
|
|
|
|
write_lock_bh(&n->tbl->lock);
|
|
write_lock(&n->lock);
|
|
if (n->dead)
|
|
goto out;
|
|
|
|
/* remove from the gc list if new state is permanent or if neighbor
|
|
* is externally learned; otherwise entry should be on the gc list
|
|
*/
|
|
exempt_from_gc = n->nud_state & NUD_PERMANENT ||
|
|
n->flags & NTF_EXT_LEARNED;
|
|
on_gc_list = !list_empty(&n->gc_list);
|
|
|
|
if (exempt_from_gc && on_gc_list) {
|
|
list_del_init(&n->gc_list);
|
|
atomic_dec(&n->tbl->gc_entries);
|
|
} else if (!exempt_from_gc && !on_gc_list) {
|
|
/* add entries to the tail; cleaning removes from the front */
|
|
list_add_tail(&n->gc_list, &n->tbl->gc_list);
|
|
atomic_inc(&n->tbl->gc_entries);
|
|
}
|
|
out:
|
|
write_unlock(&n->lock);
|
|
write_unlock_bh(&n->tbl->lock);
|
|
}
|
|
|
|
static void neigh_update_managed_list(struct neighbour *n)
|
|
{
|
|
bool on_managed_list, add_to_managed;
|
|
|
|
write_lock_bh(&n->tbl->lock);
|
|
write_lock(&n->lock);
|
|
if (n->dead)
|
|
goto out;
|
|
|
|
add_to_managed = n->flags & NTF_MANAGED;
|
|
on_managed_list = !list_empty(&n->managed_list);
|
|
|
|
if (!add_to_managed && on_managed_list)
|
|
list_del_init(&n->managed_list);
|
|
else if (add_to_managed && !on_managed_list)
|
|
list_add_tail(&n->managed_list, &n->tbl->managed_list);
|
|
out:
|
|
write_unlock(&n->lock);
|
|
write_unlock_bh(&n->tbl->lock);
|
|
}
|
|
|
|
static void neigh_update_flags(struct neighbour *neigh, u32 flags, int *notify,
|
|
bool *gc_update, bool *managed_update)
|
|
{
|
|
u32 ndm_flags, old_flags = neigh->flags;
|
|
|
|
if (!(flags & NEIGH_UPDATE_F_ADMIN))
|
|
return;
|
|
|
|
ndm_flags = (flags & NEIGH_UPDATE_F_EXT_LEARNED) ? NTF_EXT_LEARNED : 0;
|
|
ndm_flags |= (flags & NEIGH_UPDATE_F_MANAGED) ? NTF_MANAGED : 0;
|
|
|
|
if ((old_flags ^ ndm_flags) & NTF_EXT_LEARNED) {
|
|
if (ndm_flags & NTF_EXT_LEARNED)
|
|
neigh->flags |= NTF_EXT_LEARNED;
|
|
else
|
|
neigh->flags &= ~NTF_EXT_LEARNED;
|
|
*notify = 1;
|
|
*gc_update = true;
|
|
}
|
|
if ((old_flags ^ ndm_flags) & NTF_MANAGED) {
|
|
if (ndm_flags & NTF_MANAGED)
|
|
neigh->flags |= NTF_MANAGED;
|
|
else
|
|
neigh->flags &= ~NTF_MANAGED;
|
|
*notify = 1;
|
|
*managed_update = true;
|
|
}
|
|
}
|
|
|
|
static bool neigh_del(struct neighbour *n, struct neighbour __rcu **np,
|
|
struct neigh_table *tbl)
|
|
{
|
|
bool retval = false;
|
|
|
|
write_lock(&n->lock);
|
|
if (refcount_read(&n->refcnt) == 1) {
|
|
struct neighbour *neigh;
|
|
|
|
neigh = rcu_dereference_protected(n->next,
|
|
lockdep_is_held(&tbl->lock));
|
|
rcu_assign_pointer(*np, neigh);
|
|
neigh_mark_dead(n);
|
|
retval = true;
|
|
}
|
|
write_unlock(&n->lock);
|
|
if (retval)
|
|
neigh_cleanup_and_release(n);
|
|
return retval;
|
|
}
|
|
|
|
bool neigh_remove_one(struct neighbour *ndel, struct neigh_table *tbl)
|
|
{
|
|
struct neigh_hash_table *nht;
|
|
void *pkey = ndel->primary_key;
|
|
u32 hash_val;
|
|
struct neighbour *n;
|
|
struct neighbour __rcu **np;
|
|
|
|
nht = rcu_dereference_protected(tbl->nht,
|
|
lockdep_is_held(&tbl->lock));
|
|
hash_val = tbl->hash(pkey, ndel->dev, nht->hash_rnd);
|
|
hash_val = hash_val >> (32 - nht->hash_shift);
|
|
|
|
np = &nht->hash_buckets[hash_val];
|
|
while ((n = rcu_dereference_protected(*np,
|
|
lockdep_is_held(&tbl->lock)))) {
|
|
if (n == ndel)
|
|
return neigh_del(n, np, tbl);
|
|
np = &n->next;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static int neigh_forced_gc(struct neigh_table *tbl)
|
|
{
|
|
int max_clean = atomic_read(&tbl->gc_entries) -
|
|
READ_ONCE(tbl->gc_thresh2);
|
|
unsigned long tref = jiffies - 5 * HZ;
|
|
struct neighbour *n, *tmp;
|
|
int shrunk = 0;
|
|
|
|
NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs);
|
|
|
|
write_lock_bh(&tbl->lock);
|
|
|
|
list_for_each_entry_safe(n, tmp, &tbl->gc_list, gc_list) {
|
|
if (refcount_read(&n->refcnt) == 1) {
|
|
bool remove = false;
|
|
|
|
write_lock(&n->lock);
|
|
if ((n->nud_state == NUD_FAILED) ||
|
|
(n->nud_state == NUD_NOARP) ||
|
|
(tbl->is_multicast &&
|
|
tbl->is_multicast(n->primary_key)) ||
|
|
!time_in_range(n->updated, tref, jiffies))
|
|
remove = true;
|
|
write_unlock(&n->lock);
|
|
|
|
if (remove && neigh_remove_one(n, tbl))
|
|
shrunk++;
|
|
if (shrunk >= max_clean)
|
|
break;
|
|
}
|
|
}
|
|
|
|
WRITE_ONCE(tbl->last_flush, jiffies);
|
|
|
|
write_unlock_bh(&tbl->lock);
|
|
|
|
return shrunk;
|
|
}
|
|
|
|
static void neigh_add_timer(struct neighbour *n, unsigned long when)
|
|
{
|
|
/* Use safe distance from the jiffies - LONG_MAX point while timer
|
|
* is running in DELAY/PROBE state but still show to user space
|
|
* large times in the past.
|
|
*/
|
|
unsigned long mint = jiffies - (LONG_MAX - 86400 * HZ);
|
|
|
|
neigh_hold(n);
|
|
if (!time_in_range(n->confirmed, mint, jiffies))
|
|
n->confirmed = mint;
|
|
if (time_before(n->used, n->confirmed))
|
|
n->used = n->confirmed;
|
|
if (unlikely(mod_timer(&n->timer, when))) {
|
|
printk("NEIGH: BUG, double timer add, state is %x\n",
|
|
n->nud_state);
|
|
dump_stack();
|
|
}
|
|
}
|
|
|
|
static int neigh_del_timer(struct neighbour *n)
|
|
{
|
|
if ((n->nud_state & NUD_IN_TIMER) &&
|
|
del_timer(&n->timer)) {
|
|
neigh_release(n);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static struct neigh_parms *neigh_get_dev_parms_rcu(struct net_device *dev,
|
|
int family)
|
|
{
|
|
switch (family) {
|
|
case AF_INET:
|
|
return __in_dev_arp_parms_get_rcu(dev);
|
|
case AF_INET6:
|
|
return __in6_dev_nd_parms_get_rcu(dev);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static void neigh_parms_qlen_dec(struct net_device *dev, int family)
|
|
{
|
|
struct neigh_parms *p;
|
|
|
|
rcu_read_lock();
|
|
p = neigh_get_dev_parms_rcu(dev, family);
|
|
if (p)
|
|
p->qlen--;
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
static void pneigh_queue_purge(struct sk_buff_head *list, struct net *net,
|
|
int family)
|
|
{
|
|
struct sk_buff_head tmp;
|
|
unsigned long flags;
|
|
struct sk_buff *skb;
|
|
|
|
skb_queue_head_init(&tmp);
|
|
spin_lock_irqsave(&list->lock, flags);
|
|
skb = skb_peek(list);
|
|
while (skb != NULL) {
|
|
struct sk_buff *skb_next = skb_peek_next(skb, list);
|
|
struct net_device *dev = skb->dev;
|
|
|
|
if (net == NULL || net_eq(dev_net(dev), net)) {
|
|
neigh_parms_qlen_dec(dev, family);
|
|
__skb_unlink(skb, list);
|
|
__skb_queue_tail(&tmp, skb);
|
|
}
|
|
skb = skb_next;
|
|
}
|
|
spin_unlock_irqrestore(&list->lock, flags);
|
|
|
|
while ((skb = __skb_dequeue(&tmp))) {
|
|
dev_put(skb->dev);
|
|
kfree_skb(skb);
|
|
}
|
|
}
|
|
|
|
static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev,
|
|
bool skip_perm)
|
|
{
|
|
int i;
|
|
struct neigh_hash_table *nht;
|
|
|
|
nht = rcu_dereference_protected(tbl->nht,
|
|
lockdep_is_held(&tbl->lock));
|
|
|
|
for (i = 0; i < (1 << nht->hash_shift); i++) {
|
|
struct neighbour *n;
|
|
struct neighbour __rcu **np = &nht->hash_buckets[i];
|
|
|
|
while ((n = rcu_dereference_protected(*np,
|
|
lockdep_is_held(&tbl->lock))) != NULL) {
|
|
if (dev && n->dev != dev) {
|
|
np = &n->next;
|
|
continue;
|
|
}
|
|
if (skip_perm && n->nud_state & NUD_PERMANENT) {
|
|
np = &n->next;
|
|
continue;
|
|
}
|
|
rcu_assign_pointer(*np,
|
|
rcu_dereference_protected(n->next,
|
|
lockdep_is_held(&tbl->lock)));
|
|
write_lock(&n->lock);
|
|
neigh_del_timer(n);
|
|
neigh_mark_dead(n);
|
|
if (refcount_read(&n->refcnt) != 1) {
|
|
/* The most unpleasant situation.
|
|
We must destroy neighbour entry,
|
|
but someone still uses it.
|
|
|
|
The destroy will be delayed until
|
|
the last user releases us, but
|
|
we must kill timers etc. and move
|
|
it to safe state.
|
|
*/
|
|
__skb_queue_purge(&n->arp_queue);
|
|
n->arp_queue_len_bytes = 0;
|
|
WRITE_ONCE(n->output, neigh_blackhole);
|
|
if (n->nud_state & NUD_VALID)
|
|
n->nud_state = NUD_NOARP;
|
|
else
|
|
n->nud_state = NUD_NONE;
|
|
neigh_dbg(2, "neigh %p is stray\n", n);
|
|
}
|
|
write_unlock(&n->lock);
|
|
neigh_cleanup_and_release(n);
|
|
}
|
|
}
|
|
}
|
|
|
|
void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev)
|
|
{
|
|
write_lock_bh(&tbl->lock);
|
|
neigh_flush_dev(tbl, dev, false);
|
|
write_unlock_bh(&tbl->lock);
|
|
}
|
|
EXPORT_SYMBOL(neigh_changeaddr);
|
|
|
|
static int __neigh_ifdown(struct neigh_table *tbl, struct net_device *dev,
|
|
bool skip_perm)
|
|
{
|
|
write_lock_bh(&tbl->lock);
|
|
neigh_flush_dev(tbl, dev, skip_perm);
|
|
pneigh_ifdown_and_unlock(tbl, dev);
|
|
pneigh_queue_purge(&tbl->proxy_queue, dev ? dev_net(dev) : NULL,
|
|
tbl->family);
|
|
if (skb_queue_empty_lockless(&tbl->proxy_queue))
|
|
del_timer_sync(&tbl->proxy_timer);
|
|
return 0;
|
|
}
|
|
|
|
int neigh_carrier_down(struct neigh_table *tbl, struct net_device *dev)
|
|
{
|
|
__neigh_ifdown(tbl, dev, true);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(neigh_carrier_down);
|
|
|
|
int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
|
|
{
|
|
__neigh_ifdown(tbl, dev, false);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(neigh_ifdown);
|
|
|
|
static struct neighbour *neigh_alloc(struct neigh_table *tbl,
|
|
struct net_device *dev,
|
|
u32 flags, bool exempt_from_gc)
|
|
{
|
|
struct neighbour *n = NULL;
|
|
unsigned long now = jiffies;
|
|
int entries, gc_thresh3;
|
|
|
|
if (exempt_from_gc)
|
|
goto do_alloc;
|
|
|
|
entries = atomic_inc_return(&tbl->gc_entries) - 1;
|
|
gc_thresh3 = READ_ONCE(tbl->gc_thresh3);
|
|
if (entries >= gc_thresh3 ||
|
|
(entries >= READ_ONCE(tbl->gc_thresh2) &&
|
|
time_after(now, READ_ONCE(tbl->last_flush) + 5 * HZ))) {
|
|
if (!neigh_forced_gc(tbl) && entries >= gc_thresh3) {
|
|
net_info_ratelimited("%s: neighbor table overflow!\n",
|
|
tbl->id);
|
|
NEIGH_CACHE_STAT_INC(tbl, table_fulls);
|
|
goto out_entries;
|
|
}
|
|
}
|
|
|
|
do_alloc:
|
|
n = kzalloc(tbl->entry_size + dev->neigh_priv_len, GFP_ATOMIC);
|
|
if (!n)
|
|
goto out_entries;
|
|
|
|
__skb_queue_head_init(&n->arp_queue);
|
|
rwlock_init(&n->lock);
|
|
seqlock_init(&n->ha_lock);
|
|
n->updated = n->used = now;
|
|
n->nud_state = NUD_NONE;
|
|
n->output = neigh_blackhole;
|
|
n->flags = flags;
|
|
seqlock_init(&n->hh.hh_lock);
|
|
n->parms = neigh_parms_clone(&tbl->parms);
|
|
timer_setup(&n->timer, neigh_timer_handler, 0);
|
|
|
|
NEIGH_CACHE_STAT_INC(tbl, allocs);
|
|
n->tbl = tbl;
|
|
refcount_set(&n->refcnt, 1);
|
|
n->dead = 1;
|
|
INIT_LIST_HEAD(&n->gc_list);
|
|
INIT_LIST_HEAD(&n->managed_list);
|
|
|
|
atomic_inc(&tbl->entries);
|
|
out:
|
|
return n;
|
|
|
|
out_entries:
|
|
if (!exempt_from_gc)
|
|
atomic_dec(&tbl->gc_entries);
|
|
goto out;
|
|
}
|
|
|
|
static void neigh_get_hash_rnd(u32 *x)
|
|
{
|
|
*x = get_random_u32() | 1;
|
|
}
|
|
|
|
static struct neigh_hash_table *neigh_hash_alloc(unsigned int shift)
|
|
{
|
|
size_t size = (1 << shift) * sizeof(struct neighbour *);
|
|
struct neigh_hash_table *ret;
|
|
struct neighbour __rcu **buckets;
|
|
int i;
|
|
|
|
ret = kmalloc(sizeof(*ret), GFP_ATOMIC);
|
|
if (!ret)
|
|
return NULL;
|
|
if (size <= PAGE_SIZE) {
|
|
buckets = kzalloc(size, GFP_ATOMIC);
|
|
} else {
|
|
buckets = (struct neighbour __rcu **)
|
|
__get_free_pages(GFP_ATOMIC | __GFP_ZERO,
|
|
get_order(size));
|
|
kmemleak_alloc(buckets, size, 1, GFP_ATOMIC);
|
|
}
|
|
if (!buckets) {
|
|
kfree(ret);
|
|
return NULL;
|
|
}
|
|
ret->hash_buckets = buckets;
|
|
ret->hash_shift = shift;
|
|
for (i = 0; i < NEIGH_NUM_HASH_RND; i++)
|
|
neigh_get_hash_rnd(&ret->hash_rnd[i]);
|
|
return ret;
|
|
}
|
|
|
|
static void neigh_hash_free_rcu(struct rcu_head *head)
|
|
{
|
|
struct neigh_hash_table *nht = container_of(head,
|
|
struct neigh_hash_table,
|
|
rcu);
|
|
size_t size = (1 << nht->hash_shift) * sizeof(struct neighbour *);
|
|
struct neighbour __rcu **buckets = nht->hash_buckets;
|
|
|
|
if (size <= PAGE_SIZE) {
|
|
kfree(buckets);
|
|
} else {
|
|
kmemleak_free(buckets);
|
|
free_pages((unsigned long)buckets, get_order(size));
|
|
}
|
|
kfree(nht);
|
|
}
|
|
|
|
static struct neigh_hash_table *neigh_hash_grow(struct neigh_table *tbl,
|
|
unsigned long new_shift)
|
|
{
|
|
unsigned int i, hash;
|
|
struct neigh_hash_table *new_nht, *old_nht;
|
|
|
|
NEIGH_CACHE_STAT_INC(tbl, hash_grows);
|
|
|
|
old_nht = rcu_dereference_protected(tbl->nht,
|
|
lockdep_is_held(&tbl->lock));
|
|
new_nht = neigh_hash_alloc(new_shift);
|
|
if (!new_nht)
|
|
return old_nht;
|
|
|
|
for (i = 0; i < (1 << old_nht->hash_shift); i++) {
|
|
struct neighbour *n, *next;
|
|
|
|
for (n = rcu_dereference_protected(old_nht->hash_buckets[i],
|
|
lockdep_is_held(&tbl->lock));
|
|
n != NULL;
|
|
n = next) {
|
|
hash = tbl->hash(n->primary_key, n->dev,
|
|
new_nht->hash_rnd);
|
|
|
|
hash >>= (32 - new_nht->hash_shift);
|
|
next = rcu_dereference_protected(n->next,
|
|
lockdep_is_held(&tbl->lock));
|
|
|
|
rcu_assign_pointer(n->next,
|
|
rcu_dereference_protected(
|
|
new_nht->hash_buckets[hash],
|
|
lockdep_is_held(&tbl->lock)));
|
|
rcu_assign_pointer(new_nht->hash_buckets[hash], n);
|
|
}
|
|
}
|
|
|
|
rcu_assign_pointer(tbl->nht, new_nht);
|
|
call_rcu(&old_nht->rcu, neigh_hash_free_rcu);
|
|
return new_nht;
|
|
}
|
|
|
|
struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey,
|
|
struct net_device *dev)
|
|
{
|
|
struct neighbour *n;
|
|
|
|
NEIGH_CACHE_STAT_INC(tbl, lookups);
|
|
|
|
rcu_read_lock();
|
|
n = __neigh_lookup_noref(tbl, pkey, dev);
|
|
if (n) {
|
|
if (!refcount_inc_not_zero(&n->refcnt))
|
|
n = NULL;
|
|
NEIGH_CACHE_STAT_INC(tbl, hits);
|
|
}
|
|
|
|
rcu_read_unlock();
|
|
return n;
|
|
}
|
|
EXPORT_SYMBOL(neigh_lookup);
|
|
|
|
static struct neighbour *
|
|
___neigh_create(struct neigh_table *tbl, const void *pkey,
|
|
struct net_device *dev, u32 flags,
|
|
bool exempt_from_gc, bool want_ref)
|
|
{
|
|
u32 hash_val, key_len = tbl->key_len;
|
|
struct neighbour *n1, *rc, *n;
|
|
struct neigh_hash_table *nht;
|
|
int error;
|
|
|
|
n = neigh_alloc(tbl, dev, flags, exempt_from_gc);
|
|
trace_neigh_create(tbl, dev, pkey, n, exempt_from_gc);
|
|
if (!n) {
|
|
rc = ERR_PTR(-ENOBUFS);
|
|
goto out;
|
|
}
|
|
|
|
memcpy(n->primary_key, pkey, key_len);
|
|
n->dev = dev;
|
|
netdev_hold(dev, &n->dev_tracker, GFP_ATOMIC);
|
|
|
|
/* Protocol specific setup. */
|
|
if (tbl->constructor && (error = tbl->constructor(n)) < 0) {
|
|
rc = ERR_PTR(error);
|
|
goto out_neigh_release;
|
|
}
|
|
|
|
if (dev->netdev_ops->ndo_neigh_construct) {
|
|
error = dev->netdev_ops->ndo_neigh_construct(dev, n);
|
|
if (error < 0) {
|
|
rc = ERR_PTR(error);
|
|
goto out_neigh_release;
|
|
}
|
|
}
|
|
|
|
/* Device specific setup. */
|
|
if (n->parms->neigh_setup &&
|
|
(error = n->parms->neigh_setup(n)) < 0) {
|
|
rc = ERR_PTR(error);
|
|
goto out_neigh_release;
|
|
}
|
|
|
|
n->confirmed = jiffies - (NEIGH_VAR(n->parms, BASE_REACHABLE_TIME) << 1);
|
|
|
|
write_lock_bh(&tbl->lock);
|
|
nht = rcu_dereference_protected(tbl->nht,
|
|
lockdep_is_held(&tbl->lock));
|
|
|
|
if (atomic_read(&tbl->entries) > (1 << nht->hash_shift))
|
|
nht = neigh_hash_grow(tbl, nht->hash_shift + 1);
|
|
|
|
hash_val = tbl->hash(n->primary_key, dev, nht->hash_rnd) >> (32 - nht->hash_shift);
|
|
|
|
if (n->parms->dead) {
|
|
rc = ERR_PTR(-EINVAL);
|
|
goto out_tbl_unlock;
|
|
}
|
|
|
|
for (n1 = rcu_dereference_protected(nht->hash_buckets[hash_val],
|
|
lockdep_is_held(&tbl->lock));
|
|
n1 != NULL;
|
|
n1 = rcu_dereference_protected(n1->next,
|
|
lockdep_is_held(&tbl->lock))) {
|
|
if (dev == n1->dev && !memcmp(n1->primary_key, n->primary_key, key_len)) {
|
|
if (want_ref)
|
|
neigh_hold(n1);
|
|
rc = n1;
|
|
goto out_tbl_unlock;
|
|
}
|
|
}
|
|
|
|
n->dead = 0;
|
|
if (!exempt_from_gc)
|
|
list_add_tail(&n->gc_list, &n->tbl->gc_list);
|
|
if (n->flags & NTF_MANAGED)
|
|
list_add_tail(&n->managed_list, &n->tbl->managed_list);
|
|
if (want_ref)
|
|
neigh_hold(n);
|
|
rcu_assign_pointer(n->next,
|
|
rcu_dereference_protected(nht->hash_buckets[hash_val],
|
|
lockdep_is_held(&tbl->lock)));
|
|
rcu_assign_pointer(nht->hash_buckets[hash_val], n);
|
|
write_unlock_bh(&tbl->lock);
|
|
neigh_dbg(2, "neigh %p is created\n", n);
|
|
rc = n;
|
|
out:
|
|
return rc;
|
|
out_tbl_unlock:
|
|
write_unlock_bh(&tbl->lock);
|
|
out_neigh_release:
|
|
if (!exempt_from_gc)
|
|
atomic_dec(&tbl->gc_entries);
|
|
neigh_release(n);
|
|
goto out;
|
|
}
|
|
|
|
struct neighbour *__neigh_create(struct neigh_table *tbl, const void *pkey,
|
|
struct net_device *dev, bool want_ref)
|
|
{
|
|
return ___neigh_create(tbl, pkey, dev, 0, false, want_ref);
|
|
}
|
|
EXPORT_SYMBOL(__neigh_create);
|
|
|
|
static u32 pneigh_hash(const void *pkey, unsigned int key_len)
|
|
{
|
|
u32 hash_val = *(u32 *)(pkey + key_len - 4);
|
|
hash_val ^= (hash_val >> 16);
|
|
hash_val ^= hash_val >> 8;
|
|
hash_val ^= hash_val >> 4;
|
|
hash_val &= PNEIGH_HASHMASK;
|
|
return hash_val;
|
|
}
|
|
|
|
static struct pneigh_entry *__pneigh_lookup_1(struct pneigh_entry *n,
|
|
struct net *net,
|
|
const void *pkey,
|
|
unsigned int key_len,
|
|
struct net_device *dev)
|
|
{
|
|
while (n) {
|
|
if (!memcmp(n->key, pkey, key_len) &&
|
|
net_eq(pneigh_net(n), net) &&
|
|
(n->dev == dev || !n->dev))
|
|
return n;
|
|
n = n->next;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
struct pneigh_entry *__pneigh_lookup(struct neigh_table *tbl,
|
|
struct net *net, const void *pkey, struct net_device *dev)
|
|
{
|
|
unsigned int key_len = tbl->key_len;
|
|
u32 hash_val = pneigh_hash(pkey, key_len);
|
|
|
|
return __pneigh_lookup_1(tbl->phash_buckets[hash_val],
|
|
net, pkey, key_len, dev);
|
|
}
|
|
EXPORT_SYMBOL_GPL(__pneigh_lookup);
|
|
|
|
struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl,
|
|
struct net *net, const void *pkey,
|
|
struct net_device *dev, int creat)
|
|
{
|
|
struct pneigh_entry *n;
|
|
unsigned int key_len = tbl->key_len;
|
|
u32 hash_val = pneigh_hash(pkey, key_len);
|
|
|
|
read_lock_bh(&tbl->lock);
|
|
n = __pneigh_lookup_1(tbl->phash_buckets[hash_val],
|
|
net, pkey, key_len, dev);
|
|
read_unlock_bh(&tbl->lock);
|
|
|
|
if (n || !creat)
|
|
goto out;
|
|
|
|
ASSERT_RTNL();
|
|
|
|
n = kzalloc(sizeof(*n) + key_len, GFP_KERNEL);
|
|
if (!n)
|
|
goto out;
|
|
|
|
write_pnet(&n->net, net);
|
|
memcpy(n->key, pkey, key_len);
|
|
n->dev = dev;
|
|
netdev_hold(dev, &n->dev_tracker, GFP_KERNEL);
|
|
|
|
if (tbl->pconstructor && tbl->pconstructor(n)) {
|
|
netdev_put(dev, &n->dev_tracker);
|
|
kfree(n);
|
|
n = NULL;
|
|
goto out;
|
|
}
|
|
|
|
write_lock_bh(&tbl->lock);
|
|
n->next = tbl->phash_buckets[hash_val];
|
|
tbl->phash_buckets[hash_val] = n;
|
|
write_unlock_bh(&tbl->lock);
|
|
out:
|
|
return n;
|
|
}
|
|
EXPORT_SYMBOL(pneigh_lookup);
|
|
|
|
|
|
int pneigh_delete(struct neigh_table *tbl, struct net *net, const void *pkey,
|
|
struct net_device *dev)
|
|
{
|
|
struct pneigh_entry *n, **np;
|
|
unsigned int key_len = tbl->key_len;
|
|
u32 hash_val = pneigh_hash(pkey, key_len);
|
|
|
|
write_lock_bh(&tbl->lock);
|
|
for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL;
|
|
np = &n->next) {
|
|
if (!memcmp(n->key, pkey, key_len) && n->dev == dev &&
|
|
net_eq(pneigh_net(n), net)) {
|
|
*np = n->next;
|
|
write_unlock_bh(&tbl->lock);
|
|
if (tbl->pdestructor)
|
|
tbl->pdestructor(n);
|
|
netdev_put(n->dev, &n->dev_tracker);
|
|
kfree(n);
|
|
return 0;
|
|
}
|
|
}
|
|
write_unlock_bh(&tbl->lock);
|
|
return -ENOENT;
|
|
}
|
|
|
|
static int pneigh_ifdown_and_unlock(struct neigh_table *tbl,
|
|
struct net_device *dev)
|
|
{
|
|
struct pneigh_entry *n, **np, *freelist = NULL;
|
|
u32 h;
|
|
|
|
for (h = 0; h <= PNEIGH_HASHMASK; h++) {
|
|
np = &tbl->phash_buckets[h];
|
|
while ((n = *np) != NULL) {
|
|
if (!dev || n->dev == dev) {
|
|
*np = n->next;
|
|
n->next = freelist;
|
|
freelist = n;
|
|
continue;
|
|
}
|
|
np = &n->next;
|
|
}
|
|
}
|
|
write_unlock_bh(&tbl->lock);
|
|
while ((n = freelist)) {
|
|
freelist = n->next;
|
|
n->next = NULL;
|
|
if (tbl->pdestructor)
|
|
tbl->pdestructor(n);
|
|
netdev_put(n->dev, &n->dev_tracker);
|
|
kfree(n);
|
|
}
|
|
return -ENOENT;
|
|
}
|
|
|
|
static void neigh_parms_destroy(struct neigh_parms *parms);
|
|
|
|
static inline void neigh_parms_put(struct neigh_parms *parms)
|
|
{
|
|
if (refcount_dec_and_test(&parms->refcnt))
|
|
neigh_parms_destroy(parms);
|
|
}
|
|
|
|
/*
|
|
* neighbour must already be out of the table;
|
|
*
|
|
*/
|
|
void neigh_destroy(struct neighbour *neigh)
|
|
{
|
|
struct net_device *dev = neigh->dev;
|
|
|
|
NEIGH_CACHE_STAT_INC(neigh->tbl, destroys);
|
|
|
|
if (!neigh->dead) {
|
|
pr_warn("Destroying alive neighbour %p\n", neigh);
|
|
dump_stack();
|
|
return;
|
|
}
|
|
|
|
if (neigh_del_timer(neigh))
|
|
pr_warn("Impossible event\n");
|
|
|
|
write_lock_bh(&neigh->lock);
|
|
__skb_queue_purge(&neigh->arp_queue);
|
|
write_unlock_bh(&neigh->lock);
|
|
neigh->arp_queue_len_bytes = 0;
|
|
|
|
if (dev->netdev_ops->ndo_neigh_destroy)
|
|
dev->netdev_ops->ndo_neigh_destroy(dev, neigh);
|
|
|
|
netdev_put(dev, &neigh->dev_tracker);
|
|
neigh_parms_put(neigh->parms);
|
|
|
|
neigh_dbg(2, "neigh %p is destroyed\n", neigh);
|
|
|
|
atomic_dec(&neigh->tbl->entries);
|
|
kfree_rcu(neigh, rcu);
|
|
}
|
|
EXPORT_SYMBOL(neigh_destroy);
|
|
|
|
/* Neighbour state is suspicious;
|
|
disable fast path.
|
|
|
|
Called with write_locked neigh.
|
|
*/
|
|
static void neigh_suspect(struct neighbour *neigh)
|
|
{
|
|
neigh_dbg(2, "neigh %p is suspected\n", neigh);
|
|
|
|
WRITE_ONCE(neigh->output, neigh->ops->output);
|
|
}
|
|
|
|
/* Neighbour state is OK;
|
|
enable fast path.
|
|
|
|
Called with write_locked neigh.
|
|
*/
|
|
static void neigh_connect(struct neighbour *neigh)
|
|
{
|
|
neigh_dbg(2, "neigh %p is connected\n", neigh);
|
|
|
|
WRITE_ONCE(neigh->output, neigh->ops->connected_output);
|
|
}
|
|
|
|
static void neigh_periodic_work(struct work_struct *work)
|
|
{
|
|
struct neigh_table *tbl = container_of(work, struct neigh_table, gc_work.work);
|
|
struct neighbour *n;
|
|
struct neighbour __rcu **np;
|
|
unsigned int i;
|
|
struct neigh_hash_table *nht;
|
|
|
|
NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs);
|
|
|
|
write_lock_bh(&tbl->lock);
|
|
nht = rcu_dereference_protected(tbl->nht,
|
|
lockdep_is_held(&tbl->lock));
|
|
|
|
/*
|
|
* periodically recompute ReachableTime from random function
|
|
*/
|
|
|
|
if (time_after(jiffies, tbl->last_rand + 300 * HZ)) {
|
|
struct neigh_parms *p;
|
|
|
|
WRITE_ONCE(tbl->last_rand, jiffies);
|
|
list_for_each_entry(p, &tbl->parms_list, list)
|
|
p->reachable_time =
|
|
neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME));
|
|
}
|
|
|
|
if (atomic_read(&tbl->entries) < READ_ONCE(tbl->gc_thresh1))
|
|
goto out;
|
|
|
|
for (i = 0 ; i < (1 << nht->hash_shift); i++) {
|
|
np = &nht->hash_buckets[i];
|
|
|
|
while ((n = rcu_dereference_protected(*np,
|
|
lockdep_is_held(&tbl->lock))) != NULL) {
|
|
unsigned int state;
|
|
|
|
write_lock(&n->lock);
|
|
|
|
state = n->nud_state;
|
|
if ((state & (NUD_PERMANENT | NUD_IN_TIMER)) ||
|
|
(n->flags & NTF_EXT_LEARNED)) {
|
|
write_unlock(&n->lock);
|
|
goto next_elt;
|
|
}
|
|
|
|
if (time_before(n->used, n->confirmed) &&
|
|
time_is_before_eq_jiffies(n->confirmed))
|
|
n->used = n->confirmed;
|
|
|
|
if (refcount_read(&n->refcnt) == 1 &&
|
|
(state == NUD_FAILED ||
|
|
!time_in_range_open(jiffies, n->used,
|
|
n->used + NEIGH_VAR(n->parms, GC_STALETIME)))) {
|
|
rcu_assign_pointer(*np,
|
|
rcu_dereference_protected(n->next,
|
|
lockdep_is_held(&tbl->lock)));
|
|
neigh_mark_dead(n);
|
|
write_unlock(&n->lock);
|
|
neigh_cleanup_and_release(n);
|
|
continue;
|
|
}
|
|
write_unlock(&n->lock);
|
|
|
|
next_elt:
|
|
np = &n->next;
|
|
}
|
|
/*
|
|
* It's fine to release lock here, even if hash table
|
|
* grows while we are preempted.
|
|
*/
|
|
write_unlock_bh(&tbl->lock);
|
|
cond_resched();
|
|
write_lock_bh(&tbl->lock);
|
|
nht = rcu_dereference_protected(tbl->nht,
|
|
lockdep_is_held(&tbl->lock));
|
|
}
|
|
out:
|
|
/* Cycle through all hash buckets every BASE_REACHABLE_TIME/2 ticks.
|
|
* ARP entry timeouts range from 1/2 BASE_REACHABLE_TIME to 3/2
|
|
* BASE_REACHABLE_TIME.
|
|
*/
|
|
queue_delayed_work(system_power_efficient_wq, &tbl->gc_work,
|
|
NEIGH_VAR(&tbl->parms, BASE_REACHABLE_TIME) >> 1);
|
|
write_unlock_bh(&tbl->lock);
|
|
}
|
|
|
|
static __inline__ int neigh_max_probes(struct neighbour *n)
|
|
{
|
|
struct neigh_parms *p = n->parms;
|
|
return NEIGH_VAR(p, UCAST_PROBES) + NEIGH_VAR(p, APP_PROBES) +
|
|
(n->nud_state & NUD_PROBE ? NEIGH_VAR(p, MCAST_REPROBES) :
|
|
NEIGH_VAR(p, MCAST_PROBES));
|
|
}
|
|
|
|
static void neigh_invalidate(struct neighbour *neigh)
|
|
__releases(neigh->lock)
|
|
__acquires(neigh->lock)
|
|
{
|
|
struct sk_buff *skb;
|
|
|
|
NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed);
|
|
neigh_dbg(2, "neigh %p is failed\n", neigh);
|
|
neigh->updated = jiffies;
|
|
|
|
/* It is very thin place. report_unreachable is very complicated
|
|
routine. Particularly, it can hit the same neighbour entry!
|
|
|
|
So that, we try to be accurate and avoid dead loop. --ANK
|
|
*/
|
|
while (neigh->nud_state == NUD_FAILED &&
|
|
(skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
|
|
write_unlock(&neigh->lock);
|
|
neigh->ops->error_report(neigh, skb);
|
|
write_lock(&neigh->lock);
|
|
}
|
|
__skb_queue_purge(&neigh->arp_queue);
|
|
neigh->arp_queue_len_bytes = 0;
|
|
}
|
|
|
|
static void neigh_probe(struct neighbour *neigh)
|
|
__releases(neigh->lock)
|
|
{
|
|
struct sk_buff *skb = skb_peek_tail(&neigh->arp_queue);
|
|
/* keep skb alive even if arp_queue overflows */
|
|
if (skb)
|
|
skb = skb_clone(skb, GFP_ATOMIC);
|
|
write_unlock(&neigh->lock);
|
|
if (neigh->ops->solicit)
|
|
neigh->ops->solicit(neigh, skb);
|
|
atomic_inc(&neigh->probes);
|
|
consume_skb(skb);
|
|
}
|
|
|
|
/* Called when a timer expires for a neighbour entry. */
|
|
|
|
static void neigh_timer_handler(struct timer_list *t)
|
|
{
|
|
unsigned long now, next;
|
|
struct neighbour *neigh = from_timer(neigh, t, timer);
|
|
unsigned int state;
|
|
int notify = 0;
|
|
|
|
write_lock(&neigh->lock);
|
|
|
|
state = neigh->nud_state;
|
|
now = jiffies;
|
|
next = now + HZ;
|
|
|
|
if (!(state & NUD_IN_TIMER))
|
|
goto out;
|
|
|
|
if (state & NUD_REACHABLE) {
|
|
if (time_before_eq(now,
|
|
neigh->confirmed + neigh->parms->reachable_time)) {
|
|
neigh_dbg(2, "neigh %p is still alive\n", neigh);
|
|
next = neigh->confirmed + neigh->parms->reachable_time;
|
|
} else if (time_before_eq(now,
|
|
neigh->used +
|
|
NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME))) {
|
|
neigh_dbg(2, "neigh %p is delayed\n", neigh);
|
|
WRITE_ONCE(neigh->nud_state, NUD_DELAY);
|
|
neigh->updated = jiffies;
|
|
neigh_suspect(neigh);
|
|
next = now + NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME);
|
|
} else {
|
|
neigh_dbg(2, "neigh %p is suspected\n", neigh);
|
|
WRITE_ONCE(neigh->nud_state, NUD_STALE);
|
|
neigh->updated = jiffies;
|
|
neigh_suspect(neigh);
|
|
notify = 1;
|
|
}
|
|
} else if (state & NUD_DELAY) {
|
|
if (time_before_eq(now,
|
|
neigh->confirmed +
|
|
NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME))) {
|
|
neigh_dbg(2, "neigh %p is now reachable\n", neigh);
|
|
WRITE_ONCE(neigh->nud_state, NUD_REACHABLE);
|
|
neigh->updated = jiffies;
|
|
neigh_connect(neigh);
|
|
notify = 1;
|
|
next = neigh->confirmed + neigh->parms->reachable_time;
|
|
} else {
|
|
neigh_dbg(2, "neigh %p is probed\n", neigh);
|
|
WRITE_ONCE(neigh->nud_state, NUD_PROBE);
|
|
neigh->updated = jiffies;
|
|
atomic_set(&neigh->probes, 0);
|
|
notify = 1;
|
|
next = now + max(NEIGH_VAR(neigh->parms, RETRANS_TIME),
|
|
HZ/100);
|
|
}
|
|
} else {
|
|
/* NUD_PROBE|NUD_INCOMPLETE */
|
|
next = now + max(NEIGH_VAR(neigh->parms, RETRANS_TIME), HZ/100);
|
|
}
|
|
|
|
if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) &&
|
|
atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) {
|
|
WRITE_ONCE(neigh->nud_state, NUD_FAILED);
|
|
notify = 1;
|
|
neigh_invalidate(neigh);
|
|
goto out;
|
|
}
|
|
|
|
if (neigh->nud_state & NUD_IN_TIMER) {
|
|
if (time_before(next, jiffies + HZ/100))
|
|
next = jiffies + HZ/100;
|
|
if (!mod_timer(&neigh->timer, next))
|
|
neigh_hold(neigh);
|
|
}
|
|
if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) {
|
|
neigh_probe(neigh);
|
|
} else {
|
|
out:
|
|
write_unlock(&neigh->lock);
|
|
}
|
|
|
|
if (notify)
|
|
neigh_update_notify(neigh, 0);
|
|
|
|
trace_neigh_timer_handler(neigh, 0);
|
|
|
|
neigh_release(neigh);
|
|
}
|
|
|
|
int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb,
|
|
const bool immediate_ok)
|
|
{
|
|
int rc;
|
|
bool immediate_probe = false;
|
|
|
|
write_lock_bh(&neigh->lock);
|
|
|
|
rc = 0;
|
|
if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE))
|
|
goto out_unlock_bh;
|
|
if (neigh->dead)
|
|
goto out_dead;
|
|
|
|
if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) {
|
|
if (NEIGH_VAR(neigh->parms, MCAST_PROBES) +
|
|
NEIGH_VAR(neigh->parms, APP_PROBES)) {
|
|
unsigned long next, now = jiffies;
|
|
|
|
atomic_set(&neigh->probes,
|
|
NEIGH_VAR(neigh->parms, UCAST_PROBES));
|
|
neigh_del_timer(neigh);
|
|
WRITE_ONCE(neigh->nud_state, NUD_INCOMPLETE);
|
|
neigh->updated = now;
|
|
if (!immediate_ok) {
|
|
next = now + 1;
|
|
} else {
|
|
immediate_probe = true;
|
|
next = now + max(NEIGH_VAR(neigh->parms,
|
|
RETRANS_TIME),
|
|
HZ / 100);
|
|
}
|
|
neigh_add_timer(neigh, next);
|
|
} else {
|
|
WRITE_ONCE(neigh->nud_state, NUD_FAILED);
|
|
neigh->updated = jiffies;
|
|
write_unlock_bh(&neigh->lock);
|
|
|
|
kfree_skb_reason(skb, SKB_DROP_REASON_NEIGH_FAILED);
|
|
return 1;
|
|
}
|
|
} else if (neigh->nud_state & NUD_STALE) {
|
|
neigh_dbg(2, "neigh %p is delayed\n", neigh);
|
|
neigh_del_timer(neigh);
|
|
WRITE_ONCE(neigh->nud_state, NUD_DELAY);
|
|
neigh->updated = jiffies;
|
|
neigh_add_timer(neigh, jiffies +
|
|
NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME));
|
|
}
|
|
|
|
if (neigh->nud_state == NUD_INCOMPLETE) {
|
|
if (skb) {
|
|
while (neigh->arp_queue_len_bytes + skb->truesize >
|
|
NEIGH_VAR(neigh->parms, QUEUE_LEN_BYTES)) {
|
|
struct sk_buff *buff;
|
|
|
|
buff = __skb_dequeue(&neigh->arp_queue);
|
|
if (!buff)
|
|
break;
|
|
neigh->arp_queue_len_bytes -= buff->truesize;
|
|
kfree_skb_reason(buff, SKB_DROP_REASON_NEIGH_QUEUEFULL);
|
|
NEIGH_CACHE_STAT_INC(neigh->tbl, unres_discards);
|
|
}
|
|
skb_dst_force(skb);
|
|
__skb_queue_tail(&neigh->arp_queue, skb);
|
|
neigh->arp_queue_len_bytes += skb->truesize;
|
|
}
|
|
rc = 1;
|
|
}
|
|
out_unlock_bh:
|
|
if (immediate_probe)
|
|
neigh_probe(neigh);
|
|
else
|
|
write_unlock(&neigh->lock);
|
|
local_bh_enable();
|
|
trace_neigh_event_send_done(neigh, rc);
|
|
return rc;
|
|
|
|
out_dead:
|
|
if (neigh->nud_state & NUD_STALE)
|
|
goto out_unlock_bh;
|
|
write_unlock_bh(&neigh->lock);
|
|
kfree_skb_reason(skb, SKB_DROP_REASON_NEIGH_DEAD);
|
|
trace_neigh_event_send_dead(neigh, 1);
|
|
return 1;
|
|
}
|
|
EXPORT_SYMBOL(__neigh_event_send);
|
|
|
|
static void neigh_update_hhs(struct neighbour *neigh)
|
|
{
|
|
struct hh_cache *hh;
|
|
void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *)
|
|
= NULL;
|
|
|
|
if (neigh->dev->header_ops)
|
|
update = neigh->dev->header_ops->cache_update;
|
|
|
|
if (update) {
|
|
hh = &neigh->hh;
|
|
if (READ_ONCE(hh->hh_len)) {
|
|
write_seqlock_bh(&hh->hh_lock);
|
|
update(hh, neigh->dev, neigh->ha);
|
|
write_sequnlock_bh(&hh->hh_lock);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Generic update routine.
|
|
-- lladdr is new lladdr or NULL, if it is not supplied.
|
|
-- new is new state.
|
|
-- flags
|
|
NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr,
|
|
if it is different.
|
|
NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected"
|
|
lladdr instead of overriding it
|
|
if it is different.
|
|
NEIGH_UPDATE_F_ADMIN means that the change is administrative.
|
|
NEIGH_UPDATE_F_USE means that the entry is user triggered.
|
|
NEIGH_UPDATE_F_MANAGED means that the entry will be auto-refreshed.
|
|
NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing
|
|
NTF_ROUTER flag.
|
|
NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as
|
|
a router.
|
|
|
|
Caller MUST hold reference count on the entry.
|
|
*/
|
|
static int __neigh_update(struct neighbour *neigh, const u8 *lladdr,
|
|
u8 new, u32 flags, u32 nlmsg_pid,
|
|
struct netlink_ext_ack *extack)
|
|
{
|
|
bool gc_update = false, managed_update = false;
|
|
int update_isrouter = 0;
|
|
struct net_device *dev;
|
|
int err, notify = 0;
|
|
u8 old;
|
|
|
|
trace_neigh_update(neigh, lladdr, new, flags, nlmsg_pid);
|
|
|
|
write_lock_bh(&neigh->lock);
|
|
|
|
dev = neigh->dev;
|
|
old = neigh->nud_state;
|
|
err = -EPERM;
|
|
|
|
if (neigh->dead) {
|
|
NL_SET_ERR_MSG(extack, "Neighbor entry is now dead");
|
|
new = old;
|
|
goto out;
|
|
}
|
|
if (!(flags & NEIGH_UPDATE_F_ADMIN) &&
|
|
(old & (NUD_NOARP | NUD_PERMANENT)))
|
|
goto out;
|
|
|
|
neigh_update_flags(neigh, flags, ¬ify, &gc_update, &managed_update);
|
|
if (flags & (NEIGH_UPDATE_F_USE | NEIGH_UPDATE_F_MANAGED)) {
|
|
new = old & ~NUD_PERMANENT;
|
|
WRITE_ONCE(neigh->nud_state, new);
|
|
err = 0;
|
|
goto out;
|
|
}
|
|
|
|
if (!(new & NUD_VALID)) {
|
|
neigh_del_timer(neigh);
|
|
if (old & NUD_CONNECTED)
|
|
neigh_suspect(neigh);
|
|
WRITE_ONCE(neigh->nud_state, new);
|
|
err = 0;
|
|
notify = old & NUD_VALID;
|
|
if ((old & (NUD_INCOMPLETE | NUD_PROBE)) &&
|
|
(new & NUD_FAILED)) {
|
|
neigh_invalidate(neigh);
|
|
notify = 1;
|
|
}
|
|
goto out;
|
|
}
|
|
|
|
/* Compare new lladdr with cached one */
|
|
if (!dev->addr_len) {
|
|
/* First case: device needs no address. */
|
|
lladdr = neigh->ha;
|
|
} else if (lladdr) {
|
|
/* The second case: if something is already cached
|
|
and a new address is proposed:
|
|
- compare new & old
|
|
- if they are different, check override flag
|
|
*/
|
|
if ((old & NUD_VALID) &&
|
|
!memcmp(lladdr, neigh->ha, dev->addr_len))
|
|
lladdr = neigh->ha;
|
|
} else {
|
|
/* No address is supplied; if we know something,
|
|
use it, otherwise discard the request.
|
|
*/
|
|
err = -EINVAL;
|
|
if (!(old & NUD_VALID)) {
|
|
NL_SET_ERR_MSG(extack, "No link layer address given");
|
|
goto out;
|
|
}
|
|
lladdr = neigh->ha;
|
|
}
|
|
|
|
/* Update confirmed timestamp for neighbour entry after we
|
|
* received ARP packet even if it doesn't change IP to MAC binding.
|
|
*/
|
|
if (new & NUD_CONNECTED)
|
|
neigh->confirmed = jiffies;
|
|
|
|
/* If entry was valid and address is not changed,
|
|
do not change entry state, if new one is STALE.
|
|
*/
|
|
err = 0;
|
|
update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER;
|
|
if (old & NUD_VALID) {
|
|
if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) {
|
|
update_isrouter = 0;
|
|
if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) &&
|
|
(old & NUD_CONNECTED)) {
|
|
lladdr = neigh->ha;
|
|
new = NUD_STALE;
|
|
} else
|
|
goto out;
|
|
} else {
|
|
if (lladdr == neigh->ha && new == NUD_STALE &&
|
|
!(flags & NEIGH_UPDATE_F_ADMIN))
|
|
new = old;
|
|
}
|
|
}
|
|
|
|
/* Update timestamp only once we know we will make a change to the
|
|
* neighbour entry. Otherwise we risk to move the locktime window with
|
|
* noop updates and ignore relevant ARP updates.
|
|
*/
|
|
if (new != old || lladdr != neigh->ha)
|
|
neigh->updated = jiffies;
|
|
|
|
if (new != old) {
|
|
neigh_del_timer(neigh);
|
|
if (new & NUD_PROBE)
|
|
atomic_set(&neigh->probes, 0);
|
|
if (new & NUD_IN_TIMER)
|
|
neigh_add_timer(neigh, (jiffies +
|
|
((new & NUD_REACHABLE) ?
|
|
neigh->parms->reachable_time :
|
|
0)));
|
|
WRITE_ONCE(neigh->nud_state, new);
|
|
notify = 1;
|
|
}
|
|
|
|
if (lladdr != neigh->ha) {
|
|
write_seqlock(&neigh->ha_lock);
|
|
memcpy(&neigh->ha, lladdr, dev->addr_len);
|
|
write_sequnlock(&neigh->ha_lock);
|
|
neigh_update_hhs(neigh);
|
|
if (!(new & NUD_CONNECTED))
|
|
neigh->confirmed = jiffies -
|
|
(NEIGH_VAR(neigh->parms, BASE_REACHABLE_TIME) << 1);
|
|
notify = 1;
|
|
}
|
|
if (new == old)
|
|
goto out;
|
|
if (new & NUD_CONNECTED)
|
|
neigh_connect(neigh);
|
|
else
|
|
neigh_suspect(neigh);
|
|
if (!(old & NUD_VALID)) {
|
|
struct sk_buff *skb;
|
|
|
|
/* Again: avoid dead loop if something went wrong */
|
|
|
|
while (neigh->nud_state & NUD_VALID &&
|
|
(skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
|
|
struct dst_entry *dst = skb_dst(skb);
|
|
struct neighbour *n2, *n1 = neigh;
|
|
write_unlock_bh(&neigh->lock);
|
|
|
|
rcu_read_lock();
|
|
|
|
/* Why not just use 'neigh' as-is? The problem is that
|
|
* things such as shaper, eql, and sch_teql can end up
|
|
* using alternative, different, neigh objects to output
|
|
* the packet in the output path. So what we need to do
|
|
* here is re-lookup the top-level neigh in the path so
|
|
* we can reinject the packet there.
|
|
*/
|
|
n2 = NULL;
|
|
if (dst && dst->obsolete != DST_OBSOLETE_DEAD) {
|
|
n2 = dst_neigh_lookup_skb(dst, skb);
|
|
if (n2)
|
|
n1 = n2;
|
|
}
|
|
READ_ONCE(n1->output)(n1, skb);
|
|
if (n2)
|
|
neigh_release(n2);
|
|
rcu_read_unlock();
|
|
|
|
write_lock_bh(&neigh->lock);
|
|
}
|
|
__skb_queue_purge(&neigh->arp_queue);
|
|
neigh->arp_queue_len_bytes = 0;
|
|
}
|
|
out:
|
|
if (update_isrouter)
|
|
neigh_update_is_router(neigh, flags, ¬ify);
|
|
write_unlock_bh(&neigh->lock);
|
|
if (((new ^ old) & NUD_PERMANENT) || gc_update)
|
|
neigh_update_gc_list(neigh);
|
|
if (managed_update)
|
|
neigh_update_managed_list(neigh);
|
|
if (notify)
|
|
neigh_update_notify(neigh, nlmsg_pid);
|
|
trace_neigh_update_done(neigh, err);
|
|
return err;
|
|
}
|
|
|
|
int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new,
|
|
u32 flags, u32 nlmsg_pid)
|
|
{
|
|
return __neigh_update(neigh, lladdr, new, flags, nlmsg_pid, NULL);
|
|
}
|
|
EXPORT_SYMBOL(neigh_update);
|
|
|
|
/* Update the neigh to listen temporarily for probe responses, even if it is
|
|
* in a NUD_FAILED state. The caller has to hold neigh->lock for writing.
|
|
*/
|
|
void __neigh_set_probe_once(struct neighbour *neigh)
|
|
{
|
|
if (neigh->dead)
|
|
return;
|
|
neigh->updated = jiffies;
|
|
if (!(neigh->nud_state & NUD_FAILED))
|
|
return;
|
|
WRITE_ONCE(neigh->nud_state, NUD_INCOMPLETE);
|
|
atomic_set(&neigh->probes, neigh_max_probes(neigh));
|
|
neigh_add_timer(neigh,
|
|
jiffies + max(NEIGH_VAR(neigh->parms, RETRANS_TIME),
|
|
HZ/100));
|
|
}
|
|
EXPORT_SYMBOL(__neigh_set_probe_once);
|
|
|
|
struct neighbour *neigh_event_ns(struct neigh_table *tbl,
|
|
u8 *lladdr, void *saddr,
|
|
struct net_device *dev)
|
|
{
|
|
struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev,
|
|
lladdr || !dev->addr_len);
|
|
if (neigh)
|
|
neigh_update(neigh, lladdr, NUD_STALE,
|
|
NEIGH_UPDATE_F_OVERRIDE, 0);
|
|
return neigh;
|
|
}
|
|
EXPORT_SYMBOL(neigh_event_ns);
|
|
|
|
/* called with read_lock_bh(&n->lock); */
|
|
static void neigh_hh_init(struct neighbour *n)
|
|
{
|
|
struct net_device *dev = n->dev;
|
|
__be16 prot = n->tbl->protocol;
|
|
struct hh_cache *hh = &n->hh;
|
|
|
|
write_lock_bh(&n->lock);
|
|
|
|
/* Only one thread can come in here and initialize the
|
|
* hh_cache entry.
|
|
*/
|
|
if (!hh->hh_len)
|
|
dev->header_ops->cache(n, hh, prot);
|
|
|
|
write_unlock_bh(&n->lock);
|
|
}
|
|
|
|
/* Slow and careful. */
|
|
|
|
int neigh_resolve_output(struct neighbour *neigh, struct sk_buff *skb)
|
|
{
|
|
int rc = 0;
|
|
|
|
if (!neigh_event_send(neigh, skb)) {
|
|
int err;
|
|
struct net_device *dev = neigh->dev;
|
|
unsigned int seq;
|
|
|
|
if (dev->header_ops->cache && !READ_ONCE(neigh->hh.hh_len))
|
|
neigh_hh_init(neigh);
|
|
|
|
do {
|
|
__skb_pull(skb, skb_network_offset(skb));
|
|
seq = read_seqbegin(&neigh->ha_lock);
|
|
err = dev_hard_header(skb, dev, ntohs(skb->protocol),
|
|
neigh->ha, NULL, skb->len);
|
|
} while (read_seqretry(&neigh->ha_lock, seq));
|
|
|
|
if (err >= 0)
|
|
rc = dev_queue_xmit(skb);
|
|
else
|
|
goto out_kfree_skb;
|
|
}
|
|
out:
|
|
return rc;
|
|
out_kfree_skb:
|
|
rc = -EINVAL;
|
|
kfree_skb(skb);
|
|
goto out;
|
|
}
|
|
EXPORT_SYMBOL(neigh_resolve_output);
|
|
|
|
/* As fast as possible without hh cache */
|
|
|
|
int neigh_connected_output(struct neighbour *neigh, struct sk_buff *skb)
|
|
{
|
|
struct net_device *dev = neigh->dev;
|
|
unsigned int seq;
|
|
int err;
|
|
|
|
do {
|
|
__skb_pull(skb, skb_network_offset(skb));
|
|
seq = read_seqbegin(&neigh->ha_lock);
|
|
err = dev_hard_header(skb, dev, ntohs(skb->protocol),
|
|
neigh->ha, NULL, skb->len);
|
|
} while (read_seqretry(&neigh->ha_lock, seq));
|
|
|
|
if (err >= 0)
|
|
err = dev_queue_xmit(skb);
|
|
else {
|
|
err = -EINVAL;
|
|
kfree_skb(skb);
|
|
}
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL(neigh_connected_output);
|
|
|
|
int neigh_direct_output(struct neighbour *neigh, struct sk_buff *skb)
|
|
{
|
|
return dev_queue_xmit(skb);
|
|
}
|
|
EXPORT_SYMBOL(neigh_direct_output);
|
|
|
|
static void neigh_managed_work(struct work_struct *work)
|
|
{
|
|
struct neigh_table *tbl = container_of(work, struct neigh_table,
|
|
managed_work.work);
|
|
struct neighbour *neigh;
|
|
|
|
write_lock_bh(&tbl->lock);
|
|
list_for_each_entry(neigh, &tbl->managed_list, managed_list)
|
|
neigh_event_send_probe(neigh, NULL, false);
|
|
queue_delayed_work(system_power_efficient_wq, &tbl->managed_work,
|
|
NEIGH_VAR(&tbl->parms, INTERVAL_PROBE_TIME_MS));
|
|
write_unlock_bh(&tbl->lock);
|
|
}
|
|
|
|
static void neigh_proxy_process(struct timer_list *t)
|
|
{
|
|
struct neigh_table *tbl = from_timer(tbl, t, proxy_timer);
|
|
long sched_next = 0;
|
|
unsigned long now = jiffies;
|
|
struct sk_buff *skb, *n;
|
|
|
|
spin_lock(&tbl->proxy_queue.lock);
|
|
|
|
skb_queue_walk_safe(&tbl->proxy_queue, skb, n) {
|
|
long tdif = NEIGH_CB(skb)->sched_next - now;
|
|
|
|
if (tdif <= 0) {
|
|
struct net_device *dev = skb->dev;
|
|
|
|
neigh_parms_qlen_dec(dev, tbl->family);
|
|
__skb_unlink(skb, &tbl->proxy_queue);
|
|
|
|
if (tbl->proxy_redo && netif_running(dev)) {
|
|
rcu_read_lock();
|
|
tbl->proxy_redo(skb);
|
|
rcu_read_unlock();
|
|
} else {
|
|
kfree_skb(skb);
|
|
}
|
|
|
|
dev_put(dev);
|
|
} else if (!sched_next || tdif < sched_next)
|
|
sched_next = tdif;
|
|
}
|
|
del_timer(&tbl->proxy_timer);
|
|
if (sched_next)
|
|
mod_timer(&tbl->proxy_timer, jiffies + sched_next);
|
|
spin_unlock(&tbl->proxy_queue.lock);
|
|
}
|
|
|
|
static unsigned long neigh_proxy_delay(struct neigh_parms *p)
|
|
{
|
|
/* If proxy_delay is zero, do not call get_random_u32_below()
|
|
* as it is undefined behavior.
|
|
*/
|
|
unsigned long proxy_delay = NEIGH_VAR(p, PROXY_DELAY);
|
|
|
|
return proxy_delay ?
|
|
jiffies + get_random_u32_below(proxy_delay) : jiffies;
|
|
}
|
|
|
|
void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p,
|
|
struct sk_buff *skb)
|
|
{
|
|
unsigned long sched_next = neigh_proxy_delay(p);
|
|
|
|
if (p->qlen > NEIGH_VAR(p, PROXY_QLEN)) {
|
|
kfree_skb(skb);
|
|
return;
|
|
}
|
|
|
|
NEIGH_CB(skb)->sched_next = sched_next;
|
|
NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED;
|
|
|
|
spin_lock(&tbl->proxy_queue.lock);
|
|
if (del_timer(&tbl->proxy_timer)) {
|
|
if (time_before(tbl->proxy_timer.expires, sched_next))
|
|
sched_next = tbl->proxy_timer.expires;
|
|
}
|
|
skb_dst_drop(skb);
|
|
dev_hold(skb->dev);
|
|
__skb_queue_tail(&tbl->proxy_queue, skb);
|
|
p->qlen++;
|
|
mod_timer(&tbl->proxy_timer, sched_next);
|
|
spin_unlock(&tbl->proxy_queue.lock);
|
|
}
|
|
EXPORT_SYMBOL(pneigh_enqueue);
|
|
|
|
static inline struct neigh_parms *lookup_neigh_parms(struct neigh_table *tbl,
|
|
struct net *net, int ifindex)
|
|
{
|
|
struct neigh_parms *p;
|
|
|
|
list_for_each_entry(p, &tbl->parms_list, list) {
|
|
if ((p->dev && p->dev->ifindex == ifindex && net_eq(neigh_parms_net(p), net)) ||
|
|
(!p->dev && !ifindex && net_eq(net, &init_net)))
|
|
return p;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
struct neigh_parms *neigh_parms_alloc(struct net_device *dev,
|
|
struct neigh_table *tbl)
|
|
{
|
|
struct neigh_parms *p;
|
|
struct net *net = dev_net(dev);
|
|
const struct net_device_ops *ops = dev->netdev_ops;
|
|
|
|
p = kmemdup(&tbl->parms, sizeof(*p), GFP_KERNEL);
|
|
if (p) {
|
|
p->tbl = tbl;
|
|
refcount_set(&p->refcnt, 1);
|
|
p->reachable_time =
|
|
neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME));
|
|
p->qlen = 0;
|
|
netdev_hold(dev, &p->dev_tracker, GFP_KERNEL);
|
|
p->dev = dev;
|
|
write_pnet(&p->net, net);
|
|
p->sysctl_table = NULL;
|
|
|
|
if (ops->ndo_neigh_setup && ops->ndo_neigh_setup(dev, p)) {
|
|
netdev_put(dev, &p->dev_tracker);
|
|
kfree(p);
|
|
return NULL;
|
|
}
|
|
|
|
write_lock_bh(&tbl->lock);
|
|
list_add(&p->list, &tbl->parms.list);
|
|
write_unlock_bh(&tbl->lock);
|
|
|
|
neigh_parms_data_state_cleanall(p);
|
|
}
|
|
return p;
|
|
}
|
|
EXPORT_SYMBOL(neigh_parms_alloc);
|
|
|
|
static void neigh_rcu_free_parms(struct rcu_head *head)
|
|
{
|
|
struct neigh_parms *parms =
|
|
container_of(head, struct neigh_parms, rcu_head);
|
|
|
|
neigh_parms_put(parms);
|
|
}
|
|
|
|
void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms)
|
|
{
|
|
if (!parms || parms == &tbl->parms)
|
|
return;
|
|
write_lock_bh(&tbl->lock);
|
|
list_del(&parms->list);
|
|
parms->dead = 1;
|
|
write_unlock_bh(&tbl->lock);
|
|
netdev_put(parms->dev, &parms->dev_tracker);
|
|
call_rcu(&parms->rcu_head, neigh_rcu_free_parms);
|
|
}
|
|
EXPORT_SYMBOL(neigh_parms_release);
|
|
|
|
static void neigh_parms_destroy(struct neigh_parms *parms)
|
|
{
|
|
kfree(parms);
|
|
}
|
|
|
|
static struct lock_class_key neigh_table_proxy_queue_class;
|
|
|
|
static struct neigh_table *neigh_tables[NEIGH_NR_TABLES] __read_mostly;
|
|
|
|
void neigh_table_init(int index, struct neigh_table *tbl)
|
|
{
|
|
unsigned long now = jiffies;
|
|
unsigned long phsize;
|
|
|
|
INIT_LIST_HEAD(&tbl->parms_list);
|
|
INIT_LIST_HEAD(&tbl->gc_list);
|
|
INIT_LIST_HEAD(&tbl->managed_list);
|
|
|
|
list_add(&tbl->parms.list, &tbl->parms_list);
|
|
write_pnet(&tbl->parms.net, &init_net);
|
|
refcount_set(&tbl->parms.refcnt, 1);
|
|
tbl->parms.reachable_time =
|
|
neigh_rand_reach_time(NEIGH_VAR(&tbl->parms, BASE_REACHABLE_TIME));
|
|
tbl->parms.qlen = 0;
|
|
|
|
tbl->stats = alloc_percpu(struct neigh_statistics);
|
|
if (!tbl->stats)
|
|
panic("cannot create neighbour cache statistics");
|
|
|
|
#ifdef CONFIG_PROC_FS
|
|
if (!proc_create_seq_data(tbl->id, 0, init_net.proc_net_stat,
|
|
&neigh_stat_seq_ops, tbl))
|
|
panic("cannot create neighbour proc dir entry");
|
|
#endif
|
|
|
|
RCU_INIT_POINTER(tbl->nht, neigh_hash_alloc(3));
|
|
|
|
phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *);
|
|
tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL);
|
|
|
|
if (!tbl->nht || !tbl->phash_buckets)
|
|
panic("cannot allocate neighbour cache hashes");
|
|
|
|
if (!tbl->entry_size)
|
|
tbl->entry_size = ALIGN(offsetof(struct neighbour, primary_key) +
|
|
tbl->key_len, NEIGH_PRIV_ALIGN);
|
|
else
|
|
WARN_ON(tbl->entry_size % NEIGH_PRIV_ALIGN);
|
|
|
|
rwlock_init(&tbl->lock);
|
|
|
|
INIT_DEFERRABLE_WORK(&tbl->gc_work, neigh_periodic_work);
|
|
queue_delayed_work(system_power_efficient_wq, &tbl->gc_work,
|
|
tbl->parms.reachable_time);
|
|
INIT_DEFERRABLE_WORK(&tbl->managed_work, neigh_managed_work);
|
|
queue_delayed_work(system_power_efficient_wq, &tbl->managed_work, 0);
|
|
|
|
timer_setup(&tbl->proxy_timer, neigh_proxy_process, 0);
|
|
skb_queue_head_init_class(&tbl->proxy_queue,
|
|
&neigh_table_proxy_queue_class);
|
|
|
|
tbl->last_flush = now;
|
|
tbl->last_rand = now + tbl->parms.reachable_time * 20;
|
|
|
|
neigh_tables[index] = tbl;
|
|
}
|
|
EXPORT_SYMBOL(neigh_table_init);
|
|
|
|
int neigh_table_clear(int index, struct neigh_table *tbl)
|
|
{
|
|
neigh_tables[index] = NULL;
|
|
/* It is not clean... Fix it to unload IPv6 module safely */
|
|
cancel_delayed_work_sync(&tbl->managed_work);
|
|
cancel_delayed_work_sync(&tbl->gc_work);
|
|
del_timer_sync(&tbl->proxy_timer);
|
|
pneigh_queue_purge(&tbl->proxy_queue, NULL, tbl->family);
|
|
neigh_ifdown(tbl, NULL);
|
|
if (atomic_read(&tbl->entries))
|
|
pr_crit("neighbour leakage\n");
|
|
|
|
call_rcu(&rcu_dereference_protected(tbl->nht, 1)->rcu,
|
|
neigh_hash_free_rcu);
|
|
tbl->nht = NULL;
|
|
|
|
kfree(tbl->phash_buckets);
|
|
tbl->phash_buckets = NULL;
|
|
|
|
remove_proc_entry(tbl->id, init_net.proc_net_stat);
|
|
|
|
free_percpu(tbl->stats);
|
|
tbl->stats = NULL;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(neigh_table_clear);
|
|
|
|
static struct neigh_table *neigh_find_table(int family)
|
|
{
|
|
struct neigh_table *tbl = NULL;
|
|
|
|
switch (family) {
|
|
case AF_INET:
|
|
tbl = neigh_tables[NEIGH_ARP_TABLE];
|
|
break;
|
|
case AF_INET6:
|
|
tbl = neigh_tables[NEIGH_ND_TABLE];
|
|
break;
|
|
}
|
|
|
|
return tbl;
|
|
}
|
|
|
|
const struct nla_policy nda_policy[NDA_MAX+1] = {
|
|
[NDA_UNSPEC] = { .strict_start_type = NDA_NH_ID },
|
|
[NDA_DST] = { .type = NLA_BINARY, .len = MAX_ADDR_LEN },
|
|
[NDA_LLADDR] = { .type = NLA_BINARY, .len = MAX_ADDR_LEN },
|
|
[NDA_CACHEINFO] = { .len = sizeof(struct nda_cacheinfo) },
|
|
[NDA_PROBES] = { .type = NLA_U32 },
|
|
[NDA_VLAN] = { .type = NLA_U16 },
|
|
[NDA_PORT] = { .type = NLA_U16 },
|
|
[NDA_VNI] = { .type = NLA_U32 },
|
|
[NDA_IFINDEX] = { .type = NLA_U32 },
|
|
[NDA_MASTER] = { .type = NLA_U32 },
|
|
[NDA_PROTOCOL] = { .type = NLA_U8 },
|
|
[NDA_NH_ID] = { .type = NLA_U32 },
|
|
[NDA_FLAGS_EXT] = NLA_POLICY_MASK(NLA_U32, NTF_EXT_MASK),
|
|
[NDA_FDB_EXT_ATTRS] = { .type = NLA_NESTED },
|
|
};
|
|
|
|
static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh,
|
|
struct netlink_ext_ack *extack)
|
|
{
|
|
struct net *net = sock_net(skb->sk);
|
|
struct ndmsg *ndm;
|
|
struct nlattr *dst_attr;
|
|
struct neigh_table *tbl;
|
|
struct neighbour *neigh;
|
|
struct net_device *dev = NULL;
|
|
int err = -EINVAL;
|
|
|
|
ASSERT_RTNL();
|
|
if (nlmsg_len(nlh) < sizeof(*ndm))
|
|
goto out;
|
|
|
|
dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST);
|
|
if (!dst_attr) {
|
|
NL_SET_ERR_MSG(extack, "Network address not specified");
|
|
goto out;
|
|
}
|
|
|
|
ndm = nlmsg_data(nlh);
|
|
if (ndm->ndm_ifindex) {
|
|
dev = __dev_get_by_index(net, ndm->ndm_ifindex);
|
|
if (dev == NULL) {
|
|
err = -ENODEV;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
tbl = neigh_find_table(ndm->ndm_family);
|
|
if (tbl == NULL)
|
|
return -EAFNOSUPPORT;
|
|
|
|
if (nla_len(dst_attr) < (int)tbl->key_len) {
|
|
NL_SET_ERR_MSG(extack, "Invalid network address");
|
|
goto out;
|
|
}
|
|
|
|
if (ndm->ndm_flags & NTF_PROXY) {
|
|
err = pneigh_delete(tbl, net, nla_data(dst_attr), dev);
|
|
goto out;
|
|
}
|
|
|
|
if (dev == NULL)
|
|
goto out;
|
|
|
|
neigh = neigh_lookup(tbl, nla_data(dst_attr), dev);
|
|
if (neigh == NULL) {
|
|
err = -ENOENT;
|
|
goto out;
|
|
}
|
|
|
|
err = __neigh_update(neigh, NULL, NUD_FAILED,
|
|
NEIGH_UPDATE_F_OVERRIDE | NEIGH_UPDATE_F_ADMIN,
|
|
NETLINK_CB(skb).portid, extack);
|
|
write_lock_bh(&tbl->lock);
|
|
neigh_release(neigh);
|
|
neigh_remove_one(neigh, tbl);
|
|
write_unlock_bh(&tbl->lock);
|
|
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh,
|
|
struct netlink_ext_ack *extack)
|
|
{
|
|
int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE |
|
|
NEIGH_UPDATE_F_OVERRIDE_ISROUTER;
|
|
struct net *net = sock_net(skb->sk);
|
|
struct ndmsg *ndm;
|
|
struct nlattr *tb[NDA_MAX+1];
|
|
struct neigh_table *tbl;
|
|
struct net_device *dev = NULL;
|
|
struct neighbour *neigh;
|
|
void *dst, *lladdr;
|
|
u8 protocol = 0;
|
|
u32 ndm_flags;
|
|
int err;
|
|
|
|
ASSERT_RTNL();
|
|
err = nlmsg_parse_deprecated(nlh, sizeof(*ndm), tb, NDA_MAX,
|
|
nda_policy, extack);
|
|
if (err < 0)
|
|
goto out;
|
|
|
|
err = -EINVAL;
|
|
if (!tb[NDA_DST]) {
|
|
NL_SET_ERR_MSG(extack, "Network address not specified");
|
|
goto out;
|
|
}
|
|
|
|
ndm = nlmsg_data(nlh);
|
|
ndm_flags = ndm->ndm_flags;
|
|
if (tb[NDA_FLAGS_EXT]) {
|
|
u32 ext = nla_get_u32(tb[NDA_FLAGS_EXT]);
|
|
|
|
BUILD_BUG_ON(sizeof(neigh->flags) * BITS_PER_BYTE <
|
|
(sizeof(ndm->ndm_flags) * BITS_PER_BYTE +
|
|
hweight32(NTF_EXT_MASK)));
|
|
ndm_flags |= (ext << NTF_EXT_SHIFT);
|
|
}
|
|
if (ndm->ndm_ifindex) {
|
|
dev = __dev_get_by_index(net, ndm->ndm_ifindex);
|
|
if (dev == NULL) {
|
|
err = -ENODEV;
|
|
goto out;
|
|
}
|
|
|
|
if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len) {
|
|
NL_SET_ERR_MSG(extack, "Invalid link address");
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
tbl = neigh_find_table(ndm->ndm_family);
|
|
if (tbl == NULL)
|
|
return -EAFNOSUPPORT;
|
|
|
|
if (nla_len(tb[NDA_DST]) < (int)tbl->key_len) {
|
|
NL_SET_ERR_MSG(extack, "Invalid network address");
|
|
goto out;
|
|
}
|
|
|
|
dst = nla_data(tb[NDA_DST]);
|
|
lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL;
|
|
|
|
if (tb[NDA_PROTOCOL])
|
|
protocol = nla_get_u8(tb[NDA_PROTOCOL]);
|
|
if (ndm_flags & NTF_PROXY) {
|
|
struct pneigh_entry *pn;
|
|
|
|
if (ndm_flags & NTF_MANAGED) {
|
|
NL_SET_ERR_MSG(extack, "Invalid NTF_* flag combination");
|
|
goto out;
|
|
}
|
|
|
|
err = -ENOBUFS;
|
|
pn = pneigh_lookup(tbl, net, dst, dev, 1);
|
|
if (pn) {
|
|
pn->flags = ndm_flags;
|
|
if (protocol)
|
|
pn->protocol = protocol;
|
|
err = 0;
|
|
}
|
|
goto out;
|
|
}
|
|
|
|
if (!dev) {
|
|
NL_SET_ERR_MSG(extack, "Device not specified");
|
|
goto out;
|
|
}
|
|
|
|
if (tbl->allow_add && !tbl->allow_add(dev, extack)) {
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
neigh = neigh_lookup(tbl, dst, dev);
|
|
if (neigh == NULL) {
|
|
bool ndm_permanent = ndm->ndm_state & NUD_PERMANENT;
|
|
bool exempt_from_gc = ndm_permanent ||
|
|
ndm_flags & NTF_EXT_LEARNED;
|
|
|
|
if (!(nlh->nlmsg_flags & NLM_F_CREATE)) {
|
|
err = -ENOENT;
|
|
goto out;
|
|
}
|
|
if (ndm_permanent && (ndm_flags & NTF_MANAGED)) {
|
|
NL_SET_ERR_MSG(extack, "Invalid NTF_* flag for permanent entry");
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
neigh = ___neigh_create(tbl, dst, dev,
|
|
ndm_flags &
|
|
(NTF_EXT_LEARNED | NTF_MANAGED),
|
|
exempt_from_gc, true);
|
|
if (IS_ERR(neigh)) {
|
|
err = PTR_ERR(neigh);
|
|
goto out;
|
|
}
|
|
} else {
|
|
if (nlh->nlmsg_flags & NLM_F_EXCL) {
|
|
err = -EEXIST;
|
|
neigh_release(neigh);
|
|
goto out;
|
|
}
|
|
|
|
if (!(nlh->nlmsg_flags & NLM_F_REPLACE))
|
|
flags &= ~(NEIGH_UPDATE_F_OVERRIDE |
|
|
NEIGH_UPDATE_F_OVERRIDE_ISROUTER);
|
|
}
|
|
|
|
if (protocol)
|
|
neigh->protocol = protocol;
|
|
if (ndm_flags & NTF_EXT_LEARNED)
|
|
flags |= NEIGH_UPDATE_F_EXT_LEARNED;
|
|
if (ndm_flags & NTF_ROUTER)
|
|
flags |= NEIGH_UPDATE_F_ISROUTER;
|
|
if (ndm_flags & NTF_MANAGED)
|
|
flags |= NEIGH_UPDATE_F_MANAGED;
|
|
if (ndm_flags & NTF_USE)
|
|
flags |= NEIGH_UPDATE_F_USE;
|
|
|
|
err = __neigh_update(neigh, lladdr, ndm->ndm_state, flags,
|
|
NETLINK_CB(skb).portid, extack);
|
|
if (!err && ndm_flags & (NTF_USE | NTF_MANAGED)) {
|
|
neigh_event_send(neigh, NULL);
|
|
err = 0;
|
|
}
|
|
neigh_release(neigh);
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms)
|
|
{
|
|
struct nlattr *nest;
|
|
|
|
nest = nla_nest_start_noflag(skb, NDTA_PARMS);
|
|
if (nest == NULL)
|
|
return -ENOBUFS;
|
|
|
|
if ((parms->dev &&
|
|
nla_put_u32(skb, NDTPA_IFINDEX, parms->dev->ifindex)) ||
|
|
nla_put_u32(skb, NDTPA_REFCNT, refcount_read(&parms->refcnt)) ||
|
|
nla_put_u32(skb, NDTPA_QUEUE_LENBYTES,
|
|
NEIGH_VAR(parms, QUEUE_LEN_BYTES)) ||
|
|
/* approximative value for deprecated QUEUE_LEN (in packets) */
|
|
nla_put_u32(skb, NDTPA_QUEUE_LEN,
|
|
NEIGH_VAR(parms, QUEUE_LEN_BYTES) / SKB_TRUESIZE(ETH_FRAME_LEN)) ||
|
|
nla_put_u32(skb, NDTPA_PROXY_QLEN, NEIGH_VAR(parms, PROXY_QLEN)) ||
|
|
nla_put_u32(skb, NDTPA_APP_PROBES, NEIGH_VAR(parms, APP_PROBES)) ||
|
|
nla_put_u32(skb, NDTPA_UCAST_PROBES,
|
|
NEIGH_VAR(parms, UCAST_PROBES)) ||
|
|
nla_put_u32(skb, NDTPA_MCAST_PROBES,
|
|
NEIGH_VAR(parms, MCAST_PROBES)) ||
|
|
nla_put_u32(skb, NDTPA_MCAST_REPROBES,
|
|
NEIGH_VAR(parms, MCAST_REPROBES)) ||
|
|
nla_put_msecs(skb, NDTPA_REACHABLE_TIME, parms->reachable_time,
|
|
NDTPA_PAD) ||
|
|
nla_put_msecs(skb, NDTPA_BASE_REACHABLE_TIME,
|
|
NEIGH_VAR(parms, BASE_REACHABLE_TIME), NDTPA_PAD) ||
|
|
nla_put_msecs(skb, NDTPA_GC_STALETIME,
|
|
NEIGH_VAR(parms, GC_STALETIME), NDTPA_PAD) ||
|
|
nla_put_msecs(skb, NDTPA_DELAY_PROBE_TIME,
|
|
NEIGH_VAR(parms, DELAY_PROBE_TIME), NDTPA_PAD) ||
|
|
nla_put_msecs(skb, NDTPA_RETRANS_TIME,
|
|
NEIGH_VAR(parms, RETRANS_TIME), NDTPA_PAD) ||
|
|
nla_put_msecs(skb, NDTPA_ANYCAST_DELAY,
|
|
NEIGH_VAR(parms, ANYCAST_DELAY), NDTPA_PAD) ||
|
|
nla_put_msecs(skb, NDTPA_PROXY_DELAY,
|
|
NEIGH_VAR(parms, PROXY_DELAY), NDTPA_PAD) ||
|
|
nla_put_msecs(skb, NDTPA_LOCKTIME,
|
|
NEIGH_VAR(parms, LOCKTIME), NDTPA_PAD) ||
|
|
nla_put_msecs(skb, NDTPA_INTERVAL_PROBE_TIME_MS,
|
|
NEIGH_VAR(parms, INTERVAL_PROBE_TIME_MS), NDTPA_PAD))
|
|
goto nla_put_failure;
|
|
return nla_nest_end(skb, nest);
|
|
|
|
nla_put_failure:
|
|
nla_nest_cancel(skb, nest);
|
|
return -EMSGSIZE;
|
|
}
|
|
|
|
static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl,
|
|
u32 pid, u32 seq, int type, int flags)
|
|
{
|
|
struct nlmsghdr *nlh;
|
|
struct ndtmsg *ndtmsg;
|
|
|
|
nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
|
|
if (nlh == NULL)
|
|
return -EMSGSIZE;
|
|
|
|
ndtmsg = nlmsg_data(nlh);
|
|
|
|
read_lock_bh(&tbl->lock);
|
|
ndtmsg->ndtm_family = tbl->family;
|
|
ndtmsg->ndtm_pad1 = 0;
|
|
ndtmsg->ndtm_pad2 = 0;
|
|
|
|
if (nla_put_string(skb, NDTA_NAME, tbl->id) ||
|
|
nla_put_msecs(skb, NDTA_GC_INTERVAL, READ_ONCE(tbl->gc_interval),
|
|
NDTA_PAD) ||
|
|
nla_put_u32(skb, NDTA_THRESH1, READ_ONCE(tbl->gc_thresh1)) ||
|
|
nla_put_u32(skb, NDTA_THRESH2, READ_ONCE(tbl->gc_thresh2)) ||
|
|
nla_put_u32(skb, NDTA_THRESH3, READ_ONCE(tbl->gc_thresh3)))
|
|
goto nla_put_failure;
|
|
{
|
|
unsigned long now = jiffies;
|
|
long flush_delta = now - READ_ONCE(tbl->last_flush);
|
|
long rand_delta = now - READ_ONCE(tbl->last_rand);
|
|
struct neigh_hash_table *nht;
|
|
struct ndt_config ndc = {
|
|
.ndtc_key_len = tbl->key_len,
|
|
.ndtc_entry_size = tbl->entry_size,
|
|
.ndtc_entries = atomic_read(&tbl->entries),
|
|
.ndtc_last_flush = jiffies_to_msecs(flush_delta),
|
|
.ndtc_last_rand = jiffies_to_msecs(rand_delta),
|
|
.ndtc_proxy_qlen = READ_ONCE(tbl->proxy_queue.qlen),
|
|
};
|
|
|
|
rcu_read_lock();
|
|
nht = rcu_dereference(tbl->nht);
|
|
ndc.ndtc_hash_rnd = nht->hash_rnd[0];
|
|
ndc.ndtc_hash_mask = ((1 << nht->hash_shift) - 1);
|
|
rcu_read_unlock();
|
|
|
|
if (nla_put(skb, NDTA_CONFIG, sizeof(ndc), &ndc))
|
|
goto nla_put_failure;
|
|
}
|
|
|
|
{
|
|
int cpu;
|
|
struct ndt_stats ndst;
|
|
|
|
memset(&ndst, 0, sizeof(ndst));
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
struct neigh_statistics *st;
|
|
|
|
st = per_cpu_ptr(tbl->stats, cpu);
|
|
ndst.ndts_allocs += READ_ONCE(st->allocs);
|
|
ndst.ndts_destroys += READ_ONCE(st->destroys);
|
|
ndst.ndts_hash_grows += READ_ONCE(st->hash_grows);
|
|
ndst.ndts_res_failed += READ_ONCE(st->res_failed);
|
|
ndst.ndts_lookups += READ_ONCE(st->lookups);
|
|
ndst.ndts_hits += READ_ONCE(st->hits);
|
|
ndst.ndts_rcv_probes_mcast += READ_ONCE(st->rcv_probes_mcast);
|
|
ndst.ndts_rcv_probes_ucast += READ_ONCE(st->rcv_probes_ucast);
|
|
ndst.ndts_periodic_gc_runs += READ_ONCE(st->periodic_gc_runs);
|
|
ndst.ndts_forced_gc_runs += READ_ONCE(st->forced_gc_runs);
|
|
ndst.ndts_table_fulls += READ_ONCE(st->table_fulls);
|
|
}
|
|
|
|
if (nla_put_64bit(skb, NDTA_STATS, sizeof(ndst), &ndst,
|
|
NDTA_PAD))
|
|
goto nla_put_failure;
|
|
}
|
|
|
|
BUG_ON(tbl->parms.dev);
|
|
if (neightbl_fill_parms(skb, &tbl->parms) < 0)
|
|
goto nla_put_failure;
|
|
|
|
read_unlock_bh(&tbl->lock);
|
|
nlmsg_end(skb, nlh);
|
|
return 0;
|
|
|
|
nla_put_failure:
|
|
read_unlock_bh(&tbl->lock);
|
|
nlmsg_cancel(skb, nlh);
|
|
return -EMSGSIZE;
|
|
}
|
|
|
|
static int neightbl_fill_param_info(struct sk_buff *skb,
|
|
struct neigh_table *tbl,
|
|
struct neigh_parms *parms,
|
|
u32 pid, u32 seq, int type,
|
|
unsigned int flags)
|
|
{
|
|
struct ndtmsg *ndtmsg;
|
|
struct nlmsghdr *nlh;
|
|
|
|
nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
|
|
if (nlh == NULL)
|
|
return -EMSGSIZE;
|
|
|
|
ndtmsg = nlmsg_data(nlh);
|
|
|
|
read_lock_bh(&tbl->lock);
|
|
ndtmsg->ndtm_family = tbl->family;
|
|
ndtmsg->ndtm_pad1 = 0;
|
|
ndtmsg->ndtm_pad2 = 0;
|
|
|
|
if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 ||
|
|
neightbl_fill_parms(skb, parms) < 0)
|
|
goto errout;
|
|
|
|
read_unlock_bh(&tbl->lock);
|
|
nlmsg_end(skb, nlh);
|
|
return 0;
|
|
errout:
|
|
read_unlock_bh(&tbl->lock);
|
|
nlmsg_cancel(skb, nlh);
|
|
return -EMSGSIZE;
|
|
}
|
|
|
|
static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = {
|
|
[NDTA_NAME] = { .type = NLA_STRING },
|
|
[NDTA_THRESH1] = { .type = NLA_U32 },
|
|
[NDTA_THRESH2] = { .type = NLA_U32 },
|
|
[NDTA_THRESH3] = { .type = NLA_U32 },
|
|
[NDTA_GC_INTERVAL] = { .type = NLA_U64 },
|
|
[NDTA_PARMS] = { .type = NLA_NESTED },
|
|
};
|
|
|
|
static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = {
|
|
[NDTPA_IFINDEX] = { .type = NLA_U32 },
|
|
[NDTPA_QUEUE_LEN] = { .type = NLA_U32 },
|
|
[NDTPA_PROXY_QLEN] = { .type = NLA_U32 },
|
|
[NDTPA_APP_PROBES] = { .type = NLA_U32 },
|
|
[NDTPA_UCAST_PROBES] = { .type = NLA_U32 },
|
|
[NDTPA_MCAST_PROBES] = { .type = NLA_U32 },
|
|
[NDTPA_MCAST_REPROBES] = { .type = NLA_U32 },
|
|
[NDTPA_BASE_REACHABLE_TIME] = { .type = NLA_U64 },
|
|
[NDTPA_GC_STALETIME] = { .type = NLA_U64 },
|
|
[NDTPA_DELAY_PROBE_TIME] = { .type = NLA_U64 },
|
|
[NDTPA_RETRANS_TIME] = { .type = NLA_U64 },
|
|
[NDTPA_ANYCAST_DELAY] = { .type = NLA_U64 },
|
|
[NDTPA_PROXY_DELAY] = { .type = NLA_U64 },
|
|
[NDTPA_LOCKTIME] = { .type = NLA_U64 },
|
|
[NDTPA_INTERVAL_PROBE_TIME_MS] = { .type = NLA_U64, .min = 1 },
|
|
};
|
|
|
|
static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh,
|
|
struct netlink_ext_ack *extack)
|
|
{
|
|
struct net *net = sock_net(skb->sk);
|
|
struct neigh_table *tbl;
|
|
struct ndtmsg *ndtmsg;
|
|
struct nlattr *tb[NDTA_MAX+1];
|
|
bool found = false;
|
|
int err, tidx;
|
|
|
|
err = nlmsg_parse_deprecated(nlh, sizeof(*ndtmsg), tb, NDTA_MAX,
|
|
nl_neightbl_policy, extack);
|
|
if (err < 0)
|
|
goto errout;
|
|
|
|
if (tb[NDTA_NAME] == NULL) {
|
|
err = -EINVAL;
|
|
goto errout;
|
|
}
|
|
|
|
ndtmsg = nlmsg_data(nlh);
|
|
|
|
for (tidx = 0; tidx < NEIGH_NR_TABLES; tidx++) {
|
|
tbl = neigh_tables[tidx];
|
|
if (!tbl)
|
|
continue;
|
|
if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family)
|
|
continue;
|
|
if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0) {
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!found)
|
|
return -ENOENT;
|
|
|
|
/*
|
|
* We acquire tbl->lock to be nice to the periodic timers and
|
|
* make sure they always see a consistent set of values.
|
|
*/
|
|
write_lock_bh(&tbl->lock);
|
|
|
|
if (tb[NDTA_PARMS]) {
|
|
struct nlattr *tbp[NDTPA_MAX+1];
|
|
struct neigh_parms *p;
|
|
int i, ifindex = 0;
|
|
|
|
err = nla_parse_nested_deprecated(tbp, NDTPA_MAX,
|
|
tb[NDTA_PARMS],
|
|
nl_ntbl_parm_policy, extack);
|
|
if (err < 0)
|
|
goto errout_tbl_lock;
|
|
|
|
if (tbp[NDTPA_IFINDEX])
|
|
ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]);
|
|
|
|
p = lookup_neigh_parms(tbl, net, ifindex);
|
|
if (p == NULL) {
|
|
err = -ENOENT;
|
|
goto errout_tbl_lock;
|
|
}
|
|
|
|
for (i = 1; i <= NDTPA_MAX; i++) {
|
|
if (tbp[i] == NULL)
|
|
continue;
|
|
|
|
switch (i) {
|
|
case NDTPA_QUEUE_LEN:
|
|
NEIGH_VAR_SET(p, QUEUE_LEN_BYTES,
|
|
nla_get_u32(tbp[i]) *
|
|
SKB_TRUESIZE(ETH_FRAME_LEN));
|
|
break;
|
|
case NDTPA_QUEUE_LENBYTES:
|
|
NEIGH_VAR_SET(p, QUEUE_LEN_BYTES,
|
|
nla_get_u32(tbp[i]));
|
|
break;
|
|
case NDTPA_PROXY_QLEN:
|
|
NEIGH_VAR_SET(p, PROXY_QLEN,
|
|
nla_get_u32(tbp[i]));
|
|
break;
|
|
case NDTPA_APP_PROBES:
|
|
NEIGH_VAR_SET(p, APP_PROBES,
|
|
nla_get_u32(tbp[i]));
|
|
break;
|
|
case NDTPA_UCAST_PROBES:
|
|
NEIGH_VAR_SET(p, UCAST_PROBES,
|
|
nla_get_u32(tbp[i]));
|
|
break;
|
|
case NDTPA_MCAST_PROBES:
|
|
NEIGH_VAR_SET(p, MCAST_PROBES,
|
|
nla_get_u32(tbp[i]));
|
|
break;
|
|
case NDTPA_MCAST_REPROBES:
|
|
NEIGH_VAR_SET(p, MCAST_REPROBES,
|
|
nla_get_u32(tbp[i]));
|
|
break;
|
|
case NDTPA_BASE_REACHABLE_TIME:
|
|
NEIGH_VAR_SET(p, BASE_REACHABLE_TIME,
|
|
nla_get_msecs(tbp[i]));
|
|
/* update reachable_time as well, otherwise, the change will
|
|
* only be effective after the next time neigh_periodic_work
|
|
* decides to recompute it (can be multiple minutes)
|
|
*/
|
|
p->reachable_time =
|
|
neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME));
|
|
break;
|
|
case NDTPA_GC_STALETIME:
|
|
NEIGH_VAR_SET(p, GC_STALETIME,
|
|
nla_get_msecs(tbp[i]));
|
|
break;
|
|
case NDTPA_DELAY_PROBE_TIME:
|
|
NEIGH_VAR_SET(p, DELAY_PROBE_TIME,
|
|
nla_get_msecs(tbp[i]));
|
|
call_netevent_notifiers(NETEVENT_DELAY_PROBE_TIME_UPDATE, p);
|
|
break;
|
|
case NDTPA_INTERVAL_PROBE_TIME_MS:
|
|
NEIGH_VAR_SET(p, INTERVAL_PROBE_TIME_MS,
|
|
nla_get_msecs(tbp[i]));
|
|
break;
|
|
case NDTPA_RETRANS_TIME:
|
|
NEIGH_VAR_SET(p, RETRANS_TIME,
|
|
nla_get_msecs(tbp[i]));
|
|
break;
|
|
case NDTPA_ANYCAST_DELAY:
|
|
NEIGH_VAR_SET(p, ANYCAST_DELAY,
|
|
nla_get_msecs(tbp[i]));
|
|
break;
|
|
case NDTPA_PROXY_DELAY:
|
|
NEIGH_VAR_SET(p, PROXY_DELAY,
|
|
nla_get_msecs(tbp[i]));
|
|
break;
|
|
case NDTPA_LOCKTIME:
|
|
NEIGH_VAR_SET(p, LOCKTIME,
|
|
nla_get_msecs(tbp[i]));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
err = -ENOENT;
|
|
if ((tb[NDTA_THRESH1] || tb[NDTA_THRESH2] ||
|
|
tb[NDTA_THRESH3] || tb[NDTA_GC_INTERVAL]) &&
|
|
!net_eq(net, &init_net))
|
|
goto errout_tbl_lock;
|
|
|
|
if (tb[NDTA_THRESH1])
|
|
WRITE_ONCE(tbl->gc_thresh1, nla_get_u32(tb[NDTA_THRESH1]));
|
|
|
|
if (tb[NDTA_THRESH2])
|
|
WRITE_ONCE(tbl->gc_thresh2, nla_get_u32(tb[NDTA_THRESH2]));
|
|
|
|
if (tb[NDTA_THRESH3])
|
|
WRITE_ONCE(tbl->gc_thresh3, nla_get_u32(tb[NDTA_THRESH3]));
|
|
|
|
if (tb[NDTA_GC_INTERVAL])
|
|
WRITE_ONCE(tbl->gc_interval, nla_get_msecs(tb[NDTA_GC_INTERVAL]));
|
|
|
|
err = 0;
|
|
|
|
errout_tbl_lock:
|
|
write_unlock_bh(&tbl->lock);
|
|
errout:
|
|
return err;
|
|
}
|
|
|
|
static int neightbl_valid_dump_info(const struct nlmsghdr *nlh,
|
|
struct netlink_ext_ack *extack)
|
|
{
|
|
struct ndtmsg *ndtm;
|
|
|
|
if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ndtm))) {
|
|
NL_SET_ERR_MSG(extack, "Invalid header for neighbor table dump request");
|
|
return -EINVAL;
|
|
}
|
|
|
|
ndtm = nlmsg_data(nlh);
|
|
if (ndtm->ndtm_pad1 || ndtm->ndtm_pad2) {
|
|
NL_SET_ERR_MSG(extack, "Invalid values in header for neighbor table dump request");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (nlmsg_attrlen(nlh, sizeof(*ndtm))) {
|
|
NL_SET_ERR_MSG(extack, "Invalid data after header in neighbor table dump request");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
|
|
{
|
|
const struct nlmsghdr *nlh = cb->nlh;
|
|
struct net *net = sock_net(skb->sk);
|
|
int family, tidx, nidx = 0;
|
|
int tbl_skip = cb->args[0];
|
|
int neigh_skip = cb->args[1];
|
|
struct neigh_table *tbl;
|
|
|
|
if (cb->strict_check) {
|
|
int err = neightbl_valid_dump_info(nlh, cb->extack);
|
|
|
|
if (err < 0)
|
|
return err;
|
|
}
|
|
|
|
family = ((struct rtgenmsg *)nlmsg_data(nlh))->rtgen_family;
|
|
|
|
for (tidx = 0; tidx < NEIGH_NR_TABLES; tidx++) {
|
|
struct neigh_parms *p;
|
|
|
|
tbl = neigh_tables[tidx];
|
|
if (!tbl)
|
|
continue;
|
|
|
|
if (tidx < tbl_skip || (family && tbl->family != family))
|
|
continue;
|
|
|
|
if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).portid,
|
|
nlh->nlmsg_seq, RTM_NEWNEIGHTBL,
|
|
NLM_F_MULTI) < 0)
|
|
break;
|
|
|
|
nidx = 0;
|
|
p = list_next_entry(&tbl->parms, list);
|
|
list_for_each_entry_from(p, &tbl->parms_list, list) {
|
|
if (!net_eq(neigh_parms_net(p), net))
|
|
continue;
|
|
|
|
if (nidx < neigh_skip)
|
|
goto next;
|
|
|
|
if (neightbl_fill_param_info(skb, tbl, p,
|
|
NETLINK_CB(cb->skb).portid,
|
|
nlh->nlmsg_seq,
|
|
RTM_NEWNEIGHTBL,
|
|
NLM_F_MULTI) < 0)
|
|
goto out;
|
|
next:
|
|
nidx++;
|
|
}
|
|
|
|
neigh_skip = 0;
|
|
}
|
|
out:
|
|
cb->args[0] = tidx;
|
|
cb->args[1] = nidx;
|
|
|
|
return skb->len;
|
|
}
|
|
|
|
static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh,
|
|
u32 pid, u32 seq, int type, unsigned int flags)
|
|
{
|
|
u32 neigh_flags, neigh_flags_ext;
|
|
unsigned long now = jiffies;
|
|
struct nda_cacheinfo ci;
|
|
struct nlmsghdr *nlh;
|
|
struct ndmsg *ndm;
|
|
|
|
nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
|
|
if (nlh == NULL)
|
|
return -EMSGSIZE;
|
|
|
|
neigh_flags_ext = neigh->flags >> NTF_EXT_SHIFT;
|
|
neigh_flags = neigh->flags & NTF_OLD_MASK;
|
|
|
|
ndm = nlmsg_data(nlh);
|
|
ndm->ndm_family = neigh->ops->family;
|
|
ndm->ndm_pad1 = 0;
|
|
ndm->ndm_pad2 = 0;
|
|
ndm->ndm_flags = neigh_flags;
|
|
ndm->ndm_type = neigh->type;
|
|
ndm->ndm_ifindex = neigh->dev->ifindex;
|
|
|
|
if (nla_put(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key))
|
|
goto nla_put_failure;
|
|
|
|
read_lock_bh(&neigh->lock);
|
|
ndm->ndm_state = neigh->nud_state;
|
|
if (neigh->nud_state & NUD_VALID) {
|
|
char haddr[MAX_ADDR_LEN];
|
|
|
|
neigh_ha_snapshot(haddr, neigh, neigh->dev);
|
|
if (nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, haddr) < 0) {
|
|
read_unlock_bh(&neigh->lock);
|
|
goto nla_put_failure;
|
|
}
|
|
}
|
|
|
|
ci.ndm_used = jiffies_to_clock_t(now - neigh->used);
|
|
ci.ndm_confirmed = jiffies_to_clock_t(now - neigh->confirmed);
|
|
ci.ndm_updated = jiffies_to_clock_t(now - neigh->updated);
|
|
ci.ndm_refcnt = refcount_read(&neigh->refcnt) - 1;
|
|
read_unlock_bh(&neigh->lock);
|
|
|
|
if (nla_put_u32(skb, NDA_PROBES, atomic_read(&neigh->probes)) ||
|
|
nla_put(skb, NDA_CACHEINFO, sizeof(ci), &ci))
|
|
goto nla_put_failure;
|
|
|
|
if (neigh->protocol && nla_put_u8(skb, NDA_PROTOCOL, neigh->protocol))
|
|
goto nla_put_failure;
|
|
if (neigh_flags_ext && nla_put_u32(skb, NDA_FLAGS_EXT, neigh_flags_ext))
|
|
goto nla_put_failure;
|
|
|
|
nlmsg_end(skb, nlh);
|
|
return 0;
|
|
|
|
nla_put_failure:
|
|
nlmsg_cancel(skb, nlh);
|
|
return -EMSGSIZE;
|
|
}
|
|
|
|
static int pneigh_fill_info(struct sk_buff *skb, struct pneigh_entry *pn,
|
|
u32 pid, u32 seq, int type, unsigned int flags,
|
|
struct neigh_table *tbl)
|
|
{
|
|
u32 neigh_flags, neigh_flags_ext;
|
|
struct nlmsghdr *nlh;
|
|
struct ndmsg *ndm;
|
|
|
|
nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
|
|
if (nlh == NULL)
|
|
return -EMSGSIZE;
|
|
|
|
neigh_flags_ext = pn->flags >> NTF_EXT_SHIFT;
|
|
neigh_flags = pn->flags & NTF_OLD_MASK;
|
|
|
|
ndm = nlmsg_data(nlh);
|
|
ndm->ndm_family = tbl->family;
|
|
ndm->ndm_pad1 = 0;
|
|
ndm->ndm_pad2 = 0;
|
|
ndm->ndm_flags = neigh_flags | NTF_PROXY;
|
|
ndm->ndm_type = RTN_UNICAST;
|
|
ndm->ndm_ifindex = pn->dev ? pn->dev->ifindex : 0;
|
|
ndm->ndm_state = NUD_NONE;
|
|
|
|
if (nla_put(skb, NDA_DST, tbl->key_len, pn->key))
|
|
goto nla_put_failure;
|
|
|
|
if (pn->protocol && nla_put_u8(skb, NDA_PROTOCOL, pn->protocol))
|
|
goto nla_put_failure;
|
|
if (neigh_flags_ext && nla_put_u32(skb, NDA_FLAGS_EXT, neigh_flags_ext))
|
|
goto nla_put_failure;
|
|
|
|
nlmsg_end(skb, nlh);
|
|
return 0;
|
|
|
|
nla_put_failure:
|
|
nlmsg_cancel(skb, nlh);
|
|
return -EMSGSIZE;
|
|
}
|
|
|
|
static void neigh_update_notify(struct neighbour *neigh, u32 nlmsg_pid)
|
|
{
|
|
call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh);
|
|
__neigh_notify(neigh, RTM_NEWNEIGH, 0, nlmsg_pid);
|
|
}
|
|
|
|
static bool neigh_master_filtered(struct net_device *dev, int master_idx)
|
|
{
|
|
struct net_device *master;
|
|
|
|
if (!master_idx)
|
|
return false;
|
|
|
|
master = dev ? netdev_master_upper_dev_get(dev) : NULL;
|
|
|
|
/* 0 is already used to denote NDA_MASTER wasn't passed, therefore need another
|
|
* invalid value for ifindex to denote "no master".
|
|
*/
|
|
if (master_idx == -1)
|
|
return !!master;
|
|
|
|
if (!master || master->ifindex != master_idx)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool neigh_ifindex_filtered(struct net_device *dev, int filter_idx)
|
|
{
|
|
if (filter_idx && (!dev || dev->ifindex != filter_idx))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
struct neigh_dump_filter {
|
|
int master_idx;
|
|
int dev_idx;
|
|
};
|
|
|
|
static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
|
|
struct netlink_callback *cb,
|
|
struct neigh_dump_filter *filter)
|
|
{
|
|
struct net *net = sock_net(skb->sk);
|
|
struct neighbour *n;
|
|
int rc, h, s_h = cb->args[1];
|
|
int idx, s_idx = idx = cb->args[2];
|
|
struct neigh_hash_table *nht;
|
|
unsigned int flags = NLM_F_MULTI;
|
|
|
|
if (filter->dev_idx || filter->master_idx)
|
|
flags |= NLM_F_DUMP_FILTERED;
|
|
|
|
rcu_read_lock();
|
|
nht = rcu_dereference(tbl->nht);
|
|
|
|
for (h = s_h; h < (1 << nht->hash_shift); h++) {
|
|
if (h > s_h)
|
|
s_idx = 0;
|
|
for (n = rcu_dereference(nht->hash_buckets[h]), idx = 0;
|
|
n != NULL;
|
|
n = rcu_dereference(n->next)) {
|
|
if (idx < s_idx || !net_eq(dev_net(n->dev), net))
|
|
goto next;
|
|
if (neigh_ifindex_filtered(n->dev, filter->dev_idx) ||
|
|
neigh_master_filtered(n->dev, filter->master_idx))
|
|
goto next;
|
|
if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).portid,
|
|
cb->nlh->nlmsg_seq,
|
|
RTM_NEWNEIGH,
|
|
flags) < 0) {
|
|
rc = -1;
|
|
goto out;
|
|
}
|
|
next:
|
|
idx++;
|
|
}
|
|
}
|
|
rc = skb->len;
|
|
out:
|
|
rcu_read_unlock();
|
|
cb->args[1] = h;
|
|
cb->args[2] = idx;
|
|
return rc;
|
|
}
|
|
|
|
static int pneigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
|
|
struct netlink_callback *cb,
|
|
struct neigh_dump_filter *filter)
|
|
{
|
|
struct pneigh_entry *n;
|
|
struct net *net = sock_net(skb->sk);
|
|
int rc, h, s_h = cb->args[3];
|
|
int idx, s_idx = idx = cb->args[4];
|
|
unsigned int flags = NLM_F_MULTI;
|
|
|
|
if (filter->dev_idx || filter->master_idx)
|
|
flags |= NLM_F_DUMP_FILTERED;
|
|
|
|
read_lock_bh(&tbl->lock);
|
|
|
|
for (h = s_h; h <= PNEIGH_HASHMASK; h++) {
|
|
if (h > s_h)
|
|
s_idx = 0;
|
|
for (n = tbl->phash_buckets[h], idx = 0; n; n = n->next) {
|
|
if (idx < s_idx || pneigh_net(n) != net)
|
|
goto next;
|
|
if (neigh_ifindex_filtered(n->dev, filter->dev_idx) ||
|
|
neigh_master_filtered(n->dev, filter->master_idx))
|
|
goto next;
|
|
if (pneigh_fill_info(skb, n, NETLINK_CB(cb->skb).portid,
|
|
cb->nlh->nlmsg_seq,
|
|
RTM_NEWNEIGH, flags, tbl) < 0) {
|
|
read_unlock_bh(&tbl->lock);
|
|
rc = -1;
|
|
goto out;
|
|
}
|
|
next:
|
|
idx++;
|
|
}
|
|
}
|
|
|
|
read_unlock_bh(&tbl->lock);
|
|
rc = skb->len;
|
|
out:
|
|
cb->args[3] = h;
|
|
cb->args[4] = idx;
|
|
return rc;
|
|
|
|
}
|
|
|
|
static int neigh_valid_dump_req(const struct nlmsghdr *nlh,
|
|
bool strict_check,
|
|
struct neigh_dump_filter *filter,
|
|
struct netlink_ext_ack *extack)
|
|
{
|
|
struct nlattr *tb[NDA_MAX + 1];
|
|
int err, i;
|
|
|
|
if (strict_check) {
|
|
struct ndmsg *ndm;
|
|
|
|
if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ndm))) {
|
|
NL_SET_ERR_MSG(extack, "Invalid header for neighbor dump request");
|
|
return -EINVAL;
|
|
}
|
|
|
|
ndm = nlmsg_data(nlh);
|
|
if (ndm->ndm_pad1 || ndm->ndm_pad2 || ndm->ndm_ifindex ||
|
|
ndm->ndm_state || ndm->ndm_type) {
|
|
NL_SET_ERR_MSG(extack, "Invalid values in header for neighbor dump request");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (ndm->ndm_flags & ~NTF_PROXY) {
|
|
NL_SET_ERR_MSG(extack, "Invalid flags in header for neighbor dump request");
|
|
return -EINVAL;
|
|
}
|
|
|
|
err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct ndmsg),
|
|
tb, NDA_MAX, nda_policy,
|
|
extack);
|
|
} else {
|
|
err = nlmsg_parse_deprecated(nlh, sizeof(struct ndmsg), tb,
|
|
NDA_MAX, nda_policy, extack);
|
|
}
|
|
if (err < 0)
|
|
return err;
|
|
|
|
for (i = 0; i <= NDA_MAX; ++i) {
|
|
if (!tb[i])
|
|
continue;
|
|
|
|
/* all new attributes should require strict_check */
|
|
switch (i) {
|
|
case NDA_IFINDEX:
|
|
filter->dev_idx = nla_get_u32(tb[i]);
|
|
break;
|
|
case NDA_MASTER:
|
|
filter->master_idx = nla_get_u32(tb[i]);
|
|
break;
|
|
default:
|
|
if (strict_check) {
|
|
NL_SET_ERR_MSG(extack, "Unsupported attribute in neighbor dump request");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
|
|
{
|
|
const struct nlmsghdr *nlh = cb->nlh;
|
|
struct neigh_dump_filter filter = {};
|
|
struct neigh_table *tbl;
|
|
int t, family, s_t;
|
|
int proxy = 0;
|
|
int err;
|
|
|
|
family = ((struct rtgenmsg *)nlmsg_data(nlh))->rtgen_family;
|
|
|
|
/* check for full ndmsg structure presence, family member is
|
|
* the same for both structures
|
|
*/
|
|
if (nlmsg_len(nlh) >= sizeof(struct ndmsg) &&
|
|
((struct ndmsg *)nlmsg_data(nlh))->ndm_flags == NTF_PROXY)
|
|
proxy = 1;
|
|
|
|
err = neigh_valid_dump_req(nlh, cb->strict_check, &filter, cb->extack);
|
|
if (err < 0 && cb->strict_check)
|
|
return err;
|
|
|
|
s_t = cb->args[0];
|
|
|
|
for (t = 0; t < NEIGH_NR_TABLES; t++) {
|
|
tbl = neigh_tables[t];
|
|
|
|
if (!tbl)
|
|
continue;
|
|
if (t < s_t || (family && tbl->family != family))
|
|
continue;
|
|
if (t > s_t)
|
|
memset(&cb->args[1], 0, sizeof(cb->args) -
|
|
sizeof(cb->args[0]));
|
|
if (proxy)
|
|
err = pneigh_dump_table(tbl, skb, cb, &filter);
|
|
else
|
|
err = neigh_dump_table(tbl, skb, cb, &filter);
|
|
if (err < 0)
|
|
break;
|
|
}
|
|
|
|
cb->args[0] = t;
|
|
return skb->len;
|
|
}
|
|
|
|
static int neigh_valid_get_req(const struct nlmsghdr *nlh,
|
|
struct neigh_table **tbl,
|
|
void **dst, int *dev_idx, u8 *ndm_flags,
|
|
struct netlink_ext_ack *extack)
|
|
{
|
|
struct nlattr *tb[NDA_MAX + 1];
|
|
struct ndmsg *ndm;
|
|
int err, i;
|
|
|
|
if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ndm))) {
|
|
NL_SET_ERR_MSG(extack, "Invalid header for neighbor get request");
|
|
return -EINVAL;
|
|
}
|
|
|
|
ndm = nlmsg_data(nlh);
|
|
if (ndm->ndm_pad1 || ndm->ndm_pad2 || ndm->ndm_state ||
|
|
ndm->ndm_type) {
|
|
NL_SET_ERR_MSG(extack, "Invalid values in header for neighbor get request");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (ndm->ndm_flags & ~NTF_PROXY) {
|
|
NL_SET_ERR_MSG(extack, "Invalid flags in header for neighbor get request");
|
|
return -EINVAL;
|
|
}
|
|
|
|
err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct ndmsg), tb,
|
|
NDA_MAX, nda_policy, extack);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
*ndm_flags = ndm->ndm_flags;
|
|
*dev_idx = ndm->ndm_ifindex;
|
|
*tbl = neigh_find_table(ndm->ndm_family);
|
|
if (*tbl == NULL) {
|
|
NL_SET_ERR_MSG(extack, "Unsupported family in header for neighbor get request");
|
|
return -EAFNOSUPPORT;
|
|
}
|
|
|
|
for (i = 0; i <= NDA_MAX; ++i) {
|
|
if (!tb[i])
|
|
continue;
|
|
|
|
switch (i) {
|
|
case NDA_DST:
|
|
if (nla_len(tb[i]) != (int)(*tbl)->key_len) {
|
|
NL_SET_ERR_MSG(extack, "Invalid network address in neighbor get request");
|
|
return -EINVAL;
|
|
}
|
|
*dst = nla_data(tb[i]);
|
|
break;
|
|
default:
|
|
NL_SET_ERR_MSG(extack, "Unsupported attribute in neighbor get request");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline size_t neigh_nlmsg_size(void)
|
|
{
|
|
return NLMSG_ALIGN(sizeof(struct ndmsg))
|
|
+ nla_total_size(MAX_ADDR_LEN) /* NDA_DST */
|
|
+ nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */
|
|
+ nla_total_size(sizeof(struct nda_cacheinfo))
|
|
+ nla_total_size(4) /* NDA_PROBES */
|
|
+ nla_total_size(4) /* NDA_FLAGS_EXT */
|
|
+ nla_total_size(1); /* NDA_PROTOCOL */
|
|
}
|
|
|
|
static int neigh_get_reply(struct net *net, struct neighbour *neigh,
|
|
u32 pid, u32 seq)
|
|
{
|
|
struct sk_buff *skb;
|
|
int err = 0;
|
|
|
|
skb = nlmsg_new(neigh_nlmsg_size(), GFP_KERNEL);
|
|
if (!skb)
|
|
return -ENOBUFS;
|
|
|
|
err = neigh_fill_info(skb, neigh, pid, seq, RTM_NEWNEIGH, 0);
|
|
if (err) {
|
|
kfree_skb(skb);
|
|
goto errout;
|
|
}
|
|
|
|
err = rtnl_unicast(skb, net, pid);
|
|
errout:
|
|
return err;
|
|
}
|
|
|
|
static inline size_t pneigh_nlmsg_size(void)
|
|
{
|
|
return NLMSG_ALIGN(sizeof(struct ndmsg))
|
|
+ nla_total_size(MAX_ADDR_LEN) /* NDA_DST */
|
|
+ nla_total_size(4) /* NDA_FLAGS_EXT */
|
|
+ nla_total_size(1); /* NDA_PROTOCOL */
|
|
}
|
|
|
|
static int pneigh_get_reply(struct net *net, struct pneigh_entry *neigh,
|
|
u32 pid, u32 seq, struct neigh_table *tbl)
|
|
{
|
|
struct sk_buff *skb;
|
|
int err = 0;
|
|
|
|
skb = nlmsg_new(pneigh_nlmsg_size(), GFP_KERNEL);
|
|
if (!skb)
|
|
return -ENOBUFS;
|
|
|
|
err = pneigh_fill_info(skb, neigh, pid, seq, RTM_NEWNEIGH, 0, tbl);
|
|
if (err) {
|
|
kfree_skb(skb);
|
|
goto errout;
|
|
}
|
|
|
|
err = rtnl_unicast(skb, net, pid);
|
|
errout:
|
|
return err;
|
|
}
|
|
|
|
static int neigh_get(struct sk_buff *in_skb, struct nlmsghdr *nlh,
|
|
struct netlink_ext_ack *extack)
|
|
{
|
|
struct net *net = sock_net(in_skb->sk);
|
|
struct net_device *dev = NULL;
|
|
struct neigh_table *tbl = NULL;
|
|
struct neighbour *neigh;
|
|
void *dst = NULL;
|
|
u8 ndm_flags = 0;
|
|
int dev_idx = 0;
|
|
int err;
|
|
|
|
err = neigh_valid_get_req(nlh, &tbl, &dst, &dev_idx, &ndm_flags,
|
|
extack);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
if (dev_idx) {
|
|
dev = __dev_get_by_index(net, dev_idx);
|
|
if (!dev) {
|
|
NL_SET_ERR_MSG(extack, "Unknown device ifindex");
|
|
return -ENODEV;
|
|
}
|
|
}
|
|
|
|
if (!dst) {
|
|
NL_SET_ERR_MSG(extack, "Network address not specified");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (ndm_flags & NTF_PROXY) {
|
|
struct pneigh_entry *pn;
|
|
|
|
pn = pneigh_lookup(tbl, net, dst, dev, 0);
|
|
if (!pn) {
|
|
NL_SET_ERR_MSG(extack, "Proxy neighbour entry not found");
|
|
return -ENOENT;
|
|
}
|
|
return pneigh_get_reply(net, pn, NETLINK_CB(in_skb).portid,
|
|
nlh->nlmsg_seq, tbl);
|
|
}
|
|
|
|
if (!dev) {
|
|
NL_SET_ERR_MSG(extack, "No device specified");
|
|
return -EINVAL;
|
|
}
|
|
|
|
neigh = neigh_lookup(tbl, dst, dev);
|
|
if (!neigh) {
|
|
NL_SET_ERR_MSG(extack, "Neighbour entry not found");
|
|
return -ENOENT;
|
|
}
|
|
|
|
err = neigh_get_reply(net, neigh, NETLINK_CB(in_skb).portid,
|
|
nlh->nlmsg_seq);
|
|
|
|
neigh_release(neigh);
|
|
|
|
return err;
|
|
}
|
|
|
|
void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie)
|
|
{
|
|
int chain;
|
|
struct neigh_hash_table *nht;
|
|
|
|
rcu_read_lock();
|
|
nht = rcu_dereference(tbl->nht);
|
|
|
|
read_lock_bh(&tbl->lock); /* avoid resizes */
|
|
for (chain = 0; chain < (1 << nht->hash_shift); chain++) {
|
|
struct neighbour *n;
|
|
|
|
for (n = rcu_dereference(nht->hash_buckets[chain]);
|
|
n != NULL;
|
|
n = rcu_dereference(n->next))
|
|
cb(n, cookie);
|
|
}
|
|
read_unlock_bh(&tbl->lock);
|
|
rcu_read_unlock();
|
|
}
|
|
EXPORT_SYMBOL(neigh_for_each);
|
|
|
|
/* The tbl->lock must be held as a writer and BH disabled. */
|
|
void __neigh_for_each_release(struct neigh_table *tbl,
|
|
int (*cb)(struct neighbour *))
|
|
{
|
|
int chain;
|
|
struct neigh_hash_table *nht;
|
|
|
|
nht = rcu_dereference_protected(tbl->nht,
|
|
lockdep_is_held(&tbl->lock));
|
|
for (chain = 0; chain < (1 << nht->hash_shift); chain++) {
|
|
struct neighbour *n;
|
|
struct neighbour __rcu **np;
|
|
|
|
np = &nht->hash_buckets[chain];
|
|
while ((n = rcu_dereference_protected(*np,
|
|
lockdep_is_held(&tbl->lock))) != NULL) {
|
|
int release;
|
|
|
|
write_lock(&n->lock);
|
|
release = cb(n);
|
|
if (release) {
|
|
rcu_assign_pointer(*np,
|
|
rcu_dereference_protected(n->next,
|
|
lockdep_is_held(&tbl->lock)));
|
|
neigh_mark_dead(n);
|
|
} else
|
|
np = &n->next;
|
|
write_unlock(&n->lock);
|
|
if (release)
|
|
neigh_cleanup_and_release(n);
|
|
}
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(__neigh_for_each_release);
|
|
|
|
int neigh_xmit(int index, struct net_device *dev,
|
|
const void *addr, struct sk_buff *skb)
|
|
{
|
|
int err = -EAFNOSUPPORT;
|
|
if (likely(index < NEIGH_NR_TABLES)) {
|
|
struct neigh_table *tbl;
|
|
struct neighbour *neigh;
|
|
|
|
tbl = neigh_tables[index];
|
|
if (!tbl)
|
|
goto out;
|
|
rcu_read_lock();
|
|
if (index == NEIGH_ARP_TABLE) {
|
|
u32 key = *((u32 *)addr);
|
|
|
|
neigh = __ipv4_neigh_lookup_noref(dev, key);
|
|
} else {
|
|
neigh = __neigh_lookup_noref(tbl, addr, dev);
|
|
}
|
|
if (!neigh)
|
|
neigh = __neigh_create(tbl, addr, dev, false);
|
|
err = PTR_ERR(neigh);
|
|
if (IS_ERR(neigh)) {
|
|
rcu_read_unlock();
|
|
goto out_kfree_skb;
|
|
}
|
|
err = READ_ONCE(neigh->output)(neigh, skb);
|
|
rcu_read_unlock();
|
|
}
|
|
else if (index == NEIGH_LINK_TABLE) {
|
|
err = dev_hard_header(skb, dev, ntohs(skb->protocol),
|
|
addr, NULL, skb->len);
|
|
if (err < 0)
|
|
goto out_kfree_skb;
|
|
err = dev_queue_xmit(skb);
|
|
}
|
|
out:
|
|
return err;
|
|
out_kfree_skb:
|
|
kfree_skb(skb);
|
|
goto out;
|
|
}
|
|
EXPORT_SYMBOL(neigh_xmit);
|
|
|
|
#ifdef CONFIG_PROC_FS
|
|
|
|
static struct neighbour *neigh_get_first(struct seq_file *seq)
|
|
{
|
|
struct neigh_seq_state *state = seq->private;
|
|
struct net *net = seq_file_net(seq);
|
|
struct neigh_hash_table *nht = state->nht;
|
|
struct neighbour *n = NULL;
|
|
int bucket;
|
|
|
|
state->flags &= ~NEIGH_SEQ_IS_PNEIGH;
|
|
for (bucket = 0; bucket < (1 << nht->hash_shift); bucket++) {
|
|
n = rcu_dereference(nht->hash_buckets[bucket]);
|
|
|
|
while (n) {
|
|
if (!net_eq(dev_net(n->dev), net))
|
|
goto next;
|
|
if (state->neigh_sub_iter) {
|
|
loff_t fakep = 0;
|
|
void *v;
|
|
|
|
v = state->neigh_sub_iter(state, n, &fakep);
|
|
if (!v)
|
|
goto next;
|
|
}
|
|
if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
|
|
break;
|
|
if (READ_ONCE(n->nud_state) & ~NUD_NOARP)
|
|
break;
|
|
next:
|
|
n = rcu_dereference(n->next);
|
|
}
|
|
|
|
if (n)
|
|
break;
|
|
}
|
|
state->bucket = bucket;
|
|
|
|
return n;
|
|
}
|
|
|
|
static struct neighbour *neigh_get_next(struct seq_file *seq,
|
|
struct neighbour *n,
|
|
loff_t *pos)
|
|
{
|
|
struct neigh_seq_state *state = seq->private;
|
|
struct net *net = seq_file_net(seq);
|
|
struct neigh_hash_table *nht = state->nht;
|
|
|
|
if (state->neigh_sub_iter) {
|
|
void *v = state->neigh_sub_iter(state, n, pos);
|
|
if (v)
|
|
return n;
|
|
}
|
|
n = rcu_dereference(n->next);
|
|
|
|
while (1) {
|
|
while (n) {
|
|
if (!net_eq(dev_net(n->dev), net))
|
|
goto next;
|
|
if (state->neigh_sub_iter) {
|
|
void *v = state->neigh_sub_iter(state, n, pos);
|
|
if (v)
|
|
return n;
|
|
goto next;
|
|
}
|
|
if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
|
|
break;
|
|
|
|
if (READ_ONCE(n->nud_state) & ~NUD_NOARP)
|
|
break;
|
|
next:
|
|
n = rcu_dereference(n->next);
|
|
}
|
|
|
|
if (n)
|
|
break;
|
|
|
|
if (++state->bucket >= (1 << nht->hash_shift))
|
|
break;
|
|
|
|
n = rcu_dereference(nht->hash_buckets[state->bucket]);
|
|
}
|
|
|
|
if (n && pos)
|
|
--(*pos);
|
|
return n;
|
|
}
|
|
|
|
static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos)
|
|
{
|
|
struct neighbour *n = neigh_get_first(seq);
|
|
|
|
if (n) {
|
|
--(*pos);
|
|
while (*pos) {
|
|
n = neigh_get_next(seq, n, pos);
|
|
if (!n)
|
|
break;
|
|
}
|
|
}
|
|
return *pos ? NULL : n;
|
|
}
|
|
|
|
static struct pneigh_entry *pneigh_get_first(struct seq_file *seq)
|
|
{
|
|
struct neigh_seq_state *state = seq->private;
|
|
struct net *net = seq_file_net(seq);
|
|
struct neigh_table *tbl = state->tbl;
|
|
struct pneigh_entry *pn = NULL;
|
|
int bucket;
|
|
|
|
state->flags |= NEIGH_SEQ_IS_PNEIGH;
|
|
for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) {
|
|
pn = tbl->phash_buckets[bucket];
|
|
while (pn && !net_eq(pneigh_net(pn), net))
|
|
pn = pn->next;
|
|
if (pn)
|
|
break;
|
|
}
|
|
state->bucket = bucket;
|
|
|
|
return pn;
|
|
}
|
|
|
|
static struct pneigh_entry *pneigh_get_next(struct seq_file *seq,
|
|
struct pneigh_entry *pn,
|
|
loff_t *pos)
|
|
{
|
|
struct neigh_seq_state *state = seq->private;
|
|
struct net *net = seq_file_net(seq);
|
|
struct neigh_table *tbl = state->tbl;
|
|
|
|
do {
|
|
pn = pn->next;
|
|
} while (pn && !net_eq(pneigh_net(pn), net));
|
|
|
|
while (!pn) {
|
|
if (++state->bucket > PNEIGH_HASHMASK)
|
|
break;
|
|
pn = tbl->phash_buckets[state->bucket];
|
|
while (pn && !net_eq(pneigh_net(pn), net))
|
|
pn = pn->next;
|
|
if (pn)
|
|
break;
|
|
}
|
|
|
|
if (pn && pos)
|
|
--(*pos);
|
|
|
|
return pn;
|
|
}
|
|
|
|
static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos)
|
|
{
|
|
struct pneigh_entry *pn = pneigh_get_first(seq);
|
|
|
|
if (pn) {
|
|
--(*pos);
|
|
while (*pos) {
|
|
pn = pneigh_get_next(seq, pn, pos);
|
|
if (!pn)
|
|
break;
|
|
}
|
|
}
|
|
return *pos ? NULL : pn;
|
|
}
|
|
|
|
static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos)
|
|
{
|
|
struct neigh_seq_state *state = seq->private;
|
|
void *rc;
|
|
loff_t idxpos = *pos;
|
|
|
|
rc = neigh_get_idx(seq, &idxpos);
|
|
if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY))
|
|
rc = pneigh_get_idx(seq, &idxpos);
|
|
|
|
return rc;
|
|
}
|
|
|
|
void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags)
|
|
__acquires(tbl->lock)
|
|
__acquires(rcu)
|
|
{
|
|
struct neigh_seq_state *state = seq->private;
|
|
|
|
state->tbl = tbl;
|
|
state->bucket = 0;
|
|
state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH);
|
|
|
|
rcu_read_lock();
|
|
state->nht = rcu_dereference(tbl->nht);
|
|
read_lock_bh(&tbl->lock);
|
|
|
|
return *pos ? neigh_get_idx_any(seq, pos) : SEQ_START_TOKEN;
|
|
}
|
|
EXPORT_SYMBOL(neigh_seq_start);
|
|
|
|
void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos)
|
|
{
|
|
struct neigh_seq_state *state;
|
|
void *rc;
|
|
|
|
if (v == SEQ_START_TOKEN) {
|
|
rc = neigh_get_first(seq);
|
|
goto out;
|
|
}
|
|
|
|
state = seq->private;
|
|
if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) {
|
|
rc = neigh_get_next(seq, v, NULL);
|
|
if (rc)
|
|
goto out;
|
|
if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY))
|
|
rc = pneigh_get_first(seq);
|
|
} else {
|
|
BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY);
|
|
rc = pneigh_get_next(seq, v, NULL);
|
|
}
|
|
out:
|
|
++(*pos);
|
|
return rc;
|
|
}
|
|
EXPORT_SYMBOL(neigh_seq_next);
|
|
|
|
void neigh_seq_stop(struct seq_file *seq, void *v)
|
|
__releases(tbl->lock)
|
|
__releases(rcu)
|
|
{
|
|
struct neigh_seq_state *state = seq->private;
|
|
struct neigh_table *tbl = state->tbl;
|
|
|
|
read_unlock_bh(&tbl->lock);
|
|
rcu_read_unlock();
|
|
}
|
|
EXPORT_SYMBOL(neigh_seq_stop);
|
|
|
|
/* statistics via seq_file */
|
|
|
|
static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos)
|
|
{
|
|
struct neigh_table *tbl = pde_data(file_inode(seq->file));
|
|
int cpu;
|
|
|
|
if (*pos == 0)
|
|
return SEQ_START_TOKEN;
|
|
|
|
for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) {
|
|
if (!cpu_possible(cpu))
|
|
continue;
|
|
*pos = cpu+1;
|
|
return per_cpu_ptr(tbl->stats, cpu);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos)
|
|
{
|
|
struct neigh_table *tbl = pde_data(file_inode(seq->file));
|
|
int cpu;
|
|
|
|
for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) {
|
|
if (!cpu_possible(cpu))
|
|
continue;
|
|
*pos = cpu+1;
|
|
return per_cpu_ptr(tbl->stats, cpu);
|
|
}
|
|
(*pos)++;
|
|
return NULL;
|
|
}
|
|
|
|
static void neigh_stat_seq_stop(struct seq_file *seq, void *v)
|
|
{
|
|
|
|
}
|
|
|
|
static int neigh_stat_seq_show(struct seq_file *seq, void *v)
|
|
{
|
|
struct neigh_table *tbl = pde_data(file_inode(seq->file));
|
|
struct neigh_statistics *st = v;
|
|
|
|
if (v == SEQ_START_TOKEN) {
|
|
seq_puts(seq, "entries allocs destroys hash_grows lookups hits res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs unresolved_discards table_fulls\n");
|
|
return 0;
|
|
}
|
|
|
|
seq_printf(seq, "%08x %08lx %08lx %08lx %08lx %08lx %08lx "
|
|
"%08lx %08lx %08lx "
|
|
"%08lx %08lx %08lx\n",
|
|
atomic_read(&tbl->entries),
|
|
|
|
st->allocs,
|
|
st->destroys,
|
|
st->hash_grows,
|
|
|
|
st->lookups,
|
|
st->hits,
|
|
|
|
st->res_failed,
|
|
|
|
st->rcv_probes_mcast,
|
|
st->rcv_probes_ucast,
|
|
|
|
st->periodic_gc_runs,
|
|
st->forced_gc_runs,
|
|
st->unres_discards,
|
|
st->table_fulls
|
|
);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct seq_operations neigh_stat_seq_ops = {
|
|
.start = neigh_stat_seq_start,
|
|
.next = neigh_stat_seq_next,
|
|
.stop = neigh_stat_seq_stop,
|
|
.show = neigh_stat_seq_show,
|
|
};
|
|
#endif /* CONFIG_PROC_FS */
|
|
|
|
static void __neigh_notify(struct neighbour *n, int type, int flags,
|
|
u32 pid)
|
|
{
|
|
struct net *net = dev_net(n->dev);
|
|
struct sk_buff *skb;
|
|
int err = -ENOBUFS;
|
|
|
|
skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC);
|
|
if (skb == NULL)
|
|
goto errout;
|
|
|
|
err = neigh_fill_info(skb, n, pid, 0, type, flags);
|
|
if (err < 0) {
|
|
/* -EMSGSIZE implies BUG in neigh_nlmsg_size() */
|
|
WARN_ON(err == -EMSGSIZE);
|
|
kfree_skb(skb);
|
|
goto errout;
|
|
}
|
|
rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC);
|
|
return;
|
|
errout:
|
|
if (err < 0)
|
|
rtnl_set_sk_err(net, RTNLGRP_NEIGH, err);
|
|
}
|
|
|
|
void neigh_app_ns(struct neighbour *n)
|
|
{
|
|
__neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST, 0);
|
|
}
|
|
EXPORT_SYMBOL(neigh_app_ns);
|
|
|
|
#ifdef CONFIG_SYSCTL
|
|
static int unres_qlen_max = INT_MAX / SKB_TRUESIZE(ETH_FRAME_LEN);
|
|
|
|
static int proc_unres_qlen(struct ctl_table *ctl, int write,
|
|
void *buffer, size_t *lenp, loff_t *ppos)
|
|
{
|
|
int size, ret;
|
|
struct ctl_table tmp = *ctl;
|
|
|
|
tmp.extra1 = SYSCTL_ZERO;
|
|
tmp.extra2 = &unres_qlen_max;
|
|
tmp.data = &size;
|
|
|
|
size = *(int *)ctl->data / SKB_TRUESIZE(ETH_FRAME_LEN);
|
|
ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
|
|
|
|
if (write && !ret)
|
|
*(int *)ctl->data = size * SKB_TRUESIZE(ETH_FRAME_LEN);
|
|
return ret;
|
|
}
|
|
|
|
static void neigh_copy_dflt_parms(struct net *net, struct neigh_parms *p,
|
|
int index)
|
|
{
|
|
struct net_device *dev;
|
|
int family = neigh_parms_family(p);
|
|
|
|
rcu_read_lock();
|
|
for_each_netdev_rcu(net, dev) {
|
|
struct neigh_parms *dst_p =
|
|
neigh_get_dev_parms_rcu(dev, family);
|
|
|
|
if (dst_p && !test_bit(index, dst_p->data_state))
|
|
dst_p->data[index] = p->data[index];
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
static void neigh_proc_update(struct ctl_table *ctl, int write)
|
|
{
|
|
struct net_device *dev = ctl->extra1;
|
|
struct neigh_parms *p = ctl->extra2;
|
|
struct net *net = neigh_parms_net(p);
|
|
int index = (int *) ctl->data - p->data;
|
|
|
|
if (!write)
|
|
return;
|
|
|
|
set_bit(index, p->data_state);
|
|
if (index == NEIGH_VAR_DELAY_PROBE_TIME)
|
|
call_netevent_notifiers(NETEVENT_DELAY_PROBE_TIME_UPDATE, p);
|
|
if (!dev) /* NULL dev means this is default value */
|
|
neigh_copy_dflt_parms(net, p, index);
|
|
}
|
|
|
|
static int neigh_proc_dointvec_zero_intmax(struct ctl_table *ctl, int write,
|
|
void *buffer, size_t *lenp,
|
|
loff_t *ppos)
|
|
{
|
|
struct ctl_table tmp = *ctl;
|
|
int ret;
|
|
|
|
tmp.extra1 = SYSCTL_ZERO;
|
|
tmp.extra2 = SYSCTL_INT_MAX;
|
|
|
|
ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
|
|
neigh_proc_update(ctl, write);
|
|
return ret;
|
|
}
|
|
|
|
static int neigh_proc_dointvec_ms_jiffies_positive(struct ctl_table *ctl, int write,
|
|
void *buffer, size_t *lenp, loff_t *ppos)
|
|
{
|
|
struct ctl_table tmp = *ctl;
|
|
int ret;
|
|
|
|
int min = msecs_to_jiffies(1);
|
|
|
|
tmp.extra1 = &min;
|
|
tmp.extra2 = NULL;
|
|
|
|
ret = proc_dointvec_ms_jiffies_minmax(&tmp, write, buffer, lenp, ppos);
|
|
neigh_proc_update(ctl, write);
|
|
return ret;
|
|
}
|
|
|
|
int neigh_proc_dointvec(struct ctl_table *ctl, int write, void *buffer,
|
|
size_t *lenp, loff_t *ppos)
|
|
{
|
|
int ret = proc_dointvec(ctl, write, buffer, lenp, ppos);
|
|
|
|
neigh_proc_update(ctl, write);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(neigh_proc_dointvec);
|
|
|
|
int neigh_proc_dointvec_jiffies(struct ctl_table *ctl, int write, void *buffer,
|
|
size_t *lenp, loff_t *ppos)
|
|
{
|
|
int ret = proc_dointvec_jiffies(ctl, write, buffer, lenp, ppos);
|
|
|
|
neigh_proc_update(ctl, write);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(neigh_proc_dointvec_jiffies);
|
|
|
|
static int neigh_proc_dointvec_userhz_jiffies(struct ctl_table *ctl, int write,
|
|
void *buffer, size_t *lenp,
|
|
loff_t *ppos)
|
|
{
|
|
int ret = proc_dointvec_userhz_jiffies(ctl, write, buffer, lenp, ppos);
|
|
|
|
neigh_proc_update(ctl, write);
|
|
return ret;
|
|
}
|
|
|
|
int neigh_proc_dointvec_ms_jiffies(struct ctl_table *ctl, int write,
|
|
void *buffer, size_t *lenp, loff_t *ppos)
|
|
{
|
|
int ret = proc_dointvec_ms_jiffies(ctl, write, buffer, lenp, ppos);
|
|
|
|
neigh_proc_update(ctl, write);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(neigh_proc_dointvec_ms_jiffies);
|
|
|
|
static int neigh_proc_dointvec_unres_qlen(struct ctl_table *ctl, int write,
|
|
void *buffer, size_t *lenp,
|
|
loff_t *ppos)
|
|
{
|
|
int ret = proc_unres_qlen(ctl, write, buffer, lenp, ppos);
|
|
|
|
neigh_proc_update(ctl, write);
|
|
return ret;
|
|
}
|
|
|
|
static int neigh_proc_base_reachable_time(struct ctl_table *ctl, int write,
|
|
void *buffer, size_t *lenp,
|
|
loff_t *ppos)
|
|
{
|
|
struct neigh_parms *p = ctl->extra2;
|
|
int ret;
|
|
|
|
if (strcmp(ctl->procname, "base_reachable_time") == 0)
|
|
ret = neigh_proc_dointvec_jiffies(ctl, write, buffer, lenp, ppos);
|
|
else if (strcmp(ctl->procname, "base_reachable_time_ms") == 0)
|
|
ret = neigh_proc_dointvec_ms_jiffies(ctl, write, buffer, lenp, ppos);
|
|
else
|
|
ret = -1;
|
|
|
|
if (write && ret == 0) {
|
|
/* update reachable_time as well, otherwise, the change will
|
|
* only be effective after the next time neigh_periodic_work
|
|
* decides to recompute it
|
|
*/
|
|
p->reachable_time =
|
|
neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME));
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
#define NEIGH_PARMS_DATA_OFFSET(index) \
|
|
(&((struct neigh_parms *) 0)->data[index])
|
|
|
|
#define NEIGH_SYSCTL_ENTRY(attr, data_attr, name, mval, proc) \
|
|
[NEIGH_VAR_ ## attr] = { \
|
|
.procname = name, \
|
|
.data = NEIGH_PARMS_DATA_OFFSET(NEIGH_VAR_ ## data_attr), \
|
|
.maxlen = sizeof(int), \
|
|
.mode = mval, \
|
|
.proc_handler = proc, \
|
|
}
|
|
|
|
#define NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(attr, name) \
|
|
NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_zero_intmax)
|
|
|
|
#define NEIGH_SYSCTL_JIFFIES_ENTRY(attr, name) \
|
|
NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_jiffies)
|
|
|
|
#define NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(attr, name) \
|
|
NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_userhz_jiffies)
|
|
|
|
#define NEIGH_SYSCTL_MS_JIFFIES_POSITIVE_ENTRY(attr, name) \
|
|
NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_ms_jiffies_positive)
|
|
|
|
#define NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(attr, data_attr, name) \
|
|
NEIGH_SYSCTL_ENTRY(attr, data_attr, name, 0644, neigh_proc_dointvec_ms_jiffies)
|
|
|
|
#define NEIGH_SYSCTL_UNRES_QLEN_REUSED_ENTRY(attr, data_attr, name) \
|
|
NEIGH_SYSCTL_ENTRY(attr, data_attr, name, 0644, neigh_proc_dointvec_unres_qlen)
|
|
|
|
static struct neigh_sysctl_table {
|
|
struct ctl_table_header *sysctl_header;
|
|
struct ctl_table neigh_vars[NEIGH_VAR_MAX + 1];
|
|
} neigh_sysctl_template __read_mostly = {
|
|
.neigh_vars = {
|
|
NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(MCAST_PROBES, "mcast_solicit"),
|
|
NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(UCAST_PROBES, "ucast_solicit"),
|
|
NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(APP_PROBES, "app_solicit"),
|
|
NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(MCAST_REPROBES, "mcast_resolicit"),
|
|
NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(RETRANS_TIME, "retrans_time"),
|
|
NEIGH_SYSCTL_JIFFIES_ENTRY(BASE_REACHABLE_TIME, "base_reachable_time"),
|
|
NEIGH_SYSCTL_JIFFIES_ENTRY(DELAY_PROBE_TIME, "delay_first_probe_time"),
|
|
NEIGH_SYSCTL_MS_JIFFIES_POSITIVE_ENTRY(INTERVAL_PROBE_TIME_MS,
|
|
"interval_probe_time_ms"),
|
|
NEIGH_SYSCTL_JIFFIES_ENTRY(GC_STALETIME, "gc_stale_time"),
|
|
NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(QUEUE_LEN_BYTES, "unres_qlen_bytes"),
|
|
NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(PROXY_QLEN, "proxy_qlen"),
|
|
NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(ANYCAST_DELAY, "anycast_delay"),
|
|
NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(PROXY_DELAY, "proxy_delay"),
|
|
NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(LOCKTIME, "locktime"),
|
|
NEIGH_SYSCTL_UNRES_QLEN_REUSED_ENTRY(QUEUE_LEN, QUEUE_LEN_BYTES, "unres_qlen"),
|
|
NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(RETRANS_TIME_MS, RETRANS_TIME, "retrans_time_ms"),
|
|
NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(BASE_REACHABLE_TIME_MS, BASE_REACHABLE_TIME, "base_reachable_time_ms"),
|
|
[NEIGH_VAR_GC_INTERVAL] = {
|
|
.procname = "gc_interval",
|
|
.maxlen = sizeof(int),
|
|
.mode = 0644,
|
|
.proc_handler = proc_dointvec_jiffies,
|
|
},
|
|
[NEIGH_VAR_GC_THRESH1] = {
|
|
.procname = "gc_thresh1",
|
|
.maxlen = sizeof(int),
|
|
.mode = 0644,
|
|
.extra1 = SYSCTL_ZERO,
|
|
.extra2 = SYSCTL_INT_MAX,
|
|
.proc_handler = proc_dointvec_minmax,
|
|
},
|
|
[NEIGH_VAR_GC_THRESH2] = {
|
|
.procname = "gc_thresh2",
|
|
.maxlen = sizeof(int),
|
|
.mode = 0644,
|
|
.extra1 = SYSCTL_ZERO,
|
|
.extra2 = SYSCTL_INT_MAX,
|
|
.proc_handler = proc_dointvec_minmax,
|
|
},
|
|
[NEIGH_VAR_GC_THRESH3] = {
|
|
.procname = "gc_thresh3",
|
|
.maxlen = sizeof(int),
|
|
.mode = 0644,
|
|
.extra1 = SYSCTL_ZERO,
|
|
.extra2 = SYSCTL_INT_MAX,
|
|
.proc_handler = proc_dointvec_minmax,
|
|
},
|
|
{},
|
|
},
|
|
};
|
|
|
|
int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p,
|
|
proc_handler *handler)
|
|
{
|
|
int i;
|
|
struct neigh_sysctl_table *t;
|
|
const char *dev_name_source;
|
|
char neigh_path[ sizeof("net//neigh/") + IFNAMSIZ + IFNAMSIZ ];
|
|
char *p_name;
|
|
size_t neigh_vars_size;
|
|
|
|
t = kmemdup(&neigh_sysctl_template, sizeof(*t), GFP_KERNEL_ACCOUNT);
|
|
if (!t)
|
|
goto err;
|
|
|
|
for (i = 0; i < NEIGH_VAR_GC_INTERVAL; i++) {
|
|
t->neigh_vars[i].data += (long) p;
|
|
t->neigh_vars[i].extra1 = dev;
|
|
t->neigh_vars[i].extra2 = p;
|
|
}
|
|
|
|
neigh_vars_size = ARRAY_SIZE(t->neigh_vars);
|
|
if (dev) {
|
|
dev_name_source = dev->name;
|
|
/* Terminate the table early */
|
|
memset(&t->neigh_vars[NEIGH_VAR_GC_INTERVAL], 0,
|
|
sizeof(t->neigh_vars[NEIGH_VAR_GC_INTERVAL]));
|
|
neigh_vars_size = NEIGH_VAR_BASE_REACHABLE_TIME_MS + 1;
|
|
} else {
|
|
struct neigh_table *tbl = p->tbl;
|
|
dev_name_source = "default";
|
|
t->neigh_vars[NEIGH_VAR_GC_INTERVAL].data = &tbl->gc_interval;
|
|
t->neigh_vars[NEIGH_VAR_GC_THRESH1].data = &tbl->gc_thresh1;
|
|
t->neigh_vars[NEIGH_VAR_GC_THRESH2].data = &tbl->gc_thresh2;
|
|
t->neigh_vars[NEIGH_VAR_GC_THRESH3].data = &tbl->gc_thresh3;
|
|
}
|
|
|
|
if (handler) {
|
|
/* RetransTime */
|
|
t->neigh_vars[NEIGH_VAR_RETRANS_TIME].proc_handler = handler;
|
|
/* ReachableTime */
|
|
t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].proc_handler = handler;
|
|
/* RetransTime (in milliseconds)*/
|
|
t->neigh_vars[NEIGH_VAR_RETRANS_TIME_MS].proc_handler = handler;
|
|
/* ReachableTime (in milliseconds) */
|
|
t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].proc_handler = handler;
|
|
} else {
|
|
/* Those handlers will update p->reachable_time after
|
|
* base_reachable_time(_ms) is set to ensure the new timer starts being
|
|
* applied after the next neighbour update instead of waiting for
|
|
* neigh_periodic_work to update its value (can be multiple minutes)
|
|
* So any handler that replaces them should do this as well
|
|
*/
|
|
/* ReachableTime */
|
|
t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].proc_handler =
|
|
neigh_proc_base_reachable_time;
|
|
/* ReachableTime (in milliseconds) */
|
|
t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].proc_handler =
|
|
neigh_proc_base_reachable_time;
|
|
}
|
|
|
|
switch (neigh_parms_family(p)) {
|
|
case AF_INET:
|
|
p_name = "ipv4";
|
|
break;
|
|
case AF_INET6:
|
|
p_name = "ipv6";
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
snprintf(neigh_path, sizeof(neigh_path), "net/%s/neigh/%s",
|
|
p_name, dev_name_source);
|
|
t->sysctl_header = register_net_sysctl_sz(neigh_parms_net(p),
|
|
neigh_path, t->neigh_vars,
|
|
neigh_vars_size);
|
|
if (!t->sysctl_header)
|
|
goto free;
|
|
|
|
p->sysctl_table = t;
|
|
return 0;
|
|
|
|
free:
|
|
kfree(t);
|
|
err:
|
|
return -ENOBUFS;
|
|
}
|
|
EXPORT_SYMBOL(neigh_sysctl_register);
|
|
|
|
void neigh_sysctl_unregister(struct neigh_parms *p)
|
|
{
|
|
if (p->sysctl_table) {
|
|
struct neigh_sysctl_table *t = p->sysctl_table;
|
|
p->sysctl_table = NULL;
|
|
unregister_net_sysctl_table(t->sysctl_header);
|
|
kfree(t);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(neigh_sysctl_unregister);
|
|
|
|
#endif /* CONFIG_SYSCTL */
|
|
|
|
static int __init neigh_init(void)
|
|
{
|
|
rtnl_register(PF_UNSPEC, RTM_NEWNEIGH, neigh_add, NULL, 0);
|
|
rtnl_register(PF_UNSPEC, RTM_DELNEIGH, neigh_delete, NULL, 0);
|
|
rtnl_register(PF_UNSPEC, RTM_GETNEIGH, neigh_get, neigh_dump_info, 0);
|
|
|
|
rtnl_register(PF_UNSPEC, RTM_GETNEIGHTBL, NULL, neightbl_dump_info,
|
|
0);
|
|
rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
subsys_initcall(neigh_init);
|