linux/mm/migrate_device.c
Suren Baghdasaryan 49b0638502 mm: enable page walking API to lock vmas during the walk
walk_page_range() and friends often operate under write-locked mmap_lock. 
With introduction of vma locks, the vmas have to be locked as well during
such walks to prevent concurrent page faults in these areas.  Add an
additional member to mm_walk_ops to indicate locking requirements for the
walk.

The change ensures that page walks which prevent concurrent page faults
by write-locking mmap_lock, operate correctly after introduction of
per-vma locks.  With per-vma locks page faults can be handled under vma
lock without taking mmap_lock at all, so write locking mmap_lock would
not stop them.  The change ensures vmas are properly locked during such
walks.

A sample issue this solves is do_mbind() performing queue_pages_range()
to queue pages for migration.  Without this change a concurrent page
can be faulted into the area and be left out of migration.

Link: https://lkml.kernel.org/r/20230804152724.3090321-2-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Suggested-by: Linus Torvalds <torvalds@linuxfoundation.org>
Suggested-by: Jann Horn <jannh@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Laurent Dufour <ldufour@linux.ibm.com>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Michel Lespinasse <michel@lespinasse.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-21 13:07:20 -07:00

957 lines
27 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Device Memory Migration functionality.
*
* Originally written by Jérôme Glisse.
*/
#include <linux/export.h>
#include <linux/memremap.h>
#include <linux/migrate.h>
#include <linux/mm.h>
#include <linux/mm_inline.h>
#include <linux/mmu_notifier.h>
#include <linux/oom.h>
#include <linux/pagewalk.h>
#include <linux/rmap.h>
#include <linux/swapops.h>
#include <asm/tlbflush.h>
#include "internal.h"
static int migrate_vma_collect_skip(unsigned long start,
unsigned long end,
struct mm_walk *walk)
{
struct migrate_vma *migrate = walk->private;
unsigned long addr;
for (addr = start; addr < end; addr += PAGE_SIZE) {
migrate->dst[migrate->npages] = 0;
migrate->src[migrate->npages++] = 0;
}
return 0;
}
static int migrate_vma_collect_hole(unsigned long start,
unsigned long end,
__always_unused int depth,
struct mm_walk *walk)
{
struct migrate_vma *migrate = walk->private;
unsigned long addr;
/* Only allow populating anonymous memory. */
if (!vma_is_anonymous(walk->vma))
return migrate_vma_collect_skip(start, end, walk);
for (addr = start; addr < end; addr += PAGE_SIZE) {
migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
migrate->dst[migrate->npages] = 0;
migrate->npages++;
migrate->cpages++;
}
return 0;
}
static int migrate_vma_collect_pmd(pmd_t *pmdp,
unsigned long start,
unsigned long end,
struct mm_walk *walk)
{
struct migrate_vma *migrate = walk->private;
struct vm_area_struct *vma = walk->vma;
struct mm_struct *mm = vma->vm_mm;
unsigned long addr = start, unmapped = 0;
spinlock_t *ptl;
pte_t *ptep;
again:
if (pmd_none(*pmdp))
return migrate_vma_collect_hole(start, end, -1, walk);
if (pmd_trans_huge(*pmdp)) {
struct page *page;
ptl = pmd_lock(mm, pmdp);
if (unlikely(!pmd_trans_huge(*pmdp))) {
spin_unlock(ptl);
goto again;
}
page = pmd_page(*pmdp);
if (is_huge_zero_page(page)) {
spin_unlock(ptl);
split_huge_pmd(vma, pmdp, addr);
} else {
int ret;
get_page(page);
spin_unlock(ptl);
if (unlikely(!trylock_page(page)))
return migrate_vma_collect_skip(start, end,
walk);
ret = split_huge_page(page);
unlock_page(page);
put_page(page);
if (ret)
return migrate_vma_collect_skip(start, end,
walk);
}
}
ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
if (!ptep)
goto again;
arch_enter_lazy_mmu_mode();
for (; addr < end; addr += PAGE_SIZE, ptep++) {
unsigned long mpfn = 0, pfn;
struct page *page;
swp_entry_t entry;
pte_t pte;
pte = ptep_get(ptep);
if (pte_none(pte)) {
if (vma_is_anonymous(vma)) {
mpfn = MIGRATE_PFN_MIGRATE;
migrate->cpages++;
}
goto next;
}
if (!pte_present(pte)) {
/*
* Only care about unaddressable device page special
* page table entry. Other special swap entries are not
* migratable, and we ignore regular swapped page.
*/
entry = pte_to_swp_entry(pte);
if (!is_device_private_entry(entry))
goto next;
page = pfn_swap_entry_to_page(entry);
if (!(migrate->flags &
MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
page->pgmap->owner != migrate->pgmap_owner)
goto next;
mpfn = migrate_pfn(page_to_pfn(page)) |
MIGRATE_PFN_MIGRATE;
if (is_writable_device_private_entry(entry))
mpfn |= MIGRATE_PFN_WRITE;
} else {
pfn = pte_pfn(pte);
if (is_zero_pfn(pfn) &&
(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM)) {
mpfn = MIGRATE_PFN_MIGRATE;
migrate->cpages++;
goto next;
}
page = vm_normal_page(migrate->vma, addr, pte);
if (page && !is_zone_device_page(page) &&
!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
goto next;
else if (page && is_device_coherent_page(page) &&
(!(migrate->flags & MIGRATE_VMA_SELECT_DEVICE_COHERENT) ||
page->pgmap->owner != migrate->pgmap_owner))
goto next;
mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
}
/* FIXME support THP */
if (!page || !page->mapping || PageTransCompound(page)) {
mpfn = 0;
goto next;
}
/*
* By getting a reference on the page we pin it and that blocks
* any kind of migration. Side effect is that it "freezes" the
* pte.
*
* We drop this reference after isolating the page from the lru
* for non device page (device page are not on the lru and thus
* can't be dropped from it).
*/
get_page(page);
/*
* We rely on trylock_page() to avoid deadlock between
* concurrent migrations where each is waiting on the others
* page lock. If we can't immediately lock the page we fail this
* migration as it is only best effort anyway.
*
* If we can lock the page it's safe to set up a migration entry
* now. In the common case where the page is mapped once in a
* single process setting up the migration entry now is an
* optimisation to avoid walking the rmap later with
* try_to_migrate().
*/
if (trylock_page(page)) {
bool anon_exclusive;
pte_t swp_pte;
flush_cache_page(vma, addr, pte_pfn(pte));
anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
if (anon_exclusive) {
pte = ptep_clear_flush(vma, addr, ptep);
if (page_try_share_anon_rmap(page)) {
set_pte_at(mm, addr, ptep, pte);
unlock_page(page);
put_page(page);
mpfn = 0;
goto next;
}
} else {
pte = ptep_get_and_clear(mm, addr, ptep);
}
migrate->cpages++;
/* Set the dirty flag on the folio now the pte is gone. */
if (pte_dirty(pte))
folio_mark_dirty(page_folio(page));
/* Setup special migration page table entry */
if (mpfn & MIGRATE_PFN_WRITE)
entry = make_writable_migration_entry(
page_to_pfn(page));
else if (anon_exclusive)
entry = make_readable_exclusive_migration_entry(
page_to_pfn(page));
else
entry = make_readable_migration_entry(
page_to_pfn(page));
if (pte_present(pte)) {
if (pte_young(pte))
entry = make_migration_entry_young(entry);
if (pte_dirty(pte))
entry = make_migration_entry_dirty(entry);
}
swp_pte = swp_entry_to_pte(entry);
if (pte_present(pte)) {
if (pte_soft_dirty(pte))
swp_pte = pte_swp_mksoft_dirty(swp_pte);
if (pte_uffd_wp(pte))
swp_pte = pte_swp_mkuffd_wp(swp_pte);
} else {
if (pte_swp_soft_dirty(pte))
swp_pte = pte_swp_mksoft_dirty(swp_pte);
if (pte_swp_uffd_wp(pte))
swp_pte = pte_swp_mkuffd_wp(swp_pte);
}
set_pte_at(mm, addr, ptep, swp_pte);
/*
* This is like regular unmap: we remove the rmap and
* drop page refcount. Page won't be freed, as we took
* a reference just above.
*/
page_remove_rmap(page, vma, false);
put_page(page);
if (pte_present(pte))
unmapped++;
} else {
put_page(page);
mpfn = 0;
}
next:
migrate->dst[migrate->npages] = 0;
migrate->src[migrate->npages++] = mpfn;
}
/* Only flush the TLB if we actually modified any entries */
if (unmapped)
flush_tlb_range(walk->vma, start, end);
arch_leave_lazy_mmu_mode();
pte_unmap_unlock(ptep - 1, ptl);
return 0;
}
static const struct mm_walk_ops migrate_vma_walk_ops = {
.pmd_entry = migrate_vma_collect_pmd,
.pte_hole = migrate_vma_collect_hole,
.walk_lock = PGWALK_RDLOCK,
};
/*
* migrate_vma_collect() - collect pages over a range of virtual addresses
* @migrate: migrate struct containing all migration information
*
* This will walk the CPU page table. For each virtual address backed by a
* valid page, it updates the src array and takes a reference on the page, in
* order to pin the page until we lock it and unmap it.
*/
static void migrate_vma_collect(struct migrate_vma *migrate)
{
struct mmu_notifier_range range;
/*
* Note that the pgmap_owner is passed to the mmu notifier callback so
* that the registered device driver can skip invalidating device
* private page mappings that won't be migrated.
*/
mmu_notifier_range_init_owner(&range, MMU_NOTIFY_MIGRATE, 0,
migrate->vma->vm_mm, migrate->start, migrate->end,
migrate->pgmap_owner);
mmu_notifier_invalidate_range_start(&range);
walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
&migrate_vma_walk_ops, migrate);
mmu_notifier_invalidate_range_end(&range);
migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
}
/*
* migrate_vma_check_page() - check if page is pinned or not
* @page: struct page to check
*
* Pinned pages cannot be migrated. This is the same test as in
* folio_migrate_mapping(), except that here we allow migration of a
* ZONE_DEVICE page.
*/
static bool migrate_vma_check_page(struct page *page, struct page *fault_page)
{
/*
* One extra ref because caller holds an extra reference, either from
* isolate_lru_page() for a regular page, or migrate_vma_collect() for
* a device page.
*/
int extra = 1 + (page == fault_page);
/*
* FIXME support THP (transparent huge page), it is bit more complex to
* check them than regular pages, because they can be mapped with a pmd
* or with a pte (split pte mapping).
*/
if (PageCompound(page))
return false;
/* Page from ZONE_DEVICE have one extra reference */
if (is_zone_device_page(page))
extra++;
/* For file back page */
if (page_mapping(page))
extra += 1 + page_has_private(page);
if ((page_count(page) - extra) > page_mapcount(page))
return false;
return true;
}
/*
* Unmaps pages for migration. Returns number of source pfns marked as
* migrating.
*/
static unsigned long migrate_device_unmap(unsigned long *src_pfns,
unsigned long npages,
struct page *fault_page)
{
unsigned long i, restore = 0;
bool allow_drain = true;
unsigned long unmapped = 0;
lru_add_drain();
for (i = 0; i < npages; i++) {
struct page *page = migrate_pfn_to_page(src_pfns[i]);
struct folio *folio;
if (!page) {
if (src_pfns[i] & MIGRATE_PFN_MIGRATE)
unmapped++;
continue;
}
/* ZONE_DEVICE pages are not on LRU */
if (!is_zone_device_page(page)) {
if (!PageLRU(page) && allow_drain) {
/* Drain CPU's lru cache */
lru_add_drain_all();
allow_drain = false;
}
if (!isolate_lru_page(page)) {
src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
restore++;
continue;
}
/* Drop the reference we took in collect */
put_page(page);
}
folio = page_folio(page);
if (folio_mapped(folio))
try_to_migrate(folio, 0);
if (page_mapped(page) ||
!migrate_vma_check_page(page, fault_page)) {
if (!is_zone_device_page(page)) {
get_page(page);
putback_lru_page(page);
}
src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
restore++;
continue;
}
unmapped++;
}
for (i = 0; i < npages && restore; i++) {
struct page *page = migrate_pfn_to_page(src_pfns[i]);
struct folio *folio;
if (!page || (src_pfns[i] & MIGRATE_PFN_MIGRATE))
continue;
folio = page_folio(page);
remove_migration_ptes(folio, folio, false);
src_pfns[i] = 0;
folio_unlock(folio);
folio_put(folio);
restore--;
}
return unmapped;
}
/*
* migrate_vma_unmap() - replace page mapping with special migration pte entry
* @migrate: migrate struct containing all migration information
*
* Isolate pages from the LRU and replace mappings (CPU page table pte) with a
* special migration pte entry and check if it has been pinned. Pinned pages are
* restored because we cannot migrate them.
*
* This is the last step before we call the device driver callback to allocate
* destination memory and copy contents of original page over to new page.
*/
static void migrate_vma_unmap(struct migrate_vma *migrate)
{
migrate->cpages = migrate_device_unmap(migrate->src, migrate->npages,
migrate->fault_page);
}
/**
* migrate_vma_setup() - prepare to migrate a range of memory
* @args: contains the vma, start, and pfns arrays for the migration
*
* Returns: negative errno on failures, 0 when 0 or more pages were migrated
* without an error.
*
* Prepare to migrate a range of memory virtual address range by collecting all
* the pages backing each virtual address in the range, saving them inside the
* src array. Then lock those pages and unmap them. Once the pages are locked
* and unmapped, check whether each page is pinned or not. Pages that aren't
* pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
* corresponding src array entry. Then restores any pages that are pinned, by
* remapping and unlocking those pages.
*
* The caller should then allocate destination memory and copy source memory to
* it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
* flag set). Once these are allocated and copied, the caller must update each
* corresponding entry in the dst array with the pfn value of the destination
* page and with MIGRATE_PFN_VALID. Destination pages must be locked via
* lock_page().
*
* Note that the caller does not have to migrate all the pages that are marked
* with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
* device memory to system memory. If the caller cannot migrate a device page
* back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
* consequences for the userspace process, so it must be avoided if at all
* possible.
*
* For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
* do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
* allowing the caller to allocate device memory for those unbacked virtual
* addresses. For this the caller simply has to allocate device memory and
* properly set the destination entry like for regular migration. Note that
* this can still fail, and thus inside the device driver you must check if the
* migration was successful for those entries after calling migrate_vma_pages(),
* just like for regular migration.
*
* After that, the callers must call migrate_vma_pages() to go over each entry
* in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
* set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
* then migrate_vma_pages() to migrate struct page information from the source
* struct page to the destination struct page. If it fails to migrate the
* struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
* src array.
*
* At this point all successfully migrated pages have an entry in the src
* array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
* array entry with MIGRATE_PFN_VALID flag set.
*
* Once migrate_vma_pages() returns the caller may inspect which pages were
* successfully migrated, and which were not. Successfully migrated pages will
* have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
*
* It is safe to update device page table after migrate_vma_pages() because
* both destination and source page are still locked, and the mmap_lock is held
* in read mode (hence no one can unmap the range being migrated).
*
* Once the caller is done cleaning up things and updating its page table (if it
* chose to do so, this is not an obligation) it finally calls
* migrate_vma_finalize() to update the CPU page table to point to new pages
* for successfully migrated pages or otherwise restore the CPU page table to
* point to the original source pages.
*/
int migrate_vma_setup(struct migrate_vma *args)
{
long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
args->start &= PAGE_MASK;
args->end &= PAGE_MASK;
if (!args->vma || is_vm_hugetlb_page(args->vma) ||
(args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
return -EINVAL;
if (nr_pages <= 0)
return -EINVAL;
if (args->start < args->vma->vm_start ||
args->start >= args->vma->vm_end)
return -EINVAL;
if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
return -EINVAL;
if (!args->src || !args->dst)
return -EINVAL;
if (args->fault_page && !is_device_private_page(args->fault_page))
return -EINVAL;
memset(args->src, 0, sizeof(*args->src) * nr_pages);
args->cpages = 0;
args->npages = 0;
migrate_vma_collect(args);
if (args->cpages)
migrate_vma_unmap(args);
/*
* At this point pages are locked and unmapped, and thus they have
* stable content and can safely be copied to destination memory that
* is allocated by the drivers.
*/
return 0;
}
EXPORT_SYMBOL(migrate_vma_setup);
/*
* This code closely matches the code in:
* __handle_mm_fault()
* handle_pte_fault()
* do_anonymous_page()
* to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
* private or coherent page.
*/
static void migrate_vma_insert_page(struct migrate_vma *migrate,
unsigned long addr,
struct page *page,
unsigned long *src)
{
struct vm_area_struct *vma = migrate->vma;
struct mm_struct *mm = vma->vm_mm;
bool flush = false;
spinlock_t *ptl;
pte_t entry;
pgd_t *pgdp;
p4d_t *p4dp;
pud_t *pudp;
pmd_t *pmdp;
pte_t *ptep;
pte_t orig_pte;
/* Only allow populating anonymous memory */
if (!vma_is_anonymous(vma))
goto abort;
pgdp = pgd_offset(mm, addr);
p4dp = p4d_alloc(mm, pgdp, addr);
if (!p4dp)
goto abort;
pudp = pud_alloc(mm, p4dp, addr);
if (!pudp)
goto abort;
pmdp = pmd_alloc(mm, pudp, addr);
if (!pmdp)
goto abort;
if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
goto abort;
if (pte_alloc(mm, pmdp))
goto abort;
if (unlikely(anon_vma_prepare(vma)))
goto abort;
if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
goto abort;
/*
* The memory barrier inside __SetPageUptodate makes sure that
* preceding stores to the page contents become visible before
* the set_pte_at() write.
*/
__SetPageUptodate(page);
if (is_device_private_page(page)) {
swp_entry_t swp_entry;
if (vma->vm_flags & VM_WRITE)
swp_entry = make_writable_device_private_entry(
page_to_pfn(page));
else
swp_entry = make_readable_device_private_entry(
page_to_pfn(page));
entry = swp_entry_to_pte(swp_entry);
} else {
if (is_zone_device_page(page) &&
!is_device_coherent_page(page)) {
pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
goto abort;
}
entry = mk_pte(page, vma->vm_page_prot);
if (vma->vm_flags & VM_WRITE)
entry = pte_mkwrite(pte_mkdirty(entry));
}
ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
if (!ptep)
goto abort;
orig_pte = ptep_get(ptep);
if (check_stable_address_space(mm))
goto unlock_abort;
if (pte_present(orig_pte)) {
unsigned long pfn = pte_pfn(orig_pte);
if (!is_zero_pfn(pfn))
goto unlock_abort;
flush = true;
} else if (!pte_none(orig_pte))
goto unlock_abort;
/*
* Check for userfaultfd but do not deliver the fault. Instead,
* just back off.
*/
if (userfaultfd_missing(vma))
goto unlock_abort;
inc_mm_counter(mm, MM_ANONPAGES);
page_add_new_anon_rmap(page, vma, addr);
if (!is_zone_device_page(page))
lru_cache_add_inactive_or_unevictable(page, vma);
get_page(page);
if (flush) {
flush_cache_page(vma, addr, pte_pfn(orig_pte));
ptep_clear_flush_notify(vma, addr, ptep);
set_pte_at_notify(mm, addr, ptep, entry);
update_mmu_cache(vma, addr, ptep);
} else {
/* No need to invalidate - it was non-present before */
set_pte_at(mm, addr, ptep, entry);
update_mmu_cache(vma, addr, ptep);
}
pte_unmap_unlock(ptep, ptl);
*src = MIGRATE_PFN_MIGRATE;
return;
unlock_abort:
pte_unmap_unlock(ptep, ptl);
abort:
*src &= ~MIGRATE_PFN_MIGRATE;
}
static void __migrate_device_pages(unsigned long *src_pfns,
unsigned long *dst_pfns, unsigned long npages,
struct migrate_vma *migrate)
{
struct mmu_notifier_range range;
unsigned long i;
bool notified = false;
for (i = 0; i < npages; i++) {
struct page *newpage = migrate_pfn_to_page(dst_pfns[i]);
struct page *page = migrate_pfn_to_page(src_pfns[i]);
struct address_space *mapping;
int r;
if (!newpage) {
src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
continue;
}
if (!page) {
unsigned long addr;
if (!(src_pfns[i] & MIGRATE_PFN_MIGRATE))
continue;
/*
* The only time there is no vma is when called from
* migrate_device_coherent_page(). However this isn't
* called if the page could not be unmapped.
*/
VM_BUG_ON(!migrate);
addr = migrate->start + i*PAGE_SIZE;
if (!notified) {
notified = true;
mmu_notifier_range_init_owner(&range,
MMU_NOTIFY_MIGRATE, 0,
migrate->vma->vm_mm, addr, migrate->end,
migrate->pgmap_owner);
mmu_notifier_invalidate_range_start(&range);
}
migrate_vma_insert_page(migrate, addr, newpage,
&src_pfns[i]);
continue;
}
mapping = page_mapping(page);
if (is_device_private_page(newpage) ||
is_device_coherent_page(newpage)) {
/*
* For now only support anonymous memory migrating to
* device private or coherent memory.
*/
if (mapping) {
src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
continue;
}
} else if (is_zone_device_page(newpage)) {
/*
* Other types of ZONE_DEVICE page are not supported.
*/
src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
continue;
}
if (migrate && migrate->fault_page == page)
r = migrate_folio_extra(mapping, page_folio(newpage),
page_folio(page),
MIGRATE_SYNC_NO_COPY, 1);
else
r = migrate_folio(mapping, page_folio(newpage),
page_folio(page), MIGRATE_SYNC_NO_COPY);
if (r != MIGRATEPAGE_SUCCESS)
src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
}
/*
* No need to double call mmu_notifier->invalidate_range() callback as
* the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
* did already call it.
*/
if (notified)
mmu_notifier_invalidate_range_only_end(&range);
}
/**
* migrate_device_pages() - migrate meta-data from src page to dst page
* @src_pfns: src_pfns returned from migrate_device_range()
* @dst_pfns: array of pfns allocated by the driver to migrate memory to
* @npages: number of pages in the range
*
* Equivalent to migrate_vma_pages(). This is called to migrate struct page
* meta-data from source struct page to destination.
*/
void migrate_device_pages(unsigned long *src_pfns, unsigned long *dst_pfns,
unsigned long npages)
{
__migrate_device_pages(src_pfns, dst_pfns, npages, NULL);
}
EXPORT_SYMBOL(migrate_device_pages);
/**
* migrate_vma_pages() - migrate meta-data from src page to dst page
* @migrate: migrate struct containing all migration information
*
* This migrates struct page meta-data from source struct page to destination
* struct page. This effectively finishes the migration from source page to the
* destination page.
*/
void migrate_vma_pages(struct migrate_vma *migrate)
{
__migrate_device_pages(migrate->src, migrate->dst, migrate->npages, migrate);
}
EXPORT_SYMBOL(migrate_vma_pages);
/*
* migrate_device_finalize() - complete page migration
* @src_pfns: src_pfns returned from migrate_device_range()
* @dst_pfns: array of pfns allocated by the driver to migrate memory to
* @npages: number of pages in the range
*
* Completes migration of the page by removing special migration entries.
* Drivers must ensure copying of page data is complete and visible to the CPU
* before calling this.
*/
void migrate_device_finalize(unsigned long *src_pfns,
unsigned long *dst_pfns, unsigned long npages)
{
unsigned long i;
for (i = 0; i < npages; i++) {
struct folio *dst, *src;
struct page *newpage = migrate_pfn_to_page(dst_pfns[i]);
struct page *page = migrate_pfn_to_page(src_pfns[i]);
if (!page) {
if (newpage) {
unlock_page(newpage);
put_page(newpage);
}
continue;
}
if (!(src_pfns[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
if (newpage) {
unlock_page(newpage);
put_page(newpage);
}
newpage = page;
}
src = page_folio(page);
dst = page_folio(newpage);
remove_migration_ptes(src, dst, false);
folio_unlock(src);
if (is_zone_device_page(page))
put_page(page);
else
putback_lru_page(page);
if (newpage != page) {
unlock_page(newpage);
if (is_zone_device_page(newpage))
put_page(newpage);
else
putback_lru_page(newpage);
}
}
}
EXPORT_SYMBOL(migrate_device_finalize);
/**
* migrate_vma_finalize() - restore CPU page table entry
* @migrate: migrate struct containing all migration information
*
* This replaces the special migration pte entry with either a mapping to the
* new page if migration was successful for that page, or to the original page
* otherwise.
*
* This also unlocks the pages and puts them back on the lru, or drops the extra
* refcount, for device pages.
*/
void migrate_vma_finalize(struct migrate_vma *migrate)
{
migrate_device_finalize(migrate->src, migrate->dst, migrate->npages);
}
EXPORT_SYMBOL(migrate_vma_finalize);
/**
* migrate_device_range() - migrate device private pfns to normal memory.
* @src_pfns: array large enough to hold migrating source device private pfns.
* @start: starting pfn in the range to migrate.
* @npages: number of pages to migrate.
*
* migrate_vma_setup() is similar in concept to migrate_vma_setup() except that
* instead of looking up pages based on virtual address mappings a range of
* device pfns that should be migrated to system memory is used instead.
*
* This is useful when a driver needs to free device memory but doesn't know the
* virtual mappings of every page that may be in device memory. For example this
* is often the case when a driver is being unloaded or unbound from a device.
*
* Like migrate_vma_setup() this function will take a reference and lock any
* migrating pages that aren't free before unmapping them. Drivers may then
* allocate destination pages and start copying data from the device to CPU
* memory before calling migrate_device_pages().
*/
int migrate_device_range(unsigned long *src_pfns, unsigned long start,
unsigned long npages)
{
unsigned long i, pfn;
for (pfn = start, i = 0; i < npages; pfn++, i++) {
struct page *page = pfn_to_page(pfn);
if (!get_page_unless_zero(page)) {
src_pfns[i] = 0;
continue;
}
if (!trylock_page(page)) {
src_pfns[i] = 0;
put_page(page);
continue;
}
src_pfns[i] = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
}
migrate_device_unmap(src_pfns, npages, NULL);
return 0;
}
EXPORT_SYMBOL(migrate_device_range);
/*
* Migrate a device coherent page back to normal memory. The caller should have
* a reference on page which will be copied to the new page if migration is
* successful or dropped on failure.
*/
int migrate_device_coherent_page(struct page *page)
{
unsigned long src_pfn, dst_pfn = 0;
struct page *dpage;
WARN_ON_ONCE(PageCompound(page));
lock_page(page);
src_pfn = migrate_pfn(page_to_pfn(page)) | MIGRATE_PFN_MIGRATE;
/*
* We don't have a VMA and don't need to walk the page tables to find
* the source page. So call migrate_vma_unmap() directly to unmap the
* page as migrate_vma_setup() will fail if args.vma == NULL.
*/
migrate_device_unmap(&src_pfn, 1, NULL);
if (!(src_pfn & MIGRATE_PFN_MIGRATE))
return -EBUSY;
dpage = alloc_page(GFP_USER | __GFP_NOWARN);
if (dpage) {
lock_page(dpage);
dst_pfn = migrate_pfn(page_to_pfn(dpage));
}
migrate_device_pages(&src_pfn, &dst_pfn, 1);
if (src_pfn & MIGRATE_PFN_MIGRATE)
copy_highpage(dpage, page);
migrate_device_finalize(&src_pfn, &dst_pfn, 1);
if (src_pfn & MIGRATE_PFN_MIGRATE)
return 0;
return -EBUSY;
}